1 /*
2  * Copyright (c) 2007, 2016, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/assembler.hpp"
27 #include "interpreter/bytecodeHistogram.hpp"
28 #include "interpreter/cppInterpreter.hpp"
29 #include "interpreter/interpreter.hpp"
30 #include "interpreter/interpreterGenerator.hpp"
31 #include "interpreter/interpreterRuntime.hpp"
32 #include "oops/arrayOop.hpp"
33 #include "oops/methodData.hpp"
34 #include "oops/method.hpp"
35 #include "oops/oop.inline.hpp"
36 #include "prims/jvmtiExport.hpp"
37 #include "prims/jvmtiThreadState.hpp"
38 #include "runtime/arguments.hpp"
39 #include "runtime/deoptimization.hpp"
40 #include "runtime/frame.inline.hpp"
41 #include "runtime/interfaceSupport.hpp"
42 #include "runtime/sharedRuntime.hpp"
43 #include "runtime/stubRoutines.hpp"
44 #include "runtime/synchronizer.hpp"
45 #include "runtime/timer.hpp"
46 #include "runtime/vframeArray.hpp"
47 #include "utilities/debug.hpp"
48 #include "utilities/macros.hpp"
49 #ifdef SHARK
50 #include "shark/shark_globals.hpp"
51 #endif
52 
53 #ifdef CC_INTERP
54 
55 // Routine exists to make tracebacks look decent in debugger
56 // while "shadow" interpreter frames are on stack. It is also
57 // used to distinguish interpreter frames.
58 
RecursiveInterpreterActivation(interpreterState istate)59 extern "C" void RecursiveInterpreterActivation(interpreterState istate) {
60   ShouldNotReachHere();
61 }
62 
contains(address pc)63 bool CppInterpreter::contains(address pc) {
64   return ( _code->contains(pc) ||
65          ( pc == (CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset)));
66 }
67 
68 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
69 #define __ _masm->
70 
71 Label frame_manager_entry;
72 Label fast_accessor_slow_entry_path;  // fast accessor methods need to be able to jmp to unsynchronized
73                                       // c++ interpreter entry point this holds that entry point label.
74 
75 static address unctrap_frame_manager_entry  = NULL;
76 
77 static address interpreter_return_address  = NULL;
78 static address deopt_frame_manager_return_atos  = NULL;
79 static address deopt_frame_manager_return_btos  = NULL;
80 static address deopt_frame_manager_return_itos  = NULL;
81 static address deopt_frame_manager_return_ltos  = NULL;
82 static address deopt_frame_manager_return_ftos  = NULL;
83 static address deopt_frame_manager_return_dtos  = NULL;
84 static address deopt_frame_manager_return_vtos  = NULL;
85 
86 const Register prevState = G1_scratch;
87 
save_native_result(void)88 void InterpreterGenerator::save_native_result(void) {
89   // result potentially in O0/O1: save it across calls
90   __ stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
91 #ifdef _LP64
92   __ stx(O0, STATE(_native_lresult));
93 #else
94   __ std(O0, STATE(_native_lresult));
95 #endif
96 }
97 
restore_native_result(void)98 void InterpreterGenerator::restore_native_result(void) {
99 
100   // Restore any method result value
101   __ ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
102 #ifdef _LP64
103   __ ldx(STATE(_native_lresult), O0);
104 #else
105   __ ldd(STATE(_native_lresult), O0);
106 #endif
107 }
108 
109 // A result handler converts/unboxes a native call result into
110 // a java interpreter/compiler result. The current frame is an
111 // interpreter frame. The activation frame unwind code must be
112 // consistent with that of TemplateTable::_return(...). In the
113 // case of native methods, the caller's SP was not modified.
generate_result_handler_for(BasicType type)114 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
115   address entry = __ pc();
116   Register Itos_i  = Otos_i ->after_save();
117   Register Itos_l  = Otos_l ->after_save();
118   Register Itos_l1 = Otos_l1->after_save();
119   Register Itos_l2 = Otos_l2->after_save();
120   switch (type) {
121     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
122     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
123     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
124     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
125     case T_LONG   :
126 #ifndef _LP64
127                     __ mov(O1, Itos_l2);  // move other half of long
128 #endif              // ifdef or no ifdef, fall through to the T_INT case
129     case T_INT    : __ mov(O0, Itos_i);                         break;
130     case T_VOID   : /* nothing to do */                         break;
131     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
132     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
133     case T_OBJECT :
134       __ ld_ptr(STATE(_oop_temp), Itos_i);
135       __ verify_oop(Itos_i);
136       break;
137     default       : ShouldNotReachHere();
138   }
139   __ ret();                           // return from interpreter activation
140   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
141   NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
142   return entry;
143 }
144 
145 // tosca based result to c++ interpreter stack based result.
146 // Result goes to address in L1_scratch
147 
generate_tosca_to_stack_converter(BasicType type)148 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
149   // A result is in the native abi result register from a native method call.
150   // We need to return this result to the interpreter by pushing the result on the interpreter's
151   // stack. This is relatively simple the destination is in L1_scratch
152   // i.e. L1_scratch is the first free element on the stack. If we "push" a return value we must
153   // adjust L1_scratch
154   address entry = __ pc();
155   switch (type) {
156     case T_BOOLEAN:
157       // !0 => true; 0 => false
158       __ subcc(G0, O0, G0);
159       __ addc(G0, 0, O0);
160       __ st(O0, L1_scratch, 0);
161       __ sub(L1_scratch, wordSize, L1_scratch);
162       break;
163 
164     // cannot use and3, 0xFFFF too big as immediate value!
165     case T_CHAR   :
166       __ sll(O0, 16, O0);
167       __ srl(O0, 16, O0);
168       __ st(O0, L1_scratch, 0);
169       __ sub(L1_scratch, wordSize, L1_scratch);
170       break;
171 
172     case T_BYTE   :
173       __ sll(O0, 24, O0);
174       __ sra(O0, 24, O0);
175       __ st(O0, L1_scratch, 0);
176       __ sub(L1_scratch, wordSize, L1_scratch);
177       break;
178 
179     case T_SHORT  :
180       __ sll(O0, 16, O0);
181       __ sra(O0, 16, O0);
182       __ st(O0, L1_scratch, 0);
183       __ sub(L1_scratch, wordSize, L1_scratch);
184       break;
185     case T_LONG   :
186 #ifndef _LP64
187 #if defined(COMPILER2)
188   // All return values are where we want them, except for Longs.  C2 returns
189   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
190   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
191   // build even if we are returning from interpreted we just do a little
192   // stupid shuffing.
193   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
194   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
195   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
196       __ stx(G1, L1_scratch, -wordSize);
197 #else
198       // native result is in O0, O1
199       __ st(O1, L1_scratch, 0);                      // Low order
200       __ st(O0, L1_scratch, -wordSize);              // High order
201 #endif /* COMPILER2 */
202 #else
203       __ stx(O0, L1_scratch, -wordSize);
204 #endif
205       __ sub(L1_scratch, 2*wordSize, L1_scratch);
206       break;
207 
208     case T_INT    :
209       __ st(O0, L1_scratch, 0);
210       __ sub(L1_scratch, wordSize, L1_scratch);
211       break;
212 
213     case T_VOID   : /* nothing to do */
214       break;
215 
216     case T_FLOAT  :
217       __ stf(FloatRegisterImpl::S, F0, L1_scratch, 0);
218       __ sub(L1_scratch, wordSize, L1_scratch);
219       break;
220 
221     case T_DOUBLE :
222       // Every stack slot is aligned on 64 bit, However is this
223       // the correct stack slot on 64bit?? QQQ
224       __ stf(FloatRegisterImpl::D, F0, L1_scratch, -wordSize);
225       __ sub(L1_scratch, 2*wordSize, L1_scratch);
226       break;
227     case T_OBJECT :
228       __ verify_oop(O0);
229       __ st_ptr(O0, L1_scratch, 0);
230       __ sub(L1_scratch, wordSize, L1_scratch);
231       break;
232     default       : ShouldNotReachHere();
233   }
234   __ retl();                          // return from interpreter activation
235   __ delayed()->nop();                // schedule this better
236   NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
237   return entry;
238 }
239 
generate_stack_to_stack_converter(BasicType type)240 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
241   // A result is in the java expression stack of the interpreted method that has just
242   // returned. Place this result on the java expression stack of the caller.
243   //
244   // The current interpreter activation in Lstate is for the method just returning its
245   // result. So we know that the result of this method is on the top of the current
246   // execution stack (which is pre-pushed) and will be return to the top of the caller
247   // stack. The top of the callers stack is the bottom of the locals of the current
248   // activation.
249   // Because of the way activation are managed by the frame manager the value of esp is
250   // below both the stack top of the current activation and naturally the stack top
251   // of the calling activation. This enable this routine to leave the return address
252   // to the frame manager on the stack and do a vanilla return.
253   //
254   // On entry: O0 - points to source (callee stack top)
255   //           O1 - points to destination (caller stack top [i.e. free location])
256   // destroys O2, O3
257   //
258 
259   address entry = __ pc();
260   switch (type) {
261     case T_VOID:  break;
262       break;
263     case T_FLOAT  :
264     case T_BOOLEAN:
265     case T_CHAR   :
266     case T_BYTE   :
267     case T_SHORT  :
268     case T_INT    :
269       // 1 word result
270       __ ld(O0, 0, O2);
271       __ st(O2, O1, 0);
272       __ sub(O1, wordSize, O1);
273       break;
274     case T_DOUBLE  :
275     case T_LONG    :
276       // return top two words on current expression stack to caller's expression stack
277       // The caller's expression stack is adjacent to the current frame manager's intepretState
278       // except we allocated one extra word for this intepretState so we won't overwrite it
279       // when we return a two word result.
280 #ifdef _LP64
281       __ ld_ptr(O0, 0, O2);
282       __ st_ptr(O2, O1, -wordSize);
283 #else
284       __ ld(O0, 0, O2);
285       __ ld(O0, wordSize, O3);
286       __ st(O3, O1, 0);
287       __ st(O2, O1, -wordSize);
288 #endif
289       __ sub(O1, 2*wordSize, O1);
290       break;
291     case T_OBJECT :
292       __ ld_ptr(O0, 0, O2);
293       __ verify_oop(O2);                                               // verify it
294       __ st_ptr(O2, O1, 0);
295       __ sub(O1, wordSize, O1);
296       break;
297     default       : ShouldNotReachHere();
298   }
299   __ retl();
300   __ delayed()->nop(); // QQ schedule this better
301   return entry;
302 }
303 
generate_stack_to_native_abi_converter(BasicType type)304 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
305   // A result is in the java expression stack of the interpreted method that has just
306   // returned. Place this result in the native abi that the caller expects.
307   // We are in a new frame registers we set must be in caller (i.e. callstub) frame.
308   //
309   // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
310   // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
311   // and so rather than return result onto caller's java expression stack we return the
312   // result in the expected location based on the native abi.
313   // On entry: O0 - source (stack top)
314   // On exit result in expected output register
315   // QQQ schedule this better
316 
317   address entry = __ pc();
318   switch (type) {
319     case T_VOID:  break;
320       break;
321     case T_FLOAT  :
322       __ ldf(FloatRegisterImpl::S, O0, 0, F0);
323       break;
324     case T_BOOLEAN:
325     case T_CHAR   :
326     case T_BYTE   :
327     case T_SHORT  :
328     case T_INT    :
329       // 1 word result
330       __ ld(O0, 0, O0->after_save());
331       break;
332     case T_DOUBLE  :
333       __ ldf(FloatRegisterImpl::D, O0, 0, F0);
334       break;
335     case T_LONG    :
336       // return top two words on current expression stack to caller's expression stack
337       // The caller's expression stack is adjacent to the current frame manager's interpretState
338       // except we allocated one extra word for this intepretState so we won't overwrite it
339       // when we return a two word result.
