1 /*
2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #if !defined(_WINDOWS) && !defined(_ALLBSD_SOURCE)
27 #include "alloca.h"
28 #endif
29 #ifdef _ALLBSD_SOURCE
30 #include <stdlib.h>
31 #endif
32 #include "asm/macroAssembler.hpp"
33 #include "asm/macroAssembler.inline.hpp"
34 #include "code/debugInfoRec.hpp"
35 #include "code/icBuffer.hpp"
36 #include "code/vtableStubs.hpp"
37 #include "interpreter/interpreter.hpp"
38 #include "oops/compiledICHolder.hpp"
39 #include "prims/jvmtiRedefineClassesTrace.hpp"
40 #include "runtime/sharedRuntime.hpp"
41 #include "runtime/vframeArray.hpp"
42 #include "vmreg_x86.inline.hpp"
43 #ifdef COMPILER1
44 #include "c1/c1_Runtime1.hpp"
45 #endif
46 #ifdef COMPILER2
47 #include "opto/runtime.hpp"
48 #endif
49 
50 #define __ masm->
51 
52 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
53 
54 class SimpleRuntimeFrame {
55 
56   public:
57 
58   // Most of the runtime stubs have this simple frame layout.
59   // This class exists to make the layout shared in one place.
60   // Offsets are for compiler stack slots, which are jints.
61   enum layout {
62     // The frame sender code expects that rbp will be in the "natural" place and
63     // will override any oopMap setting for it. We must therefore force the layout
64     // so that it agrees with the frame sender code.
65     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
66     rbp_off2,
67     return_off, return_off2,
68     framesize
69   };
70 };
71 
72 class RegisterSaver {
73   // Capture info about frame layout.  Layout offsets are in jint
74   // units because compiler frame slots are jints.
75 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
76   enum layout {
77     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
78     xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
79     DEF_XMM_OFFS(0),
80     DEF_XMM_OFFS(1),
81     DEF_XMM_OFFS(2),
82     DEF_XMM_OFFS(3),
83     DEF_XMM_OFFS(4),
84     DEF_XMM_OFFS(5),
85     DEF_XMM_OFFS(6),
86     DEF_XMM_OFFS(7),
87     DEF_XMM_OFFS(8),
88     DEF_XMM_OFFS(9),
89     DEF_XMM_OFFS(10),
90     DEF_XMM_OFFS(11),
91     DEF_XMM_OFFS(12),
92     DEF_XMM_OFFS(13),
93     DEF_XMM_OFFS(14),
94     DEF_XMM_OFFS(15),
95     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
96     fpu_stateH_end,
97     r15_off, r15H_off,
98     r14_off, r14H_off,
99     r13_off, r13H_off,
100     r12_off, r12H_off,
101     r11_off, r11H_off,
102     r10_off, r10H_off,
103     r9_off,  r9H_off,
104     r8_off,  r8H_off,
105     rdi_off, rdiH_off,
106     rsi_off, rsiH_off,
107     ignore_off, ignoreH_off,  // extra copy of rbp
108     rsp_off, rspH_off,
109     rbx_off, rbxH_off,
110     rdx_off, rdxH_off,
111     rcx_off, rcxH_off,
112     rax_off, raxH_off,
113     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
114     align_off, alignH_off,
115     flags_off, flagsH_off,
116     // The frame sender code expects that rbp will be in the "natural" place and
117     // will override any oopMap setting for it. We must therefore force the layout
118     // so that it agrees with the frame sender code.
119     rbp_off, rbpH_off,        // copy of rbp we will restore
120     return_off, returnH_off,  // slot for return address
121     reg_save_size             // size in compiler stack slots
122   };
123 
124  public:
125   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
126   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
127 
128   // Offsets into the register save area
129   // Used by deoptimization when it is managing result register
130   // values on its own
131 
rax_offset_in_bytes(void)132   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
rdx_offset_in_bytes(void)133   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
rbx_offset_in_bytes(void)134   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
xmm0_offset_in_bytes(void)135   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
return_offset_in_bytes(void)136   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
137 
138   // During deoptimization only the result registers need to be restored,
139   // all the other values have already been extracted.
140   static void restore_result_registers(MacroAssembler* masm);
141 };
142 
save_live_registers(MacroAssembler * masm,int additional_frame_words,int * total_frame_words,bool save_vectors)143 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
144   int vect_words = 0;
145 #ifdef COMPILER2
146   if (save_vectors) {
147     assert(UseAVX > 0, "256bit vectors are supported only with AVX");
148     assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
149     // Save upper half of YMM registes
150     vect_words = 16 * 16 / wordSize;
151     additional_frame_words += vect_words;
152   }
153 #else
154   assert(!save_vectors, "vectors are generated only by C2");
155 #endif
156 
157   // Always make the frame size 16-byte aligned
158   int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
159                                      reg_save_size*BytesPerInt, 16);
160   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
161   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
162   // The caller will allocate additional_frame_words
163   int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
164   // CodeBlob frame size is in words.
165   int frame_size_in_words = frame_size_in_bytes / wordSize;
166   *total_frame_words = frame_size_in_words;
167 
168   // Save registers, fpu state, and flags.
169   // We assume caller has already pushed the return address onto the
170   // stack, so rsp is 8-byte aligned here.
171   // We push rpb twice in this sequence because we want the real rbp
172   // to be under the return like a normal enter.
173 
174   __ enter();          // rsp becomes 16-byte aligned here
175   __ push_CPU_state(); // Push a multiple of 16 bytes
176 
177   if (vect_words > 0) {
178     assert(vect_words*wordSize == 256, "");
179     __ subptr(rsp, 256); // Save upper half of YMM registes
180     __ vextractf128h(Address(rsp,  0),xmm0);
181     __ vextractf128h(Address(rsp, 16),xmm1);
182     __ vextractf128h(Address(rsp, 32),xmm2);
183     __ vextractf128h(Address(rsp, 48),xmm3);
184     __ vextractf128h(Address(rsp, 64),xmm4);
185     __ vextractf128h(Address(rsp, 80),xmm5);
186     __ vextractf128h(Address(rsp, 96),xmm6);
187     __ vextractf128h(Address(rsp,112),xmm7);
188     __ vextractf128h(Address(rsp,128),xmm8);
189     __ vextractf128h(Address(rsp,144),xmm9);
190     __ vextractf128h(Address(rsp,160),xmm10);
191     __ vextractf128h(Address(rsp,176),xmm11);
192     __ vextractf128h(Address(rsp,192),xmm12);
193     __ vextractf128h(Address(rsp,208),xmm13);
194     __ vextractf128h(Address(rsp,224),xmm14);
195     __ vextractf128h(Address(rsp,240),xmm15);
196   }
197   if (frame::arg_reg_save_area_bytes != 0) {
198     // Allocate argument register save area
199     __ subptr(rsp, frame::arg_reg_save_area_bytes);
200   }
201 
202   // Set an oopmap for the call site.  This oopmap will map all
203   // oop-registers and debug-info registers as callee-saved.  This
204   // will allow deoptimization at this safepoint to find all possible
205   // debug-info recordings, as well as let GC find all oops.
206 
207   OopMapSet *oop_maps = new OopMapSet();
208   OopMap* map = new OopMap(frame_size_in_slots, 0);
209 
210 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_slots)
211 
212   map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
213   map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
214   map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
215   map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
216   // rbp location is known implicitly by the frame sender code, needs no oopmap
217   // and the location where rbp was saved by is ignored
218   map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
219   map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
220   map->set_callee_saved(STACK_OFFSET( r8_off  ), r8->as_VMReg());
221   map->set_callee_saved(STACK_OFFSET( r9_off  ), r9->as_VMReg());
222   map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
223   map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
224   map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
225   map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
226   map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
227   map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
228   map->set_callee_saved(STACK_OFFSET(xmm0_off ), xmm0->as_VMReg());
229   map->set_callee_saved(STACK_OFFSET(xmm1_off ), xmm1->as_VMReg());
230   map->set_callee_saved(STACK_OFFSET(xmm2_off ), xmm2->as_VMReg());
231   map->set_callee_saved(STACK_OFFSET(xmm3_off ), xmm3->as_VMReg());
232   map->set_callee_saved(STACK_OFFSET(xmm4_off ), xmm4->as_VMReg());
233   map->set_callee_saved(STACK_OFFSET(xmm5_off ), xmm5->as_VMReg());
234   map->set_callee_saved(STACK_OFFSET(xmm6_off ), xmm6->as_VMReg());
235   map->set_callee_saved(STACK_OFFSET(xmm7_off ), xmm7->as_VMReg());
236   map->set_callee_saved(STACK_OFFSET(xmm8_off ), xmm8->as_VMReg());
237   map->set_callee_saved(STACK_OFFSET(xmm9_off ), xmm9->as_VMReg());
238   map->set_callee_saved(STACK_OFFSET(xmm10_off), xmm10->as_VMReg());
239   map->set_callee_saved(STACK_OFFSET(xmm11_off), xmm11->as_VMReg());
240   map->set_callee_saved(STACK_OFFSET(xmm12_off), xmm12->as_VMReg());
241   map->set_callee_saved(STACK_OFFSET(xmm13_off), xmm13->as_VMReg());
242   map->set_callee_saved(STACK_OFFSET(xmm14_off), xmm14->as_VMReg());
243   map->set_callee_saved(STACK_OFFSET(xmm15_off), xmm15->as_VMReg());
244 
245   // %%% These should all be a waste but we'll keep things as they were for now
246   if (true) {
247     map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
248     map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
249     map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
250     map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
251     // rbp location is known implicitly by the frame sender code, needs no oopmap
252     map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
253     map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
254     map->set_callee_saved(STACK_OFFSET( r8H_off  ), r8->as_VMReg()->next());
255     map->set_callee_saved(STACK_OFFSET( r9H_off  ), r9->as_VMReg()->next());
256     map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
257     map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
258     map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
259     map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
260     map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
261     map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
262     map->set_callee_saved(STACK_OFFSET(xmm0H_off ), xmm0->as_VMReg()->next());
263     map->set_callee_saved(STACK_OFFSET(xmm1H_off ), xmm1->as_VMReg()->next());
264     map->set_callee_saved(STACK_OFFSET(xmm2H_off ), xmm2->as_VMReg()->next());
265     map->set_callee_saved(STACK_OFFSET(xmm3H_off ), xmm3->as_VMReg()->next());
266     map->set_callee_saved(STACK_OFFSET(xmm4H_off ), xmm4->as_VMReg()->next());
267     map->set_callee_saved(STACK_OFFSET(xmm5H_off ), xmm5->as_VMReg()->next());
268     map->set_callee_saved(STACK_OFFSET(xmm6H_off ), xmm6->as_VMReg()->next());
269     map->set_callee_saved(STACK_OFFSET(xmm7H_off ), xmm7->as_VMReg()->next());
270     map->set_callee_saved(STACK_OFFSET(xmm8H_off ), xmm8->as_VMReg()->next());
271     map->set_callee_saved(STACK_OFFSET(xmm9H_off ), xmm9->as_VMReg()->next());
272     map->set_callee_saved(STACK_OFFSET(xmm10H_off), xmm10->as_VMReg()->next());
273     map->set_callee_saved(STACK_OFFSET(xmm11H_off), xmm11->as_VMReg()->next());
274     map->set_callee_saved(STACK_OFFSET(xmm12H_off), xmm12->as_VMReg()->next());
275     map->set_callee_saved(STACK_OFFSET(xmm13H_off), xmm13->as_VMReg()->next());
276     map->set_callee_saved(STACK_OFFSET(xmm14H_off), xmm14->as_VMReg()->next());
277     map->set_callee_saved(STACK_OFFSET(xmm15H_off), xmm15->as_VMReg()->next());
278   }
279 
280   return map;
281 }
282 
restore_live_registers(MacroAssembler * masm,bool restore_vectors)283 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
284   if (frame::arg_reg_save_area_bytes != 0) {
285     // Pop arg register save area
286     __ addptr(rsp, frame::arg_reg_save_area_bytes);
287   }
288 #ifdef COMPILER2
289   if (restore_vectors) {
290     // Restore upper half of YMM registes.
291     assert(UseAVX > 0, "256bit vectors are supported only with AVX");
292     assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
293     __ vinsertf128h(xmm0, Address(rsp,  0));
294     __ vinsertf128h(xmm1, Address(rsp, 16));
295     __ vinsertf128h(xmm2, Address(rsp, 32));
296     __ vinsertf128h(xmm3, Address(rsp, 48));
297     __ vinsertf128h(xmm4, Address(rsp, 64));
298     __ vinsertf128h(xmm5, Address(rsp, 80));
299     __ vinsertf128h(xmm6, Address(rsp, 96));
300     __ vinsertf128h(xmm7, Address(rsp,112));
301     __ vinsertf128h(xmm8, Address(rsp,128));
302     __ vinsertf128h(xmm9, Address(rsp,144));
303     __ vinsertf128h(xmm10, Address(rsp,160));
304     __ vinsertf128h(xmm11, Address(rsp,176));
305     __ vinsertf128h(xmm12, Address(rsp,192));
306     __ vinsertf128h(xmm13, Address(rsp,208));
307     __ vinsertf128h(xmm14, Address(rsp,224));
308     __ vinsertf128h(xmm15, Address(rsp,240));
309     __ addptr(rsp, 256);
310   }
311 #else
312   assert(!restore_vectors, "vectors are generated only by C2");
313 #endif
314   // Recover CPU state
315   __ pop_CPU_state();
316   // Get the rbp described implicitly by the calling convention (no oopMap)
317   __ pop(rbp);
318 }
319 
restore_result_registers(MacroAssembler * masm)320 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
321 
322   // Just restore result register. Only used by deoptimization. By
323   // now any callee save register that needs to be restored to a c2
324   // caller of the deoptee has been extracted into the vframeArray
325   // and will be stuffed into the c2i adapter we create for later
326   // restoration so only result registers need to be restored here.
327 
328   // Restore fp result register
329   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
330   // Restore integer result register
331   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
332   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
333 
334   // Pop all of the register save are off the stack except the return address
335   __ addptr(rsp, return_offset_in_bytes());
336 }
337 
338 // Is vector's size (in bytes) bigger than a size saved by default?
339 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
is_wide_vector(int size)340 bool SharedRuntime::is_wide_vector(int size) {
341   return size > 16;
342 }
343 
344 // The java_calling_convention describes stack locations as ideal slots on
345 // a frame with no abi restrictions. Since we must observe abi restrictions
346 // (like the placement of the register window) the slots must be biased by
347 // the following value.
reg2offset_in(VMReg r)348 static int reg2offset_in(VMReg r) {
349   // Account for saved rbp and return address
350   // This should really be in_preserve_stack_slots
351   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
352 }
353 
reg2offset_out(VMReg r)354 static int reg2offset_out(VMReg r) {
355   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
356 }
357 
358 // ---------------------------------------------------------------------------
359 // Read the array of BasicTypes from a signature, and compute where the
360 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
361 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
362 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
363 // as framesizes are fixed.
364 // VMRegImpl::stack0 refers to the first slot 0(sp).
365 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
366 // up to RegisterImpl::number_of_registers) are the 64-bit
367 // integer registers.
368 
369 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
370 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
371 // units regardless of build. Of course for i486 there is no 64 bit build
372 
373 // The Java calling convention is a "shifted" version of the C ABI.
374 // By skipping the first C ABI register we can call non-static jni methods
375 // with small numbers of arguments without having to shuffle the arguments
376 // at all. Since we control the java ABI we ought to at least get some
377 // advantage out of it.
378 
java_calling_convention(const BasicType * sig_bt,VMRegPair * regs,int total_args_passed,int is_outgoing)379 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
380                                            VMRegPair *regs,
381                                            int total_args_passed,
382                                            int is_outgoing) {
383 
384   // Create the mapping between argument positions and
385   // registers.
386   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
387     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
388   };
389   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
390     j_farg0, j_farg1, j_farg2, j_farg3,
391     j_farg4, j_farg5, j_farg6, j_farg7
392   };
393 
394 
395   uint int_args = 0;
396   uint fp_args = 0;
397   uint stk_args = 0; // inc by 2 each time
398 
399   for (int i = 0; i < total_args_passed; i++) {
400     switch (sig_bt[i]) {
401     case T_BOOLEAN:
402     case T_CHAR:
403     case T_BYTE:
404     case T_SHORT:
405     case T_INT:
406       if (int_args < Argument::n_int_register_parameters_j) {
407         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
408       } else {
409         regs[i].set1(VMRegImpl::stack2reg(stk_args));
410         stk_args += 2;
411       }
412       break;
413     case T_VOID:
414       // halves of T_LONG or T_DOUBLE
415       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
416       regs[i].set_bad();
417       break;
418     case T_LONG:
419       assert(sig_bt[i + 1] == T_VOID, "expecting half");
420       // fall through
421     case T_OBJECT:
422     case T_ARRAY:
423     case T_ADDRESS:
424       if (int_args < Argument::n_int_register_parameters_j) {
425         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
426       } else {
427         regs[i].set2(VMRegImpl::stack2reg(stk_args));
428         stk_args += 2;
429       }
430       break;
431     case T_FLOAT:
432       if (fp_args < Argument::n_float_register_parameters_j) {
433         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
434       } else {
435         regs[i].set1(VMRegImpl::stack2reg(stk_args));
436         stk_args += 2;
437       }
438       break;
439     case T_DOUBLE:
440       assert(sig_bt[i + 1] == T_VOID, "expecting half");
441       if (fp_args < Argument::n_float_register_parameters_j) {
442         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
443       } else {
444         regs[i].set2(VMRegImpl::stack2reg(stk_args));
445         stk_args += 2;
446       }
447       break;
448     default:
449       ShouldNotReachHere();
450       break;
451     }
452   }
453 
454   return round_to(stk_args, 2);
455 }
456 
457 // Patch the callers callsite with entry to compiled code if it exists.
patch_callers_callsite(MacroAssembler * masm)458 static void patch_callers_callsite(MacroAssembler *masm) {
459   Label L;
460   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
461   __ jcc(Assembler::equal, L);
462 
463   // Save the current stack pointer
464   __ mov(r13, rsp);
465   // Schedule the branch target address early.
