1 /* adler32.c -- compute the Adler-32 checksum of a data stream
2  * Copyright (C) 1995-2011 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 /* @(#) $Id$ */
7 
8 #ifdef HAVE_CONFIG_H
9 #  include "config.h"
10 #endif
11 #include "zutil.h"
12 
13 #define local static
14 
15 local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
16 
17 #define BASE 65521      /* largest prime smaller than 65536 */
18 #define NMAX 5552
19 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
20 
21 #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
22 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
23 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
24 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
25 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
26 
27 /* use NO_DIVIDE if your processor does not do division in hardware --
28    try it both ways to see which is faster */
29 #ifdef NO_DIVIDE
30 /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
31    (thank you to John Reiser for pointing this out) */
32 #  define CHOP(a) \
33     do { \
34         unsigned long tmp = a >> 16; \
35         a &= 0xffffUL; \
36         a += (tmp << 4) - tmp; \
37     } while (0)
38 #  define MOD28(a) \
39     do { \
40         CHOP(a); \
41         if (a >= BASE) a -= BASE; \
42     } while (0)
43 #  define MOD(a) \
44     do { \
45         CHOP(a); \
46         MOD28(a); \
47     } while (0)
48 #  define MOD63(a) \
49     do { /* this assumes a is not negative */ \
50         z_off64_t tmp = a >> 32; \
51         a &= 0xffffffffL; \
52         a += (tmp << 8) - (tmp << 5) + tmp; \
53         tmp = a >> 16; \
54         a &= 0xffffL; \
55         a += (tmp << 4) - tmp; \
56         tmp = a >> 16; \
57         a &= 0xffffL; \
58         a += (tmp << 4) - tmp; \
59         if (a >= BASE) a -= BASE; \
60     } while (0)
61 #else
62 #  define MOD(a) a %= BASE
63 #  define MOD28(a) a %= BASE
64 #  define MOD63(a) a %= BASE
65 #endif
66 
67 /* ========================================================================= */
adler32(adler,buf,len)68 uLong ZEXPORT adler32(adler, buf, len)
69     uLong adler;
70     const Bytef *buf;
71     uInt len;
72 {
73     unsigned long sum2;
74     unsigned n;
75 
76     /* split Adler-32 into component sums */
77     sum2 = (adler >> 16) & 0xffff;
78     adler &= 0xffff;
79 
80     /* in case user likes doing a byte at a time, keep it fast */
81     if (len == 1) {
82         adler += buf[0];
83         if (adler >= BASE)
84             adler -= BASE;
85         sum2 += adler;
86         if (sum2 >= BASE)
87             sum2 -= BASE;
88         return adler | (sum2 << 16);
89     }
90 
91     /* initial Adler-32 value (deferred check for len == 1 speed) */
92     if (buf == Z_NULL)
93         return 1L;
94 
95     /* in case short lengths are provided, keep it somewhat fast */
96     if (len < 16) {
97         while (len--) {
98             adler += *buf++;
99             sum2 += adler;
100         }
101         if (adler >= BASE)
102             adler -= BASE;
103         MOD28(sum2);            /* only added so many BASE's */
104         return adler | (sum2 << 16);
105     }
106 
107     /* do length NMAX blocks -- requires just one modulo operation */
108     while (len >= NMAX) {
109         len -= NMAX;
110         n = NMAX / 16;          /* NMAX is divisible by 16 */
111         do {
112             DO16(buf);          /* 16 sums unrolled */
113             buf += 16;
114         } while (--n);
115         MOD(adler);
116         MOD(sum2);
117     }
118 
119     /* do remaining bytes (less than NMAX, still just one modulo) */
120     if (len) {                  /* avoid modulos if none remaining */
121         while (len >= 16) {
122             len -= 16;
123             DO16(buf);
124             buf += 16;
125         }
126         while (len--) {
127             adler += *buf++;
128             sum2 += adler;
129         }
130         MOD(adler);
131         MOD(sum2);
132     }
133 
134     /* return recombined sums */
135     return adler | (sum2 << 16);
136 }
137 
138 /* ========================================================================= */
adler32_combine_(adler1,adler2,len2)139 local uLong adler32_combine_(adler1, adler2, len2)
140     uLong adler1;
141     uLong adler2;
142     z_off64_t len2;
143 {
144     unsigned long sum1;
145     unsigned long sum2;
146     unsigned rem;
147 
148     /* for negative len, return invalid adler32 as a clue for debugging */
149     if (len2 < 0)
150         return 0xffffffffUL;
151 
152     /* the derivation of this formula is left as an exercise for the reader */
153     MOD63(len2);                /* assumes len2 >= 0 */
154     rem = (unsigned)len2;
155     sum1 = adler1 & 0xffff;
156     sum2 = rem * sum1;
157     MOD(sum2);
158     sum1 += (adler2 & 0xffff) + BASE - 1;
159     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
160     if (sum1 >= BASE) sum1 -= BASE;
161     if (sum1 >= BASE) sum1 -= BASE;
162     if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1);
163     if (sum2 >= BASE) sum2 -= BASE;
164     return sum1 | (sum2 << 16);
165 }
166 
167 /* ========================================================================= */
adler32_combine(adler1,adler2,len2)168 uLong ZEXPORT adler32_combine(adler1, adler2, len2)
169     uLong adler1;
170     uLong adler2;
171     z_off_t len2;
172 {
173     return adler32_combine_(adler1, adler2, len2);
174 }
175 
adler32_combine64(adler1,adler2,len2)176 uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
177     uLong adler1;
178     uLong adler2;
179     z_off64_t len2;
180 {
181     return adler32_combine_(adler1, adler2, len2);
182 }
183