340 #ifdef _LP64
341       __ ld_ptr(O0, 0, O0->after_save());
342 #else
343       __ ld(O0, wordSize, O1->after_save());
344       __ ld(O0, 0, O0->after_save());
345 #endif
346 #if defined(COMPILER2) && !defined(_LP64)
347       // C2 expects long results in G1 we can't tell if we're returning to interpreted
348       // or compiled so just be safe use G1 and O0/O1
349 
350       // Shift bits into high (msb) of G1
351       __ sllx(Otos_l1->after_save(), 32, G1);
352       // Zero extend low bits
353       __ srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
354       __ or3 (Otos_l2->after_save(), G1, G1);
355 #endif /* COMPILER2 */
356       break;
357     case T_OBJECT :
358       __ ld_ptr(O0, 0, O0->after_save());
359       __ verify_oop(O0->after_save());                                               // verify it
360       break;
361     default       : ShouldNotReachHere();
362   }
363   __ retl();
364   __ delayed()->nop();
365   return entry;
366 }
367 
return_entry(TosState state,int length,Bytecodes::Code code)368 address CppInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) {
369   // make it look good in the debugger
370   return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset;
371 }
372 
deopt_entry(TosState state,int length)373 address CppInterpreter::deopt_entry(TosState state, int length) {
374   address ret = NULL;
375   if (length != 0) {
376     switch (state) {
377       case atos: ret = deopt_frame_manager_return_atos; break;
378       case btos: ret = deopt_frame_manager_return_btos; break;
379       case ctos:
380       case stos:
381       case itos: ret = deopt_frame_manager_return_itos; break;
382       case ltos: ret = deopt_frame_manager_return_ltos; break;
383       case ftos: ret = deopt_frame_manager_return_ftos; break;
384       case dtos: ret = deopt_frame_manager_return_dtos; break;
385       case vtos: ret = deopt_frame_manager_return_vtos; break;
386     }
387   } else {
388     ret = unctrap_frame_manager_entry;  // re-execute the bytecode ( e.g. uncommon trap)
389   }
390   assert(ret != NULL, "Not initialized");
391   return ret;
392 }
393 
394 //
395 // Helpers for commoning out cases in the various type of method entries.
396 //
397 
398 // increment invocation count & check for overflow
399 //
400 // Note: checking for negative value instead of overflow
401 //       so we have a 'sticky' overflow test
402 //
403 // Lmethod: method
404 // ??: invocation counter
405 //
generate_counter_incr(Label * overflow,Label * profile_method,Label * profile_method_continue)406 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
407   Label done;
408   const Register Rcounters = G3_scratch;
409 
410   __ ld_ptr(STATE(_method), G5_method);
411   __ get_method_counters(G5_method, Rcounters, done);
412 
413   // Update standard invocation counters
414   __ increment_invocation_counter(Rcounters, O0, G4_scratch);
415   if (ProfileInterpreter) {
416     Address interpreter_invocation_counter(Rcounters, 0,
417             in_bytes(MethodCounters::interpreter_invocation_counter_offset()));
418     __ ld(interpreter_invocation_counter, G4_scratch);
419     __ inc(G4_scratch);
420     __ st(G4_scratch, interpreter_invocation_counter);
421   }
422 
423   Address invocation_limit(G3_scratch, (address)&InvocationCounter::InterpreterInvocationLimit);
424   __ sethi(invocation_limit);
425   __ ld(invocation_limit, G3_scratch);
426   __ cmp(O0, G3_scratch);
427   __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow);
428   __ delayed()->nop();
429   __ bind(done);
430 }
431 
generate_empty_entry(void)432 address InterpreterGenerator::generate_empty_entry(void) {
433 
434   // A method that does nothing but return...
435 
436   address entry = __ pc();
437   Label slow_path;
438 
439   // do nothing for empty methods (do not even increment invocation counter)
440   if ( UseFastEmptyMethods) {
441     // If we need a safepoint check, generate full interpreter entry.
442     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
443     __ load_contents(sync_state, G3_scratch);
444     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
445     __ br(Assembler::notEqual, false, Assembler::pn, frame_manager_entry);
446     __ delayed()->nop();
447 
448     // Code: _return
449     __ retl();
450     __ delayed()->mov(O5_savedSP, SP);
451     return entry;
452   }
453   return NULL;
454 }
455 
456 // Call an accessor method (assuming it is resolved, otherwise drop into
457 // vanilla (slow path) entry
458 
459 // Generates code to elide accessor methods
460 // Uses G3_scratch and G1_scratch as scratch
generate_accessor_entry(void)461 address InterpreterGenerator::generate_accessor_entry(void) {
462 
463   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
464   // parameter size = 1
465   // Note: We can only use this code if the getfield has been resolved
466   //       and if we don't have a null-pointer exception => check for
467   //       these conditions first and use slow path if necessary.
468   address entry = __ pc();
469   Label slow_path;
470 
471   if ( UseFastAccessorMethods) {
472     // Check if we need to reach a safepoint and generate full interpreter
473     // frame if so.
474     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
475     __ load_contents(sync_state, G3_scratch);
476     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
477     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
478     __ delayed()->nop();
479 
480     // Check if local 0 != NULL
481     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
482     __ tst(Otos_i);  // check if local 0 == NULL and go the slow path
483     __ brx(Assembler::zero, false, Assembler::pn, slow_path);
484     __ delayed()->nop();
485 
486 
487     // read first instruction word and extract bytecode @ 1 and index @ 2
488     // get first 4 bytes of the bytecodes (big endian!)
489     __ ld_ptr(Address(G5_method, 0, in_bytes(Method::const_offset())), G1_scratch);
490     __ ld(Address(G1_scratch, 0, in_bytes(ConstMethod::codes_offset())), G1_scratch);
491 
492     // move index @ 2 far left then to the right most two bytes.
493     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
494     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
495                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
496 
497     // get constant pool cache
498     __ ld_ptr(G5_method, in_bytes(Method::const_offset()), G3_scratch);
499     __ ld_ptr(G3_scratch, in_bytes(ConstMethod::constants_offset()), G3_scratch);
500     __ ld_ptr(G3_scratch, ConstantPool::cache_offset_in_bytes(), G3_scratch);
501 
502     // get specific constant pool cache entry
503     __ add(G3_scratch, G1_scratch, G3_scratch);
504 
505     // Check the constant Pool cache entry to see if it has been resolved.
506     // If not, need the slow path.
507     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
508     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::indices_offset()), G1_scratch);
509     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
510     __ and3(G1_scratch, 0xFF, G1_scratch);
511     __ cmp(G1_scratch, Bytecodes::_getfield);
512     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
513     __ delayed()->nop();
514 
515     // Get the type and return field offset from the constant pool cache
516     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()), G1_scratch);
517     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()), G3_scratch);
518 
519     Label xreturn_path;
520     // Need to differentiate between igetfield, agetfield, bgetfield etc.
521     // because they are different sizes.
522     // Get the type from the constant pool cache
523     __ srl(G1_scratch, ConstantPoolCacheEntry::tos_state_shift, G1_scratch);
524     // Make sure we don't need to mask G1_scratch after the above shift
525     ConstantPoolCacheEntry::verify_tos_state_shift();
526     __ cmp(G1_scratch, atos );
527     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
528     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
529     __ cmp(G1_scratch, itos);
530     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
531     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
532     __ cmp(G1_scratch, stos);
533     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
534     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
535     __ cmp(G1_scratch, ctos);
536     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
537     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
538 #ifdef ASSERT
539     __ cmp(G1_scratch, btos);
540     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
541     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
542     __ cmp(G1_scratch, ztos);
543     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
544     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
545     __ should_not_reach_here();
546 #endif
547     __ ldsb(Otos_i, G3_scratch, Otos_i);
548     __ bind(xreturn_path);
549 
550     // _ireturn/_areturn
551     __ retl();                      // return from leaf routine
552     __ delayed()->mov(O5_savedSP, SP);
553 
554     // Generate regular method entry
555     __ bind(slow_path);
556     __ ba(fast_accessor_slow_entry_path);
557     __ delayed()->nop();
558     return entry;
559   }
560   return NULL;
561 }
562 
generate_Reference_get_entry(void)563 address InterpreterGenerator::generate_Reference_get_entry(void) {
564 #if INCLUDE_ALL_GCS
565   if (UseG1GC) {
566     // We need to generate have a routine that generates code to:
567     //   * load the value in the referent field
568     //   * passes that value to the pre-barrier.
569     //
570     // In the case of G1 this will record the value of the
571     // referent in an SATB buffer if marking is active.
572     // This will cause concurrent marking to mark the referent
573     // field as live.
574     Unimplemented();
575   }
576 #endif // INCLUDE_ALL_GCS
577 
578   // If G1 is not enabled then attempt to go through the accessor entry point
579   // Reference.get is an accessor
580   return generate_accessor_entry();
581 }
582 
583 //
584 // Interpreter stub for calling a native method. (C++ interpreter)
585 // This sets up a somewhat different looking stack for calling the native method
586 // than the typical interpreter frame setup.
587 //
588 
generate_native_entry(bool synchronized)589 address InterpreterGenerator::generate_native_entry(bool synchronized) {
590   address entry = __ pc();
591 
592   // the following temporary registers are used during frame creation
593   const Register Gtmp1 = G3_scratch ;
594   const Register Gtmp2 = G1_scratch;
595   const Register RconstMethod = Gtmp1;
596   const Address constMethod(G5_method, 0, in_bytes(Method::const_offset()));
597   const Address size_of_parameters(RconstMethod, 0, in_bytes(ConstMethod::size_of_parameters_offset()));
598 
599   bool inc_counter  = UseCompiler || CountCompiledCalls;
600 
601   // make sure registers are different!
602   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
603 
604   const Address access_flags      (G5_method, 0, in_bytes(Method::access_flags_offset()));
605 
606   Label Lentry;
607   __ bind(Lentry);
608 
609   const Register Glocals_size = G3;
610   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
611 
612   // make sure method is native & not abstract
613   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
614 #ifdef ASSERT
615   __ ld(access_flags, Gtmp1);
616   {
617     Label L;
618     __ btst(JVM_ACC_NATIVE, Gtmp1);
619     __ br(Assembler::notZero, false, Assembler::pt, L);
620     __ delayed()->nop();
621     __ stop("tried to execute non-native method as native");
622     __ bind(L);
623   }
624   { Label L;
625     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
626     __ br(Assembler::zero, false, Assembler::pt, L);
627     __ delayed()->nop();
628     __ stop("tried to execute abstract method as non-abstract");
629     __ bind(L);
630   }
631 #endif // ASSERT
632 
633   __ ld_ptr(constMethod, RconstMethod);
634   __ lduh(size_of_parameters, Gtmp1);
635   __ sll(Gtmp1, LogBytesPerWord, Gtmp2);       // parameter size in bytes
636   __ add(Gargs, Gtmp2, Gargs);                 // points to first local + BytesPerWord
637   // NEW
638   __ add(Gargs, -wordSize, Gargs);             // points to first local[0]
639   // generate the code to allocate the interpreter stack frame
640   // NEW FRAME ALLOCATED HERE
641   // save callers original sp
642   // __ mov(SP, I5_savedSP->after_restore());
643 
644   generate_compute_interpreter_state(Lstate, G0, true);
645 
646   // At this point Lstate points to new interpreter state
647   //
648 
649   const Address do_not_unlock_if_synchronized(G2_thread, 0,
650       in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
651   // Since at this point in the method invocation the exception handler
652   // would try to exit the monitor of synchronized methods which hasn't
653   // been entered yet, we set the thread local variable
654   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
655   // runtime, exception handling i.e. unlock_if_synchronized_method will
656   // check this thread local flag.
