1 /*
2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "memory/allocation.hpp"
27 #include "memory/allocation.inline.hpp"
28 #include "memory/genCollectedHeap.hpp"
29 #include "memory/metaspaceShared.hpp"
30 #include "memory/resourceArea.hpp"
31 #include "memory/universe.hpp"
32 #include "runtime/atomic.hpp"
33 #include "runtime/os.hpp"
34 #include "runtime/task.hpp"
35 #include "runtime/threadCritical.hpp"
36 #include "services/memTracker.hpp"
37 #include "utilities/ostream.hpp"
38 
39 #ifdef TARGET_OS_FAMILY_linux
40 # include "os_linux.inline.hpp"
41 #endif
42 #ifdef TARGET_OS_FAMILY_solaris
43 # include "os_solaris.inline.hpp"
44 #endif
45 #ifdef TARGET_OS_FAMILY_windows
46 # include "os_windows.inline.hpp"
47 #endif
48 #ifdef TARGET_OS_FAMILY_aix
49 # include "os_aix.inline.hpp"
50 #endif
51 #ifdef TARGET_OS_FAMILY_bsd
52 # include "os_bsd.inline.hpp"
53 #endif
54 
operator new(size_t size)55 void* StackObj::operator new(size_t size)     throw() { ShouldNotCallThis(); return 0; }
operator delete(void * p)56 void  StackObj::operator delete(void* p)              { ShouldNotCallThis(); }
operator new[](size_t size)57 void* StackObj::operator new [](size_t size)  throw() { ShouldNotCallThis(); return 0; }
operator delete[](void * p)58 void  StackObj::operator delete [](void* p)           { ShouldNotCallThis(); }
59 
operator new(size_t size)60 void* _ValueObj::operator new(size_t size)    throw() { ShouldNotCallThis(); return 0; }
operator delete(void * p)61 void  _ValueObj::operator delete(void* p)             { ShouldNotCallThis(); }
operator new[](size_t size)62 void* _ValueObj::operator new [](size_t size) throw() { ShouldNotCallThis(); return 0; }
operator delete[](void * p)63 void  _ValueObj::operator delete [](void* p)          { ShouldNotCallThis(); }
64 
operator new(size_t size,ClassLoaderData * loader_data,size_t word_size,bool read_only,MetaspaceObj::Type type,TRAPS)65 void* MetaspaceObj::operator new(size_t size, ClassLoaderData* loader_data,
66                                  size_t word_size, bool read_only,
67                                  MetaspaceObj::Type type, TRAPS) throw() {
68   // Klass has it's own operator new
69   return Metaspace::allocate(loader_data, word_size, read_only, type, THREAD);
70 }
71 
is_shared() const72 bool MetaspaceObj::is_shared() const {
73   return MetaspaceShared::is_in_shared_space(this);
74 }
75 
is_metaspace_object() const76 bool MetaspaceObj::is_metaspace_object() const {
77   return Metaspace::contains((void*)this);
78 }
79 
print_address_on(outputStream * st) const80 void MetaspaceObj::print_address_on(outputStream* st) const {
81   st->print(" {" INTPTR_FORMAT "}", p2i(this));
82 }
83 
operator new(size_t size,allocation_type type,MEMFLAGS flags)84 void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) throw() {
85   address res = NULL;
86   switch (type) {
87    case C_HEAP:
88     res = (address)AllocateHeap(size, flags, CALLER_PC);
89     DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
90     break;
91    case RESOURCE_AREA:
92     // new(size) sets allocation type RESOURCE_AREA.
93     res = (address)operator new(size);
94     break;
95    default:
96     ShouldNotReachHere();
97   }
98   return res;
99 }
100 
operator new[](size_t size,allocation_type type,MEMFLAGS flags)101 void* ResourceObj::operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw() {
102   return (address) operator new(size, type, flags);
103 }
104 
operator new(size_t size,const std::nothrow_t & nothrow_constant,allocation_type type,MEMFLAGS flags)105 void* ResourceObj::operator new(size_t size, const std::nothrow_t&  nothrow_constant,
106     allocation_type type, MEMFLAGS flags) throw() {
107   // should only call this with std::nothrow, use other operator new() otherwise
108   address res = NULL;
109   switch (type) {
110    case C_HEAP:
111     res = (address)AllocateHeap(size, flags, CALLER_PC, AllocFailStrategy::RETURN_NULL);
112     DEBUG_ONLY(if (res!= NULL) set_allocation_type(res, C_HEAP);)
113     break;
114    case RESOURCE_AREA:
115     // new(size) sets allocation type RESOURCE_AREA.