466   // Call into the VM to patch the caller, then jump to compiled callee
467   // rax isn't live so capture return address while we easily can
468   __ movptr(rax, Address(rsp, 0));
469 
470   // align stack so push_CPU_state doesn't fault
471   __ andptr(rsp, -(StackAlignmentInBytes));
472   __ push_CPU_state();
473 
474   // VM needs caller's callsite
475   // VM needs target method
476   // This needs to be a long call since we will relocate this adapter to
477   // the codeBuffer and it may not reach
478 
479   // Allocate argument register save area
480   if (frame::arg_reg_save_area_bytes != 0) {
481     __ subptr(rsp, frame::arg_reg_save_area_bytes);
482   }
483   __ mov(c_rarg0, rbx);
484   __ mov(c_rarg1, rax);
485   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
486 
487   // De-allocate argument register save area
488   if (frame::arg_reg_save_area_bytes != 0) {
489     __ addptr(rsp, frame::arg_reg_save_area_bytes);
490   }
491 
492   __ pop_CPU_state();
493   // restore sp
494   __ mov(rsp, r13);
495   __ bind(L);
496 }
497 
498 
gen_c2i_adapter(MacroAssembler * masm,int total_args_passed,int comp_args_on_stack,const BasicType * sig_bt,const VMRegPair * regs,Label & skip_fixup)499 static void gen_c2i_adapter(MacroAssembler *masm,
500                             int total_args_passed,
501                             int comp_args_on_stack,
502                             const BasicType *sig_bt,
503                             const VMRegPair *regs,
504                             Label& skip_fixup) {
505   // Before we get into the guts of the C2I adapter, see if we should be here
506   // at all.  We've come from compiled code and are attempting to jump to the
507   // interpreter, which means the caller made a static call to get here
508   // (vcalls always get a compiled target if there is one).  Check for a
509   // compiled target.  If there is one, we need to patch the caller's call.
510   patch_callers_callsite(masm);
511 
512   __ bind(skip_fixup);
513 
514   // Since all args are passed on the stack, total_args_passed *
515   // Interpreter::stackElementSize is the space we need. Plus 1 because
516   // we also account for the return address location since
517   // we store it first rather than hold it in rax across all the shuffling
518 
519   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
520 
521   // stack is aligned, keep it that way
522   extraspace = round_to(extraspace, 2*wordSize);
523 
524   // Get return address
525   __ pop(rax);
526 
527   // set senderSP value
528   __ mov(r13, rsp);
529 
530   __ subptr(rsp, extraspace);
531 
532   // Store the return address in the expected location
533   __ movptr(Address(rsp, 0), rax);
534 
535   // Now write the args into the outgoing interpreter space
536   for (int i = 0; i < total_args_passed; i++) {
537     if (sig_bt[i] == T_VOID) {
538       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
539       continue;
540     }
541 
542     // offset to start parameters
543     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
544     int next_off = st_off - Interpreter::stackElementSize;
545 
546     // Say 4 args:
547     // i   st_off
548     // 0   32 T_LONG
549     // 1   24 T_VOID
550     // 2   16 T_OBJECT
551     // 3    8 T_BOOL
552     // -    0 return address
553     //
554     // However to make thing extra confusing. Because we can fit a long/double in
555     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
556     // leaves one slot empty and only stores to a single slot. In this case the
557     // slot that is occupied is the T_VOID slot. See I said it was confusing.
558 
559     VMReg r_1 = regs[i].first();
560     VMReg r_2 = regs[i].second();
561     if (!r_1->is_valid()) {
562       assert(!r_2->is_valid(), "");
563       continue;
564     }
565     if (r_1->is_stack()) {
566       // memory to memory use rax
567       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
568       if (!r_2->is_valid()) {
569         // sign extend??
570         __ movl(rax, Address(rsp, ld_off));
571         __ movptr(Address(rsp, st_off), rax);
572 
573       } else {
574 
575         __ movq(rax, Address(rsp, ld_off));
576 
577         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
578         // T_DOUBLE and T_LONG use two slots in the interpreter
579         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
580           // ld_off == LSW, ld_off+wordSize == MSW
581           // st_off == MSW, next_off == LSW
582           __ movq(Address(rsp, next_off), rax);
583 #ifdef ASSERT
584           // Overwrite the unused slot with known junk
585           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
586           __ movptr(Address(rsp, st_off), rax);
587 #endif /* ASSERT */
588         } else {
589           __ movq(Address(rsp, st_off), rax);
590         }
591       }
592     } else if (r_1->is_Register()) {
593       Register r = r_1->as_Register();
594       if (!r_2->is_valid()) {
595         // must be only an int (or less ) so move only 32bits to slot
596         // why not sign extend??
597         __ movl(Address(rsp, st_off), r);
598       } else {
599         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
600         // T_DOUBLE and T_LONG use two slots in the interpreter
601         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
602           // long/double in gpr
603 #ifdef ASSERT
604           // Overwrite the unused slot with known junk
605           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
606           __ movptr(Address(rsp, st_off), rax);
607 #endif /* ASSERT */
608           __ movq(Address(rsp, next_off), r);
609         } else {
610           __ movptr(Address(rsp, st_off), r);
611         }
612       }
613     } else {
614       assert(r_1->is_XMMRegister(), "");
615       if (!r_2->is_valid()) {
616         // only a float use just part of the slot
617         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
618       } else {
619 #ifdef ASSERT
620         // Overwrite the unused slot with known junk
621         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
622         __ movptr(Address(rsp, st_off), rax);
623 #endif /* ASSERT */
624         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
625       }
626     }
627   }
628 
629   // Schedule the branch target address early.
630   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
631   __ jmp(rcx);
632 }
633 
range_check(MacroAssembler * masm,Register pc_reg,Register temp_reg,address code_start,address code_end,Label & L_ok)634 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
635                         address code_start, address code_end,
636                         Label& L_ok) {
637   Label L_fail;
638   __ lea(temp_reg, ExternalAddress(code_start));
639   __ cmpptr(pc_reg, temp_reg);
640   __ jcc(Assembler::belowEqual, L_fail);
641   __ lea(temp_reg, ExternalAddress(code_end));
642   __ cmpptr(pc_reg, temp_reg);
643   __ jcc(Assembler::below, L_ok);
644   __ bind(L_fail);
645 }
646 
gen_i2c_adapter(MacroAssembler * masm,int total_args_passed,int comp_args_on_stack,const BasicType * sig_bt,const VMRegPair * regs)647 static void gen_i2c_adapter(MacroAssembler *masm,
648                             int total_args_passed,
649                             int comp_args_on_stack,
650                             const BasicType *sig_bt,
651                             const VMRegPair *regs) {
652 
653   // Note: r13 contains the senderSP on entry. We must preserve it since
654   // we may do a i2c -> c2i transition if we lose a race where compiled
655   // code goes non-entrant while we get args ready.
656   // In addition we use r13 to locate all the interpreter args as
657   // we must align the stack to 16 bytes on an i2c entry else we
658   // lose alignment we expect in all compiled code and register
659   // save code can segv when fxsave instructions find improperly
660   // aligned stack pointer.
661 
662   // Adapters can be frameless because they do not require the caller
663   // to perform additional cleanup work, such as correcting the stack pointer.
664   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
665   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
666   // even if a callee has modified the stack pointer.
667   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
668   // routinely repairs its caller's stack pointer (from sender_sp, which is set
669   // up via the senderSP register).
670   // In other words, if *either* the caller or callee is interpreted, we can
671   // get the stack pointer repaired after a call.
672   // This is why c2i and i2c adapters cannot be indefinitely composed.
673   // In particular, if a c2i adapter were to somehow call an i2c adapter,
674   // both caller and callee would be compiled methods, and neither would
675   // clean up the stack pointer changes performed by the two adapters.
676   // If this happens, control eventually transfers back to the compiled
677   // caller, but with an uncorrected stack, causing delayed havoc.
678 
679   // Pick up the return address
680   __ movptr(rax, Address(rsp, 0));
681 
682   if (VerifyAdapterCalls &&
683       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
684     // So, let's test for cascading c2i/i2c adapters right now.
685     //  assert(Interpreter::contains($return_addr) ||
686     //         StubRoutines::contains($return_addr),
687     //         "i2c adapter must return to an interpreter frame");
688     __ block_comment("verify_i2c { ");
689     Label L_ok;
690     if (Interpreter::code() != NULL)
691       range_check(masm, rax, r11,
692                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
693                   L_ok);
694     if (StubRoutines::code1() != NULL)
695       range_check(masm, rax, r11,
696                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
697                   L_ok);
698     if (StubRoutines::code2() != NULL)
699       range_check(masm, rax, r11,
700                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
701                   L_ok);
702     const char* msg = "i2c adapter must return to an interpreter frame";
703     __ block_comment(msg);
704     __ stop(msg);
705     __ bind(L_ok);
706     __ block_comment("} verify_i2ce ");
707   }
708 
709   // Must preserve original SP for loading incoming arguments because
710   // we need to align the outgoing SP for compiled code.
711   __ movptr(r11, rsp);
712 
713   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
714   // in registers, we will occasionally have no stack args.
715   int comp_words_on_stack = 0;
716   if (comp_args_on_stack) {
717     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
718     // registers are below.  By subtracting stack0, we either get a negative
719     // number (all values in registers) or the maximum stack slot accessed.
720 
721     // Convert 4-byte c2 stack slots to words.
722     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
723     // Round up to miminum stack alignment, in wordSize
724     comp_words_on_stack = round_to(comp_words_on_stack, 2);
725     __ subptr(rsp, comp_words_on_stack * wordSize);
726   }
727 
728 
729   // Ensure compiled code always sees stack at proper alignment
730   __ andptr(rsp, -16);
731 
732   // push the return address and misalign the stack that youngest frame always sees
733   // as far as the placement of the call instruction
734   __ push(rax);
735 
736   // Put saved SP in another register
737   const Register saved_sp = rax;
738   __ movptr(saved_sp, r11);
739 
740   // Will jump to the compiled code just as if compiled code was doing it.
741   // Pre-load the register-jump target early, to schedule it better.
742   __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
743 
744   // Now generate the shuffle code.  Pick up all register args and move the
745   // rest through the floating point stack top.
746   for (int i = 0; i < total_args_passed; i++) {
747     if (sig_bt[i] == T_VOID) {
748       // Longs and doubles are passed in native word order, but misaligned
749       // in the 32-bit build.
750       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
751       continue;
752     }
753 
754     // Pick up 0, 1 or 2 words from SP+offset.
755 
756     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
757             "scrambled load targets?");
758     // Load in argument order going down.
759     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
760     // Point to interpreter value (vs. tag)
761     int next_off = ld_off - Interpreter::stackElementSize;
762     //
763     //
764     //
765     VMReg r_1 = regs[i].first();
766     VMReg r_2 = regs[i].second();
767     if (!r_1->is_valid()) {
768       assert(!r_2->is_valid(), "");
769       continue;
770     }
771     if (r_1->is_stack()) {
772       // Convert stack slot to an SP offset (+ wordSize to account for return address )
773       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
774 
775       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
776       // and if we end up going thru a c2i because of a miss a reasonable value of r13
777       // will be generated.
778       if (!r_2->is_valid()) {
779         // sign extend???
780         __ movl(r13, Address(saved_sp, ld_off));
781         __ movptr(Address(rsp, st_off), r13);
782       } else {
783         //
784         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
785         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
786         // So we must adjust where to pick up the data to match the interpreter.
787         //
788         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
789         // are accessed as negative so LSW is at LOW address
790 
791         // ld_off is MSW so get LSW
792         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
793                            next_off : ld_off;
794         __ movq(r13, Address(saved_sp, offset));
795         // st_off is LSW (i.e. reg.first())
796         __ movq(Address(rsp, st_off), r13);
797       }
798     } else if (r_1->is_Register()) {  // Register argument
799       Register r = r_1->as_Register();
800       assert(r != rax, "must be different");
801       if (r_2->is_valid()) {
802         //
803         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
804         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
805         // So we must adjust where to pick up the data to match the interpreter.
806 
807         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
808                            next_off : ld_off;
809 
810         // this can be a misaligned move
811         __ movq(r, Address(saved_sp, offset));
812       } else {
813         // sign extend and use a full word?
814         __ movl(r, Address(saved_sp, ld_off));
815       }
816     } else {
817       if (!r_2->is_valid()) {
818         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
819       } else {
820         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
821       }
822     }
823   }
824 
825   // 6243940 We might end up in handle_wrong_method if
826   // the callee is deoptimized as we race thru here. If that
827   // happens we don't want to take a safepoint because the
828   // caller frame will look interpreted and arguments are now
829   // "compiled" so it is much better to make this transition
830   // invisible to the stack walking code. Unfortunately if
831   // we try and find the callee by normal means a safepoint
832   // is possible. So we stash the desired callee in the thread
833   // and the vm will find there should this case occur.
834 
835   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
836 
837   // put Method* where a c2i would expect should we end up there
838   // only needed becaus eof c2 resolve stubs return Method* as a result in
839   // rax
840   __ mov(rax, rbx);
841   __ jmp(r11);
842 }
843 
844 // ---------------------------------------------------------------
generate_i2c2i_adapters(MacroAssembler * masm,int total_args_passed,int comp_args_on_stack,const BasicType * sig_bt,const VMRegPair * regs,AdapterFingerPrint * fingerprint)845 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
846                                                             int total_args_passed,
847                                                             int comp_args_on_stack,
848                                                             const BasicType *sig_bt,
849                                                             const VMRegPair *regs,
850                                                             AdapterFingerPrint* fingerprint) {
851   address i2c_entry = __ pc();
852 
853   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
854 
855   // -------------------------------------------------------------------------
856   // Generate a C2I adapter.  On entry we know rbx holds the Method* during calls
857   // to the interpreter.  The args start out packed in the compiled layout.  They
858   // need to be unpacked into the interpreter layout.  This will almost always
859   // require some stack space.  We grow the current (compiled) stack, then repack
860   // the args.  We  finally end in a jump to the generic interpreter entry point.
861   // On exit from the interpreter, the interpreter will restore our SP (lest the
862   // compiled code, which relys solely on SP and not RBP, get sick).
863 
864   address c2i_unverified_entry = __ pc();
865   Label skip_fixup;
866   Label ok;
867 
868   Register holder = rax;
869   Register receiver = j_rarg0;
870   Register temp = rbx;
871 
872   {
873     __ load_klass(temp, receiver);
874     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
875     __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset()));
876     __ jcc(Assembler::equal, ok);
877     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
878 
879     __ bind(ok);
880     // Method might have been compiled since the call site was patched to
881     // interpreted if that is the case treat it as a miss so we can get
882     // the call site corrected.
883     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
884     __ jcc(Assembler::equal, skip_fixup);
885     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
886   }
887 
888   address c2i_entry = __ pc();
889 
890   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
891 
892   __ flush();
893   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
894 }
895 
c_calling_convention(const BasicType * sig_bt,VMRegPair * regs,VMRegPair * regs2,int total_args_passed)896 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
897                                          VMRegPair *regs,
898                                          VMRegPair *regs2,
899                                          int total_args_passed) {
900   assert(regs2 == NULL, "not needed on x86");
901 // We return the amount of VMRegImpl stack slots we need to reserve for all
902 // the arguments NOT counting out_preserve_stack_slots.
903 
904 // NOTE: These arrays will have to change when c1 is ported
905 #ifdef _WIN64
906     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
907       c_rarg0, c_rarg1, c_rarg2, c_rarg3
908     };
909     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
910       c_farg0, c_farg1, c_farg2, c_farg3
911     };
912 #else
913     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
914       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
915     };
916     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
917       c_farg0, c_farg1, c_farg2, c_farg3,
918       c_farg4, c_farg5, c_farg6, c_farg7
919     };
920 #endif // _WIN64
921 
922 
923     uint int_args = 0;
924     uint fp_args = 0;
925     uint stk_args = 0; // inc by 2 each time
926 
927     for (int i = 0; i < total_args_passed; i++) {
928       switch (sig_bt[i]) {
929       case T_BOOLEAN:
930       case T_CHAR:
931       case T_BYTE:
932       case T_SHORT:
933       case T_INT:
934         if (int_args < Argument::n_int_register_parameters_c) {
935           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
936 #ifdef _WIN64
937           fp_args++;
938           // Allocate slots for callee to stuff register args the stack.
939           stk_args += 2;
940 #endif
941         } else {
942           regs[i].set1(VMRegImpl::stack2reg(stk_args));
943           stk_args += 2;
944         }
945         break;
946       case T_LONG:
947         assert(sig_bt[i + 1] == T_VOID, "expecting half");
948         // fall through
949       case T_OBJECT:
950       case T_ARRAY:
951       case T_ADDRESS:
952       case T_METADATA:
953         if (int_args < Argument::n_int_register_parameters_c) {
954           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
955 #ifdef _WIN64
956           fp_args++;
957           stk_args += 2;
958 #endif
959         } else {
960           regs[i].set2(VMRegImpl::stack2reg(stk_args));
961           stk_args += 2;
962         }
963         break;
964       case T_FLOAT:
965         if (fp_args < Argument::n_float_register_parameters_c) {
966           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
967 #ifdef _WIN64
968           int_args++;
969           // Allocate slots for callee to stuff register args the stack.
970           stk_args += 2;
971 #endif
972         } else {
973           regs[i].set1(VMRegImpl::stack2reg(stk_args));
974           stk_args += 2;
975         }
976         break;
977       case T_DOUBLE:
978         assert(sig_bt[i + 1] == T_VOID, "expecting half");
979         if (fp_args < Argument::n_float_register_parameters_c) {
980           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
981 #ifdef _WIN64
982           int_args++;
983           // Allocate slots for callee to stuff register args the stack.
984           stk_args += 2;
985 #endif
986         } else {
987           regs[i].set2(VMRegImpl::stack2reg(stk_args));
988           stk_args += 2;
989         }
990         break;
991       case T_VOID: // Halves of longs and doubles
992         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
993         regs[i].set_bad();
994         break;
995       default:
996         ShouldNotReachHere();
997         break;
998       }
999     }
1000 #ifdef _WIN64
1001   // windows abi requires that we always allocate enough stack space
1002   // for 4 64bit registers to be stored down.
1003   if (stk_args < 8) {
1004     stk_args = 8;
1005   }
1006 #endif // _WIN64
1007 
1008   return stk_args;
1009 }
1010 
1011 // On 64 bit we will store integer like items to the stack as
1012 // 64 bits items (sparc abi) even though java would only store
1013 // 32bits for a parameter. On 32bit it will simply be 32 bits
1014 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
move32_64(MacroAssembler * masm,VMRegPair src,VMRegPair dst)1015 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1016   if (src.first()->is_stack()) {
1017     if (dst.first()->is_stack()) {
1018       // stack to stack
1019       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
1020       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1021     } else {
1022       // stack to reg
1023       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1024     }
1025   } else if (dst.first()->is_stack()) {
1026     // reg to stack
1027     // Do we really have to sign extend???
1028     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
1029     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1030   } else {
1031     // Do we really have to sign extend???