657   // This flag has two effects, one is to force an unwind in the topmost
658   // interpreter frame and not perform an unlock while doing so.
659 
660   __ movbool(true, G3_scratch);
661   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
662 
663 
664   // increment invocation counter and check for overflow
665   //
666   // Note: checking for negative value instead of overflow
667   //       so we have a 'sticky' overflow test (may be of
668   //       importance as soon as we have true MT/MP)
669   Label invocation_counter_overflow;
670   if (inc_counter) {
671     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
672   }
673   Label Lcontinue;
674   __ bind(Lcontinue);
675 
676   bang_stack_shadow_pages(true);
677   // reset the _do_not_unlock_if_synchronized flag
678   __ stbool(G0, do_not_unlock_if_synchronized);
679 
680   // check for synchronized methods
681   // Must happen AFTER invocation_counter check, so method is not locked
682   // if counter overflows.
683 
684   if (synchronized) {
685     lock_method();
686     // Don't see how G2_thread is preserved here...
687     // __ verify_thread(); QQQ destroys L0,L1 can't use
688   } else {
689 #ifdef ASSERT
690     { Label ok;
691       __ ld_ptr(STATE(_method), G5_method);
692       __ ld(access_flags, O0);
693       __ btst(JVM_ACC_SYNCHRONIZED, O0);
694       __ br( Assembler::zero, false, Assembler::pt, ok);
695       __ delayed()->nop();
696       __ stop("method needs synchronization");
697       __ bind(ok);
698     }
699 #endif // ASSERT
700   }
701 
702   // start execution
703 
704 //   __ verify_thread(); kills L1,L2 can't  use at the moment
705 
706   // jvmti/jvmpi support
707   __ notify_method_entry();
708 
709   // native call
710 
711   // (note that O0 is never an oop--at most it is a handle)
712   // It is important not to smash any handles created by this call,
713   // until any oop handle in O0 is dereferenced.
714 
715   // (note that the space for outgoing params is preallocated)
716 
717   // get signature handler
718 
719   Label pending_exception_present;
720 
721   { Label L;
722     __ ld_ptr(STATE(_method), G5_method);
723     __ ld_ptr(Address(G5_method, 0, in_bytes(Method::signature_handler_offset())), G3_scratch);
724     __ tst(G3_scratch);
725     __ brx(Assembler::notZero, false, Assembler::pt, L);
726     __ delayed()->nop();
727     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), G5_method, false);
728     __ ld_ptr(STATE(_method), G5_method);
729 
730     Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
731     __ ld_ptr(exception_addr, G3_scratch);
732     __ br_notnull_short(G3_scratch, Assembler::pn, pending_exception_present);
733     __ ld_ptr(Address(G5_method, 0, in_bytes(Method::signature_handler_offset())), G3_scratch);
734     __ bind(L);
735   }
736 
737   // Push a new frame so that the args will really be stored in
738   // Copy a few locals across so the new frame has the variables
739   // we need but these values will be dead at the jni call and
740   // therefore not gc volatile like the values in the current
741   // frame (Lstate in particular)
742 
743   // Flush the state pointer to the register save area
744   // Which is the only register we need for a stack walk.
745   __ st_ptr(Lstate, SP, (Lstate->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
746 
747   __ mov(Lstate, O1);         // Need to pass the state pointer across the frame
748 
749   // Calculate current frame size
750   __ sub(SP, FP, O3);         // Calculate negative of current frame size
751   __ save(SP, O3, SP);        // Allocate an identical sized frame
752 
753   __ mov(I1, Lstate);          // In the "natural" register.
754 
755   // Note I7 has leftover trash. Slow signature handler will fill it in
756   // should we get there. Normal jni call will set reasonable last_Java_pc
757   // below (and fix I7 so the stack trace doesn't have a meaningless frame
758   // in it).
759 
760 
761   // call signature handler
762   __ ld_ptr(STATE(_method), Lmethod);
763   __ ld_ptr(STATE(_locals), Llocals);
764 
765   __ callr(G3_scratch, 0);
766   __ delayed()->nop();
767   __ ld_ptr(STATE(_thread), G2_thread);        // restore thread (shouldn't be needed)
768 
769   { Label not_static;
770 
771     __ ld_ptr(STATE(_method), G5_method);
772     __ ld(access_flags, O0);
773     __ btst(JVM_ACC_STATIC, O0);
774     __ br( Assembler::zero, false, Assembler::pt, not_static);
775     __ delayed()->
776       // get native function entry point(O0 is a good temp until the very end)
777        ld_ptr(Address(G5_method, 0, in_bytes(Method::native_function_offset())), O0);
778     // for static methods insert the mirror argument
779     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
780 
781     __ ld_ptr(Address(G5_method, 0, in_bytes(Method:: const_offset())), O1);
782     __ ld_ptr(Address(O1, 0, in_bytes(ConstMethod::constants_offset())), O1);
783     __ ld_ptr(Address(O1, 0, ConstantPool::pool_holder_offset_in_bytes()), O1);
784     __ ld_ptr(O1, mirror_offset, O1);
785     // where the mirror handle body is allocated:
786 #ifdef ASSERT
787     if (!PrintSignatureHandlers)  // do not dirty the output with this
788     { Label L;
789       __ tst(O1);
790       __ brx(Assembler::notZero, false, Assembler::pt, L);
791       __ delayed()->nop();
792       __ stop("mirror is missing");
793       __ bind(L);
794     }
795 #endif // ASSERT
796     __ st_ptr(O1, STATE(_oop_temp));
797     __ add(STATE(_oop_temp), O1);            // this is really an LEA not an add
798     __ bind(not_static);
799   }
800 
801   // At this point, arguments have been copied off of stack into
802   // their JNI positions, which are O1..O5 and SP[68..].
803   // Oops are boxed in-place on the stack, with handles copied to arguments.
804   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
805 
806 #ifdef ASSERT
807   { Label L;
808     __ tst(O0);
809     __ brx(Assembler::notZero, false, Assembler::pt, L);
810     __ delayed()->nop();
811     __ stop("native entry point is missing");
812     __ bind(L);
813   }
814 #endif // ASSERT
815 
816   //
817   // setup the java frame anchor
818   //
819   // The scavenge function only needs to know that the PC of this frame is
820   // in the interpreter method entry code, it doesn't need to know the exact
821   // PC and hence we can use O7 which points to the return address from the
822   // previous call in the code stream (signature handler function)
823   //
824   // The other trick is we set last_Java_sp to FP instead of the usual SP because
825   // we have pushed the extra frame in order to protect the volatile register(s)
826   // in that frame when we return from the jni call
827   //
828 
829 
830   __ set_last_Java_frame(FP, O7);
831   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
832                    // not meaningless information that'll confuse me.
833 
834   // flush the windows now. We don't care about the current (protection) frame
835   // only the outer frames
836 
837   __ flush_windows();
838 
839   // mark windows as flushed
840   Address flags(G2_thread,
841                 0,
842                 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
843   __ set(JavaFrameAnchor::flushed, G3_scratch);
844   __ st(G3_scratch, flags);
845 
846   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
847 
848   Address thread_state(G2_thread, 0, in_bytes(JavaThread::thread_state_offset()));
849 #ifdef ASSERT
850   { Label L;
851     __ ld(thread_state, G3_scratch);
852     __ cmp(G3_scratch, _thread_in_Java);
853     __ br(Assembler::equal, false, Assembler::pt, L);
854     __ delayed()->nop();
855     __ stop("Wrong thread state in native stub");
856     __ bind(L);
857   }
858 #endif // ASSERT
859   __ set(_thread_in_native, G3_scratch);
860   __ st(G3_scratch, thread_state);
861 
862   // Call the jni method, using the delay slot to set the JNIEnv* argument.
863   __ callr(O0, 0);
864   __ delayed()->
865      add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
866   __ ld_ptr(STATE(_thread), G2_thread);  // restore thread
867 
868   // must we block?
869 
870   // Block, if necessary, before resuming in _thread_in_Java state.
871   // In order for GC to work, don't clear the last_Java_sp until after blocking.
872   { Label no_block;
873     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
874 
875     // Switch thread to "native transition" state before reading the synchronization state.
876     // This additional state is necessary because reading and testing the synchronization
877     // state is not atomic w.r.t. GC, as this scenario demonstrates:
878     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
879     //     VM thread changes sync state to synchronizing and suspends threads for GC.
880     //     Thread A is resumed to finish this native method, but doesn't block here since it
881     //     didn't see any synchronization is progress, and escapes.
882     __ set(_thread_in_native_trans, G3_scratch);
883     __ st(G3_scratch, thread_state);
884     if(os::is_MP()) {
885       // Write serialization page so VM thread can do a pseudo remote membar.
886       // We use the current thread pointer to calculate a thread specific
887       // offset to write to within the page. This minimizes bus traffic
888       // due to cache line collision.
889       __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
890     }
891     __ load_contents(sync_state, G3_scratch);
892     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
893 
894 
895     Label L;
896     Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset()));
897     __ br(Assembler::notEqual, false, Assembler::pn, L);
898     __ delayed()->
899       ld(suspend_state, G3_scratch);
900     __ cmp(G3_scratch, 0);
901     __ br(Assembler::equal, false, Assembler::pt, no_block);
902     __ delayed()->nop();
903     __ bind(L);
904 
905     // Block.  Save any potential method result value before the operation and
906     // use a leaf call to leave the last_Java_frame setup undisturbed.
907     save_native_result();
908     __ call_VM_leaf(noreg,
909                     CAST_FROM_FN_PTR(address, JavaThread::check_safepoint_and_suspend_for_native_trans),
910                     G2_thread);
911     __ ld_ptr(STATE(_thread), G2_thread);  // restore thread
912     // Restore any method result value
913     restore_native_result();
914     __ bind(no_block);
915   }
916 
917   // Clear the frame anchor now
918 
919   __ reset_last_Java_frame();
920 
921   // Move the result handler address
922   __ mov(Lscratch, G3_scratch);
923   // return possible result to the outer frame
924 #ifndef __LP64
925   __ mov(O0, I0);
926   __ restore(O1, G0, O1);
927 #else
928   __ restore(O0, G0, O0);
929 #endif /* __LP64 */
930 
931   // Move result handler to expected register
932   __ mov(G3_scratch, Lscratch);
933 
934 
935   // thread state is thread_in_native_trans. Any safepoint blocking has
936   // happened in the trampoline we are ready to switch to thread_in_Java.
937 
938   __ set(_thread_in_Java, G3_scratch);
939   __ st(G3_scratch, thread_state);
940 
941   // If we have an oop result store it where it will be safe for any further gc
942   // until we return now that we've released the handle it might be protected by
943 
944   {
945     Label no_oop, store_result;
946 
947     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
948     __ cmp(G3_scratch, Lscratch);
949     __ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
950     __ delayed()->nop();
951     __ addcc(G0, O0, O0);
952     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
953     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
954     __ mov(G0, O0);
955 
956     __ bind(store_result);
957     // Store it where gc will look for it and result handler expects it.
958     __ st_ptr(O0, STATE(_oop_temp));
959 
960     __ bind(no_oop);
961 
962   }
963 
964   // reset handle block
965   __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), G3_scratch);
966   __ st(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
967 
968 
969   // handle exceptions (exception handling will handle unlocking!)
970   { Label L;
971     Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
972 
973     __ ld_ptr(exception_addr, Gtemp);
974     __ tst(Gtemp);
975     __ brx(Assembler::equal, false, Assembler::pt, L);
976     __ delayed()->nop();
977     __ bind(pending_exception_present);
978     // With c++ interpreter we just leave it pending caller will do the correct thing. However...