116     res = (address)operator new(size, std::nothrow);
117     break;
118    default:
119     ShouldNotReachHere();
120   }
121   return res;
122 }
123 
operator new[](size_t size,const std::nothrow_t & nothrow_constant,allocation_type type,MEMFLAGS flags)124 void* ResourceObj::operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
125     allocation_type type, MEMFLAGS flags) throw() {
126   return (address)operator new(size, nothrow_constant, type, flags);
127 }
128 
operator delete(void * p)129 void ResourceObj::operator delete(void* p) {
130   assert(((ResourceObj *)p)->allocated_on_C_heap(),
131          "delete only allowed for C_HEAP objects");
132   DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
133   FreeHeap(p);
134 }
135 
operator delete[](void * p)136 void ResourceObj::operator delete [](void* p) {
137   operator delete(p);
138 }
139 
140 #ifdef ASSERT
set_allocation_type(address res,allocation_type type)141 void ResourceObj::set_allocation_type(address res, allocation_type type) {
142     // Set allocation type in the resource object
143     uintptr_t allocation = (uintptr_t)res;
144     assert((allocation & allocation_mask) == 0, err_msg("address should be aligned to 4 bytes at least: " INTPTR_FORMAT, p2i(res)));
145     assert(type <= allocation_mask, "incorrect allocation type");
146     ResourceObj* resobj = (ResourceObj *)res;
147     resobj->_allocation_t[0] = ~(allocation + type);
148     if (type != STACK_OR_EMBEDDED) {
149       // Called from operator new() and CollectionSetChooser(),
150       // set verification value.
151       resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
152     }
153 }
154 
get_allocation_type() const155 ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
156     assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
157     return (allocation_type)((~_allocation_t[0]) & allocation_mask);
158 }
159 
is_type_set() const160 bool ResourceObj::is_type_set() const {
161     allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
162     return get_allocation_type()  == type &&
163            (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
164 }
165 
ResourceObj()166 ResourceObj::ResourceObj() { // default constructor
167     if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
168       // Operator new() is not called for allocations
169       // on stack and for embedded objects.
170       set_allocation_type((address)this, STACK_OR_EMBEDDED);
171     } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
172       // For some reason we got a value which resembles
173       // an embedded or stack object (operator new() does not
174       // set such type). Keep it since it is valid value
175       // (even if it was garbage).
176       // Ignore garbage in other fields.
177     } else if (is_type_set()) {
178       // Operator new() was called and type was set.
179       assert(!allocated_on_stack(),
180              err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
181                      p2i(this), get_allocation_type(), _allocation_t[0], _allocation_t[1]));
182     } else {
183       // Operator new() was not called.
184       // Assume that it is embedded or stack object.
185       set_allocation_type((address)this, STACK_OR_EMBEDDED);
186     }
187     _allocation_t[1] = 0; // Zap verification value
188 }
189 
ResourceObj(const ResourceObj & r)190 ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
191     // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
192     // Note: garbage may resembles valid value.
193     assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
194            err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
195                    p2i(this), get_allocation_type(), _allocation_t[0], _allocation_t[1]));
196     set_allocation_type((address)this, STACK_OR_EMBEDDED);
197     _allocation_t[1] = 0; // Zap verification value
198 }
199 
operator =(const ResourceObj & r)200 ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
201     // Used in InlineTree::ok_to_inline() for WarmCallInfo.