1032     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
1033     if (dst.first() != src.first()) {
1034       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1035     }
1036   }
1037 }
1038 
move_ptr(MacroAssembler * masm,VMRegPair src,VMRegPair dst)1039 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1040   if (src.first()->is_stack()) {
1041     if (dst.first()->is_stack()) {
1042       // stack to stack
1043       __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1044       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1045     } else {
1046       // stack to reg
1047       __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1048     }
1049   } else if (dst.first()->is_stack()) {
1050     // reg to stack
1051     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1052   } else {
1053     if (dst.first() != src.first()) {
1054       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1055     }
1056   }
1057 }
1058 
1059 // An oop arg. Must pass a handle not the oop itself
object_move(MacroAssembler * masm,OopMap * map,int oop_handle_offset,int framesize_in_slots,VMRegPair src,VMRegPair dst,bool is_receiver,int * receiver_offset)1060 static void object_move(MacroAssembler* masm,
1061                         OopMap* map,
1062                         int oop_handle_offset,
1063                         int framesize_in_slots,
1064                         VMRegPair src,
1065                         VMRegPair dst,
1066                         bool is_receiver,
1067                         int* receiver_offset) {
1068 
1069   // must pass a handle. First figure out the location we use as a handle
1070 
1071   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
1072 
1073   // See if oop is NULL if it is we need no handle
1074 
1075   if (src.first()->is_stack()) {
1076 
1077     // Oop is already on the stack as an argument
1078     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1079     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1080     if (is_receiver) {
1081       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1082     }
1083 
1084     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1085     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1086     // conditionally move a NULL
1087     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
1088   } else {
1089 
1090     // Oop is in an a register we must store it to the space we reserve
1091     // on the stack for oop_handles and pass a handle if oop is non-NULL
1092 
1093     const Register rOop = src.first()->as_Register();
1094     int oop_slot;
1095     if (rOop == j_rarg0)
1096       oop_slot = 0;
1097     else if (rOop == j_rarg1)
1098       oop_slot = 1;
1099     else if (rOop == j_rarg2)
1100       oop_slot = 2;
1101     else if (rOop == j_rarg3)
1102       oop_slot = 3;
1103     else if (rOop == j_rarg4)
1104       oop_slot = 4;
1105     else {
1106       assert(rOop == j_rarg5, "wrong register");
1107       oop_slot = 5;
1108     }
1109 
1110     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
1111     int offset = oop_slot*VMRegImpl::stack_slot_size;
1112 
1113     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1114     // Store oop in handle area, may be NULL
1115     __ movptr(Address(rsp, offset), rOop);
1116     if (is_receiver) {
1117       *receiver_offset = offset;
1118     }
1119 
1120     __ cmpptr(rOop, (int32_t)NULL_WORD);
1121     __ lea(rHandle, Address(rsp, offset));
1122     // conditionally move a NULL from the handle area where it was just stored
1123     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
1124   }
1125 
1126   // If arg is on the stack then place it otherwise it is already in correct reg.
1127   if (dst.first()->is_stack()) {
1128     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1129   }
1130 }
1131 
1132 // A float arg may have to do float reg int reg conversion
float_move(MacroAssembler * masm,VMRegPair src,VMRegPair dst)1133 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1134   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1135 
1136   // The calling conventions assures us that each VMregpair is either
1137   // all really one physical register or adjacent stack slots.
1138   // This greatly simplifies the cases here compared to sparc.
1139 
1140   if (src.first()->is_stack()) {
1141     if (dst.first()->is_stack()) {
1142       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1143       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1144     } else {
1145       // stack to reg
1146       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1147       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
1148     }
1149   } else if (dst.first()->is_stack()) {
1150     // reg to stack
1151     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1152     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1153   } else {
1154     // reg to reg
1155     // In theory these overlap but the ordering is such that this is likely a nop
1156     if ( src.first() != dst.first()) {
1157       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
1158     }
1159   }
1160 }
1161 
1162 // A long move
long_move(MacroAssembler * masm,VMRegPair src,VMRegPair dst)1163 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1164 
1165   // The calling conventions assures us that each VMregpair is either
1166   // all really one physical register or adjacent stack slots.
1167   // This greatly simplifies the cases here compared to sparc.
1168 
1169   if (src.is_single_phys_reg() ) {
1170     if (dst.is_single_phys_reg()) {
1171       if (dst.first() != src.first()) {
1172         __ mov(dst.first()->as_Register(), src.first()->as_Register());
1173       }
1174     } else {
1175       assert(dst.is_single_reg(), "not a stack pair");
1176       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1177     }
1178   } else if (dst.is_single_phys_reg()) {
1179     assert(src.is_single_reg(),  "not a stack pair");
1180     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
1181   } else {
1182     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1183     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1184     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1185   }
1186 }
1187 
1188 // A double move
double_move(MacroAssembler * masm,VMRegPair src,VMRegPair dst)1189 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1190 
1191   // The calling conventions assures us that each VMregpair is either
1192   // all really one physical register or adjacent stack slots.
1193   // This greatly simplifies the cases here compared to sparc.
1194 
1195   if (src.is_single_phys_reg() ) {
1196     if (dst.is_single_phys_reg()) {
1197       // In theory these overlap but the ordering is such that this is likely a nop
1198       if ( src.first() != dst.first()) {
1199         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
1200       }
1201     } else {
1202       assert(dst.is_single_reg(), "not a stack pair");
1203       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1204     }
1205   } else if (dst.is_single_phys_reg()) {
1206     assert(src.is_single_reg(),  "not a stack pair");
1207     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
1208   } else {
1209     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1210     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1211     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1212   }
1213 }
1214 
1215 
save_native_result(MacroAssembler * masm,BasicType ret_type,int frame_slots)1216 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1217   // We always ignore the frame_slots arg and just use the space just below frame pointer
1218   // which by this time is free to use
1219   switch (ret_type) {
1220   case T_FLOAT:
1221     __ movflt(Address(rbp, -wordSize), xmm0);
1222     break;
1223   case T_DOUBLE:
1224     __ movdbl(Address(rbp, -wordSize), xmm0);
1225     break;
1226   case T_VOID:  break;
1227   default: {
1228     __ movptr(Address(rbp, -wordSize), rax);
1229     }
1230   }
1231 }
1232 
restore_native_result(MacroAssembler * masm,BasicType ret_type,int frame_slots)1233 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1234   // We always ignore the frame_slots arg and just use the space just below frame pointer
1235   // which by this time is free to use
1236   switch (ret_type) {
1237   case T_FLOAT:
1238     __ movflt(xmm0, Address(rbp, -wordSize));
1239     break;
1240   case T_DOUBLE:
1241     __ movdbl(xmm0, Address(rbp, -wordSize));
1242     break;
1243   case T_VOID:  break;
1244   default: {
1245     __ movptr(rax, Address(rbp, -wordSize));
1246     }
1247   }
1248 }
1249 
save_args(MacroAssembler * masm,int arg_count,int first_arg,VMRegPair * args)1250 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1251     for ( int i = first_arg ; i < arg_count ; i++ ) {
1252       if (args[i].first()->is_Register()) {
1253         __ push(args[i].first()->as_Register());
1254       } else if (args[i].first()->is_XMMRegister()) {
1255         __ subptr(rsp, 2*wordSize);
1256         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1257       }
1258     }
1259 }
1260 
restore_args(MacroAssembler * masm,int arg_count,int first_arg,VMRegPair * args)1261 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1262     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1263       if (args[i].first()->is_Register()) {
1264         __ pop(args[i].first()->as_Register());
1265       } else if (args[i].first()->is_XMMRegister()) {
1266         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1267         __ addptr(rsp, 2*wordSize);
1268       }
1269     }
1270 }
1271 
1272 
save_or_restore_arguments(MacroAssembler * masm,const int stack_slots,const int total_in_args,const int arg_save_area,OopMap * map,VMRegPair * in_regs,BasicType * in_sig_bt)1273 static void save_or_restore_arguments(MacroAssembler* masm,
1274                                       const int stack_slots,
1275                                       const int total_in_args,
1276                                       const int arg_save_area,
1277                                       OopMap* map,
1278                                       VMRegPair* in_regs,
1279                                       BasicType* in_sig_bt) {
1280   // if map is non-NULL then the code should store the values,
1281   // otherwise it should load them.
1282   int slot = arg_save_area;
1283   // Save down double word first
1284   for ( int i = 0; i < total_in_args; i++) {
1285     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1286       int offset = slot * VMRegImpl::stack_slot_size;
1287       slot += VMRegImpl::slots_per_word;
1288       assert(slot <= stack_slots, "overflow");
1289       if (map != NULL) {
1290         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1291       } else {
1292         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1293       }
1294     }
1295     if (in_regs[i].first()->is_Register() &&
1296         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
1297       int offset = slot * VMRegImpl::stack_slot_size;
1298       if (map != NULL) {
1299         __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
1300         if (in_sig_bt[i] == T_ARRAY) {
1301           map->set_oop(VMRegImpl::stack2reg(slot));;
1302         }
1303       } else {
1304         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
1305       }
1306       slot += VMRegImpl::slots_per_word;
1307     }
1308   }
1309   // Save or restore single word registers
1310   for ( int i = 0; i < total_in_args; i++) {
1311     if (in_regs[i].first()->is_Register()) {
1312       int offset = slot * VMRegImpl::stack_slot_size;
1313       slot++;
1314       assert(slot <= stack_slots, "overflow");
1315 
1316       // Value is in an input register pass we must flush it to the stack
1317       const Register reg = in_regs[i].first()->as_Register();
1318       switch (in_sig_bt[i]) {
1319         case T_BOOLEAN:
1320         case T_CHAR:
1321         case T_BYTE:
1322         case T_SHORT:
1323         case T_INT:
1324           if (map != NULL) {
1325             __ movl(Address(rsp, offset), reg);
1326           } else {
1327             __ movl(reg, Address(rsp, offset));
1328           }
1329           break;
1330         case T_ARRAY:
1331         case T_LONG:
1332           // handled above
1333           break;
1334         case T_OBJECT:
1335         default: ShouldNotReachHere();
1336       }
1337     } else if (in_regs[i].first()->is_XMMRegister()) {
1338       if (in_sig_bt[i] == T_FLOAT) {
1339         int offset = slot * VMRegImpl::stack_slot_size;
1340         slot++;
1341         assert(slot <= stack_slots, "overflow");
1342         if (map != NULL) {
1343           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1344         } else {
1345           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1346         }
1347       }
1348     } else if (in_regs[i].first()->is_stack()) {
1349       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1350         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1351         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1352       }
1353     }
1354   }
1355 }
1356 
1357 
1358 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
1359 // keeps a new JNI critical region from starting until a GC has been
1360 // forced.  Save down any oops in registers and describe them in an
1361 // OopMap.
check_needs_gc_for_critical_native(MacroAssembler * masm,int stack_slots,int total_c_args,int total_in_args,int arg_save_area,OopMapSet * oop_maps,VMRegPair * in_regs,BasicType * in_sig_bt)1362 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1363                                                int stack_slots,
1364                                                int total_c_args,
1365                                                int total_in_args,
1366                                                int arg_save_area,
1367                                                OopMapSet* oop_maps,
1368                                                VMRegPair* in_regs,
1369                                                BasicType* in_sig_bt) {
1370   __ block_comment("check GC_locker::needs_gc");
1371   Label cont;
1372   __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
1373   __ jcc(Assembler::equal, cont);
1374 
1375   // Save down any incoming oops and call into the runtime to halt for a GC
1376 
1377   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1378   save_or_restore_arguments(masm, stack_slots, total_in_args,
1379                             arg_save_area, map, in_regs, in_sig_bt);
1380 
1381   address the_pc = __ pc();
1382   oop_maps->add_gc_map( __ offset(), map);
1383   __ set_last_Java_frame(rsp, noreg, the_pc);
1384 
1385   __ block_comment("block_for_jni_critical");
1386   __ movptr(c_rarg0, r15_thread);
1387   __ mov(r12, rsp); // remember sp
1388   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1389   __ andptr(rsp, -16); // align stack as required by ABI
1390   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1391   __ mov(rsp, r12); // restore sp
1392   __ reinit_heapbase();
1393 
1394   __ reset_last_Java_frame(false);
1395 
1396   save_or_restore_arguments(masm, stack_slots, total_in_args,
1397                             arg_save_area, NULL, in_regs, in_sig_bt);
1398 
1399   __ bind(cont);
1400 #ifdef ASSERT
1401   if (StressCriticalJNINatives) {
1402     // Stress register saving
1403     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1404     save_or_restore_arguments(masm, stack_slots, total_in_args,
1405                               arg_save_area, map, in_regs, in_sig_bt);
1406     // Destroy argument registers
1407     for (int i = 0; i < total_in_args - 1; i++) {
1408       if (in_regs[i].first()->is_Register()) {
1409         const Register reg = in_regs[i].first()->as_Register();
1410         __ xorptr(reg, reg);
1411       } else if (in_regs[i].first()->is_XMMRegister()) {
1412         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1413       } else if (in_regs[i].first()->is_FloatRegister()) {
1414         ShouldNotReachHere();
1415       } else if (in_regs[i].first()->is_stack()) {
1416         // Nothing to do
1417       } else {
1418         ShouldNotReachHere();
1419       }
1420       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1421         i++;
1422       }
1423     }
1424 
1425     save_or_restore_arguments(masm, stack_slots, total_in_args,
1426                               arg_save_area, NULL, in_regs, in_sig_bt);
1427   }
1428 #endif
1429 }
1430 
1431 // Unpack an array argument into a pointer to the body and the length
1432 // if the array is non-null, otherwise pass 0 for both.
unpack_array_argument(MacroAssembler * masm,VMRegPair reg,BasicType in_elem_type,VMRegPair body_arg,VMRegPair length_arg)1433 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1434   Register tmp_reg = rax;
1435   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1436          "possible collision");
1437   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1438          "possible collision");
1439 
1440   __ block_comment("unpack_array_argument {");
1441 
1442   // Pass the length, ptr pair
1443   Label is_null, done;
1444   VMRegPair tmp;
1445   tmp.set_ptr(tmp_reg->as_VMReg());
1446   if (reg.first()->is_stack()) {
1447     // Load the arg up from the stack
1448     move_ptr(masm, reg, tmp);
1449     reg = tmp;
1450   }
1451   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1452   __ jccb(Assembler::equal, is_null);
1453   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1454   move_ptr(masm, tmp, body_arg);
1455   // load the length relative to the body.
1456   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1457                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1458   move32_64(masm, tmp, length_arg);
1459   __ jmpb(done);
1460   __ bind(is_null);
1461   // Pass zeros
1462   __ xorptr(tmp_reg, tmp_reg);
1463   move_ptr(masm, tmp, body_arg);
1464   move32_64(masm, tmp, length_arg);
1465   __ bind(done);
1466 
1467   __ block_comment("} unpack_array_argument");
1468 }
1469 
1470 
1471 // Different signatures may require very different orders for the move
1472 // to avoid clobbering other arguments.  There's no simple way to
1473 // order them safely.  Compute a safe order for issuing stores and
1474 // break any cycles in those stores.  This code is fairly general but
1475 // it's not necessary on the other platforms so we keep it in the
1476 // platform dependent code instead of moving it into a shared file.
1477 // (See bugs 7013347 & 7145024.)
1478 // Note that this code is specific to LP64.
1479 class ComputeMoveOrder: public StackObj {
1480   class MoveOperation: public ResourceObj {
1481     friend class ComputeMoveOrder;
1482    private:
1483     VMRegPair        _src;
1484     VMRegPair        _dst;
1485     int              _src_index;
1486     int              _dst_index;
1487     bool             _processed;
1488     MoveOperation*  _next;
1489     MoveOperation*  _prev;
1490 
get_id(VMRegPair r)1491     static int get_id(VMRegPair r) {
1492       return r.first()->value();
1493     }
1494 
1495    public:
MoveOperation(int src_index,VMRegPair src,int dst_index,VMRegPair dst)1496     MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
1497       _src(src)
1498     , _src_index(src_index)
1499     , _dst(dst)
1500     , _dst_index(dst_index)
1501     , _next(NULL)
1502     , _prev(NULL)
1503     , _processed(false) {
1504     }
1505 
src() const1506     VMRegPair src() const              { return _src; }
src_id() const1507     int src_id() const                 { return get_id(src()); }
src_index() const1508     int src_index() const              { return _src_index; }
dst() const1509     VMRegPair dst() const              { return _dst; }
set_dst(int i,VMRegPair dst)1510     void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
dst_index() const1511     int dst_index() const              { return _dst_index; }
dst_id() const1512     int dst_id() const                 { return get_id(dst()); }
next() const1513     MoveOperation* next() const       { return _next; }
prev() const1514     MoveOperation* prev() const       { return _prev; }
set_processed()1515     void set_processed()               { _processed = true; }
is_processed() const1516     bool is_processed() const          { return _processed; }
1517 
1518     // insert
break_cycle(VMRegPair temp_register)1519     void break_cycle(VMRegPair temp_register) {
1520       // create a new store following the last store
1521       // to move from the temp_register to the original
1522       MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
1523 
1524       // break the cycle of links and insert new_store at the end
1525       // break the reverse link.
1526       MoveOperation* p = prev();
1527       assert(p->next() == this, "must be");
1528       _prev = NULL;
1529       p->_next = new_store;
1530       new_store->_prev = p;
1531 
1532       // change the original store to save it's value in the temp.
1533       set_dst(-1, temp_register);
1534     }
1535 
link(GrowableArray<MoveOperation * > & killer)1536     void link(GrowableArray<MoveOperation*>& killer) {
1537       // link this store in front the store that it depends on
1538       MoveOperation* n = killer.at_grow(src_id(), NULL);
1539       if (n != NULL) {
1540         assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
1541         _next = n;
1542         n->_prev = this;
1543       }
1544     }
1545   };
1546 
1547  private:
1548   GrowableArray<MoveOperation*> edges;
1549 
1550  public:
ComputeMoveOrder(int total_in_args,VMRegPair * in_regs,int total_c_args,VMRegPair * out_regs,BasicType * in_sig_bt,GrowableArray<int> & arg_order,VMRegPair tmp_vmreg)1551   ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
1552                     BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
1553     // Move operations where the dest is the stack can all be
1554     // scheduled first since they can't interfere with the other moves.
1555     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1556       if (in_sig_bt[i] == T_ARRAY) {
1557         c_arg--;
1558         if (out_regs[c_arg].first()->is_stack() &&
1559             out_regs[c_arg + 1].first()->is_stack()) {
1560           arg_order.push(i);
1561           arg_order.push(c_arg);
1562         } else {
1563           if (out_regs[c_arg].first()->is_stack() ||
1564               in_regs[i].first() == out_regs[c_arg].first()) {
1565             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
1566           } else {
1567             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1568           }
1569         }
1570       } else if (in_sig_bt[i] == T_VOID) {
1571         arg_order.push(i);
1572         arg_order.push(c_arg);
1573       } else {
1574         if (out_regs[c_arg].first()->is_stack() ||
1575             in_regs[i].first() == out_regs[c_arg].first()) {
1576           arg_order.push(i);
1577           arg_order.push(c_arg);
1578         } else {
1579           add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1580         }
1581       }
1582     }
1583     // Break any cycles in the register moves and emit the in the
1584     // proper order.