979     // Like x86 we ignore the result of the native call and leave the method locked. This
980     // seems wrong to leave things locked.
981 
982     __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
983     __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
984 
985     __ bind(L);
986   }
987 
988   // jvmdi/jvmpi support (preserves thread register)
989   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
990 
991   if (synchronized) {
992     // save and restore any potential method result value around the unlocking operation
993     save_native_result();
994 
995     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
996     // Get the initial monitor we allocated
997     __ sub(Lstate, entry_size, O1);                        // initial monitor
998     __ unlock_object(O1);
999     restore_native_result();
1000   }
1001 
1002 #if defined(COMPILER2) && !defined(_LP64)
1003 
1004   // C2 expects long results in G1 we can't tell if we're returning to interpreted
1005   // or compiled so just be safe.
1006 
1007   __ sllx(O0, 32, G1);          // Shift bits into high G1
1008   __ srl (O1, 0, O1);           // Zero extend O1
1009   __ or3 (O1, G1, G1);          // OR 64 bits into G1
1010 
1011 #endif /* COMPILER2 && !_LP64 */
1012 
1013 #ifdef ASSERT
1014   {
1015     Label ok;
1016     __ cmp(I5_savedSP, FP);
1017     __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
1018     __ delayed()->nop();
1019     __ stop("bad I5_savedSP value");
1020     __ should_not_reach_here();
1021     __ bind(ok);
1022   }
1023 #endif
1024   // Calls result handler which POPS FRAME
1025   if (TraceJumps) {
1026     // Move target to register that is recordable
1027     __ mov(Lscratch, G3_scratch);
1028     __ JMP(G3_scratch, 0);
1029   } else {
1030     __ jmp(Lscratch, 0);
1031   }
1032   __ delayed()->nop();
1033 
1034   if (inc_counter) {
1035     // handle invocation counter overflow
1036     __ bind(invocation_counter_overflow);
1037     generate_counter_overflow(Lcontinue);
1038   }
1039 
1040 
1041   return entry;
1042 }
1043 
generate_compute_interpreter_state(const Register state,const Register prev_state,bool native)1044 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
1045                                                               const Register prev_state,
1046                                                               bool native) {
1047 
1048   // On entry
1049   // G5_method - caller's method
1050   // Gargs - points to initial parameters (i.e. locals[0])
1051   // G2_thread - valid? (C1 only??)
1052   // "prev_state" - contains any previous frame manager state which we must save a link
1053   //
1054   // On return
1055   // "state" is a pointer to the newly allocated  state object. We must allocate and initialize
1056   // a new interpretState object and the method expression stack.
1057 
1058   assert_different_registers(state, prev_state);
1059   assert_different_registers(prev_state, G3_scratch);
1060   const Register Gtmp = G3_scratch;
1061   const Address constMethod       (G5_method, 0, in_bytes(Method::const_offset()));
1062   const Address access_flags      (G5_method, 0, in_bytes(Method::access_flags_offset()));
1063 
1064   // slop factor is two extra slots on the expression stack so that
1065   // we always have room to store a result when returning from a call without parameters
1066   // that returns a result.
1067 
1068   const int slop_factor = 2*wordSize;
1069 
1070   const int fixed_size = ((sizeof(BytecodeInterpreter) + slop_factor) >> LogBytesPerWord) + // what is the slop factor?
1071                          Method::extra_stack_entries() + // extra stack for jsr 292
1072                          frame::memory_parameter_word_sp_offset +  // register save area + param window
1073                          (native ?  frame::interpreter_frame_extra_outgoing_argument_words : 0); // JNI, class
1074 
1075   // XXX G5_method valid
1076 
1077   // Now compute new frame size
1078 
1079   if (native) {
1080     const Register RconstMethod = Gtmp;
1081     const Address size_of_parameters(RconstMethod, 0, in_bytes(ConstMethod::size_of_parameters_offset()));
1082     __ ld_ptr(constMethod, RconstMethod);
1083     __ lduh( size_of_parameters, Gtmp );
1084     __ calc_mem_param_words(Gtmp, Gtmp);     // space for native call parameters passed on the stack in words
1085   } else {
1086     // Full size expression stack
1087     __ ld_ptr(constMethod, Gtmp);
1088     __ lduh(Gtmp, in_bytes(ConstMethod::max_stack_offset()), Gtmp);
1089   }
1090   __ add(Gtmp, fixed_size, Gtmp);           // plus the fixed portion
1091 
1092   __ neg(Gtmp);                               // negative space for stack/parameters in words
1093   __ and3(Gtmp, -WordsPerLong, Gtmp);        // make multiple of 2 (SP must be 2-word aligned)
1094   __ sll(Gtmp, LogBytesPerWord, Gtmp);       // negative space for frame in bytes
1095 
1096   // Need to do stack size check here before we fault on large frames
1097 
1098   Label stack_ok;
1099 
1100   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
1101                                                                               (StackRedPages+StackYellowPages);
1102 
1103 
1104   __ ld_ptr(G2_thread, in_bytes(Thread::stack_base_offset()), O0);
1105   __ ld_ptr(G2_thread, in_bytes(Thread::stack_size_offset()), O1);
1106   // compute stack bottom
1107   __ sub(O0, O1, O0);
1108 
1109   // Avoid touching the guard pages
1110   // Also a fudge for frame size of BytecodeInterpreter::run
1111   // It varies from 1k->4k depending on build type
1112   const int fudge = 6 * K;
1113 
1114   __ set(fudge + (max_pages * os::vm_page_size()), O1);
1115 
1116   __ add(O0, O1, O0);
1117   __ sub(O0, Gtmp, O0);
1118   __ cmp(SP, O0);
1119   __ brx(Assembler::greaterUnsigned, false, Assembler::pt, stack_ok);
1120   __ delayed()->nop();
1121 
1122      // throw exception return address becomes throwing pc
1123 
1124   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
1125   __ stop("never reached");
1126 
1127   __ bind(stack_ok);
1128 
1129   __ save(SP, Gtmp, SP);                      // setup new frame and register window
1130 
1131   // New window I7 call_stub or previous activation
1132   // O6 - register save area, BytecodeInterpreter just below it, args/locals just above that
1133   //
1134   __ sub(FP, sizeof(BytecodeInterpreter), state);        // Point to new Interpreter state
1135   __ add(state, STACK_BIAS, state );         // Account for 64bit bias
1136 
1137 #define XXX_STATE(field_name) state, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
1138 
1139   // Initialize a new Interpreter state
1140   // orig_sp - caller's original sp
1141   // G2_thread - thread
1142   // Gargs - &locals[0] (unbiased?)
1143   // G5_method - method
1144   // SP (biased) - accounts for full size java stack, BytecodeInterpreter object, register save area, and register parameter save window
1145 
1146 
1147   __ set(0xdead0004, O1);
1148 
1149 
1150   __ st_ptr(Gargs, XXX_STATE(_locals));
1151   __ st_ptr(G0, XXX_STATE(_oop_temp));
1152 
1153   __ st_ptr(state, XXX_STATE(_self_link));                // point to self
1154   __ st_ptr(prev_state->after_save(), XXX_STATE(_prev_link)); // Chain interpreter states
1155   __ st_ptr(G2_thread, XXX_STATE(_thread));               // Store javathread
1156 
1157   if (native) {
1158     __ st_ptr(G0, XXX_STATE(_bcp));
1159   } else {
1160     __ ld_ptr(G5_method, in_bytes(Method::const_offset()), O2); // get ConstMethod*
1161     __ add(O2, in_bytes(ConstMethod::codes_offset()), O2);        // get bcp
1162     __ st_ptr(O2, XXX_STATE(_bcp));
1163   }
1164 
1165   __ st_ptr(G0, XXX_STATE(_mdx));
1166   __ st_ptr(G5_method, XXX_STATE(_method));
1167 
1168   __ set((int) BytecodeInterpreter::method_entry, O1);
1169   __ st(O1, XXX_STATE(_msg));
1170 
1171   __ ld_ptr(constMethod, O3);
1172   __ ld_ptr(O3, in_bytes(ConstMethod::constants_offset()), O3);
1173   __ ld_ptr(O3, ConstantPool::cache_offset_in_bytes(), O2);
1174   __ st_ptr(O2, XXX_STATE(_constants));
1175 
1176   __ st_ptr(G0, XXX_STATE(_result._to_call._callee));
1177 
1178   // Monitor base is just start of BytecodeInterpreter object;
1179   __ mov(state, O2);
1180   __ st_ptr(O2, XXX_STATE(_monitor_base));
1181 
1182   // Do we need a monitor for synchonized method?
1183   {
1184     __ ld(access_flags, O1);
1185     Label done;
1186     Label got_obj;
1187     __ btst(JVM_ACC_SYNCHRONIZED, O1);
1188     __ br( Assembler::zero, false, Assembler::pt, done);
1189 
1190     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
1191     __ delayed()->btst(JVM_ACC_STATIC, O1);
1192     __ ld_ptr(XXX_STATE(_locals), O1);
1193     __ br( Assembler::zero, true, Assembler::pt, got_obj);
1194     __ delayed()->ld_ptr(O1, 0, O1);                  // get receiver for not-static case
1195     __ ld_ptr(constMethod, O1);
1196     __ ld_ptr( O1, in_bytes(ConstMethod::constants_offset()), O1);
1197     __ ld_ptr( O1, ConstantPool::pool_holder_offset_in_bytes(), O1);
1198     // lock the mirror, not the Klass*
1199     __ ld_ptr( O1, mirror_offset, O1);
1200 
1201     __ bind(got_obj);
1202 
1203   #ifdef ASSERT
1204     __ tst(O1);
1205     __ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
1206   #endif // ASSERT
1207 
1208     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
1209     __ sub(SP, entry_size, SP);                         // account for initial monitor
1210     __ sub(O2, entry_size, O2);                        // initial monitor
1211     __ st_ptr(O1, O2, BasicObjectLock::obj_offset_in_bytes()); // and allocate it for interpreter use
1212     __ bind(done);
1213   }
1214 
1215   // Remember initial frame bottom
1216 
1217   __ st_ptr(SP, XXX_STATE(_frame_bottom));
1218 
1219   __ st_ptr(O2, XXX_STATE(_stack_base));
1220 
1221   __ sub(O2, wordSize, O2);                    // prepush
1222   __ st_ptr(O2, XXX_STATE(_stack));                // PREPUSH
1223 
1224   // Full size expression stack
1225   __ ld_ptr(constMethod, O3);
1226   __ lduh(O3, in_bytes(ConstMethod::max_stack_offset()), O3);
1227   __ inc(O3, Method::extra_stack_entries());
1228   __ sll(O3, LogBytesPerWord, O3);
1229   __ sub(O2, O3, O3);
1230 //  __ sub(O3, wordSize, O3);                    // so prepush doesn't look out of bounds
1231   __ st_ptr(O3, XXX_STATE(_stack_limit));
1232 
1233   if (!native) {
1234     //
1235     // Code to initialize locals
1236     //
1237     Register init_value = noreg;    // will be G0 if we must clear locals
1238     // Now zero locals
1239     if (true /* zerolocals */ || ClearInterpreterLocals) {
1240       // explicitly initialize locals
1241       init_value = G0;
1242     } else {
1243     #ifdef ASSERT
1244       // initialize locals to a garbage pattern for better debugging
1245       init_value = O3;
1246       __ set( 0x0F0F0F0F, init_value );
1247     #endif // ASSERT
1248     }
1249     if (init_value != noreg) {
1250       Label clear_loop;
1251       const Register RconstMethod = O1;
1252       const Address size_of_parameters(RconstMethod, 0, in_bytes(ConstMethod::size_of_parameters_offset()));
1253       const Address size_of_locals    (RconstMethod, 0, in_bytes(ConstMethod::size_of_locals_offset()));
1254 
1255       // NOTE: If you change the frame layout, this code will need to
1256       // be updated!