202     assert(allocated_on_stack(),
203            err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
204                    p2i(this), get_allocation_type(), _allocation_t[0], _allocation_t[1]));
205     // Keep current _allocation_t value;
206     return *this;
207 }
208 
~ResourceObj()209 ResourceObj::~ResourceObj() {
210     // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
211     if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
212       _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
213     }
214 }
215 #endif // ASSERT
216 
217 
trace_heap_malloc(size_t size,const char * name,void * p)218 void trace_heap_malloc(size_t size, const char* name, void* p) {
219   // A lock is not needed here - tty uses a lock internally
220   tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p2i(p), size, name == NULL ? "" : name);
221 }
222 
223 
trace_heap_free(void * p)224 void trace_heap_free(void* p) {
225   // A lock is not needed here - tty uses a lock internally
226   tty->print_cr("Heap free   " INTPTR_FORMAT, p2i(p));
227 }
228 
229 //--------------------------------------------------------------------------------------
230 // ChunkPool implementation
231 
232 // MT-safe pool of chunks to reduce malloc/free thrashing
233 // NB: not using Mutex because pools are used before Threads are initialized
234 class ChunkPool: public CHeapObj<mtInternal> {
235   Chunk*       _first;        // first cached Chunk; its first word points to next chunk
236   size_t       _num_chunks;   // number of unused chunks in pool
237   size_t       _num_used;     // number of chunks currently checked out
238   const size_t _size;         // size of each chunk (must be uniform)
239 
240   // Our four static pools
241   static ChunkPool* _large_pool;
242   static ChunkPool* _medium_pool;
243   static ChunkPool* _small_pool;
244   static ChunkPool* _tiny_pool;
245 
246   // return first element or null
get_first()247   void* get_first() {
248     Chunk* c = _first;
249     if (_first) {
250       _first = _first->next();
251       _num_chunks--;
252     }
253     return c;
254   }
255 
256  public:
257   // All chunks in a ChunkPool has the same size
ChunkPool(size_t size)258    ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
259 
260   // Allocate a new chunk from the pool (might expand the pool)
allocate(size_t bytes,AllocFailType alloc_failmode)261   _NOINLINE_ void* allocate(size_t bytes, AllocFailType alloc_failmode) {
262     assert(bytes == _size, "bad size");
263     void* p = NULL;
264     // No VM lock can be taken inside ThreadCritical lock, so os::malloc
265     // should be done outside ThreadCritical lock due to NMT
266     { ThreadCritical tc;
267       _num_used++;
268       p = get_first();
269     }
270     if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
271     if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
272       vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "ChunkPool::allocate");
273     }
274     return p;
275   }
276 
277   // Return a chunk to the pool
free(Chunk * chunk)278   void free(Chunk* chunk) {
279     assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
280     ThreadCritical tc;
281     _num_used--;
282 
283     // Add chunk to list
284     chunk->set_next(_first);
285     _first = chunk;
286     _num_chunks++;
287   }
288 
289   // Prune the pool
free_all_but(size_t n)290   void free_all_but(size_t n) {
291     Chunk* cur = NULL;
292     Chunk* next;
293     {
294     // if we have more than n chunks, free all of them
295     ThreadCritical tc;
296     if (_num_chunks > n) {
297       // free chunks at end of queue, for better locality
298         cur = _first;
299       for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
300 
301       if (cur != NULL) {
302           next = cur->next();
303         cur->set_next(NULL);
304         cur = next;
305 
306           _num_chunks = n;
307         }
308       }
309     }
310 
311     // Free all remaining chunks, outside of ThreadCritical
312     // to avoid deadlock with NMT
313         while(cur != NULL) {
314           next = cur->next();
315       os::free(cur, mtChunk);
316           cur = next;
317         }
318       }
319 
320   // Accessors to preallocated pool's
large_pool()321   static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
medium_pool()322   static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
small_pool()323   static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
tiny_pool()324   static ChunkPool* tiny_pool()   { assert(_tiny_pool   != NULL, "must be initialized"); return _tiny_pool;   }
325 
initialize()326   static void initialize() {
327     _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
328     _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
329     _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
330     _tiny_pool   = new ChunkPool(Chunk::tiny_size   + Chunk::aligned_overhead_size());
331   }
332 
clean()333   static void clean() {
334     enum { BlocksToKeep = 5 };
335      _tiny_pool->free_all_but(BlocksToKeep);
336      _small_pool->free_all_but(BlocksToKeep);
337      _medium_pool->free_all_but(BlocksToKeep);
338      _large_pool->free_all_but(BlocksToKeep);
339   }
340 };
341 
342 ChunkPool* ChunkPool::_large_pool  = NULL;
343 ChunkPool* ChunkPool::_medium_pool = NULL;
344 ChunkPool* ChunkPool::_small_pool  = NULL;
345 ChunkPool* ChunkPool::_tiny_pool   = NULL;
346 
chunkpool_init()347 void chunkpool_init() {
348   ChunkPool::initialize();
349 }
350 
351 void
clean_chunk_pool()352 Chunk::clean_chunk_pool() {
353   ChunkPool::clean();
354 }
355 
356 
357 //--------------------------------------------------------------------------------------
358 // ChunkPoolCleaner implementation
359 //
360 
361 class ChunkPoolCleaner : public PeriodicTask {
362   enum { CleaningInterval = 5000 };      // cleaning interval in ms
363 
364  public:
ChunkPoolCleaner()365    ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
task()366    void task() {
367      ChunkPool::clean();
368    }
369 };
370 
371 //--------------------------------------------------------------------------------------
372 // Chunk implementation
373 
operator new(size_t requested_size,AllocFailType alloc_failmode,size_t length)374 void* Chunk::operator new (size_t requested_size, AllocFailType alloc_failmode, size_t length) throw() {
375   // requested_size is equal to sizeof(Chunk) but in order for the arena
376   // allocations to come out aligned as expected the size must be aligned
377   // to expected arena alignment.