1585     GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
1586     for (int i = 0; i < stores->length(); i++) {
1587       arg_order.push(stores->at(i)->src_index());
1588       arg_order.push(stores->at(i)->dst_index());
1589     }
1590  }
1591 
1592   // Collected all the move operations
add_edge(int src_index,VMRegPair src,int dst_index,VMRegPair dst)1593   void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
1594     if (src.first() == dst.first()) return;
1595     edges.append(new MoveOperation(src_index, src, dst_index, dst));
1596   }
1597 
1598   // Walk the edges breaking cycles between moves.  The result list
1599   // can be walked in order to produce the proper set of loads
get_store_order(VMRegPair temp_register)1600   GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
1601     // Record which moves kill which values
1602     GrowableArray<MoveOperation*> killer;
1603     for (int i = 0; i < edges.length(); i++) {
1604       MoveOperation* s = edges.at(i);
1605       assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
1606       killer.at_put_grow(s->dst_id(), s, NULL);
1607     }
1608     assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
1609            "make sure temp isn't in the registers that are killed");
1610 
1611     // create links between loads and stores
1612     for (int i = 0; i < edges.length(); i++) {
1613       edges.at(i)->link(killer);
1614     }
1615 
1616     // at this point, all the move operations are chained together
1617     // in a doubly linked list.  Processing it backwards finds
1618     // the beginning of the chain, forwards finds the end.  If there's
1619     // a cycle it can be broken at any point,  so pick an edge and walk
1620     // backward until the list ends or we end where we started.
1621     GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
1622     for (int e = 0; e < edges.length(); e++) {
1623       MoveOperation* s = edges.at(e);
1624       if (!s->is_processed()) {
1625         MoveOperation* start = s;
1626         // search for the beginning of the chain or cycle
1627         while (start->prev() != NULL && start->prev() != s) {
1628           start = start->prev();
1629         }
1630         if (start->prev() == s) {
1631           start->break_cycle(temp_register);
1632         }
1633         // walk the chain forward inserting to store list
1634         while (start != NULL) {
1635           stores->append(start);
1636           start->set_processed();
1637           start = start->next();
1638         }
1639       }
1640     }
1641     return stores;
1642   }
1643 };
1644 
verify_oop_args(MacroAssembler * masm,methodHandle method,const BasicType * sig_bt,const VMRegPair * regs)1645 static void verify_oop_args(MacroAssembler* masm,
1646                             methodHandle method,
1647                             const BasicType* sig_bt,
1648                             const VMRegPair* regs) {
1649   Register temp_reg = rbx;  // not part of any compiled calling seq
1650   if (VerifyOops) {
1651     for (int i = 0; i < method->size_of_parameters(); i++) {
1652       if (sig_bt[i] == T_OBJECT ||
1653           sig_bt[i] == T_ARRAY) {
1654         VMReg r = regs[i].first();
1655         assert(r->is_valid(), "bad oop arg");
1656         if (r->is_stack()) {
1657           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1658           __ verify_oop(temp_reg);
1659         } else {
1660           __ verify_oop(r->as_Register());
1661         }
1662       }
1663     }
1664   }
1665 }
1666 
gen_special_dispatch(MacroAssembler * masm,methodHandle method,const BasicType * sig_bt,const VMRegPair * regs)1667 static void gen_special_dispatch(MacroAssembler* masm,
1668                                  methodHandle method,
1669                                  const BasicType* sig_bt,
1670                                  const VMRegPair* regs) {
1671   verify_oop_args(masm, method, sig_bt, regs);
1672   vmIntrinsics::ID iid = method->intrinsic_id();
1673 
1674   // Now write the args into the outgoing interpreter space
1675   bool     has_receiver   = false;
1676   Register receiver_reg   = noreg;
1677   int      member_arg_pos = -1;
1678   Register member_reg     = noreg;
1679   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1680   if (ref_kind != 0) {
1681     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1682     member_reg = rbx;  // known to be free at this point
1683     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1684   } else if (iid == vmIntrinsics::_invokeBasic) {
1685     has_receiver = true;
1686   } else {
1687     fatal(err_msg_res("unexpected intrinsic id %d", iid));
1688   }
1689 
1690   if (member_reg != noreg) {
1691     // Load the member_arg into register, if necessary.
1692     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1693     VMReg r = regs[member_arg_pos].first();
1694     if (r->is_stack()) {
1695       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1696     } else {
1697       // no data motion is needed
1698       member_reg = r->as_Register();
1699     }
1700   }
1701 
1702   if (has_receiver) {
1703     // Make sure the receiver is loaded into a register.
1704     assert(method->size_of_parameters() > 0, "oob");
1705     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1706     VMReg r = regs[0].first();
1707     assert(r->is_valid(), "bad receiver arg");
1708     if (r->is_stack()) {
1709       // Porting note:  This assumes that compiled calling conventions always
1710       // pass the receiver oop in a register.  If this is not true on some
1711       // platform, pick a temp and load the receiver from stack.
1712       fatal("receiver always in a register");
1713       receiver_reg = j_rarg0;  // known to be free at this point
1714       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1715     } else {
1716       // no data motion is needed
1717       receiver_reg = r->as_Register();
1718     }
1719   }
1720 
1721   // Figure out which address we are really jumping to:
1722   MethodHandles::generate_method_handle_dispatch(masm, iid,
1723                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1724 }
1725 
1726 // ---------------------------------------------------------------------------
1727 // Generate a native wrapper for a given method.  The method takes arguments
1728 // in the Java compiled code convention, marshals them to the native
1729 // convention (handlizes oops, etc), transitions to native, makes the call,
1730 // returns to java state (possibly blocking), unhandlizes any result and
1731 // returns.
1732 //
1733 // Critical native functions are a shorthand for the use of
1734 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1735 // functions.  The wrapper is expected to unpack the arguments before
1736 // passing them to the callee and perform checks before and after the
1737 // native call to ensure that they GC_locker
1738 // lock_critical/unlock_critical semantics are followed.  Some other
1739 // parts of JNI setup are skipped like the tear down of the JNI handle
1740 // block and the check for pending exceptions it's impossible for them
1741 // to be thrown.
1742 //
1743 // They are roughly structured like this:
1744 //    if (GC_locker::needs_gc())
1745 //      SharedRuntime::block_for_jni_critical();
1746 //    tranistion to thread_in_native
1747 //    unpack arrray arguments and call native entry point
1748 //    check for safepoint in progress
1749 //    check if any thread suspend flags are set
1750 //      call into JVM and possible unlock the JNI critical
1751 //      if a GC was suppressed while in the critical native.
1752 //    transition back to thread_in_Java
1753 //    return to caller
1754 //
generate_native_wrapper(MacroAssembler * masm,methodHandle method,int compile_id,BasicType * in_sig_bt,VMRegPair * in_regs,BasicType ret_type)1755 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1756                                                 methodHandle method,
1757                                                 int compile_id,
1758                                                 BasicType* in_sig_bt,
1759                                                 VMRegPair* in_regs,
1760                                                 BasicType ret_type) {
1761   if (method->is_method_handle_intrinsic()) {
1762     vmIntrinsics::ID iid = method->intrinsic_id();
1763     intptr_t start = (intptr_t)__ pc();
1764     int vep_offset = ((intptr_t)__ pc()) - start;
1765     gen_special_dispatch(masm,
1766                          method,
1767                          in_sig_bt,
1768                          in_regs);
1769     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1770     __ flush();
1771     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1772     return nmethod::new_native_nmethod(method,
1773                                        compile_id,
1774                                        masm->code(),
1775                                        vep_offset,
1776                                        frame_complete,
1777                                        stack_slots / VMRegImpl::slots_per_word,
1778                                        in_ByteSize(-1),
1779                                        in_ByteSize(-1),
1780                                        (OopMapSet*)NULL);
1781   }
1782   bool is_critical_native = true;
1783   address native_func = method->critical_native_function();
1784   if (native_func == NULL) {
1785     native_func = method->native_function();
1786     is_critical_native = false;
1787   }
1788   assert(native_func != NULL, "must have function");
1789 
1790   // An OopMap for lock (and class if static)
1791   OopMapSet *oop_maps = new OopMapSet();
1792   intptr_t start = (intptr_t)__ pc();
1793 
1794   // We have received a description of where all the java arg are located
1795   // on entry to the wrapper. We need to convert these args to where
1796   // the jni function will expect them. To figure out where they go
1797   // we convert the java signature to a C signature by inserting
1798   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1799 
1800   const int total_in_args = method->size_of_parameters();
1801   int total_c_args = total_in_args;
1802   if (!is_critical_native) {
1803     total_c_args += 1;
1804     if (method->is_static()) {
1805       total_c_args++;
1806     }
1807   } else {
1808     for (int i = 0; i < total_in_args; i++) {
1809       if (in_sig_bt[i] == T_ARRAY) {
1810         total_c_args++;
1811       }
1812     }
1813   }
1814 
1815   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1816   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1817   BasicType* in_elem_bt = NULL;
1818 
1819   int argc = 0;
1820   if (!is_critical_native) {
1821     out_sig_bt[argc++] = T_ADDRESS;
1822     if (method->is_static()) {
1823       out_sig_bt[argc++] = T_OBJECT;
1824     }
1825 
1826     for (int i = 0; i < total_in_args ; i++ ) {
1827       out_sig_bt[argc++] = in_sig_bt[i];
1828     }
1829   } else {
1830     Thread* THREAD = Thread::current();
1831     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1832     SignatureStream ss(method->signature());
1833     for (int i = 0; i < total_in_args ; i++ ) {
1834       if (in_sig_bt[i] == T_ARRAY) {
1835         // Arrays are passed as int, elem* pair
1836         out_sig_bt[argc++] = T_INT;
1837         out_sig_bt[argc++] = T_ADDRESS;
1838         Symbol* atype = ss.as_symbol(CHECK_NULL);
1839         const char* at = atype->as_C_string();
1840         if (strlen(at) == 2) {
1841           assert(at[0] == '[', "must be");
1842           switch (at[1]) {
1843             case 'B': in_elem_bt[i]  = T_BYTE; break;
1844             case 'C': in_elem_bt[i]  = T_CHAR; break;
1845             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1846             case 'F': in_elem_bt[i]  = T_FLOAT; break;
1847             case 'I': in_elem_bt[i]  = T_INT; break;
1848             case 'J': in_elem_bt[i]  = T_LONG; break;
1849             case 'S': in_elem_bt[i]  = T_SHORT; break;
1850             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1851             default: ShouldNotReachHere();
1852           }
1853         }
1854       } else {
1855         out_sig_bt[argc++] = in_sig_bt[i];
1856         in_elem_bt[i] = T_VOID;
1857       }
1858       if (in_sig_bt[i] != T_VOID) {
1859         assert(in_sig_bt[i] == ss.type(), "must match");
1860         ss.next();
1861       }
1862     }
1863   }
1864 
1865   // Now figure out where the args must be stored and how much stack space
1866   // they require.
1867   int out_arg_slots;
1868   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
1869 
1870   // Compute framesize for the wrapper.  We need to handlize all oops in
1871   // incoming registers
1872 
1873   // Calculate the total number of stack slots we will need.
1874 
1875   // First count the abi requirement plus all of the outgoing args
1876   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1877 
1878   // Now the space for the inbound oop handle area
1879   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
1880   if (is_critical_native) {
1881     // Critical natives may have to call out so they need a save area
1882     // for register arguments.
1883     int double_slots = 0;
1884     int single_slots = 0;
1885     for ( int i = 0; i < total_in_args; i++) {
1886       if (in_regs[i].first()->is_Register()) {
1887         const Register reg = in_regs[i].first()->as_Register();
1888         switch (in_sig_bt[i]) {
1889           case T_BOOLEAN:
1890           case T_BYTE:
1891           case T_SHORT:
1892           case T_CHAR:
1893           case T_INT:  single_slots++; break;
1894           case T_ARRAY:  // specific to LP64 (7145024)
1895           case T_LONG: double_slots++; break;
1896           default:  ShouldNotReachHere();
1897         }
1898       } else if (in_regs[i].first()->is_XMMRegister()) {
1899         switch (in_sig_bt[i]) {
1900           case T_FLOAT:  single_slots++; break;
1901           case T_DOUBLE: double_slots++; break;
1902           default:  ShouldNotReachHere();
1903         }
1904       } else if (in_regs[i].first()->is_FloatRegister()) {
1905         ShouldNotReachHere();
1906       }
1907     }
1908     total_save_slots = double_slots * 2 + single_slots;
1909     // align the save area
1910     if (double_slots != 0) {
1911       stack_slots = round_to(stack_slots, 2);
1912     }
1913   }
1914 
1915   int oop_handle_offset = stack_slots;
1916   stack_slots += total_save_slots;
1917 
1918   // Now any space we need for handlizing a klass if static method
1919 
1920   int klass_slot_offset = 0;
1921   int klass_offset = -1;
1922   int lock_slot_offset = 0;
1923   bool is_static = false;
1924 
1925   if (method->is_static()) {
1926     klass_slot_offset = stack_slots;
1927     stack_slots += VMRegImpl::slots_per_word;
1928     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1929     is_static = true;
1930   }
1931 
1932   // Plus a lock if needed
1933 
1934   if (method->is_synchronized()) {
1935     lock_slot_offset = stack_slots;
1936     stack_slots += VMRegImpl::slots_per_word;
1937   }
1938 
1939   // Now a place (+2) to save return values or temp during shuffling
1940   // + 4 for return address (which we own) and saved rbp
1941   stack_slots += 6;
1942 
1943   // Ok The space we have allocated will look like:
1944   //
1945   //
1946   // FP-> |                     |
1947   //      |---------------------|
1948   //      | 2 slots for moves   |
1949   //      |---------------------|
1950   //      | lock box (if sync)  |
1951   //      |---------------------| <- lock_slot_offset
1952   //      | klass (if static)   |
1953   //      |---------------------| <- klass_slot_offset
1954   //      | oopHandle area      |
1955   //      |---------------------| <- oop_handle_offset (6 java arg registers)
1956   //      | outbound memory     |
1957   //      | based arguments     |
1958   //      |                     |
1959   //      |---------------------|
1960   //      |                     |
1961   // SP-> | out_preserved_slots |
1962   //
1963   //
1964 
1965 
1966   // Now compute actual number of stack words we need rounding to make
1967   // stack properly aligned.
1968   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1969 
1970   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1971 
1972   // First thing make an ic check to see if we should even be here
1973 
1974   // We are free to use all registers as temps without saving them and
1975   // restoring them except rbp. rbp is the only callee save register
1976   // as far as the interpreter and the compiler(s) are concerned.
1977 
1978 
1979   const Register ic_reg = rax;
1980   const Register receiver = j_rarg0;
1981 
1982   Label hit;
1983   Label exception_pending;
1984 
1985   assert_different_registers(ic_reg, receiver, rscratch1);
1986   __ verify_oop(receiver);
1987   __ load_klass(rscratch1, receiver);
1988   __ cmpq(ic_reg, rscratch1);
1989   __ jcc(Assembler::equal, hit);
1990 
1991   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1992 
1993   // Verified entry point must be aligned
1994   __ align(8);
1995 
1996   __ bind(hit);
1997 
1998   int vep_offset = ((intptr_t)__ pc()) - start;
1999 
2000   // The instruction at the verified entry point must be 5 bytes or longer
2001   // because it can be patched on the fly by make_non_entrant. The stack bang
2002   // instruction fits that requirement.
2003 
2004   // Generate stack overflow check
2005 
2006   if (UseStackBanging) {
2007     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2008   } else {
2009     // need a 5 byte instruction to allow MT safe patching to non-entrant
2010     __ fat_nop();
2011   }
2012 
2013   // Generate a new frame for the wrapper.
2014   __ enter();
2015   // -2 because return address is already present and so is saved rbp
2016   __ subptr(rsp, stack_size - 2*wordSize);
2017 
2018   // Frame is now completed as far as size and linkage.
2019   int frame_complete = ((intptr_t)__ pc()) - start;
2020 
2021     if (UseRTMLocking) {
2022       // Abort RTM transaction before calling JNI
2023       // because critical section will be large and will be
2024       // aborted anyway. Also nmethod could be deoptimized.
2025       __ xabort(0);
2026     }
2027 
2028 #ifdef ASSERT
2029     {
2030       Label L;
2031       __ mov(rax, rsp);
2032       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
2033       __ cmpptr(rax, rsp);
2034       __ jcc(Assembler::equal, L);
2035       __ stop("improperly aligned stack");
2036       __ bind(L);
2037     }
2038 #endif /* ASSERT */
2039 
2040 
2041   // We use r14 as the oop handle for the receiver/klass
2042   // It is callee save so it survives the call to native
2043 
2044   const Register oop_handle_reg = r14;
2045 
2046   if (is_critical_native) {
2047     check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
2048                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
2049   }
2050 
2051   //
2052   // We immediately shuffle the arguments so that any vm call we have to
2053   // make from here on out (sync slow path, jvmti, etc.) we will have
2054   // captured the oops from our caller and have a valid oopMap for
2055   // them.
2056 
2057   // -----------------
2058   // The Grand Shuffle
2059 
2060   // The Java calling convention is either equal (linux) or denser (win64) than the
2061   // c calling convention. However the because of the jni_env argument the c calling
2062   // convention always has at least one more (and two for static) arguments than Java.
2063   // Therefore if we move the args from java -> c backwards then we will never have
2064   // a register->register conflict and we don't have to build a dependency graph
2065   // and figure out how to break any cycles.
2066   //
2067 
2068   // Record esp-based slot for receiver on stack for non-static methods
2069   int receiver_offset = -1;
2070 
2071   // This is a trick. We double the stack slots so we can claim
2072   // the oops in the caller's frame. Since we are sure to have
2073   // more args than the caller doubling is enough to make
2074   // sure we can capture all the incoming oop args from the
2075   // caller.
2076   //
2077   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2078 
2079   // Mark location of rbp (someday)
2080   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
2081 
2082   // Use eax, ebx as temporaries during any memory-memory moves we have to do
2083   // All inbound args are referenced based on rbp and all outbound args via rsp.