1257       __ ld_ptr( constMethod, RconstMethod );
1258       __ lduh( size_of_locals, O2 );
1259       __ lduh( size_of_parameters, O1 );
1260       __ sll( O2, LogBytesPerWord, O2);
1261       __ sll( O1, LogBytesPerWord, O1 );
1262       __ ld_ptr(XXX_STATE(_locals), L2_scratch);
1263       __ sub( L2_scratch, O2, O2 );
1264       __ sub( L2_scratch, O1, O1 );
1265 
1266       __ bind( clear_loop );
1267       __ inc( O2, wordSize );
1268 
1269       __ cmp( O2, O1 );
1270       __ br( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
1271       __ delayed()->st_ptr( init_value, O2, 0 );
1272     }
1273   }
1274 }
1275 // Find preallocated  monitor and lock method (C++ interpreter)
1276 //
lock_method(void)1277 void InterpreterGenerator::lock_method(void) {
1278 // Lock the current method.
1279 // Destroys registers L2_scratch, L3_scratch, O0
1280 //
1281 // Find everything relative to Lstate
1282 
1283 #ifdef ASSERT
1284   __ ld_ptr(STATE(_method), L2_scratch);
1285   __ ld(L2_scratch, in_bytes(Method::access_flags_offset()), O0);
1286 
1287  { Label ok;
1288    __ btst(JVM_ACC_SYNCHRONIZED, O0);
1289    __ br( Assembler::notZero, false, Assembler::pt, ok);
1290    __ delayed()->nop();
1291    __ stop("method doesn't need synchronization");
1292    __ bind(ok);
1293   }
1294 #endif // ASSERT
1295 
1296   // monitor is already allocated at stack base
1297   // and the lockee is already present
1298   __ ld_ptr(STATE(_stack_base), L2_scratch);
1299   __ ld_ptr(L2_scratch, BasicObjectLock::obj_offset_in_bytes(), O0);   // get object
1300   __ lock_object(L2_scratch, O0);
1301 
1302 }
1303 
1304 //  Generate code for handling resuming a deopted method
generate_deopt_handling()1305 void CppInterpreterGenerator::generate_deopt_handling() {
1306 
1307   Label return_from_deopt_common;
1308 
1309   // deopt needs to jump to here to enter the interpreter (return a result)
1310   deopt_frame_manager_return_atos  = __ pc();
1311 
1312   // O0/O1 live
1313   __ ba(return_from_deopt_common);
1314   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_OBJECT), L3_scratch);    // Result stub address array index
1315 
1316 
1317   // deopt needs to jump to here to enter the interpreter (return a result)
1318   deopt_frame_manager_return_btos  = __ pc();
1319 
1320   // O0/O1 live
1321   __ ba(return_from_deopt_common);
1322   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_BOOLEAN), L3_scratch);    // Result stub address array index
1323 
1324   // deopt needs to jump to here to enter the interpreter (return a result)
1325   deopt_frame_manager_return_itos  = __ pc();
1326 
1327   // O0/O1 live
1328   __ ba(return_from_deopt_common);
1329   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_INT), L3_scratch);    // Result stub address array index
1330 
1331   // deopt needs to jump to here to enter the interpreter (return a result)
1332 
1333   deopt_frame_manager_return_ltos  = __ pc();
1334 #if !defined(_LP64) && defined(COMPILER2)
1335   // All return values are where we want them, except for Longs.  C2 returns
1336   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
1337   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
1338   // build even if we are returning from interpreted we just do a little
1339   // stupid shuffing.
1340   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
1341   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
1342   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
1343 
1344   __ srl (G1, 0,O1);
1345   __ srlx(G1,32,O0);
1346 #endif /* !_LP64 && COMPILER2 */
1347   // O0/O1 live
1348   __ ba(return_from_deopt_common);
1349   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_LONG), L3_scratch);    // Result stub address array index
1350 
1351   // deopt needs to jump to here to enter the interpreter (return a result)
1352 
1353   deopt_frame_manager_return_ftos  = __ pc();
1354   // O0/O1 live
1355   __ ba(return_from_deopt_common);
1356   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_FLOAT), L3_scratch);    // Result stub address array index
1357 
1358   // deopt needs to jump to here to enter the interpreter (return a result)
1359   deopt_frame_manager_return_dtos  = __ pc();
1360 
1361   // O0/O1 live
1362   __ ba(return_from_deopt_common);
1363   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_DOUBLE), L3_scratch);    // Result stub address array index
1364 
1365   // deopt needs to jump to here to enter the interpreter (return a result)
1366   deopt_frame_manager_return_vtos  = __ pc();
1367 
1368   // O0/O1 live
1369   __ set(AbstractInterpreter::BasicType_as_index(T_VOID), L3_scratch);
1370 
1371   // Deopt return common
1372   // an index is present that lets us move any possible result being
1373   // return to the interpreter's stack
1374   //
1375   __ bind(return_from_deopt_common);
1376 
1377   // Result if any is in native abi result (O0..O1/F0..F1). The java expression
1378   // stack is in the state that the  calling convention left it.
1379   // Copy the result from native abi result and place it on java expression stack.
1380 
1381   // Current interpreter state is present in Lstate
1382 
1383   // Get current pre-pushed top of interpreter stack
1384   // Any result (if any) is in native abi
1385   // result type index is in L3_scratch
1386 
1387   __ ld_ptr(STATE(_stack), L1_scratch);                                          // get top of java expr stack
1388 
1389   __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
1390   __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
1391   __ ld_ptr(L4_scratch, L3_scratch, Lscratch);                                       // get typed result converter address
1392   __ jmpl(Lscratch, G0, O7);                                         // and convert it
1393   __ delayed()->nop();
1394 
1395   // L1_scratch points to top of stack (prepushed)
1396   __ st_ptr(L1_scratch, STATE(_stack));
1397 }
1398 
1399 // Generate the code to handle a more_monitors message from the c++ interpreter
generate_more_monitors()1400 void CppInterpreterGenerator::generate_more_monitors() {
1401 
1402   Label entry, loop;
1403   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1404   // 1. compute new pointers                                // esp: old expression stack top
1405   __ delayed()->ld_ptr(STATE(_stack_base), L4_scratch);            // current expression stack bottom
1406   __ sub(L4_scratch, entry_size, L4_scratch);
1407   __ st_ptr(L4_scratch, STATE(_stack_base));
1408 
1409   __ sub(SP, entry_size, SP);                  // Grow stack
1410   __ st_ptr(SP, STATE(_frame_bottom));
1411 
1412   __ ld_ptr(STATE(_stack_limit), L2_scratch);
1413   __ sub(L2_scratch, entry_size, L2_scratch);
1414   __ st_ptr(L2_scratch, STATE(_stack_limit));
1415 
1416   __ ld_ptr(STATE(_stack), L1_scratch);                // Get current stack top
1417   __ sub(L1_scratch, entry_size, L1_scratch);
1418   __ st_ptr(L1_scratch, STATE(_stack));
1419   __ ba(entry);
1420   __ delayed()->add(L1_scratch, wordSize, L1_scratch);        // first real entry (undo prepush)
1421 
1422   // 2. move expression stack
1423 
1424   __ bind(loop);
1425   __ st_ptr(L3_scratch, Address(L1_scratch, 0));
1426   __ add(L1_scratch, wordSize, L1_scratch);
1427   __ bind(entry);
1428   __ cmp(L1_scratch, L4_scratch);
1429   __ br(Assembler::notEqual, false, Assembler::pt, loop);
1430   __ delayed()->ld_ptr(L1_scratch, entry_size, L3_scratch);
1431 
1432   // now zero the slot so we can find it.
1433   __ st_ptr(G0, L4_scratch, BasicObjectLock::obj_offset_in_bytes());
1434 
1435 }
1436 
1437 // Initial entry to C++ interpreter from the call_stub.
1438 // This entry point is called the frame manager since it handles the generation
1439 // of interpreter activation frames via requests directly from the vm (via call_stub)
1440 // and via requests from the interpreter. The requests from the call_stub happen
1441 // directly thru the entry point. Requests from the interpreter happen via returning
1442 // from the interpreter and examining the message the interpreter has returned to
1443 // the frame manager. The frame manager can take the following requests:
1444 
1445 // NO_REQUEST - error, should never happen.
1446 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
1447 //                 allocate a new monitor.
1448 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
1449 //               happens during entry during the entry via the call stub.
1450 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
1451 //
1452 // Arguments:
1453 //
1454 // ebx: Method*
1455 // ecx: receiver - unused (retrieved from stack as needed)
1456 // esi: previous frame manager state (NULL from the call_stub/c1/c2)
1457 //
1458 //
1459 // Stack layout at entry
1460 //
1461 // [ return address     ] <--- esp
1462 // [ parameter n        ]
1463 //   ...
1464 // [ parameter 1        ]
1465 // [ expression stack   ]
1466 //
1467 //
1468 // We are free to blow any registers we like because the call_stub which brought us here
1469 // initially has preserved the callee save registers already.
1470 //
1471 //
1472 
1473 static address interpreter_frame_manager = NULL;
1474 
1475 #ifdef ASSERT
1476   #define VALIDATE_STATE(scratch, marker)                         \
1477   {                                                               \
1478     Label skip;                                                   \
1479     __ ld_ptr(STATE(_self_link), scratch);                        \
1480     __ cmp(Lstate, scratch);                                      \
1481     __ brx(Assembler::equal, false, Assembler::pt, skip);         \
1482     __ delayed()->nop();                                          \
1483     __ breakpoint_trap();                                         \
1484     __ emit_int32(marker);                                         \
1485     __ bind(skip);                                                \
1486   }
1487 #else
1488   #define VALIDATE_STATE(scratch, marker)
1489 #endif /* ASSERT */
1490 
adjust_callers_stack(Register args)1491 void CppInterpreterGenerator::adjust_callers_stack(Register args) {
1492 //
1493 // Adjust caller's stack so that all the locals can be contiguous with
1494 // the parameters.
1495 // Worries about stack overflow make this a pain.
1496 //
1497 // Destroys args, G3_scratch, G3_scratch
1498 // In/Out O5_savedSP (sender's original SP)
1499 //
1500 //  assert_different_registers(state, prev_state);
1501   const Register Gtmp = G3_scratch;
1502   const RconstMethod = G3_scratch;
1503   const Register tmp = O2;
1504   const Address constMethod(G5_method, 0, in_bytes(Method::const_offset()));
1505   const Address size_of_parameters(RconstMethod, 0, in_bytes(ConstMethod::size_of_parameters_offset()));
1506   const Address size_of_locals    (RconstMethod, 0, in_bytes(ConstMethod::size_of_locals_offset()));
1507 
1508   __ ld_ptr(constMethod, RconstMethod);
1509   __ lduh(size_of_parameters, tmp);
1510   __ sll(tmp, LogBytesPerWord, Gargs);       // parameter size in bytes
1511   __ add(args, Gargs, Gargs);                // points to first local + BytesPerWord
1512   // NEW
1513   __ add(Gargs, -wordSize, Gargs);             // points to first local[0]
1514   // determine extra space for non-argument locals & adjust caller's SP
1515   // Gtmp1: parameter size in words
1516   __ lduh(size_of_locals, Gtmp);
1517   __ compute_extra_locals_size_in_bytes(tmp, Gtmp, Gtmp);
1518 
1519 #if 1
1520   // c2i adapters place the final interpreter argument in the register save area for O0/I0
1521   // the call_stub will place the final interpreter argument at
1522   // frame::memory_parameter_word_sp_offset. This is mostly not noticable for either asm
1523   // or c++ interpreter. However with the c++ interpreter when we do a recursive call
1524   // and try to make it look good in the debugger we will store the argument to
1525   // RecursiveInterpreterActivation in the register argument save area. Without allocating
1526   // extra space for the compiler this will overwrite locals in the local array of the
1527   // interpreter.