378   // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
379   assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
380   size_t bytes = ARENA_ALIGN(requested_size) + length;
381   switch (length) {
382    case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes, alloc_failmode);
383    case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes, alloc_failmode);
384    case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes, alloc_failmode);
385    case Chunk::tiny_size:   return ChunkPool::tiny_pool()->allocate(bytes, alloc_failmode);
386    default: {
387      void* p = os::malloc(bytes, mtChunk, CALLER_PC);
388      if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
389        vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "Chunk::new");
390      }
391      return p;
392    }
393   }
394 }
395 
operator delete(void * p)396 void Chunk::operator delete(void* p) {
397   Chunk* c = (Chunk*)p;
398   switch (c->length()) {
399    case Chunk::size:        ChunkPool::large_pool()->free(c); break;
400    case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
401    case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
402    case Chunk::tiny_size:   ChunkPool::tiny_pool()->free(c); break;
403    default:                 os::free(c, mtChunk);
404   }
405 }
406 
Chunk(size_t length)407 Chunk::Chunk(size_t length) : _len(length) {
408   _next = NULL;         // Chain on the linked list
409 }
410 
411 
chop()412 void Chunk::chop() {
413   Chunk *k = this;
414   while( k ) {
415     Chunk *tmp = k->next();
416     // clear out this chunk (to detect allocation bugs)
417     if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
418     delete k;                   // Free chunk (was malloc'd)
419     k = tmp;
420   }
421 }
422 
next_chop()423 void Chunk::next_chop() {
424   _next->chop();
425   _next = NULL;
426 }
427 
428 
start_chunk_pool_cleaner_task()429 void Chunk::start_chunk_pool_cleaner_task() {
430 #ifdef ASSERT
431   static bool task_created = false;
432   assert(!task_created, "should not start chuck pool cleaner twice");
433   task_created = true;
434 #endif
435   ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
436   cleaner->enroll();
437 }
438 
439 //------------------------------Arena------------------------------------------
Arena(MEMFLAGS flag,size_t init_size)440 Arena::Arena(MEMFLAGS flag, size_t init_size) : _flags(flag), _size_in_bytes(0)  {
441   size_t round_size = (sizeof (char *)) - 1;
442   init_size = (init_size+round_size) & ~round_size;
443   _first = _chunk = new (AllocFailStrategy::EXIT_OOM, init_size) Chunk(init_size);
444   _hwm = _chunk->bottom();      // Save the cached hwm, max
445   _max = _chunk->top();
446   MemTracker::record_new_arena(flag);
447   set_size_in_bytes(init_size);
448 }
449 
Arena(MEMFLAGS flag)450 Arena::Arena(MEMFLAGS flag) : _flags(flag), _size_in_bytes(0) {
451   _first = _chunk = new (AllocFailStrategy::EXIT_OOM, Chunk::init_size) Chunk(Chunk::init_size);
452   _hwm = _chunk->bottom();      // Save the cached hwm, max
453   _max = _chunk->top();
454   MemTracker::record_new_arena(flag);
455   set_size_in_bytes(Chunk::init_size);
456 }
457 
move_contents(Arena * copy)458 Arena *Arena::move_contents(Arena *copy) {
459   copy->destruct_contents();
460   copy->_chunk = _chunk;
461   copy->_hwm   = _hwm;
462   copy->_max   = _max;
463   copy->_first = _first;
464 
465   // workaround rare racing condition, which could double count
466   // the arena size by native memory tracking
467   size_t size = size_in_bytes();
468   set_size_in_bytes(0);
469   copy->set_size_in_bytes(size);
470   // Destroy original arena
471   reset();
472   return copy;            // Return Arena with contents
473 }
474 
~Arena()475 Arena::~Arena() {