2084 
2085 
2086 #ifdef ASSERT
2087   bool reg_destroyed[RegisterImpl::number_of_registers];
2088   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
2089   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2090     reg_destroyed[r] = false;
2091   }
2092   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
2093     freg_destroyed[f] = false;
2094   }
2095 
2096 #endif /* ASSERT */
2097 
2098   // This may iterate in two different directions depending on the
2099   // kind of native it is.  The reason is that for regular JNI natives
2100   // the incoming and outgoing registers are offset upwards and for
2101   // critical natives they are offset down.
2102   GrowableArray<int> arg_order(2 * total_in_args);
2103   VMRegPair tmp_vmreg;
2104   tmp_vmreg.set2(rbx->as_VMReg());
2105 
2106   if (!is_critical_native) {
2107     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
2108       arg_order.push(i);
2109       arg_order.push(c_arg);
2110     }
2111   } else {
2112     // Compute a valid move order, using tmp_vmreg to break any cycles
2113     ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
2114   }
2115 
2116   int temploc = -1;
2117   for (int ai = 0; ai < arg_order.length(); ai += 2) {
2118     int i = arg_order.at(ai);
2119     int c_arg = arg_order.at(ai + 1);
2120     __ block_comment(err_msg("move %d -> %d", i, c_arg));
2121     if (c_arg == -1) {
2122       assert(is_critical_native, "should only be required for critical natives");
2123       // This arg needs to be moved to a temporary
2124       __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
2125       in_regs[i] = tmp_vmreg;
2126       temploc = i;
2127       continue;
2128     } else if (i == -1) {
2129       assert(is_critical_native, "should only be required for critical natives");
2130       // Read from the temporary location
2131       assert(temploc != -1, "must be valid");
2132       i = temploc;
2133       temploc = -1;
2134     }
2135 #ifdef ASSERT
2136     if (in_regs[i].first()->is_Register()) {
2137       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
2138     } else if (in_regs[i].first()->is_XMMRegister()) {
2139       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
2140     }
2141     if (out_regs[c_arg].first()->is_Register()) {
2142       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2143     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2144       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2145     }
2146 #endif /* ASSERT */
2147     switch (in_sig_bt[i]) {
2148       case T_ARRAY:
2149         if (is_critical_native) {
2150           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
2151           c_arg++;
2152 #ifdef ASSERT
2153           if (out_regs[c_arg].first()->is_Register()) {
2154             reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2155           } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2156             freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2157           }
2158 #endif
2159           break;
2160         }
2161       case T_OBJECT:
2162         assert(!is_critical_native, "no oop arguments");
2163         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2164                     ((i == 0) && (!is_static)),
2165                     &receiver_offset);
2166         break;
2167       case T_VOID:
2168         break;
2169 
2170       case T_FLOAT:
2171         float_move(masm, in_regs[i], out_regs[c_arg]);
2172           break;
2173 
2174       case T_DOUBLE:
2175         assert( i + 1 < total_in_args &&
2176                 in_sig_bt[i + 1] == T_VOID &&
2177                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2178         double_move(masm, in_regs[i], out_regs[c_arg]);
2179         break;
2180 
2181       case T_LONG :
2182         long_move(masm, in_regs[i], out_regs[c_arg]);
2183         break;
2184 
2185       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2186 
2187       default:
2188         move32_64(masm, in_regs[i], out_regs[c_arg]);
2189     }
2190   }
2191 
2192   int c_arg;
2193 
2194   // Pre-load a static method's oop into r14.  Used both by locking code and
2195   // the normal JNI call code.
2196   if (!is_critical_native) {
2197     // point c_arg at the first arg that is already loaded in case we
2198     // need to spill before we call out
2199     c_arg = total_c_args - total_in_args;
2200 
2201     if (method->is_static()) {
2202 
2203       //  load oop into a register
2204       __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
2205 
2206       // Now handlize the static class mirror it's known not-null.
2207       __ movptr(Address(rsp, klass_offset), oop_handle_reg);
2208       map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2209 
2210       // Now get the handle
2211       __ lea(oop_handle_reg, Address(rsp, klass_offset));
2212       // store the klass handle as second argument
2213       __ movptr(c_rarg1, oop_handle_reg);
2214       // and protect the arg if we must spill
2215       c_arg--;
2216     }
2217   } else {
2218     // For JNI critical methods we need to save all registers in save_args.
2219     c_arg = 0;
2220   }
2221 
2222   // Change state to native (we save the return address in the thread, since it might not
2223   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
2224   // points into the right code segment. It does not have to be the correct return pc.
2225   // We use the same pc/oopMap repeatedly when we call out
2226 
2227   intptr_t the_pc = (intptr_t) __ pc();
2228   oop_maps->add_gc_map(the_pc - start, map);
2229 
2230   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
2231 
2232 
2233   // We have all of the arguments setup at this point. We must not touch any register
2234   // argument registers at this point (what if we save/restore them there are no oop?
2235 
2236   {
2237     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2238     // protect the args we've loaded
2239     save_args(masm, total_c_args, c_arg, out_regs);
2240     __ mov_metadata(c_rarg1, method());
2241     __ call_VM_leaf(
2242       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2243       r15_thread, c_rarg1);
2244     restore_args(masm, total_c_args, c_arg, out_regs);
2245   }
2246 
2247   // RedefineClasses() tracing support for obsolete method entry
2248   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2249     // protect the args we've loaded
2250     save_args(masm, total_c_args, c_arg, out_regs);
2251     __ mov_metadata(c_rarg1, method());
2252     __ call_VM_leaf(
2253       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2254       r15_thread, c_rarg1);
2255     restore_args(masm, total_c_args, c_arg, out_regs);
2256   }
2257 
2258   // Lock a synchronized method
2259 
2260   // Register definitions used by locking and unlocking
2261 
2262   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
2263   const Register obj_reg  = rbx;  // Will contain the oop
2264   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
2265   const Register old_hdr  = r13;  // value of old header at unlock time
2266 
2267   Label slow_path_lock;
2268   Label lock_done;
2269 
2270   if (method->is_synchronized()) {
2271     assert(!is_critical_native, "unhandled");
2272 
2273 
2274     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2275 
2276     // Get the handle (the 2nd argument)
2277     __ mov(oop_handle_reg, c_rarg1);
2278 
2279     // Get address of the box
2280 
2281     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2282 
2283     // Load the oop from the handle
2284     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2285 
2286     if (UseBiasedLocking) {
2287       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
2288     }
2289 
2290     // Load immediate 1 into swap_reg %rax
2291     __ movl(swap_reg, 1);
2292 
2293     // Load (object->mark() | 1) into swap_reg %rax
2294     __ orptr(swap_reg, Address(obj_reg, 0));
2295 
2296     // Save (object->mark() | 1) into BasicLock's displaced header
2297     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2298 
2299     if (os::is_MP()) {
2300       __ lock();
2301     }
2302 
2303     // src -> dest iff dest == rax else rax <- dest
2304     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
2305     __ jcc(Assembler::equal, lock_done);
2306 
2307     // Hmm should this move to the slow path code area???
2308 
2309     // Test if the oopMark is an obvious stack pointer, i.e.,
2310     //  1) (mark & 3) == 0, and
2311     //  2) rsp <= mark < mark + os::pagesize()
2312     // These 3 tests can be done by evaluating the following
2313     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2314     // assuming both stack pointer and pagesize have their
2315     // least significant 2 bits clear.
2316     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
2317 
2318     __ subptr(swap_reg, rsp);
2319     __ andptr(swap_reg, 3 - os::vm_page_size());
2320 
2321     // Save the test result, for recursive case, the result is zero
2322     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2323     __ jcc(Assembler::notEqual, slow_path_lock);
2324 
2325     // Slow path will re-enter here
2326 
2327     __ bind(lock_done);
2328   }
2329 
2330 
2331   // Finally just about ready to make the JNI call
2332 
2333 
2334   // get JNIEnv* which is first argument to native
2335   if (!is_critical_native) {
2336     __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
2337   }
2338 
2339   // Now set thread in native
2340   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
2341 
2342   __ call(RuntimeAddress(native_func));
2343 
2344   // Verify or restore cpu control state after JNI call
2345   __ restore_cpu_control_state_after_jni();
2346 
2347   // Unpack native results.
2348   switch (ret_type) {
2349   case T_BOOLEAN: __ c2bool(rax);            break;
2350   case T_CHAR   : __ movzwl(rax, rax);      break;
2351   case T_BYTE   : __ sign_extend_byte (rax); break;
2352   case T_SHORT  : __ sign_extend_short(rax); break;
2353   case T_INT    : /* nothing to do */        break;
2354   case T_DOUBLE :
2355   case T_FLOAT  :
2356     // Result is in xmm0 we'll save as needed
2357     break;
2358   case T_ARRAY:                 // Really a handle
2359   case T_OBJECT:                // Really a handle
2360       break; // can't de-handlize until after safepoint check
2361   case T_VOID: break;
2362   case T_LONG: break;
2363   default       : ShouldNotReachHere();
2364   }
2365 
2366   // Switch thread to "native transition" state before reading the synchronization state.
2367   // This additional state is necessary because reading and testing the synchronization
2368   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2369   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2370   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2371   //     Thread A is resumed to finish this native method, but doesn't block here since it
2372   //     didn't see any synchronization is progress, and escapes.
2373   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2374 
2375   if(os::is_MP()) {
2376     if (UseMembar) {
2377       // Force this write out before the read below
2378       __ membar(Assembler::Membar_mask_bits(
2379            Assembler::LoadLoad | Assembler::LoadStore |
2380            Assembler::StoreLoad | Assembler::StoreStore));
2381     } else {
2382       // Write serialization page so VM thread can do a pseudo remote membar.
2383       // We use the current thread pointer to calculate a thread specific
2384       // offset to write to within the page. This minimizes bus traffic
2385       // due to cache line collision.
2386       __ serialize_memory(r15_thread, rcx);
2387     }
2388   }
2389 
2390   Label after_transition;
2391 
2392   // check for safepoint operation in progress and/or pending suspend requests
2393   {
2394     Label Continue;
2395 
2396     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
2397              SafepointSynchronize::_not_synchronized);
2398 
2399     Label L;
2400     __ jcc(Assembler::notEqual, L);
2401     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
2402     __ jcc(Assembler::equal, Continue);
2403     __ bind(L);
2404 
2405     // Don't use call_VM as it will see a possible pending exception and forward it
2406     // and never return here preventing us from clearing _last_native_pc down below.
2407     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2408     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2409     // by hand.
2410     //
2411     save_native_result(masm, ret_type, stack_slots);
2412     __ mov(c_rarg0, r15_thread);
2413     __ mov(r12, rsp); // remember sp
2414     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2415     __ andptr(rsp, -16); // align stack as required by ABI
2416     if (!is_critical_native) {
2417       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2418     } else {
2419       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
2420     }
2421     __ mov(rsp, r12); // restore sp
2422     __ reinit_heapbase();
2423     // Restore any method result value
2424     restore_native_result(masm, ret_type, stack_slots);
2425 
2426     if (is_critical_native) {
2427       // The call above performed the transition to thread_in_Java so
2428       // skip the transition logic below.
2429       __ jmpb(after_transition);
2430     }
2431 
2432     __ bind(Continue);
2433   }
2434 
2435   // change thread state
2436   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
2437   __ bind(after_transition);
2438 
2439   Label reguard;
2440   Label reguard_done;
2441   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
2442   __ jcc(Assembler::equal, reguard);
2443   __ bind(reguard_done);
2444 
2445   // native result if any is live
2446 
2447   // Unlock
2448   Label unlock_done;
2449   Label slow_path_unlock;
2450   if (method->is_synchronized()) {
2451 
2452     // Get locked oop from the handle we passed to jni
2453     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2454 
2455     Label done;
2456 
2457     if (UseBiasedLocking) {
2458       __ biased_locking_exit(obj_reg, old_hdr, done);
2459     }
2460 
2461     // Simple recursive lock?
2462 
2463     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
2464     __ jcc(Assembler::equal, done);
2465 
2466     // Must save rax if if it is live now because cmpxchg must use it
2467     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2468       save_native_result(masm, ret_type, stack_slots);
2469     }
2470 
2471 
2472     // get address of the stack lock
2473     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2474     //  get old displaced header
2475     __ movptr(old_hdr, Address(rax, 0));
2476 
2477     // Atomic swap old header if oop still contains the stack lock
2478     if (os::is_MP()) {
2479       __ lock();
2480     }
2481     __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
2482     __ jcc(Assembler::notEqual, slow_path_unlock);
2483 
2484     // slow path re-enters here
2485     __ bind(unlock_done);
2486     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2487       restore_native_result(masm, ret_type, stack_slots);
2488     }
2489 
2490     __ bind(done);
2491 
2492   }
2493   {
2494     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2495     save_native_result(masm, ret_type, stack_slots);
2496     __ mov_metadata(c_rarg1, method());
2497     __ call_VM_leaf(
2498          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2499          r15_thread, c_rarg1);
2500     restore_native_result(masm, ret_type, stack_slots);
2501   }
2502 
2503   __ reset_last_Java_frame(false);
2504 
2505   // Unbox oop result, e.g. JNIHandles::resolve value.
2506   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2507     __ resolve_jobject(rax /* value */,
2508                        r15_thread /* thread */,
2509                        rcx /* tmp */);
2510   }
2511 
2512   if (!is_critical_native) {
2513     // reset handle block
2514     __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
2515     __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
2516   }
2517 
2518   // pop our frame
2519 
2520   __ leave();
2521 
2522   if (!is_critical_native) {
2523     // Any exception pending?
2524     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2525     __ jcc(Assembler::notEqual, exception_pending);
2526   }
2527 
2528   // Return
2529 
2530   __ ret(0);
2531 
2532   // Unexpected paths are out of line and go here
2533 
2534   if (!is_critical_native) {
2535     // forward the exception
2536     __ bind(exception_pending);
2537 
2538     // and forward the exception
2539     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2540   }
2541 
2542   // Slow path locking & unlocking
2543   if (method->is_synchronized()) {
2544 
2545     // BEGIN Slow path lock
2546     __ bind(slow_path_lock);
2547 
2548     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2549     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2550 
2551     // protect the args we've loaded
2552     save_args(masm, total_c_args, c_arg, out_regs);
2553 
2554     __ mov(c_rarg0, obj_reg);
2555     __ mov(c_rarg1, lock_reg);
2556     __ mov(c_rarg2, r15_thread);
2557 
2558     // Not a leaf but we have last_Java_frame setup as we want
2559     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2560     restore_args(masm, total_c_args, c_arg, out_regs);
2561 
2562 #ifdef ASSERT
2563     { Label L;
2564     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2565     __ jcc(Assembler::equal, L);
2566     __ stop("no pending exception allowed on exit from monitorenter");
2567     __ bind(L);
2568     }
2569 #endif
2570     __ jmp(lock_done);
2571 
2572     // END Slow path lock
2573 
2574     // BEGIN Slow path unlock
2575     __ bind(slow_path_unlock);
2576 
2577     // If we haven't already saved the native result we must save it now as xmm registers
2578     // are still exposed.
2579 
2580     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2581       save_native_result(masm, ret_type, stack_slots);
2582     }
2583 
2584     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2585 
2586     __ mov(c_rarg0, obj_reg);
2587     __ mov(r12, rsp); // remember sp
2588     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2589     __ andptr(rsp, -16); // align stack as required by ABI
2590 
2591     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2592     // NOTE that obj_reg == rbx currently
2593     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
2594     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2595 
2596     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2597     __ mov(rsp, r12); // restore sp
2598     __ reinit_heapbase();
2599 #ifdef ASSERT
2600     {
2601       Label L;
2602       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2603       __ jcc(Assembler::equal, L);
2604       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2605       __ bind(L);
2606     }
2607 #endif /* ASSERT */
2608 
2609     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
2610 
2611     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2612       restore_native_result(masm, ret_type, stack_slots);
2613     }
2614     __ jmp(unlock_done);
2615 
2616     // END Slow path unlock
2617 
2618   } // synchronized
2619 
2620   // SLOW PATH Reguard the stack if needed
2621 
2622   __ bind(reguard);
2623   save_native_result(masm, ret_type, stack_slots);
2624   __ mov(r12, rsp); // remember sp
2625   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2626   __ andptr(rsp, -16); // align stack as required by ABI
2627   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2628   __ mov(rsp, r12); // restore sp
2629   __ reinit_heapbase();
2630   restore_native_result(masm, ret_type, stack_slots);
2631   // and continue
2632   __ jmp(reguard_done);
2633 
2634 
2635 
2636   __ flush();
2637 
2638   nmethod *nm = nmethod::new_native_nmethod(method,
2639                                             compile_id,
2640                                             masm->code(),
2641                                             vep_offset,
2642                                             frame_complete,
2643                                             stack_slots / VMRegImpl::slots_per_word,
2644                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2645                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2646                                             oop_maps);
2647 
2648   if (is_critical_native) {
2649     nm->set_lazy_critical_native(true);
2650   }
2651 
2652   return nm;
2653 
2654 }
2655 
2656 #ifdef HAVE_DTRACE_H
2657 // ---------------------------------------------------------------------------
2658 // Generate a dtrace nmethod for a given signature.  The method takes arguments
2659 // in the Java compiled code convention, marshals them to the native
2660 // abi and then leaves nops at the position you would expect to call a native
2661 // function. When the probe is enabled the nops are replaced with a trap
2662 // instruction that dtrace inserts and the trace will cause a notification
2663 // to dtrace.
2664 //
2665 // The probes are only able to take primitive types and java/lang/String as
2666 // arguments.  No other java types are allowed. Strings are converted to utf8
2667 // strings so that from dtrace point of view java strings are converted to C
2668 // strings. There is an arbitrary fixed limit on the total space that a method
2669 // can use for converting the strings. (256 chars per string in the signature).
2670 // So any java string larger then this is truncated.
2671 
2672 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
2673 static bool offsets_initialized = false;
2674 
2675 
generate_dtrace_nmethod(MacroAssembler * masm,methodHandle method)2676 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
2677                                                 methodHandle method) {
2678 
2679 
2680   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
2681   // be single threaded in this method.
2682   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
2683 
2684   if (!offsets_initialized) {
2685     fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
2686     fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
2687     fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
2688     fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
2689     fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
2690     fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
2691 
2692     fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
2693     fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
2694     fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
2695     fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
2696     fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
2697     fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
2698     fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
2699     fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
2700 
2701     offsets_initialized = true;
2702   }
2703   // Fill in the signature array, for the calling-convention call.
2704   int total_args_passed = method->size_of_parameters();
2705 
2706   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2707   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2708 
2709   // The signature we are going to use for the trap that dtrace will see
2710   // java/lang/String is converted. We drop "this" and any other object
2711   // is converted to NULL.  (A one-slot java/lang/Long object reference
2712   // is converted to a two-slot long, which is why we double the allocation).