1528   // QQQ still needed with frameless adapters???
1529 
1530   const int c2i_adjust_words = frame::memory_parameter_word_sp_offset - frame::callee_register_argument_save_area_sp_offset;
1531 
1532   __ add(Gtmp, c2i_adjust_words*wordSize, Gtmp);
1533 #endif // 1
1534 
1535 
1536   __ sub(SP, Gtmp, SP);                      // just caller's frame for the additional space we need.
1537 }
1538 
generate_normal_entry(bool synchronized)1539 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1540 
1541   // G5_method: Method*
1542   // G2_thread: thread (unused)
1543   // Gargs:   bottom of args (sender_sp)
1544   // O5: sender's sp
1545 
1546   // A single frame manager is plenty as we don't specialize for synchronized. We could and
1547   // the code is pretty much ready. Would need to change the test below and for good measure
1548   // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
1549   // routines. Not clear this is worth it yet.
1550 
1551   if (interpreter_frame_manager) {
1552     return interpreter_frame_manager;
1553   }
1554 
1555   __ bind(frame_manager_entry);
1556 
1557   // the following temporary registers are used during frame creation
1558   const Register Gtmp1 = G3_scratch;
1559   // const Register Lmirror = L1;     // native mirror (native calls only)
1560 
1561   const Address constMethod       (G5_method, 0, in_bytes(Method::const_offset()));
1562   const Address access_flags      (G5_method, 0, in_bytes(Method::access_flags_offset()));
1563 
1564   address entry_point = __ pc();
1565   __ mov(G0, prevState);                                                 // no current activation
1566 
1567 
1568   Label re_dispatch;
1569 
1570   __ bind(re_dispatch);
1571 
1572   // Interpreter needs to have locals completely contiguous. In order to do that
1573   // We must adjust the caller's stack pointer for any locals beyond just the
1574   // parameters
1575   adjust_callers_stack(Gargs);
1576 
1577   // O5_savedSP still contains sender's sp
1578 
1579   // NEW FRAME
1580 
1581   generate_compute_interpreter_state(Lstate, prevState, false);
1582 
1583   // At this point a new interpreter frame and state object are created and initialized
1584   // Lstate has the pointer to the new activation
1585   // Any stack banging or limit check should already be done.
1586 
1587   Label call_interpreter;
1588 
1589   __ bind(call_interpreter);
1590 
1591 
1592 #if 1
1593   __ set(0xdead002, Lmirror);
1594   __ set(0xdead002, L2_scratch);
1595   __ set(0xdead003, L3_scratch);
1596   __ set(0xdead004, L4_scratch);
1597   __ set(0xdead005, Lscratch);
1598   __ set(0xdead006, Lscratch2);
1599   __ set(0xdead007, L7_scratch);
1600 
1601   __ set(0xdeaf002, O2);
1602   __ set(0xdeaf003, O3);
1603   __ set(0xdeaf004, O4);
1604   __ set(0xdeaf005, O5);
1605 #endif
1606 
1607   // Call interpreter (stack bang complete) enter here if message is
1608   // set and we know stack size is valid
1609 
1610   Label call_interpreter_2;
1611 
1612   __ bind(call_interpreter_2);
1613 
1614 #ifdef ASSERT
1615   {
1616     Label skip;
1617     __ ld_ptr(STATE(_frame_bottom), G3_scratch);
1618     __ cmp(G3_scratch, SP);
1619     __ brx(Assembler::equal, false, Assembler::pt, skip);
1620     __ delayed()->nop();
1621     __ stop("SP not restored to frame bottom");
1622     __ bind(skip);
1623   }
1624 #endif
1625 
1626   VALIDATE_STATE(G3_scratch, 4);
1627   __ set_last_Java_frame(SP, noreg);
1628   __ mov(Lstate, O0);                 // (arg) pointer to current state
1629 
1630   __ call(CAST_FROM_FN_PTR(address,
1631                            JvmtiExport::can_post_interpreter_events() ?
1632                                                                   BytecodeInterpreter::runWithChecks
1633                                                                 : BytecodeInterpreter::run),
1634          relocInfo::runtime_call_type);
1635 
1636   __ delayed()->nop();
1637 
1638   __ ld_ptr(STATE(_thread), G2_thread);
1639   __ reset_last_Java_frame();
1640 
1641   // examine msg from interpreter to determine next action
1642   __ ld_ptr(STATE(_thread), G2_thread);                                  // restore G2_thread
1643 
1644   __ ld(STATE(_msg), L1_scratch);                                       // Get new message
1645 
1646   Label call_method;
1647   Label return_from_interpreted_method;
1648   Label throw_exception;
1649   Label do_OSR;
1650   Label bad_msg;
1651   Label resume_interpreter;
1652 
1653   __ cmp(L1_scratch, (int)BytecodeInterpreter::call_method);
1654   __ br(Assembler::equal, false, Assembler::pt, call_method);
1655   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::return_from_method);
1656   __ br(Assembler::equal, false, Assembler::pt, return_from_interpreted_method);
1657   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::throwing_exception);
1658   __ br(Assembler::equal, false, Assembler::pt, throw_exception);
1659   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::do_osr);
1660   __ br(Assembler::equal, false, Assembler::pt, do_OSR);
1661   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::more_monitors);
1662   __ br(Assembler::notEqual, false, Assembler::pt, bad_msg);
1663 
1664   // Allocate more monitor space, shuffle expression stack....
1665 
1666   generate_more_monitors();
1667 
1668   // new monitor slot allocated, resume the interpreter.
1669 
1670   __ set((int)BytecodeInterpreter::got_monitors, L1_scratch);
1671   VALIDATE_STATE(G3_scratch, 5);
1672   __ ba(call_interpreter);
1673   __ delayed()->st(L1_scratch, STATE(_msg));
1674 
1675   // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
1676   unctrap_frame_manager_entry  = __ pc();
1677 
1678   // QQQ what message do we send
1679 
1680   __ ba(call_interpreter);
1681   __ delayed()->ld_ptr(STATE(_frame_bottom), SP);                  // restore to full stack frame
1682 
1683   //=============================================================================
1684   // Returning from a compiled method into a deopted method. The bytecode at the
1685   // bcp has completed. The result of the bytecode is in the native abi (the tosca
1686   // for the template based interpreter). Any stack space that was used by the
1687   // bytecode that has completed has been removed (e.g. parameters for an invoke)
1688   // so all that we have to do is place any pending result on the expression stack
1689   // and resume execution on the next bytecode.
1690 
1691   generate_deopt_handling();
1692 
1693   // ready to resume the interpreter
1694 
1695   __ set((int)BytecodeInterpreter::deopt_resume, L1_scratch);
1696   __ ba(call_interpreter);
1697   __ delayed()->st(L1_scratch, STATE(_msg));
1698 
1699   // Current frame has caught an exception we need to dispatch to the
1700   // handler. We can get here because a native interpreter frame caught
1701   // an exception in which case there is no handler and we must rethrow
1702   // If it is a vanilla interpreted frame the we simply drop into the
1703   // interpreter and let it do the lookup.
1704 
1705   Interpreter::_rethrow_exception_entry = __ pc();
1706 
1707   Label return_with_exception;
1708   Label unwind_and_forward;
1709 
1710   // O0: exception
1711   // O7: throwing pc
1712 
1713   // We want exception in the thread no matter what we ultimately decide about frame type.
1714 
1715   Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
1716   __ verify_thread();
1717   __ st_ptr(O0, exception_addr);
1718 
1719   // get the Method*
1720   __ ld_ptr(STATE(_method), G5_method);
1721 
1722   // if this current frame vanilla or native?
1723 
1724   __ ld(access_flags, Gtmp1);
1725   __ btst(JVM_ACC_NATIVE, Gtmp1);
1726   __ br(Assembler::zero, false, Assembler::pt, return_with_exception);  // vanilla interpreted frame handle directly
1727   __ delayed()->nop();
1728 
1729   // We drop thru to unwind a native interpreted frame with a pending exception
1730   // We jump here for the initial interpreter frame with exception pending
1731   // We unwind the current acivation and forward it to our caller.
1732 
1733   __ bind(unwind_and_forward);
1734 
1735   // Unwind frame and jump to forward exception. unwinding will place throwing pc in O7
1736   // as expected by forward_exception.
1737 
1738   __ restore(FP, G0, SP);                  // unwind interpreter state frame
1739   __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
1740   __ delayed()->mov(I5_savedSP->after_restore(), SP);
1741 
1742   // Return point from a call which returns a result in the native abi
1743   // (c1/c2/jni-native). This result must be processed onto the java
1744   // expression stack.
1745   //
1746   // A pending exception may be present in which case there is no result present
1747 
1748   address return_from_native_method = __ pc();
1749 
1750   VALIDATE_STATE(G3_scratch, 6);
1751 
1752   // Result if any is in native abi result (O0..O1/F0..F1). The java expression
1753   // stack is in the state that the  calling convention left it.
1754   // Copy the result from native abi result and place it on java expression stack.
1755 
1756   // Current interpreter state is present in Lstate
1757 
1758   // Exception pending?
1759 
1760   __ ld_ptr(STATE(_frame_bottom), SP);                             // restore to full stack frame
1761   __ ld_ptr(exception_addr, Lscratch);                                         // get any pending exception
1762   __ tst(Lscratch);                                                            // exception pending?
1763   __ brx(Assembler::notZero, false, Assembler::pt, return_with_exception);
1764   __ delayed()->nop();
1765 
1766   // Process the native abi result to java expression stack
1767 
1768   __ ld_ptr(STATE(_result._to_call._callee), L4_scratch);                        // called method
1769   __ ld_ptr(STATE(_stack), L1_scratch);                                          // get top of java expr stack
1770   // get parameter size
1771   __ ld_ptr(L4_scratch, in_bytes(Method::const_offset()), L2_scratch);
1772   __ lduh(L2_scratch, in_bytes(ConstMethod::size_of_parameters_offset()), L2_scratch);
1773   __ sll(L2_scratch, LogBytesPerWord, L2_scratch     );                           // parameter size in bytes
1774   __ add(L1_scratch, L2_scratch, L1_scratch);                                      // stack destination for result
1775   __ ld(L4_scratch, in_bytes(Method::result_index_offset()), L3_scratch); // called method result type index
1776 
1777   // tosca is really just native abi
1778   __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
1779   __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
1780   __ ld_ptr(L4_scratch, L3_scratch, Lscratch);                                       // get typed result converter address
1781   __ jmpl(Lscratch, G0, O7);                                                   // and convert it
1782   __ delayed()->nop();
1783 
1784   // L1_scratch points to top of stack (prepushed)
1785 
1786   __ ba(resume_interpreter);
1787   __ delayed()->mov(L1_scratch, O1);
1788 
1789   // An exception is being caught on return to a vanilla interpreter frame.
1790   // Empty the stack and resume interpreter
1791 
1792   __ bind(return_with_exception);
1793 
1794   __ ld_ptr(STATE(_frame_bottom), SP);                             // restore to full stack frame
1795   __ ld_ptr(STATE(_stack_base), O1);                               // empty java expression stack
1796   __ ba(resume_interpreter);
1797   __ delayed()->sub(O1, wordSize, O1);                             // account for prepush
1798 
1799   // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
1800   // interpreter call, or native) and unwind this interpreter activation.
1801   // All monitors should be unlocked.
1802 
1803   __ bind(return_from_interpreted_method);
1804 
1805   VALIDATE_STATE(G3_scratch, 7);
1806 
1807   Label return_to_initial_caller;
1808 
1809   // Interpreted result is on the top of the completed activation expression stack.