476   destruct_contents();
477   MemTracker::record_arena_free(_flags);
478 }
479 
operator new(size_t size)480 void* Arena::operator new(size_t size) throw() {
481   assert(false, "Use dynamic memory type binding");
482   return NULL;
483 }
484 
operator new(size_t size,const std::nothrow_t & nothrow_constant)485 void* Arena::operator new (size_t size, const std::nothrow_t&  nothrow_constant) throw() {
486   assert(false, "Use dynamic memory type binding");
487   return NULL;
488 }
489 
490   // dynamic memory type binding
operator new(size_t size,MEMFLAGS flags)491 void* Arena::operator new(size_t size, MEMFLAGS flags) throw() {
492 #ifdef ASSERT
493   void* p = (void*)AllocateHeap(size, flags, CALLER_PC);
494   if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
495   return p;
496 #else
497   return (void *) AllocateHeap(size, flags, CALLER_PC);
498 #endif
499 }
500 
operator new(size_t size,const std::nothrow_t & nothrow_constant,MEMFLAGS flags)501 void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) throw() {
502 #ifdef ASSERT
503   void* p = os::malloc(size, flags, CALLER_PC);
504   if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
505   return p;
506 #else
507   return os::malloc(size, flags, CALLER_PC);
508 #endif
509 }
510 
operator delete(void * p)511 void Arena::operator delete(void* p) {
512   FreeHeap(p);
513 }
514 
515 // Destroy this arenas contents and reset to empty
destruct_contents()516 void Arena::destruct_contents() {
517   if (UseMallocOnly && _first != NULL) {
518     char* end = _first->next() ? _first->top() : _hwm;
519     free_malloced_objects(_first, _first->bottom(), end, _hwm);
520   }
521   // reset size before chop to avoid a rare racing condition
522   // that can have total arena memory exceed total chunk memory
523   set_size_in_bytes(0);
524   _first->chop();
525   reset();
526 }
527 
528 // This is high traffic method, but many calls actually don't
529 // change the size
set_size_in_bytes(size_t size)530 void Arena::set_size_in_bytes(size_t size) {
531   if (_size_in_bytes != size) {
532     ssize_t delta = size - size_in_bytes();
533     _size_in_bytes = size;
534     MemTracker::record_arena_size_change(delta, _flags);
535   }
536 }
537 
538 // Total of all Chunks in arena
used() const539 size_t Arena::used() const {
540   size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
541   register Chunk *k = _first;
542   while( k != _chunk) {         // Whilst have Chunks in a row
543     sum += k->length();         // Total size of this Chunk
544     k = k->next();              // Bump along to next Chunk
545   }
546   return sum;                   // Return total consumed space.
547 }
548 
signal_out_of_memory(size_t sz,const char * whence) const549 void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
550   vm_exit_out_of_memory(sz, OOM_MALLOC_ERROR, whence);
551 }
552 
553 // Grow a new Chunk
grow(size_t x,AllocFailType alloc_failmode)554 void* Arena::grow(size_t x, AllocFailType alloc_failmode) {
555   // Get minimal required size.  Either real big, or even bigger for giant objs
556   size_t len = MAX2(x, (size_t) Chunk::size);
557 
558   Chunk *k = _chunk;            // Get filled-up chunk address
559   _chunk = new (alloc_failmode, len) Chunk(len);
560 
561   if (_chunk == NULL) {
562     _chunk = k;                 // restore the previous value of _chunk
563     return NULL;
564   }
565   if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
566   else _first = _chunk;
567   _hwm  = _chunk->bottom();     // Save the cached hwm, max
568   _max =  _chunk->top();
569   set_size_in_bytes(size_in_bytes() + len);
570   void* result = _hwm;
571   _hwm += x;
572   return result;
573 }
574 
575 
576 
577 // Reallocate storage in Arena.