2713   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
2714   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
2715 
2716   int i=0;
2717   int total_strings = 0;
2718   int first_arg_to_pass = 0;
2719   int total_c_args = 0;
2720 
2721   // Skip the receiver as dtrace doesn't want to see it
2722   if( !method->is_static() ) {
2723     in_sig_bt[i++] = T_OBJECT;
2724     first_arg_to_pass = 1;
2725   }
2726 
2727   // We need to convert the java args to where a native (non-jni) function
2728   // would expect them. To figure out where they go we convert the java
2729   // signature to a C signature.
2730 
2731   SignatureStream ss(method->signature());
2732   for ( ; !ss.at_return_type(); ss.next()) {
2733     BasicType bt = ss.type();
2734     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
2735     out_sig_bt[total_c_args++] = bt;
2736     if( bt == T_OBJECT) {
2737       Symbol* s = ss.as_symbol_or_null();   // symbol is created
2738       if (s == vmSymbols::java_lang_String()) {
2739         total_strings++;
2740         out_sig_bt[total_c_args-1] = T_ADDRESS;
2741       } else if (s == vmSymbols::java_lang_Boolean() ||
2742                  s == vmSymbols::java_lang_Character() ||
2743                  s == vmSymbols::java_lang_Byte() ||
2744                  s == vmSymbols::java_lang_Short() ||
2745                  s == vmSymbols::java_lang_Integer() ||
2746                  s == vmSymbols::java_lang_Float()) {
2747         out_sig_bt[total_c_args-1] = T_INT;
2748       } else if (s == vmSymbols::java_lang_Long() ||
2749                  s == vmSymbols::java_lang_Double()) {
2750         out_sig_bt[total_c_args-1] = T_LONG;
2751         out_sig_bt[total_c_args++] = T_VOID;
2752       }
2753     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
2754       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2755       // We convert double to long
2756       out_sig_bt[total_c_args-1] = T_LONG;
2757       out_sig_bt[total_c_args++] = T_VOID;
2758     } else if ( bt == T_FLOAT) {
2759       // We convert float to int
2760       out_sig_bt[total_c_args-1] = T_INT;
2761     }
2762   }
2763 
2764   assert(i==total_args_passed, "validly parsed signature");
2765 
2766   // Now get the compiled-Java layout as input arguments
2767   int comp_args_on_stack;
2768   comp_args_on_stack = SharedRuntime::java_calling_convention(
2769       in_sig_bt, in_regs, total_args_passed, false);
2770 
2771   // Now figure out where the args must be stored and how much stack space
2772   // they require (neglecting out_preserve_stack_slots but space for storing
2773   // the 1st six register arguments). It's weird see int_stk_helper.
2774 
2775   int out_arg_slots;
2776   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
2777 
2778   // Calculate the total number of stack slots we will need.
2779 
2780   // First count the abi requirement plus all of the outgoing args
2781   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2782 
2783   // Now space for the string(s) we must convert
2784   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
2785   for (i = 0; i < total_strings ; i++) {
2786     string_locs[i] = stack_slots;
2787     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
2788   }
2789 
2790   // Plus the temps we might need to juggle register args
2791   // regs take two slots each
2792   stack_slots += (Argument::n_int_register_parameters_c +
2793                   Argument::n_float_register_parameters_c) * 2;
2794 
2795 
2796   // + 4 for return address (which we own) and saved rbp,
2797 
2798   stack_slots += 4;
2799 
2800   // Ok The space we have allocated will look like:
2801   //
2802   //
2803   // FP-> |                     |
2804   //      |---------------------|
2805   //      | string[n]           |
2806   //      |---------------------| <- string_locs[n]
2807   //      | string[n-1]         |
2808   //      |---------------------| <- string_locs[n-1]
2809   //      | ...                 |
2810   //      | ...                 |
2811   //      |---------------------| <- string_locs[1]
2812   //      | string[0]           |
2813   //      |---------------------| <- string_locs[0]
2814   //      | outbound memory     |
2815   //      | based arguments     |
2816   //      |                     |
2817   //      |---------------------|
2818   //      |                     |
2819   // SP-> | out_preserved_slots |
2820   //
2821   //
2822 
2823   // Now compute actual number of stack words we need rounding to make
2824   // stack properly aligned.
2825   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
2826 
2827   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2828 
2829   intptr_t start = (intptr_t)__ pc();
2830 
2831   // First thing make an ic check to see if we should even be here
2832 
2833   // We are free to use all registers as temps without saving them and
2834   // restoring them except rbp. rbp, is the only callee save register
2835   // as far as the interpreter and the compiler(s) are concerned.
2836 
2837   const Register ic_reg = rax;
2838   const Register receiver = rcx;
2839   Label hit;
2840   Label exception_pending;
2841 
2842 
2843   __ verify_oop(receiver);
2844   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
2845   __ jcc(Assembler::equal, hit);
2846 
2847   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2848 
2849   // verified entry must be aligned for code patching.
2850   // and the first 5 bytes must be in the same cache line
2851   // if we align at 8 then we will be sure 5 bytes are in the same line
2852   __ align(8);
2853 
2854   __ bind(hit);
2855 
2856   int vep_offset = ((intptr_t)__ pc()) - start;
2857 
2858 
2859   // The instruction at the verified entry point must be 5 bytes or longer
2860   // because it can be patched on the fly by make_non_entrant. The stack bang
2861   // instruction fits that requirement.
2862 
2863   // Generate stack overflow check
2864 
2865   if (UseStackBanging) {
2866     if (stack_size <= StackShadowPages*os::vm_page_size()) {
2867       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2868     } else {
2869       __ movl(rax, stack_size);
2870       __ bang_stack_size(rax, rbx);
2871     }
2872   } else {
2873     // need a 5 byte instruction to allow MT safe patching to non-entrant
2874     __ fat_nop();
2875   }
2876 
2877   assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
2878          "valid size for make_non_entrant");
2879 
2880   // Generate a new frame for the wrapper.
2881   __ enter();
2882 
2883   // -4 because return address is already present and so is saved rbp,
2884   if (stack_size - 2*wordSize != 0) {
2885     __ subq(rsp, stack_size - 2*wordSize);
2886   }
2887 
2888   // Frame is now completed as far a size and linkage.
2889 
2890   int frame_complete = ((intptr_t)__ pc()) - start;
2891 
2892   int c_arg, j_arg;
2893 
2894   // State of input register args
2895 
2896   bool  live[ConcreteRegisterImpl::number_of_registers];
2897 
2898   live[j_rarg0->as_VMReg()->value()] = false;
2899   live[j_rarg1->as_VMReg()->value()] = false;
2900   live[j_rarg2->as_VMReg()->value()] = false;
2901   live[j_rarg3->as_VMReg()->value()] = false;
2902   live[j_rarg4->as_VMReg()->value()] = false;
2903   live[j_rarg5->as_VMReg()->value()] = false;
2904 
2905   live[j_farg0->as_VMReg()->value()] = false;
2906   live[j_farg1->as_VMReg()->value()] = false;
2907   live[j_farg2->as_VMReg()->value()] = false;
2908   live[j_farg3->as_VMReg()->value()] = false;
2909   live[j_farg4->as_VMReg()->value()] = false;
2910   live[j_farg5->as_VMReg()->value()] = false;
2911   live[j_farg6->as_VMReg()->value()] = false;
2912   live[j_farg7->as_VMReg()->value()] = false;
2913 
2914 
2915   bool rax_is_zero = false;
2916 
2917   // All args (except strings) destined for the stack are moved first
2918   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2919        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2920     VMRegPair src = in_regs[j_arg];
2921     VMRegPair dst = out_regs[c_arg];
2922 
2923     // Get the real reg value or a dummy (rsp)
2924 
2925     int src_reg = src.first()->is_reg() ?
2926                   src.first()->value() :
2927                   rsp->as_VMReg()->value();
2928 
2929     bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2930                     (in_sig_bt[j_arg] == T_OBJECT &&
2931                      out_sig_bt[c_arg] != T_INT &&
2932                      out_sig_bt[c_arg] != T_ADDRESS &&
2933                      out_sig_bt[c_arg] != T_LONG);
2934 
2935     live[src_reg] = !useless;
2936 
2937     if (dst.first()->is_stack()) {
2938 
2939       // Even though a string arg in a register is still live after this loop
2940       // after the string conversion loop (next) it will be dead so we take
2941       // advantage of that now for simpler code to manage live.
2942 
2943       live[src_reg] = false;
2944       switch (in_sig_bt[j_arg]) {
2945 
2946         case T_ARRAY:
2947         case T_OBJECT:
2948           {
2949             Address stack_dst(rsp, reg2offset_out(dst.first()));
2950 
2951             if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2952               // need to unbox a one-word value
2953               Register in_reg = rax;
2954               if ( src.first()->is_reg() ) {
2955                 in_reg = src.first()->as_Register();
2956               } else {
2957                 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
2958                 rax_is_zero = false;
2959               }
2960               Label skipUnbox;
2961               __ movptr(Address(rsp, reg2offset_out(dst.first())),
2962                         (int32_t)NULL_WORD);
2963               __ testq(in_reg, in_reg);
2964               __ jcc(Assembler::zero, skipUnbox);
2965 
2966               BasicType bt = out_sig_bt[c_arg];
2967               int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2968               Address src1(in_reg, box_offset);
2969               if ( bt == T_LONG ) {
2970                 __ movq(in_reg,  src1);
2971                 __ movq(stack_dst, in_reg);
2972                 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2973                 ++c_arg; // skip over T_VOID to keep the loop indices in sync
2974               } else {
2975                 __ movl(in_reg,  src1);
2976                 __ movl(stack_dst, in_reg);
2977               }
2978 
2979               __ bind(skipUnbox);
2980             } else if (out_sig_bt[c_arg] != T_ADDRESS) {
2981               // Convert the arg to NULL
2982               if (!rax_is_zero) {
2983                 __ xorq(rax, rax);
2984                 rax_is_zero = true;
2985               }
2986               __ movq(stack_dst, rax);
2987             }
2988           }
2989           break;
2990 
2991         case T_VOID:
2992           break;
2993 
2994         case T_FLOAT:
2995           // This does the right thing since we know it is destined for the
2996           // stack
2997           float_move(masm, src, dst);
2998           break;
2999 
3000         case T_DOUBLE:
3001           // This does the right thing since we know it is destined for the
3002           // stack
3003           double_move(masm, src, dst);
3004           break;
3005 
3006         case T_LONG :
3007           long_move(masm, src, dst);
3008           break;
3009 
3010         case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
3011 
3012         default:
3013           move32_64(masm, src, dst);
3014       }
3015     }
3016 
3017   }
3018 
3019   // If we have any strings we must store any register based arg to the stack
3020   // This includes any still live xmm registers too.
3021 
3022   int sid = 0;
3023 
3024   if (total_strings > 0 ) {
3025     for (j_arg = first_arg_to_pass, c_arg = 0 ;
3026          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
3027       VMRegPair src = in_regs[j_arg];
3028       VMRegPair dst = out_regs[c_arg];
3029 
3030       if (src.first()->is_reg()) {
3031         Address src_tmp(rbp, fp_offset[src.first()->value()]);
3032 
3033         // string oops were left untouched by the previous loop even if the
3034         // eventual (converted) arg is destined for the stack so park them
3035         // away now (except for first)
3036 
3037         if (out_sig_bt[c_arg] == T_ADDRESS) {
3038           Address utf8_addr = Address(
3039               rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
3040           if (sid != 1) {
3041             // The first string arg won't be killed until after the utf8
3042             // conversion
3043             __ movq(utf8_addr, src.first()->as_Register());
3044           }
3045         } else if (dst.first()->is_reg()) {
3046           if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
3047 
3048             // Convert the xmm register to an int and store it in the reserved
3049             // location for the eventual c register arg
3050             XMMRegister f = src.first()->as_XMMRegister();
3051             if (in_sig_bt[j_arg] == T_FLOAT) {
3052               __ movflt(src_tmp, f);
3053             } else {
3054               __ movdbl(src_tmp, f);
3055             }
3056           } else {
3057             // If the arg is an oop type we don't support don't bother to store
3058             // it remember string was handled above.
3059             bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
3060                             (in_sig_bt[j_arg] == T_OBJECT &&
3061                              out_sig_bt[c_arg] != T_INT &&
3062                              out_sig_bt[c_arg] != T_LONG);
3063 
3064             if (!useless) {
3065               __ movq(src_tmp, src.first()->as_Register());
3066             }
3067           }
3068         }
3069       }
3070       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
3071         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
3072         ++c_arg; // skip over T_VOID to keep the loop indices in sync
3073       }
3074     }
3075 
3076     // Now that the volatile registers are safe, convert all the strings
3077     sid = 0;
3078 
3079     for (j_arg = first_arg_to_pass, c_arg = 0 ;
3080          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
3081       if (out_sig_bt[c_arg] == T_ADDRESS) {
3082         // It's a string
3083         Address utf8_addr = Address(
3084             rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
3085         // The first string we find might still be in the original java arg
3086         // register
3087 
3088         VMReg src = in_regs[j_arg].first();
3089 
3090         // We will need to eventually save the final argument to the trap
3091         // in the von-volatile location dedicated to src. This is the offset
3092         // from fp we will use.
3093         int src_off = src->is_reg() ?
3094             fp_offset[src->value()] : reg2offset_in(src);
3095 
3096         // This is where the argument will eventually reside
3097         VMRegPair dst = out_regs[c_arg];
3098 
3099         if (src->is_reg()) {
3100           if (sid == 1) {
3101             __ movq(c_rarg0, src->as_Register());
3102           } else {
3103             __ movq(c_rarg0, utf8_addr);
3104           }
3105         } else {
3106           // arg is still in the original location
3107           __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
3108         }
3109         Label done, convert;
3110 
3111         // see if the oop is NULL
3112         __ testq(c_rarg0, c_rarg0);
3113         __ jcc(Assembler::notEqual, convert);
3114 
3115         if (dst.first()->is_reg()) {
3116           // Save the ptr to utf string in the origina src loc or the tmp
3117           // dedicated to it
3118           __ movq(Address(rbp, src_off), c_rarg0);
3119         } else {
3120           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
3121         }
3122         __ jmp(done);
3123 
3124         __ bind(convert);
3125 
3126         __ lea(c_rarg1, utf8_addr);
3127         if (dst.first()->is_reg()) {
3128           __ movq(Address(rbp, src_off), c_rarg1);
3129         } else {
3130           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
3131         }
3132         // And do the conversion
3133         __ call(RuntimeAddress(
3134                 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
3135 
3136         __ bind(done);
3137       }
3138       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
3139         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
3140         ++c_arg; // skip over T_VOID to keep the loop indices in sync
3141       }
3142     }
3143     // The get_utf call killed all the c_arg registers
3144     live[c_rarg0->as_VMReg()->value()] = false;
3145     live[c_rarg1->as_VMReg()->value()] = false;
3146     live[c_rarg2->as_VMReg()->value()] = false;
3147     live[c_rarg3->as_VMReg()->value()] = false;
3148     live[c_rarg4->as_VMReg()->value()] = false;
3149     live[c_rarg5->as_VMReg()->value()] = false;
3150 
3151     live[c_farg0->as_VMReg()->value()] = false;
3152     live[c_farg1->as_VMReg()->value()] = false;
3153     live[c_farg2->as_VMReg()->value()] = false;
3154     live[c_farg3->as_VMReg()->value()] = false;
3155     live[c_farg4->as_VMReg()->value()] = false;
3156     live[c_farg5->as_VMReg()->value()] = false;
3157     live[c_farg6->as_VMReg()->value()] = false;
3158     live[c_farg7->as_VMReg()->value()] = false;
3159   }
3160 
3161   // Now we can finally move the register args to their desired locations
3162 
3163   rax_is_zero = false;
3164 
3165   for (j_arg = first_arg_to_pass, c_arg = 0 ;
3166        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
3167 
3168     VMRegPair src = in_regs[j_arg];
3169     VMRegPair dst = out_regs[c_arg];
3170 
3171     // Only need to look for args destined for the interger registers (since we
3172     // convert float/double args to look like int/long outbound)
3173     if (dst.first()->is_reg()) {
3174       Register r =  dst.first()->as_Register();
3175 
3176       // Check if the java arg is unsupported and thereofre useless
3177       bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
3178                       (in_sig_bt[j_arg] == T_OBJECT &&
3179                        out_sig_bt[c_arg] != T_INT &&
3180                        out_sig_bt[c_arg] != T_ADDRESS &&
3181                        out_sig_bt[c_arg] != T_LONG);
3182 
3183 
3184       // If we're going to kill an existing arg save it first
3185       if (live[dst.first()->value()]) {
3186         // you can't kill yourself
3187         if (src.first() != dst.first()) {
3188           __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
3189         }
3190       }
3191       if (src.first()->is_reg()) {
3192         if (live[src.first()->value()] ) {
3193           if (in_sig_bt[j_arg] == T_FLOAT) {
3194             __ movdl(r, src.first()->as_XMMRegister());
3195           } else if (in_sig_bt[j_arg] == T_DOUBLE) {
3196             __ movdq(r, src.first()->as_XMMRegister());
3197           } else if (r != src.first()->as_Register()) {
3198             if (!useless) {
3199               __ movq(r, src.first()->as_Register());
3200             }
3201           }
3202         } else {
3203           // If the arg is an oop type we don't support don't bother to store
3204           // it
3205           if (!useless) {
3206             if (in_sig_bt[j_arg] == T_DOUBLE ||
3207                 in_sig_bt[j_arg] == T_LONG  ||
3208                 in_sig_bt[j_arg] == T_OBJECT ) {
3209               __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
3210             } else {
3211               __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
3212             }
3213           }
3214         }
3215         live[src.first()->value()] = false;
3216       } else if (!useless) {
3217         // full sized move even for int should be ok
3218         __ movq(r, Address(rbp, reg2offset_in(src.first())));
3219       }
3220 
3221       // At this point r has the original java arg in the final location
3222       // (assuming it wasn't useless). If the java arg was an oop
3223       // we have a bit more to do
3224 
3225       if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
3226         if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
3227           // need to unbox a one-word value
3228           Label skip;
3229           __ testq(r, r);
3230           __ jcc(Assembler::equal, skip);
3231           BasicType bt = out_sig_bt[c_arg];
3232           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
3233           Address src1(r, box_offset);
3234           if ( bt == T_LONG ) {
3235             __ movq(r, src1);
3236           } else {
3237             __ movl(r, src1);
3238           }
3239           __ bind(skip);
3240 
3241         } else if (out_sig_bt[c_arg] != T_ADDRESS) {
3242           // Convert the arg to NULL
3243           __ xorq(r, r);
3244         }
3245       }
3246 
3247       // dst can longer be holding an input value
3248       live[dst.first()->value()] = false;
3249     }
3250     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
3251       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
3252       ++c_arg; // skip over T_VOID to keep the loop indices in sync
3253     }
3254   }
3255 
3256 
3257   // Ok now we are done. Need to place the nop that dtrace wants in order to
3258   // patch in the trap
3259   int patch_offset = ((intptr_t)__ pc()) - start;
3260 
3261   __ nop();
3262 
3263 
3264   // Return
3265 
3266   __ leave();
3267   __ ret(0);
3268 
3269   __ flush();
3270 
3271   nmethod *nm = nmethod::new_dtrace_nmethod(
3272       method, masm->code(), vep_offset, patch_offset, frame_complete,
3273       stack_slots / VMRegImpl::slots_per_word);
3274   return nm;
3275 
3276 }
3277 
3278 #endif // HAVE_DTRACE_H
3279 
3280 // this function returns the adjust size (in number of words) to a c2i adapter
3281 // activation for use during deoptimization
last_frame_adjust(int callee_parameters,int callee_locals)3282 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
3283   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
3284 }
3285 
3286 
out_preserve_stack_slots()3287 uint SharedRuntime::out_preserve_stack_slots() {
3288   return 0;
3289 }
3290 
3291 //------------------------------generate_deopt_blob----------------------------
generate_deopt_blob()3292 void SharedRuntime::generate_deopt_blob() {
3293   // Allocate space for the code
3294   ResourceMark rm;
3295   // Setup code generation tools
3296   CodeBuffer buffer("deopt_blob", 2048, 1024);
3297   MacroAssembler* masm = new MacroAssembler(&buffer);
3298   int frame_size_in_words;
3299   OopMap* map = NULL;
3300   OopMapSet *oop_maps = new OopMapSet();
3301 
3302   // -------------
3303   // This code enters when returning to a de-optimized nmethod.  A return
3304   // address has been pushed on the the stack, and return values are in
3305   // registers.