1810   // We must return it to the top of the callers stack if caller was interpreted
1811   // otherwise we convert to native abi result and return to call_stub/c1/c2
1812   // The caller's expression stack was truncated by the call however the current activation
1813   // has enough stuff on the stack that we have usable space there no matter what. The
1814   // other thing that makes it easy is that the top of the caller's stack is stored in STATE(_locals)
1815   // for the current activation
1816 
1817   __ ld_ptr(STATE(_prev_link), L1_scratch);
1818   __ ld_ptr(STATE(_method), L2_scratch);                               // get method just executed
1819   __ ld(L2_scratch, in_bytes(Method::result_index_offset()), L2_scratch);
1820   __ tst(L1_scratch);
1821   __ brx(Assembler::zero, false, Assembler::pt, return_to_initial_caller);
1822   __ delayed()->sll(L2_scratch, LogBytesPerWord, L2_scratch);
1823 
1824   // Copy result to callers java stack
1825 
1826   __ set((intptr_t)CppInterpreter::_stack_to_stack, L4_scratch);
1827   __ ld_ptr(L4_scratch, L2_scratch, Lscratch);                          // get typed result converter address
1828   __ ld_ptr(STATE(_stack), O0);                                       // current top (prepushed)
1829   __ ld_ptr(STATE(_locals), O1);                                      // stack destination
1830 
1831   // O0 - will be source, O1 - will be destination (preserved)
1832   __ jmpl(Lscratch, G0, O7);                                          // and convert it
1833   __ delayed()->add(O0, wordSize, O0);                                // get source (top of current expr stack)
1834 
1835   // O1 == &locals[0]
1836 
1837   // Result is now on caller's stack. Just unwind current activation and resume
1838 
1839   Label unwind_recursive_activation;
1840 
1841 
1842   __ bind(unwind_recursive_activation);
1843 
1844   // O1 == &locals[0] (really callers stacktop) for activation now returning
1845   // returning to interpreter method from "recursive" interpreter call
1846   // result converter left O1 pointing to top of the( prepushed) java stack for method we are returning
1847   // to. Now all we must do is unwind the state from the completed call
1848 
1849   // Must restore stack
1850   VALIDATE_STATE(G3_scratch, 8);
1851 
1852   // Return to interpreter method after a method call (interpreted/native/c1/c2) has completed.
1853   // Result if any is already on the caller's stack. All we must do now is remove the now dead
1854   // frame and tell interpreter to resume.
1855 
1856 
1857   __ mov(O1, I1);                                                     // pass back new stack top across activation
1858   // POP FRAME HERE ==================================
1859   __ restore(FP, G0, SP);                                             // unwind interpreter state frame
1860   __ ld_ptr(STATE(_frame_bottom), SP);                                // restore to full stack frame
1861 
1862 
1863   // Resume the interpreter. The current frame contains the current interpreter
1864   // state object.
1865   //
1866   // O1 == new java stack pointer
1867 
1868   __ bind(resume_interpreter);
1869   VALIDATE_STATE(G3_scratch, 10);
1870 
1871   // A frame we have already used before so no need to bang stack so use call_interpreter_2 entry
1872 
1873   __ set((int)BytecodeInterpreter::method_resume, L1_scratch);
1874   __ st(L1_scratch, STATE(_msg));
1875   __ ba(call_interpreter_2);
1876   __ delayed()->st_ptr(O1, STATE(_stack));
1877 
1878 
1879   // Fast accessor methods share this entry point.
1880   // This works because frame manager is in the same codelet
1881   // This can either be an entry via call_stub/c1/c2 or a recursive interpreter call
1882   // we need to do a little register fixup here once we distinguish the two of them
1883   if (UseFastAccessorMethods && !synchronized) {
1884   // Call stub_return address still in O7
1885     __ bind(fast_accessor_slow_entry_path);
1886     __ set((intptr_t)return_from_native_method - 8, Gtmp1);
1887     __ cmp(Gtmp1, O7);                                                // returning to interpreter?
1888     __ brx(Assembler::equal, true, Assembler::pt, re_dispatch);       // yep
1889     __ delayed()->nop();
1890     __ ba(re_dispatch);
1891     __ delayed()->mov(G0, prevState);                                 // initial entry
1892 
1893   }
1894 
1895   // interpreter returning to native code (call_stub/c1/c2)
1896   // convert result and unwind initial activation
1897   // L2_scratch - scaled result type index
1898 
1899   __ bind(return_to_initial_caller);
1900 
1901   __ set((intptr_t)CppInterpreter::_stack_to_native_abi, L4_scratch);
1902   __ ld_ptr(L4_scratch, L2_scratch, Lscratch);                           // get typed result converter address
1903   __ ld_ptr(STATE(_stack), O0);                                        // current top (prepushed)
1904   __ jmpl(Lscratch, G0, O7);                                           // and convert it
1905   __ delayed()->add(O0, wordSize, O0);                                 // get source (top of current expr stack)
1906 
1907   Label unwind_initial_activation;
1908   __ bind(unwind_initial_activation);
1909 
1910   // RETURN TO CALL_STUB/C1/C2 code (result if any in I0..I1/(F0/..F1)
1911   // we can return here with an exception that wasn't handled by interpreted code
1912   // how does c1/c2 see it on return?
1913 
1914   // compute resulting sp before/after args popped depending upon calling convention
1915   // __ ld_ptr(STATE(_saved_sp), Gtmp1);
1916   //
1917   // POP FRAME HERE ==================================
1918   __ restore(FP, G0, SP);
1919   __ retl();
1920   __ delayed()->mov(I5_savedSP->after_restore(), SP);
1921 
1922   // OSR request, unwind the current frame and transfer to the OSR entry
1923   // and enter OSR nmethod
1924 
1925   __ bind(do_OSR);
1926   Label remove_initial_frame;
1927   __ ld_ptr(STATE(_prev_link), L1_scratch);
1928   __ ld_ptr(STATE(_result._osr._osr_buf), G1_scratch);
1929 
1930   // We are going to pop this frame. Is there another interpreter frame underneath
1931   // it or is it callstub/compiled?
1932 
1933   __ tst(L1_scratch);
1934   __ brx(Assembler::zero, false, Assembler::pt, remove_initial_frame);
1935   __ delayed()->ld_ptr(STATE(_result._osr._osr_entry), G3_scratch);
1936 
1937   // Frame underneath is an interpreter frame simply unwind
1938   // POP FRAME HERE ==================================
1939   __ restore(FP, G0, SP);                                             // unwind interpreter state frame
1940   __ mov(I5_savedSP->after_restore(), SP);
1941 
1942   // Since we are now calling native need to change our "return address" from the
1943   // dummy RecursiveInterpreterActivation to a return from native
1944 
1945   __ set((intptr_t)return_from_native_method - 8, O7);
1946 
1947   __ jmpl(G3_scratch, G0, G0);
1948   __ delayed()->mov(G1_scratch, O0);
1949 
1950   __ bind(remove_initial_frame);
1951 
1952   // POP FRAME HERE ==================================
1953   __ restore(FP, G0, SP);
1954   __ mov(I5_savedSP->after_restore(), SP);
1955   __ jmpl(G3_scratch, G0, G0);
1956   __ delayed()->mov(G1_scratch, O0);
1957 
1958   // Call a new method. All we do is (temporarily) trim the expression stack
1959   // push a return address to bring us back to here and leap to the new entry.
1960   // At this point we have a topmost frame that was allocated by the frame manager
1961   // which contains the current method interpreted state. We trim this frame
1962   // of excess java expression stack entries and then recurse.
1963 
1964   __ bind(call_method);
1965 
1966   // stack points to next free location and not top element on expression stack
1967   // method expects sp to be pointing to topmost element
1968 
1969   __ ld_ptr(STATE(_thread), G2_thread);
1970   __ ld_ptr(STATE(_result._to_call._callee), G5_method);
1971 
1972 
1973   // SP already takes in to account the 2 extra words we use for slop
1974   // when we call a "static long no_params()" method. So if
1975   // we trim back sp by the amount of unused java expression stack
1976   // there will be automagically the 2 extra words we need.
1977   // We also have to worry about keeping SP aligned.
1978 
1979   __ ld_ptr(STATE(_stack), Gargs);
1980   __ ld_ptr(STATE(_stack_limit), L1_scratch);
1981 
1982   // compute the unused java stack size
1983   __ sub(Gargs, L1_scratch, L2_scratch);                       // compute unused space
1984 
1985   // Round down the unused space to that stack is always 16-byte aligned
1986   // by making the unused space a multiple of the size of two longs.
1987 
1988   __ and3(L2_scratch, -2*BytesPerLong, L2_scratch);
1989 
1990   // Now trim the stack
1991   __ add(SP, L2_scratch, SP);
1992 
1993 
1994   // Now point to the final argument (account for prepush)
1995   __ add(Gargs, wordSize, Gargs);
1996 #ifdef ASSERT
1997   // Make sure we have space for the window
1998   __ sub(Gargs, SP, L1_scratch);
1999   __ cmp(L1_scratch, 16*wordSize);
2000   {
2001     Label skip;
2002     __ brx(Assembler::greaterEqual, false, Assembler::pt, skip);
2003     __ delayed()->nop();
2004     __ stop("killed stack");
2005     __ bind(skip);
2006   }
2007 #endif // ASSERT
2008 
2009   // Create a new frame where we can store values that make it look like the interpreter
2010   // really recursed.
2011 
2012   // prepare to recurse or call specialized entry
2013 
2014   // First link the registers we need
2015 
2016   // make the pc look good in debugger
2017   __ set(CAST_FROM_FN_PTR(intptr_t, RecursiveInterpreterActivation), O7);
2018   // argument too
2019   __ mov(Lstate, I0);
2020 
2021   // Record our sending SP
2022   __ mov(SP, O5_savedSP);
2023 
2024   __ ld_ptr(STATE(_result._to_call._callee_entry_point), L2_scratch);
2025   __ set((intptr_t) entry_point, L1_scratch);
2026   __ cmp(L1_scratch, L2_scratch);
2027   __ brx(Assembler::equal, false, Assembler::pt, re_dispatch);
2028   __ delayed()->mov(Lstate, prevState);                                // link activations
2029 
2030   // method uses specialized entry, push a return so we look like call stub setup
2031   // this path will handle fact that result is returned in registers and not
2032   // on the java stack.
2033 
2034   __ set((intptr_t)return_from_native_method - 8, O7);
2035   __ jmpl(L2_scratch, G0, G0);                               // Do specialized entry
2036   __ delayed()->nop();
2037 
2038   //
2039   // Bad Message from interpreter
2040   //
2041   __ bind(bad_msg);
2042   __ stop("Bad message from interpreter");
2043 
2044   // Interpreted method "returned" with an exception pass it on...
2045   // Pass result, unwind activation and continue/return to interpreter/call_stub
2046   // We handle result (if any) differently based on return to interpreter or call_stub
2047 
2048   __ bind(throw_exception);
2049   __ ld_ptr(STATE(_prev_link), L1_scratch);
2050   __ tst(L1_scratch);
2051   __ brx(Assembler::zero, false, Assembler::pt, unwind_and_forward);
2052   __ delayed()->nop();
2053 
2054   __ ld_ptr(STATE(_locals), O1); // get result of popping callee's args
2055   __ ba(unwind_recursive_activation);
2056   __ delayed()->nop();
2057 
2058   interpreter_frame_manager = entry_point;
2059   return entry_point;
2060 }
2061 
InterpreterGenerator(StubQueue * code)2062 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
2063  : CppInterpreterGenerator(code) {
2064    generate_all(); // down here so it can be "virtual"
2065 }
2066 
2067 
size_activation_helper(int callee_extra_locals,int max_stack,int monitor_size)2068 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
2069 
2070   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
2071   // expression stack, the callee will have callee_extra_locals (so we can account for
2072   // frame extension) and monitor_size for monitors. Basically we need to calculate
2073   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
2074   //
2075   //
2076   // The big complicating thing here is that we must ensure that the stack stays properly
2077   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
2078   // needs to be aligned for). We are given that the sp (fp) is already aligned by
2079   // the caller so we must ensure that it is properly aligned for our callee.