Arealloc(void * old_ptr,size_t old_size,size_t new_size,AllocFailType alloc_failmode)578 void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size, AllocFailType alloc_failmode) {
579   assert(new_size >= 0, "bad size");
580   if (new_size == 0) return NULL;
581 #ifdef ASSERT
582   if (UseMallocOnly) {
583     // always allocate a new object  (otherwise we'll free this one twice)
584     char* copy = (char*)Amalloc(new_size, alloc_failmode);
585     if (copy == NULL) {
586       return NULL;
587     }
588     size_t n = MIN2(old_size, new_size);
589     if (n > 0) memcpy(copy, old_ptr, n);
590     Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
591     return copy;
592   }
593 #endif
594   char *c_old = (char*)old_ptr; // Handy name
595   // Stupid fast special case
596   if( new_size <= old_size ) {  // Shrink in-place
597     if( c_old+old_size == _hwm) // Attempt to free the excess bytes
598       _hwm = c_old+new_size;    // Adjust hwm
599     return c_old;
600   }
601 
602   // make sure that new_size is legal
603   size_t corrected_new_size = ARENA_ALIGN(new_size);
604 
605   // See if we can resize in-place
606   if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
607       (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
608     _hwm = c_old+corrected_new_size;      // Adjust hwm
609     return c_old;               // Return old pointer
610   }
611 
612   // Oops, got to relocate guts
613   void *new_ptr = Amalloc(new_size, alloc_failmode);
614   if (new_ptr == NULL) {
615     return NULL;
616   }
617   memcpy( new_ptr, c_old, old_size );
618   Afree(c_old,old_size);        // Mostly done to keep stats accurate
619   return new_ptr;
620 }
621 
622 
623 // Determine if pointer belongs to this Arena or not.
contains(const void * ptr) const624 bool Arena::contains( const void *ptr ) const {
625 #ifdef ASSERT
626   if (UseMallocOnly) {
627     // really slow, but not easy to make fast
628     if (_chunk == NULL) return false;
629     char** bottom = (char**)_chunk->bottom();
630     for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
631       if (*p == ptr) return true;
632     }
633     for (Chunk *c = _first; c != NULL; c = c->next()) {
634       if (c == _chunk) continue;  // current chunk has been processed
635       char** bottom = (char**)c->bottom();
636       for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
637         if (*p == ptr) return true;
638       }
639     }
640     return false;
641   }
642 #endif
643   if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
644     return true;                // Check for in this chunk
645   for (Chunk *c = _first; c; c = c->next()) {
646     if (c == _chunk) continue;  // current chunk has been processed
647     if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
648       return true;              // Check for every chunk in Arena
649     }
650   }
651   return false;                 // Not in any Chunk, so not in Arena
652 }
653 
654 
655 #ifdef ASSERT
malloc(size_t size)656 void* Arena::malloc(size_t size) {
657   assert(UseMallocOnly, "shouldn't call");
658   // use malloc, but save pointer in res. area for later freeing
659   char** save = (char**)internal_malloc_4(sizeof(char*));
660   return (*save = (char*)os::malloc(size, mtChunk));
661 }
662 
663 // for debugging with UseMallocOnly
internal_malloc_4(size_t x)664 void* Arena::internal_malloc_4(size_t x) {
665   assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
666   check_for_overflow(x, "Arena::internal_malloc_4");
667   if (_hwm + x > _max) {
668     return grow(x);
669   } else {
670     char *old = _hwm;
671     _hwm += x;
672     return old;
673   }
674 }
675 #endif
676 
677 
678 //--------------------------------------------------------------------------------------
679 // Non-product code
680 
681 #ifndef PRODUCT
682 // The global operator new should never be called since it will usually indicate
683 // a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
684 // that they're allocated on the C heap.
685 // Commented out in product version to avoid conflicts with third-party C++ native code.
686 // On certain platforms, such as Mac OS X (Darwin), in debug version, new is being called
687 // from jdk source and causing data corruption. Such as
688 //  Java_sun_security_ec_ECKeyPairGenerator_generateECKeyPair
689 // define ALLOW_OPERATOR_NEW_USAGE for platform on which global operator new allowed.