3306   // If we are doing a normal deopt then we were called from the patched
3307   // nmethod from the point we returned to the nmethod. So the return
3308   // address on the stack is wrong by NativeCall::instruction_size
3309   // We will adjust the value so it looks like we have the original return
3310   // address on the stack (like when we eagerly deoptimized).
3311   // In the case of an exception pending when deoptimizing, we enter
3312   // with a return address on the stack that points after the call we patched
3313   // into the exception handler. We have the following register state from,
3314   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
3315   //    rax: exception oop
3316   //    rbx: exception handler
3317   //    rdx: throwing pc
3318   // So in this case we simply jam rdx into the useless return address and
3319   // the stack looks just like we want.
3320   //
3321   // At this point we need to de-opt.  We save the argument return
3322   // registers.  We call the first C routine, fetch_unroll_info().  This
3323   // routine captures the return values and returns a structure which
3324   // describes the current frame size and the sizes of all replacement frames.
3325   // The current frame is compiled code and may contain many inlined
3326   // functions, each with their own JVM state.  We pop the current frame, then
3327   // push all the new frames.  Then we call the C routine unpack_frames() to
3328   // populate these frames.  Finally unpack_frames() returns us the new target
3329   // address.  Notice that callee-save registers are BLOWN here; they have
3330   // already been captured in the vframeArray at the time the return PC was
3331   // patched.
3332   address start = __ pc();
3333   Label cont;
3334 
3335   // Prolog for non exception case!
3336 
3337   // Save everything in sight.
3338   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3339 
3340   // Normal deoptimization.  Save exec mode for unpack_frames.
3341   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
3342   __ jmp(cont);
3343 
3344   int reexecute_offset = __ pc() - start;
3345 
3346   // Reexecute case
3347   // return address is the pc describes what bci to do re-execute at
3348 
3349   // No need to update map as each call to save_live_registers will produce identical oopmap
3350   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3351 
3352   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
3353   __ jmp(cont);
3354 
3355   int exception_offset = __ pc() - start;
3356 
3357   // Prolog for exception case
3358 
3359   // all registers are dead at this entry point, except for rax, and
3360   // rdx which contain the exception oop and exception pc
3361   // respectively.  Set them in TLS and fall thru to the
3362   // unpack_with_exception_in_tls entry point.
3363 
3364   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3365   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
3366 
3367   int exception_in_tls_offset = __ pc() - start;
3368 
3369   // new implementation because exception oop is now passed in JavaThread
3370 
3371   // Prolog for exception case
3372   // All registers must be preserved because they might be used by LinearScan
3373   // Exceptiop oop and throwing PC are passed in JavaThread
3374   // tos: stack at point of call to method that threw the exception (i.e. only
3375   // args are on the stack, no return address)
3376 
3377   // make room on stack for the return address
3378   // It will be patched later with the throwing pc. The correct value is not
3379   // available now because loading it from memory would destroy registers.
3380   __ push(0);
3381 
3382   // Save everything in sight.
3383   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3384 
3385   // Now it is safe to overwrite any register
3386 
3387   // Deopt during an exception.  Save exec mode for unpack_frames.
3388   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
3389 
3390   // load throwing pc from JavaThread and patch it as the return address
3391   // of the current frame. Then clear the field in JavaThread
3392 
3393   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3394   __ movptr(Address(rbp, wordSize), rdx);
3395   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
3396 
3397 #ifdef ASSERT
3398   // verify that there is really an exception oop in JavaThread
3399   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3400   __ verify_oop(rax);
3401 
3402   // verify that there is no pending exception
3403   Label no_pending_exception;
3404   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3405   __ testptr(rax, rax);
3406   __ jcc(Assembler::zero, no_pending_exception);
3407   __ stop("must not have pending exception here");
3408   __ bind(no_pending_exception);
3409 #endif
3410 
3411   __ bind(cont);
3412 
3413   // Call C code.  Need thread and this frame, but NOT official VM entry
3414   // crud.  We cannot block on this call, no GC can happen.
3415   //
3416   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
3417 
3418   // fetch_unroll_info needs to call last_java_frame().
3419 
3420   __ set_last_Java_frame(noreg, noreg, NULL);
3421 #ifdef ASSERT
3422   { Label L;
3423     __ cmpptr(Address(r15_thread,
3424                     JavaThread::last_Java_fp_offset()),
3425             (int32_t)0);
3426     __ jcc(Assembler::equal, L);
3427     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
3428     __ bind(L);
3429   }
3430 #endif // ASSERT
3431   __ mov(c_rarg0, r15_thread);
3432   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
3433 
3434   // Need to have an oopmap that tells fetch_unroll_info where to
3435   // find any register it might need.
3436   oop_maps->add_gc_map(__ pc() - start, map);
3437 
3438   __ reset_last_Java_frame(false);
3439 
3440   // Load UnrollBlock* into rdi
3441   __ mov(rdi, rax);
3442 
3443    Label noException;
3444   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
3445   __ jcc(Assembler::notEqual, noException);
3446   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3447   // QQQ this is useless it was NULL above
3448   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3449   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
3450   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
3451 
3452   __ verify_oop(rax);
3453 
3454   // Overwrite the result registers with the exception results.
3455   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3456   // I think this is useless
3457   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
3458 
3459   __ bind(noException);
3460 
3461   // Only register save data is on the stack.
3462   // Now restore the result registers.  Everything else is either dead
3463   // or captured in the vframeArray.
3464   RegisterSaver::restore_result_registers(masm);
3465 
3466   // All of the register save area has been popped of the stack. Only the
3467   // return address remains.
3468 
3469   // Pop all the frames we must move/replace.
3470   //
3471   // Frame picture (youngest to oldest)
3472   // 1: self-frame (no frame link)
3473   // 2: deopting frame  (no frame link)
3474   // 3: caller of deopting frame (could be compiled/interpreted).
3475   //
3476   // Note: by leaving the return address of self-frame on the stack
3477   // and using the size of frame 2 to adjust the stack
3478   // when we are done the return to frame 3 will still be on the stack.
3479 
3480   // Pop deoptimized frame
3481   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
3482   __ addptr(rsp, rcx);
3483 
3484   // rsp should be pointing at the return address to the caller (3)
3485 
3486   // Pick up the initial fp we should save
3487   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3488   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3489 
3490 #ifdef ASSERT
3491   // Compilers generate code that bang the stack by as much as the
3492   // interpreter would need. So this stack banging should never
3493   // trigger a fault. Verify that it does not on non product builds.
3494   if (UseStackBanging) {
3495     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3496     __ bang_stack_size(rbx, rcx);
3497   }
3498 #endif
3499 
3500   // Load address of array of frame pcs into rcx
3501   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3502 
3503   // Trash the old pc
3504   __ addptr(rsp, wordSize);
3505 
3506   // Load address of array of frame sizes into rsi
3507   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
3508 
3509   // Load counter into rdx
3510   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
3511 
3512   // Now adjust the caller's stack to make up for the extra locals
3513   // but record the original sp so that we can save it in the skeletal interpreter
3514   // frame and the stack walking of interpreter_sender will get the unextended sp
3515   // value and not the "real" sp value.
3516 
3517   const Register sender_sp = r8;
3518 
3519   __ mov(sender_sp, rsp);
3520   __ movl(rbx, Address(rdi,
3521                        Deoptimization::UnrollBlock::
3522                        caller_adjustment_offset_in_bytes()));
3523   __ subptr(rsp, rbx);
3524 
3525   // Push interpreter frames in a loop
3526   Label loop;
3527   __ bind(loop);
3528   __ movptr(rbx, Address(rsi, 0));      // Load frame size
3529 #ifdef CC_INTERP
3530   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
3531 #ifdef ASSERT
3532   __ push(0xDEADDEAD);                  // Make a recognizable pattern
3533   __ push(0xDEADDEAD);
3534 #else /* ASSERT */
3535   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
3536 #endif /* ASSERT */
3537 #else
3538   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
3539 #endif // CC_INTERP
3540   __ pushptr(Address(rcx, 0));          // Save return address
3541   __ enter();                           // Save old & set new ebp
3542   __ subptr(rsp, rbx);                  // Prolog
3543 #ifdef CC_INTERP
3544   __ movptr(Address(rbp,
3545                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
3546             sender_sp); // Make it walkable
3547 #else /* CC_INTERP */
3548   // This value is corrected by layout_activation_impl
3549   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3550   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
3551 #endif /* CC_INTERP */
3552   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
3553   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
3554   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
3555   __ decrementl(rdx);                   // Decrement counter
3556   __ jcc(Assembler::notZero, loop);
3557   __ pushptr(Address(rcx, 0));          // Save final return address
3558 
3559   // Re-push self-frame
3560   __ enter();                           // Save old & set new ebp
3561 
3562   // Allocate a full sized register save area.
3563   // Return address and rbp are in place, so we allocate two less words.
3564   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
3565 
3566   // Restore frame locals after moving the frame
3567   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
3568   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3569 
3570   // Call C code.  Need thread but NOT official VM entry
3571   // crud.  We cannot block on this call, no GC can happen.  Call should
3572   // restore return values to their stack-slots with the new SP.
3573   //
3574   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
3575 
3576   // Use rbp because the frames look interpreted now
3577   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3578   // Don't need the precise return PC here, just precise enough to point into this code blob.
3579   address the_pc = __ pc();
3580   __ set_last_Java_frame(noreg, rbp, the_pc);
3581 
3582   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
3583   __ mov(c_rarg0, r15_thread);
3584   __ movl(c_rarg1, r14); // second arg: exec_mode
3585   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3586   // Revert SP alignment after call since we're going to do some SP relative addressing below
3587   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
3588 
3589   // Set an oopmap for the call site
3590   // Use the same PC we used for the last java frame
3591   oop_maps->add_gc_map(the_pc - start,
3592                        new OopMap( frame_size_in_words, 0 ));
3593 
3594   // Clear fp AND pc
3595   __ reset_last_Java_frame(true);
3596 
3597   // Collect return values
3598   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
3599   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
3600   // I think this is useless (throwing pc?)
3601   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
3602 
3603   // Pop self-frame.
3604   __ leave();                           // Epilog
3605 
3606   // Jump to interpreter
3607   __ ret(0);
3608 
3609   // Make sure all code is generated
3610   masm->flush();
3611 
3612   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
3613   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3614 }
3615 
3616 #ifdef COMPILER2
3617 //------------------------------generate_uncommon_trap_blob--------------------
generate_uncommon_trap_blob()3618 void SharedRuntime::generate_uncommon_trap_blob() {
3619   // Allocate space for the code
3620   ResourceMark rm;
3621   // Setup code generation tools
3622   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
3623   MacroAssembler* masm = new MacroAssembler(&buffer);
3624 
3625   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3626 
3627   address start = __ pc();
3628 
3629   if (UseRTMLocking) {
3630     // Abort RTM transaction before possible nmethod deoptimization.
3631     __ xabort(0);
3632   }
3633 
3634   // Push self-frame.  We get here with a return address on the
3635   // stack, so rsp is 8-byte aligned until we allocate our frame.
3636   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
3637 
3638   // No callee saved registers. rbp is assumed implicitly saved
3639   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3640 
3641   // compiler left unloaded_class_index in j_rarg0 move to where the
3642   // runtime expects it.
3643   __ movl(c_rarg1, j_rarg0);
3644 
3645   __ set_last_Java_frame(noreg, noreg, NULL);
3646 
3647   // Call C code.  Need thread but NOT official VM entry
3648   // crud.  We cannot block on this call, no GC can happen.  Call should
3649   // capture callee-saved registers as well as return values.
3650   // Thread is in rdi already.
3651   //
3652   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
3653 
3654   __ mov(c_rarg0, r15_thread);
3655   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3656 
3657   // Set an oopmap for the call site
3658   OopMapSet* oop_maps = new OopMapSet();
3659   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
3660 
3661   // location of rbp is known implicitly by the frame sender code
3662 
3663   oop_maps->add_gc_map(__ pc() - start, map);
3664 
3665   __ reset_last_Java_frame(false);
3666 
3667   // Load UnrollBlock* into rdi
3668   __ mov(rdi, rax);
3669 
3670   // Pop all the frames we must move/replace.
3671   //
3672   // Frame picture (youngest to oldest)
3673   // 1: self-frame (no frame link)
3674   // 2: deopting frame  (no frame link)
3675   // 3: caller of deopting frame (could be compiled/interpreted).
3676 
3677   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
3678   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
3679 
3680   // Pop deoptimized frame (int)
3681   __ movl(rcx, Address(rdi,
3682                        Deoptimization::UnrollBlock::
3683                        size_of_deoptimized_frame_offset_in_bytes()));
3684   __ addptr(rsp, rcx);
3685 
3686   // rsp should be pointing at the return address to the caller (3)
3687 
3688   // Pick up the initial fp we should save
3689   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3690   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3691 
3692 #ifdef ASSERT
3693   // Compilers generate code that bang the stack by as much as the
3694   // interpreter would need. So this stack banging should never
3695   // trigger a fault. Verify that it does not on non product builds.
3696   if (UseStackBanging) {
3697     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3698     __ bang_stack_size(rbx, rcx);
3699   }
3700 #endif
3701 
3702   // Load address of array of frame pcs into rcx (address*)
3703   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3704 
3705   // Trash the return pc
3706   __ addptr(rsp, wordSize);
3707 
3708   // Load address of array of frame sizes into rsi (intptr_t*)
3709   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes()));
3710 
3711   // Counter
3712   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int)
3713 
3714   // Now adjust the caller's stack to make up for the extra locals but
3715   // record the original sp so that we can save it in the skeletal
3716   // interpreter frame and the stack walking of interpreter_sender
3717   // will get the unextended sp value and not the "real" sp value.
3718 
3719   const Register sender_sp = r8;
3720 
3721   __ mov(sender_sp, rsp);
3722   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int)
3723   __ subptr(rsp, rbx);
3724 
3725   // Push interpreter frames in a loop
3726   Label loop;
3727   __ bind(loop);
3728   __ movptr(rbx, Address(rsi, 0)); // Load frame size
3729   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
3730   __ pushptr(Address(rcx, 0));     // Save return address
3731   __ enter();                      // Save old & set new rbp
3732   __ subptr(rsp, rbx);             // Prolog
3733 #ifdef CC_INTERP
3734   __ movptr(Address(rbp,
3735                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
3736             sender_sp); // Make it walkable
3737 #else // CC_INTERP
3738   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
3739             sender_sp);            // Make it walkable
3740   // This value is corrected by layout_activation_impl
3741   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3742 #endif // CC_INTERP
3743   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
3744   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
3745   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
3746   __ decrementl(rdx);              // Decrement counter
3747   __ jcc(Assembler::notZero, loop);
3748   __ pushptr(Address(rcx, 0));     // Save final return address
3749 
3750   // Re-push self-frame
3751   __ enter();                 // Save old & set new rbp
3752   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
3753                               // Prolog
3754 
3755   // Use rbp because the frames look interpreted now
3756   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3757   // Don't need the precise return PC here, just precise enough to point into this code blob.
3758   address the_pc = __ pc();
3759   __ set_last_Java_frame(noreg, rbp, the_pc);
3760 
3761   // Call C code.  Need thread but NOT official VM entry
3762   // crud.  We cannot block on this call, no GC can happen.  Call should
3763   // restore return values to their stack-slots with the new SP.
3764   // Thread is in rdi already.
3765   //
3766   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
3767 
3768   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
3769   __ mov(c_rarg0, r15_thread);
3770   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
3771   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3772 
3773   // Set an oopmap for the call site
3774   // Use the same PC we used for the last java frame
3775   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3776 
3777   // Clear fp AND pc
3778   __ reset_last_Java_frame(true);
3779 
3780   // Pop self-frame.
3781   __ leave();                 // Epilog
3782 
3783   // Jump to interpreter
3784   __ ret(0);
3785 
3786   // Make sure all code is generated
3787   masm->flush();
3788 
3789   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3790                                                  SimpleRuntimeFrame::framesize >> 1);
3791 }
3792 #endif // COMPILER2
3793 
3794 
3795 //------------------------------generate_handler_blob------
3796 //
3797 // Generate a special Compile2Runtime blob that saves all registers,
3798 // and setup oopmap.
3799 //
generate_handler_blob(address call_ptr,int poll_type)3800 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3801   assert(StubRoutines::forward_exception_entry() != NULL,
3802          "must be generated before");
3803 
3804   ResourceMark rm;
3805   OopMapSet *oop_maps = new OopMapSet();
3806   OopMap* map;
3807 
3808   // Allocate space for the code.  Setup code generation tools.