2080   //
2081   // Ths c++ interpreter always makes sure that we have a enough extra space on the
2082   // stack at all times to deal with the "stack long no_params()" method issue. This
2083   // is "slop_factor" here.
2084   const int slop_factor = 2;
2085 
2086   const int fixed_size = sizeof(BytecodeInterpreter)/wordSize +           // interpreter state object
2087                          frame::memory_parameter_word_sp_offset;   // register save area + param window
2088   return (round_to(max_stack +
2089                    slop_factor +
2090                    fixed_size +
2091                    monitor_size +
2092                    (callee_extra_locals * Interpreter::stackElementWords), WordsPerLong));
2093 
2094 }
2095 
size_top_interpreter_activation(Method * method)2096 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
2097 
2098   // See call_stub code
2099   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
2100                                  WordsPerLong);    // 7 + register save area
2101 
2102   // Save space for one monitor to get into the interpreted method in case
2103   // the method is synchronized
2104   int monitor_size    = method->is_synchronized() ?
2105                                 1*frame::interpreter_frame_monitor_size() : 0;
2106   return size_activation_helper(method->max_locals(), method->max_stack(),
2107                                 monitor_size) + call_stub_size;
2108 }
2109 
layout_interpreterState(interpreterState to_fill,frame * caller,frame * current,Method * method,intptr_t * locals,intptr_t * stack,intptr_t * stack_base,intptr_t * monitor_base,intptr_t * frame_bottom,bool is_top_frame)2110 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
2111                                            frame* caller,
2112                                            frame* current,
2113                                            Method* method,
2114                                            intptr_t* locals,
2115                                            intptr_t* stack,
2116                                            intptr_t* stack_base,
2117                                            intptr_t* monitor_base,
2118                                            intptr_t* frame_bottom,
2119                                            bool is_top_frame
2120                                            )
2121 {
2122   // What about any vtable?
2123   //
2124   to_fill->_thread = JavaThread::current();
2125   // This gets filled in later but make it something recognizable for now
2126   to_fill->_bcp = method->code_base();
2127   to_fill->_locals = locals;
2128   to_fill->_constants = method->constants()->cache();
2129   to_fill->_method = method;
2130   to_fill->_mdx = NULL;
2131   to_fill->_stack = stack;
2132   if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
2133     to_fill->_msg = deopt_resume2;
2134   } else {
2135     to_fill->_msg = method_resume;
2136   }
2137   to_fill->_result._to_call._bcp_advance = 0;
2138   to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
2139   to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
2140   to_fill->_prev_link = NULL;
2141 
2142   // Fill in the registers for the frame
2143 
2144   // Need to install _sender_sp. Actually not too hard in C++!
2145   // When the skeletal frames are layed out we fill in a value
2146   // for _sender_sp. That value is only correct for the oldest
2147   // skeletal frame constructed (because there is only a single
2148   // entry for "caller_adjustment". While the skeletal frames
2149   // exist that is good enough. We correct that calculation
2150   // here and get all the frames correct.
2151 
2152   // to_fill->_sender_sp = locals - (method->size_of_parameters() - 1);
2153 
2154   *current->register_addr(Lstate) = (intptr_t) to_fill;
2155   // skeletal already places a useful value here and this doesn't account
2156   // for alignment so don't bother.
2157   // *current->register_addr(I5_savedSP) =     (intptr_t) locals - (method->size_of_parameters() - 1);
2158 
2159   if (caller->is_interpreted_frame()) {
2160     interpreterState prev  = caller->get_interpreterState();
2161     to_fill->_prev_link = prev;
2162     // Make the prev callee look proper
2163     prev->_result._to_call._callee = method;
2164     if (*prev->_bcp == Bytecodes::_invokeinterface) {
2165       prev->_result._to_call._bcp_advance = 5;
2166     } else {
2167       prev->_result._to_call._bcp_advance = 3;
2168     }
2169   }
2170   to_fill->_oop_temp = NULL;
2171   to_fill->_stack_base = stack_base;
2172   // Need +1 here because stack_base points to the word just above the first expr stack entry
2173   // and stack_limit is supposed to point to the word just below the last expr stack entry.
2174   // See generate_compute_interpreter_state.
2175   to_fill->_stack_limit = stack_base - (method->max_stack() + 1);
2176   to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
2177 
2178   // sparc specific
2179   to_fill->_frame_bottom = frame_bottom;
2180   to_fill->_self_link = to_fill;
2181 #ifdef ASSERT
2182   to_fill->_native_fresult = 123456.789;
2183   to_fill->_native_lresult = CONST64(0xdeadcafedeafcafe);
2184 #endif
2185 }
2186 
pd_layout_interpreterState(interpreterState istate,address last_Java_pc,intptr_t * last_Java_fp)2187 void BytecodeInterpreter::pd_layout_interpreterState(interpreterState istate, address last_Java_pc, intptr_t* last_Java_fp) {
2188   istate->_last_Java_pc = (intptr_t*) last_Java_pc;
2189 }
2190 
frame_size_helper(int max_stack,int moncount,int callee_param_size,int callee_locals_size,bool is_top_frame,int & monitor_size,int & full_frame_words)2191 static int frame_size_helper(int max_stack,
2192                              int moncount,
2193                              int callee_param_size,
2194                              int callee_locals_size,
2195                              bool is_top_frame,
2196                              int& monitor_size,
2197                              int& full_frame_words) {
2198   int extra_locals_size = callee_locals_size - callee_param_size;
2199   monitor_size = (sizeof(BasicObjectLock) * moncount) / wordSize;
2200   full_frame_words = size_activation_helper(extra_locals_size, max_stack, monitor_size);
2201   int short_frame_words = size_activation_helper(extra_locals_size, max_stack, monitor_size);
2202   int frame_words = is_top_frame ? full_frame_words : short_frame_words;
2203 
2204   return frame_words;
2205 }
2206 
size_activation(int max_stack,int tempcount,int extra_args,int moncount,int callee_param_size,int callee_locals_size,bool is_top_frame)2207 int AbstractInterpreter::size_activation(int max_stack,
2208                                          int tempcount,
2209                                          int extra_args,
2210                                          int moncount,
2211                                          int callee_param_size,
2212                                          int callee_locals_size,
2213                                          bool is_top_frame) {
2214   assert(extra_args == 0, "NEED TO FIX");
2215   // NOTE: return size is in words not bytes
2216   // Calculate the amount our frame will be adjust by the callee. For top frame
2217   // this is zero.
2218 
2219   // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
2220   // calculates the extra locals based on itself. Not what the callee does
2221   // to it. So it ignores last_frame_adjust value. Seems suspicious as far
2222   // as getting sender_sp correct.
2223 
2224   int unused_monitor_size = 0;
2225   int unused_full_frame_words = 0;
2226   return frame_size_helper(max_stack, moncount, callee_param_size, callee_locals_size, is_top_frame,
2227                            unused_monitor_size, unused_full_frame_words);
2228 }
layout_activation(Method * method,int tempcount,int popframe_extra_args,int moncount,int caller_actual_parameters,int callee_param_size,int callee_locals_size,frame * caller,frame * interpreter_frame,bool is_top_frame,bool is_bottom_frame)2229 void AbstractInterpreter::layout_activation(Method* method,
2230                                             int tempcount, // Number of slots on java expression stack in use
2231                                             int popframe_extra_args,
2232                                             int moncount,  // Number of active monitors
2233                                             int caller_actual_parameters,
2234                                             int callee_param_size,
2235                                             int callee_locals_size,
2236                                             frame* caller,
2237                                             frame* interpreter_frame,
2238                                             bool is_top_frame,
2239                                             bool is_bottom_frame) {
2240   assert(popframe_extra_args == 0, "NEED TO FIX");
2241   // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
2242   // does as far as allocating an interpreter frame.
2243   // Set up the method, locals, and monitors.
2244   // The frame interpreter_frame is guaranteed to be the right size,
2245   // as determined by a previous call to the size_activation() method.
2246   // It is also guaranteed to be walkable even though it is in a skeletal state
2247   // NOTE: tempcount is the current size of the java expression stack. For top most
2248   //       frames we will allocate a full sized expression stack and not the curback
2249   //       version that non-top frames have.
2250 
2251   int monitor_size = 0;
2252   int full_frame_words = 0;
2253   int frame_words = frame_size_helper(method->max_stack(), moncount, callee_param_size, callee_locals_size,
2254                                       is_top_frame, monitor_size, full_frame_words);
2255 
2256   /*
2257     We must now fill in all the pieces of the frame. This means both
2258     the interpreterState and the registers.
2259   */
2260 
2261   // MUCHO HACK
2262 
2263   intptr_t* frame_bottom = interpreter_frame->sp() - (full_frame_words - frame_words);
2264   // 'interpreter_frame->sp()' is unbiased while 'frame_bottom' must be a biased value in 64bit mode.
2265   assert(((intptr_t)frame_bottom & 0xf) == 0, "SP biased in layout_activation");
2266   frame_bottom = (intptr_t*)((intptr_t)frame_bottom - STACK_BIAS);
2267 
2268   /* Now fillin the interpreterState object */
2269 
2270   interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() -  sizeof(BytecodeInterpreter));
2271 
2272 
2273   intptr_t* locals;
2274 
2275   // Calculate the postion of locals[0]. This is painful because of
2276   // stack alignment (same as ia64). The problem is that we can
2277   // not compute the location of locals from fp(). fp() will account
2278   // for the extra locals but it also accounts for aligning the stack
2279   // and we can't determine if the locals[0] was misaligned but max_locals
2280   // was enough to have the
2281   // calculate postion of locals. fp already accounts for extra locals.
2282   // +2 for the static long no_params() issue.
2283 
2284   if (caller->is_interpreted_frame()) {
2285     // locals must agree with the caller because it will be used to set the
2286     // caller's tos when we return.
2287     interpreterState prev  = caller->get_interpreterState();
2288     // stack() is prepushed.
2289     locals = prev->stack() + method->size_of_parameters();
2290   } else {
2291     // Lay out locals block in the caller adjacent to the register window save area.
2292     //
2293     // Compiled frames do not allocate a varargs area which is why this if
2294     // statement is needed.
2295     //
2296     intptr_t* fp = interpreter_frame->fp();
2297     int local_words = method->max_locals() * Interpreter::stackElementWords;
2298 
2299     if (caller->is_compiled_frame()) {
2300       locals = fp + frame::register_save_words + local_words - 1;
2301     } else {
2302       locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
2303     }
2304 
2305   }
2306   // END MUCHO HACK
2307 
2308   intptr_t* monitor_base = (intptr_t*) cur_state;
2309   intptr_t* stack_base =  monitor_base - monitor_size;
2310   /* +1 because stack is always prepushed */
2311   intptr_t* stack = stack_base - (tempcount + 1);
2312 
2313 
2314   BytecodeInterpreter::layout_interpreterState(cur_state,
2315                                                caller,
2316                                                interpreter_frame,
2317                                                method,
2318                                                locals,
2319                                                stack,
2320                                                stack_base,
2321                                                monitor_base,
2322                                                frame_bottom,
2323                                                is_top_frame);
2324 
2325   BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
2326 }
2327 
2328 #endif // CC_INTERP
2329