690 //
691 #ifndef ALLOW_OPERATOR_NEW_USAGE
operator new(size_t size)692 void* operator new(size_t size) throw() {
693   assert(false, "Should not call global operator new");
694   return 0;
695 }
696 
operator new[](size_t size)697 void* operator new [](size_t size) throw() {
698   assert(false, "Should not call global operator new[]");
699   return 0;
700 }
701 
operator new(size_t size,const std::nothrow_t & nothrow_constant)702 void* operator new(size_t size, const std::nothrow_t&  nothrow_constant) throw() {
703   assert(false, "Should not call global operator new");
704   return 0;
705 }
706 
operator new[](size_t size,std::nothrow_t & nothrow_constant)707 void* operator new [](size_t size, std::nothrow_t&  nothrow_constant) throw() {
708   assert(false, "Should not call global operator new[]");
709   return 0;
710 }
711 
operator delete(void * p)712 void operator delete(void* p) {
713   assert(false, "Should not call global delete");
714 }
715 
operator delete[](void * p)716 void operator delete [](void* p) {
717   assert(false, "Should not call global delete []");
718 }
719 #endif // ALLOW_OPERATOR_NEW_USAGE
720 
print() const721 void AllocatedObj::print() const       { print_on(tty); }
print_value() const722 void AllocatedObj::print_value() const { print_value_on(tty); }
723 
print_on(outputStream * st) const724 void AllocatedObj::print_on(outputStream* st) const {
725   st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", p2i(this));
726 }
727 
print_value_on(outputStream * st) const728 void AllocatedObj::print_value_on(outputStream* st) const {
729   st->print("AllocatedObj(" INTPTR_FORMAT ")", p2i(this));
730 }
731 
732 julong Arena::_bytes_allocated = 0;
733 
inc_bytes_allocated(size_t x)734 void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
735 
AllocStats()736 AllocStats::AllocStats() {
737   start_mallocs      = os::num_mallocs;
738   start_frees        = os::num_frees;
739   start_malloc_bytes = os::alloc_bytes;
740   start_mfree_bytes  = os::free_bytes;
741   start_res_bytes    = Arena::_bytes_allocated;
742 }
743 
num_mallocs()744 julong  AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
alloc_bytes()745 julong  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
num_frees()746 julong  AllocStats::num_frees()   { return os::num_frees - start_frees; }
free_bytes()747 julong  AllocStats::free_bytes()  { return os::free_bytes - start_mfree_bytes; }
resource_bytes()748 julong  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
print()749 void    AllocStats::print() {
750   tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
751                 UINT64_FORMAT " frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
752                 num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
753 }
754 
755 
756 // debugging code
free_all(char ** start,char ** end)757 inline void Arena::free_all(char** start, char** end) {
758   for (char** p = start; p < end; p++) if (*p) os::free(*p);
759 }
760 
free_malloced_objects(Chunk * chunk,char * hwm,char * max,char * hwm2)761 void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
762   assert(UseMallocOnly, "should not call");
763   // free all objects malloced since resource mark was created; resource area
764   // contains their addresses
765   if (chunk->next()) {
766     // this chunk is full, and some others too
767     for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
768       char* top = c->top();
769       if (c->next() == NULL) {
770         top = hwm2;     // last junk is only used up to hwm2
771         assert(c->contains(hwm2), "bad hwm2");
772       }
773       free_all((char**)c->bottom(), (char**)top);
774     }
775     assert(chunk->contains(hwm), "bad hwm");
776     assert(chunk->contains(max), "bad max");
777     free_all((char**)hwm, (char**)max);
778   } else {
779     // this chunk was partially used
780     assert(chunk->contains(hwm), "bad hwm");
781     assert(chunk->contains(hwm2), "bad hwm2");
782     free_all((char**)hwm, (char**)hwm2);
783   }
784 }
785 
786 
ReallocMark()787 ReallocMark::ReallocMark() {
788 #ifdef ASSERT
789   Thread *thread = ThreadLocalStorage::get_thread_slow();
790   _nesting = thread->resource_area()->nesting();
791 #endif
792 }
793 
check()794 void ReallocMark::check() {
795 #ifdef ASSERT
796   if (_nesting != Thread::current()->resource_area()->nesting()) {
797     fatal("allocation bug: array could grow within nested ResourceMark");
798   }
799 #endif
800 }
801 
802 #endif // Non-product
803