3809   CodeBuffer buffer("handler_blob", 2048, 1024);
3810   MacroAssembler* masm = new MacroAssembler(&buffer);
3811 
3812   address start   = __ pc();
3813   address call_pc = NULL;
3814   int frame_size_in_words;
3815   bool cause_return = (poll_type == POLL_AT_RETURN);
3816   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
3817 
3818   if (UseRTMLocking) {
3819     // Abort RTM transaction before calling runtime
3820     // because critical section will be large and will be
3821     // aborted anyway. Also nmethod could be deoptimized.
3822     __ xabort(0);
3823   }
3824 
3825   // Make room for return address (or push it again)
3826   if (!cause_return) {
3827     __ push(rbx);
3828   }
3829 
3830   // Save registers, fpu state, and flags
3831   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
3832 
3833   // The following is basically a call_VM.  However, we need the precise
3834   // address of the call in order to generate an oopmap. Hence, we do all the
3835   // work outselves.
3836 
3837   __ set_last_Java_frame(noreg, noreg, NULL);
3838 
3839   // The return address must always be correct so that frame constructor never
3840   // sees an invalid pc.
3841 
3842   if (!cause_return) {
3843     // overwrite the dummy value we pushed on entry
3844     __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3845     __ movptr(Address(rbp, wordSize), c_rarg0);
3846   }
3847 
3848   // Do the call
3849   __ mov(c_rarg0, r15_thread);
3850   __ call(RuntimeAddress(call_ptr));
3851 
3852   // Set an oopmap for the call site.  This oopmap will map all
3853   // oop-registers and debug-info registers as callee-saved.  This
3854   // will allow deoptimization at this safepoint to find all possible
3855   // debug-info recordings, as well as let GC find all oops.
3856 
3857   oop_maps->add_gc_map( __ pc() - start, map);
3858 
3859   Label noException;
3860 
3861   __ reset_last_Java_frame(false);
3862 
3863   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3864   __ jcc(Assembler::equal, noException);
3865 
3866   // Exception pending
3867 
3868   RegisterSaver::restore_live_registers(masm, save_vectors);
3869 
3870   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3871 
3872   // No exception case
3873   __ bind(noException);
3874 
3875   // Normal exit, restore registers and exit.
3876   RegisterSaver::restore_live_registers(masm, save_vectors);
3877 
3878   __ ret(0);
3879 
3880   // Make sure all code is generated
3881   masm->flush();
3882 
3883   // Fill-out other meta info
3884   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3885 }
3886 
3887 //
3888 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3889 //
3890 // Generate a stub that calls into vm to find out the proper destination
3891 // of a java call. All the argument registers are live at this point
3892 // but since this is generic code we don't know what they are and the caller
3893 // must do any gc of the args.
3894 //
generate_resolve_blob(address destination,const char * name)3895 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3896   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3897 
3898   // allocate space for the code
3899   ResourceMark rm;
3900 
3901   CodeBuffer buffer(name, 1000, 512);
3902   MacroAssembler* masm                = new MacroAssembler(&buffer);
3903 
3904   int frame_size_in_words;
3905 
3906   OopMapSet *oop_maps = new OopMapSet();
3907   OopMap* map = NULL;
3908 
3909   int start = __ offset();
3910 
3911   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3912 
3913   int frame_complete = __ offset();
3914 
3915   __ set_last_Java_frame(noreg, noreg, NULL);
3916 
3917   __ mov(c_rarg0, r15_thread);
3918 
3919   __ call(RuntimeAddress(destination));
3920 
3921 
3922   // Set an oopmap for the call site.
3923   // We need this not only for callee-saved registers, but also for volatile
3924   // registers that the compiler might be keeping live across a safepoint.
3925 
3926   oop_maps->add_gc_map( __ offset() - start, map);
3927 
3928   // rax contains the address we are going to jump to assuming no exception got installed
3929 
3930   // clear last_Java_sp
3931   __ reset_last_Java_frame(false);
3932   // check for pending exceptions
3933   Label pending;
3934   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3935   __ jcc(Assembler::notEqual, pending);
3936 
3937   // get the returned Method*
3938   __ get_vm_result_2(rbx, r15_thread);
3939   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3940 
3941   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3942 
3943   RegisterSaver::restore_live_registers(masm);
3944 
3945   // We are back the the original state on entry and ready to go.
3946 
3947   __ jmp(rax);
3948 
3949   // Pending exception after the safepoint
3950 
3951   __ bind(pending);
3952 
3953   RegisterSaver::restore_live_registers(masm);
3954 
3955   // exception pending => remove activation and forward to exception handler
3956 
3957   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
3958 
3959   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3960   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3961 
3962   // -------------
3963   // make sure all code is generated
3964   masm->flush();
3965 
3966   // return the  blob
3967   // frame_size_words or bytes??
3968   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3969 }
3970 
3971 
3972 //------------------------------Montgomery multiplication------------------------
3973 //
3974 
3975 #ifndef _WINDOWS
3976 
3977 #define ASM_SUBTRACT
3978 
3979 #ifdef ASM_SUBTRACT
3980 // Subtract 0:b from carry:a.  Return carry.
3981 static unsigned long
sub(unsigned long a[],unsigned long b[],unsigned long carry,long len)3982 sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) {
3983   long i = 0, cnt = len;
3984   unsigned long tmp;
3985   asm volatile("clc; "
3986                "0: ; "
3987                "mov (%[b], %[i], 8), %[tmp]; "
3988                "sbb %[tmp], (%[a], %[i], 8); "
3989                "inc %[i]; dec %[cnt]; "
3990                "jne 0b; "
3991                "mov %[carry], %[tmp]; sbb $0, %[tmp]; "
3992                : [i]"+r"(i), [cnt]"+r"(cnt), [tmp]"=&r"(tmp)
3993                : [a]"r"(a), [b]"r"(b), [carry]"r"(carry)
3994                : "memory");
3995   return tmp;
3996 }
3997 #else // ASM_SUBTRACT
3998 typedef int __attribute__((mode(TI))) int128;
3999 
4000 // Subtract 0:b from carry:a.  Return carry.
4001 static unsigned long
sub(unsigned long a[],unsigned long b[],unsigned long carry,int len)4002 sub(unsigned long a[], unsigned long b[], unsigned long carry, int len) {
4003   int128 tmp = 0;
4004   int i;
4005   for (i = 0; i < len; i++) {
4006     tmp += a[i];
4007     tmp -= b[i];
4008     a[i] = tmp;
4009     tmp >>= 64;
4010     assert(-1 <= tmp && tmp <= 0, "invariant");
4011   }
4012   return tmp + carry;
4013 }
4014 #endif // ! ASM_SUBTRACT
4015 
4016 // Multiply (unsigned) Long A by Long B, accumulating the double-
4017 // length result into the accumulator formed of T0, T1, and T2.
4018 #define MACC(A, B, T0, T1, T2)                                      \
4019 do {                                                                \
4020   unsigned long hi, lo;                                             \
4021   asm volatile("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4"   \
4022            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)      \
4023            : "r"(A), "a"(B) : "cc");                                \
4024  } while(0)
4025 
4026 // As above, but add twice the double-length result into the
4027 // accumulator.
4028 #define MACC2(A, B, T0, T1, T2)                                     \
4029 do {                                                                \
4030   unsigned long hi, lo;                                             \
4031   asm volatile("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4;"  \
4032            "add %%rax, %2; adc %%rdx, %3; adc $0, %4"               \
4033            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)      \
4034            : "r"(A), "a"(B) : "cc");                                \
4035  } while(0)
4036 
4037 // Fast Montgomery multiplication.  The derivation of the algorithm is
4038 // in  A Cryptographic Library for the Motorola DSP56000,
4039 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237.
4040 
4041 static void __attribute__((noinline))
montgomery_multiply(unsigned long a[],unsigned long b[],unsigned long n[],unsigned long m[],unsigned long inv,int len)4042 montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[],
4043                     unsigned long m[], unsigned long inv, int len) {
4044   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
4045   int i;
4046 
4047   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
4048 
4049   for (i = 0; i < len; i++) {
4050     int j;
4051     for (j = 0; j < i; j++) {
4052       MACC(a[j], b[i-j], t0, t1, t2);
4053       MACC(m[j], n[i-j], t0, t1, t2);
4054     }
4055     MACC(a[i], b[0], t0, t1, t2);
4056     m[i] = t0 * inv;
4057     MACC(m[i], n[0], t0, t1, t2);
4058 
4059     assert(t0 == 0, "broken Montgomery multiply");
4060 
4061     t0 = t1; t1 = t2; t2 = 0;
4062   }
4063 
4064   for (i = len; i < 2*len; i++) {
4065     int j;
4066     for (j = i-len+1; j < len; j++) {
4067       MACC(a[j], b[i-j], t0, t1, t2);
4068       MACC(m[j], n[i-j], t0, t1, t2);
4069     }
4070     m[i-len] = t0;
4071     t0 = t1; t1 = t2; t2 = 0;
4072   }
4073 
4074   while (t0)
4075     t0 = sub(m, n, t0, len);
4076 }
4077 
4078 // Fast Montgomery squaring.  This uses asymptotically 25% fewer
4079 // multiplies so it should be up to 25% faster than Montgomery
4080 // multiplication.  However, its loop control is more complex and it
4081 // may actually run slower on some machines.
4082 
4083 static void __attribute__((noinline))
montgomery_square(unsigned long a[],unsigned long n[],unsigned long m[],unsigned long inv,int len)4084 montgomery_square(unsigned long a[], unsigned long n[],
4085                   unsigned long m[], unsigned long inv, int len) {
4086   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
4087   int i;
4088 
4089   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
4090 
4091   for (i = 0; i < len; i++) {
4092     int j;
4093     int end = (i+1)/2;
4094     for (j = 0; j < end; j++) {
4095       MACC2(a[j], a[i-j], t0, t1, t2);
4096       MACC(m[j], n[i-j], t0, t1, t2);
4097     }
4098     if ((i & 1) == 0) {
4099       MACC(a[j], a[j], t0, t1, t2);
4100     }
4101     for (; j < i; j++) {
4102       MACC(m[j], n[i-j], t0, t1, t2);
4103     }
4104     m[i] = t0 * inv;
4105     MACC(m[i], n[0], t0, t1, t2);
4106 
4107     assert(t0 == 0, "broken Montgomery square");
4108 
4109     t0 = t1; t1 = t2; t2 = 0;
4110   }
4111 
4112   for (i = len; i < 2*len; i++) {
4113     int start = i-len+1;
4114     int end = start + (len - start)/2;
4115     int j;
4116     for (j = start; j < end; j++) {
4117       MACC2(a[j], a[i-j], t0, t1, t2);
4118       MACC(m[j], n[i-j], t0, t1, t2);
4119     }
4120     if ((i & 1) == 0) {
4121       MACC(a[j], a[j], t0, t1, t2);
4122     }
4123     for (; j < len; j++) {
4124       MACC(m[j], n[i-j], t0, t1, t2);
4125     }
4126     m[i-len] = t0;
4127     t0 = t1; t1 = t2; t2 = 0;
4128   }
4129 
4130   while (t0)
4131     t0 = sub(m, n, t0, len);
4132 }
4133 
4134 // Swap words in a longword.
swap(unsigned long x)4135 static unsigned long swap(unsigned long x) {
4136   return (x << 32) | (x >> 32);
4137 }
4138 
4139 // Copy len longwords from s to d, word-swapping as we go.  The
4140 // destination array is reversed.
reverse_words(unsigned long * s,unsigned long * d,int len)4141 static void reverse_words(unsigned long *s, unsigned long *d, int len) {
4142   d += len;
4143   while(len-- > 0) {
4144     d--;
4145     *d = swap(*s);
4146     s++;
4147   }
4148 }
4149 
4150 // The threshold at which squaring is advantageous was determined
4151 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
4152 #define MONTGOMERY_SQUARING_THRESHOLD 64
4153 
montgomery_multiply(jint * a_ints,jint * b_ints,jint * n_ints,jint len,jlong inv,jint * m_ints)4154 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
4155                                         jint len, jlong inv,
4156                                         jint *m_ints) {
4157   assert(len % 2 == 0, "array length in montgomery_multiply must be even");
4158   int longwords = len/2;
4159 
4160   // Make very sure we don't use so much space that the stack might
4161   // overflow.  512 jints corresponds to an 16384-bit integer and
4162   // will use here a total of 8k bytes of stack space.
4163   int total_allocation = longwords * sizeof (unsigned long) * 4;
4164   guarantee(total_allocation <= 8192, "must be");
4165   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
4166 
4167   // Local scratch arrays
4168   unsigned long
4169     *a = scratch + 0 * longwords,
4170     *b = scratch + 1 * longwords,
4171     *n = scratch + 2 * longwords,
4172     *m = scratch + 3 * longwords;
4173 
4174   reverse_words((unsigned long *)a_ints, a, longwords);
4175   reverse_words((unsigned long *)b_ints, b, longwords);
4176   reverse_words((unsigned long *)n_ints, n, longwords);
4177 
4178   ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords);
4179 
4180   reverse_words(m, (unsigned long *)m_ints, longwords);
4181 }
4182 
montgomery_square(jint * a_ints,jint * n_ints,jint len,jlong inv,jint * m_ints)4183 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
4184                                       jint len, jlong inv,
4185                                       jint *m_ints) {
4186   assert(len % 2 == 0, "array length in montgomery_square must be even");
4187   int longwords = len/2;
4188 
4189   // Make very sure we don't use so much space that the stack might
4190   // overflow.  512 jints corresponds to an 16384-bit integer and
4191   // will use here a total of 6k bytes of stack space.
4192   int total_allocation = longwords * sizeof (unsigned long) * 3;
4193   guarantee(total_allocation <= 8192, "must be");
4194   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
4195 
4196   // Local scratch arrays
4197   unsigned long
4198     *a = scratch + 0 * longwords,
4199     *n = scratch + 1 * longwords,
4200     *m = scratch + 2 * longwords;
4201 
4202   reverse_words((unsigned long *)a_ints, a, longwords);
4203   reverse_words((unsigned long *)n_ints, n, longwords);
4204 
4205   //montgomery_square fails to pass BigIntegerTest on solaris amd64
4206   //on jdk7 and jdk8.
4207 #ifndef SOLARIS
4208   if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
4209 #else
4210   if (0) {
4211 #endif
4212     ::montgomery_square(a, n, m, (unsigned long)inv, longwords);
4213   } else {
4214     ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords);
4215   }
4216 
4217   reverse_words(m, (unsigned long *)m_ints, longwords);
4218 }
4219 
4220 #endif // WINDOWS
4221 
4222 #ifdef COMPILER2
4223 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
4224 //
4225 //------------------------------generate_exception_blob---------------------------
4226 // creates exception blob at the end
4227 // Using exception blob, this code is jumped from a compiled method.
4228 // (see emit_exception_handler in x86_64.ad file)
4229 //
4230 // Given an exception pc at a call we call into the runtime for the
4231 // handler in this method. This handler might merely restore state
4232 // (i.e. callee save registers) unwind the frame and jump to the
4233 // exception handler for the nmethod if there is no Java level handler
4234 // for the nmethod.
4235 //
4236 // This code is entered with a jmp.
4237 //
4238 // Arguments:
4239 //   rax: exception oop
4240 //   rdx: exception pc
4241 //
4242 // Results:
4243 //   rax: exception oop
4244 //   rdx: exception pc in caller or ???
4245 //   destination: exception handler of caller
4246 //
4247 // Note: the exception pc MUST be at a call (precise debug information)
4248 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
4249 //
4250 
4251 void OptoRuntime::generate_exception_blob() {
4252   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
4253   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
4254   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
4255 
4256   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
4257 
4258   // Allocate space for the code
4259   ResourceMark rm;
4260   // Setup code generation tools
4261   CodeBuffer buffer("exception_blob", 2048, 1024);
4262   MacroAssembler* masm = new MacroAssembler(&buffer);
4263 
4264 
4265   address start = __ pc();
4266 
4267   // Exception pc is 'return address' for stack walker
4268   __ push(rdx);
4269   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
4270 
4271   // Save callee-saved registers.  See x86_64.ad.
4272 
4273   // rbp is an implicitly saved callee saved register (i.e., the calling
4274   // convention will save/restore it in the prolog/epilog). Other than that
4275   // there are no callee save registers now that adapter frames are gone.
4276 
4277   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
4278 
4279   // Store exception in Thread object. We cannot pass any arguments to the
4280   // handle_exception call, since we do not want to make any assumption
4281   // about the size of the frame where the exception happened in.
4282   // c_rarg0 is either rdi (Linux) or rcx (Windows).
4283   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
4284   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
4285 
4286   // This call does all the hard work.  It checks if an exception handler
4287   // exists in the method.
4288   // If so, it returns the handler address.
4289   // If not, it prepares for stack-unwinding, restoring the callee-save
4290   // registers of the frame being removed.
4291   //
4292   // address OptoRuntime::handle_exception_C(JavaThread* thread)
4293 
4294   // At a method handle call, the stack may not be properly aligned
4295   // when returning with an exception.
4296   address the_pc = __ pc();
4297   __ set_last_Java_frame(noreg, noreg, the_pc);
4298   __ mov(c_rarg0, r15_thread);
4299   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
4300   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
4301 
4302   // Set an oopmap for the call site.  This oopmap will only be used if we
4303   // are unwinding the stack.  Hence, all locations will be dead.
4304   // Callee-saved registers will be the same as the frame above (i.e.,
4305   // handle_exception_stub), since they were restored when we got the
4306   // exception.
4307 
4308   OopMapSet* oop_maps = new OopMapSet();
4309 
4310   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
4311 
4312   __ reset_last_Java_frame(false);
4313 
4314   // Restore callee-saved registers
4315 
4316   // rbp is an implicitly saved callee-saved register (i.e., the calling
4317   // convention will save restore it in prolog/epilog) Other than that
4318   // there are no callee save registers now that adapter frames are gone.
4319 
4320   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
4321 
4322   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
4323   __ pop(rdx);                  // No need for exception pc anymore
4324 
4325   // rax: exception handler
4326 
4327   // We have a handler in rax (could be deopt blob).
4328   __ mov(r8, rax);
4329 
4330   // Get the exception oop
4331   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
4332   // Get the exception pc in case we are deoptimized
4333   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
4334 #ifdef ASSERT
4335   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
4336   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
4337 #endif
4338   // Clear the exception oop so GC no longer processes it as a root.
4339   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
4340 
4341   // rax: exception oop
4342   // r8:  exception handler
4343   // rdx: exception pc
4344   // Jump to handler
4345 
4346   __ jmp(r8);
4347 
4348   // Make sure all code is generated
4349   masm->flush();
4350 
4351   // Set exception blob
4352   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
4353 }
4354 #endif // COMPILER2
4355