1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package strconv
6
7import (
8	"math/bits"
9)
10
11// An extFloat represents an extended floating-point number, with more
12// precision than a float64. It does not try to save bits: the
13// number represented by the structure is mant*(2^exp), with a negative
14// sign if neg is true.
15type extFloat struct {
16	mant uint64
17	exp  int
18	neg  bool
19}
20
21// Powers of ten taken from double-conversion library.
22// https://code.google.com/p/double-conversion/
23const (
24	firstPowerOfTen = -348
25	stepPowerOfTen  = 8
26)
27
28var smallPowersOfTen = [...]extFloat{
29	{1 << 63, -63, false},        // 1
30	{0xa << 60, -60, false},      // 1e1
31	{0x64 << 57, -57, false},     // 1e2
32	{0x3e8 << 54, -54, false},    // 1e3
33	{0x2710 << 50, -50, false},   // 1e4
34	{0x186a0 << 47, -47, false},  // 1e5
35	{0xf4240 << 44, -44, false},  // 1e6
36	{0x989680 << 40, -40, false}, // 1e7
37}
38
39var powersOfTen = [...]extFloat{
40	{0xfa8fd5a0081c0288, -1220, false}, // 10^-348
41	{0xbaaee17fa23ebf76, -1193, false}, // 10^-340
42	{0x8b16fb203055ac76, -1166, false}, // 10^-332
43	{0xcf42894a5dce35ea, -1140, false}, // 10^-324
44	{0x9a6bb0aa55653b2d, -1113, false}, // 10^-316
45	{0xe61acf033d1a45df, -1087, false}, // 10^-308
46	{0xab70fe17c79ac6ca, -1060, false}, // 10^-300
47	{0xff77b1fcbebcdc4f, -1034, false}, // 10^-292
48	{0xbe5691ef416bd60c, -1007, false}, // 10^-284
49	{0x8dd01fad907ffc3c, -980, false},  // 10^-276
50	{0xd3515c2831559a83, -954, false},  // 10^-268
51	{0x9d71ac8fada6c9b5, -927, false},  // 10^-260
52	{0xea9c227723ee8bcb, -901, false},  // 10^-252
53	{0xaecc49914078536d, -874, false},  // 10^-244
54	{0x823c12795db6ce57, -847, false},  // 10^-236
55	{0xc21094364dfb5637, -821, false},  // 10^-228
56	{0x9096ea6f3848984f, -794, false},  // 10^-220
57	{0xd77485cb25823ac7, -768, false},  // 10^-212
58	{0xa086cfcd97bf97f4, -741, false},  // 10^-204
59	{0xef340a98172aace5, -715, false},  // 10^-196
60	{0xb23867fb2a35b28e, -688, false},  // 10^-188
61	{0x84c8d4dfd2c63f3b, -661, false},  // 10^-180
62	{0xc5dd44271ad3cdba, -635, false},  // 10^-172
63	{0x936b9fcebb25c996, -608, false},  // 10^-164
64	{0xdbac6c247d62a584, -582, false},  // 10^-156
65	{0xa3ab66580d5fdaf6, -555, false},  // 10^-148
66	{0xf3e2f893dec3f126, -529, false},  // 10^-140
67	{0xb5b5ada8aaff80b8, -502, false},  // 10^-132
68	{0x87625f056c7c4a8b, -475, false},  // 10^-124
69	{0xc9bcff6034c13053, -449, false},  // 10^-116
70	{0x964e858c91ba2655, -422, false},  // 10^-108
71	{0xdff9772470297ebd, -396, false},  // 10^-100
72	{0xa6dfbd9fb8e5b88f, -369, false},  // 10^-92
73	{0xf8a95fcf88747d94, -343, false},  // 10^-84
74	{0xb94470938fa89bcf, -316, false},  // 10^-76
75	{0x8a08f0f8bf0f156b, -289, false},  // 10^-68
76	{0xcdb02555653131b6, -263, false},  // 10^-60
77	{0x993fe2c6d07b7fac, -236, false},  // 10^-52
78	{0xe45c10c42a2b3b06, -210, false},  // 10^-44
79	{0xaa242499697392d3, -183, false},  // 10^-36
80	{0xfd87b5f28300ca0e, -157, false},  // 10^-28
81	{0xbce5086492111aeb, -130, false},  // 10^-20
82	{0x8cbccc096f5088cc, -103, false},  // 10^-12
83	{0xd1b71758e219652c, -77, false},   // 10^-4
84	{0x9c40000000000000, -50, false},   // 10^4
85	{0xe8d4a51000000000, -24, false},   // 10^12
86	{0xad78ebc5ac620000, 3, false},     // 10^20
87	{0x813f3978f8940984, 30, false},    // 10^28
88	{0xc097ce7bc90715b3, 56, false},    // 10^36
89	{0x8f7e32ce7bea5c70, 83, false},    // 10^44
90	{0xd5d238a4abe98068, 109, false},   // 10^52
91	{0x9f4f2726179a2245, 136, false},   // 10^60
92	{0xed63a231d4c4fb27, 162, false},   // 10^68
93	{0xb0de65388cc8ada8, 189, false},   // 10^76
94	{0x83c7088e1aab65db, 216, false},   // 10^84
95	{0xc45d1df942711d9a, 242, false},   // 10^92
96	{0x924d692ca61be758, 269, false},   // 10^100
97	{0xda01ee641a708dea, 295, false},   // 10^108
98	{0xa26da3999aef774a, 322, false},   // 10^116
99	{0xf209787bb47d6b85, 348, false},   // 10^124
100	{0xb454e4a179dd1877, 375, false},   // 10^132
101	{0x865b86925b9bc5c2, 402, false},   // 10^140
102	{0xc83553c5c8965d3d, 428, false},   // 10^148
103	{0x952ab45cfa97a0b3, 455, false},   // 10^156
104	{0xde469fbd99a05fe3, 481, false},   // 10^164
105	{0xa59bc234db398c25, 508, false},   // 10^172
106	{0xf6c69a72a3989f5c, 534, false},   // 10^180
107	{0xb7dcbf5354e9bece, 561, false},   // 10^188
108	{0x88fcf317f22241e2, 588, false},   // 10^196
109	{0xcc20ce9bd35c78a5, 614, false},   // 10^204
110	{0x98165af37b2153df, 641, false},   // 10^212
111	{0xe2a0b5dc971f303a, 667, false},   // 10^220
112	{0xa8d9d1535ce3b396, 694, false},   // 10^228
113	{0xfb9b7cd9a4a7443c, 720, false},   // 10^236
114	{0xbb764c4ca7a44410, 747, false},   // 10^244
115	{0x8bab8eefb6409c1a, 774, false},   // 10^252
116	{0xd01fef10a657842c, 800, false},   // 10^260
117	{0x9b10a4e5e9913129, 827, false},   // 10^268
118	{0xe7109bfba19c0c9d, 853, false},   // 10^276
119	{0xac2820d9623bf429, 880, false},   // 10^284
120	{0x80444b5e7aa7cf85, 907, false},   // 10^292
121	{0xbf21e44003acdd2d, 933, false},   // 10^300
122	{0x8e679c2f5e44ff8f, 960, false},   // 10^308
123	{0xd433179d9c8cb841, 986, false},   // 10^316
124	{0x9e19db92b4e31ba9, 1013, false},  // 10^324
125	{0xeb96bf6ebadf77d9, 1039, false},  // 10^332
126	{0xaf87023b9bf0ee6b, 1066, false},  // 10^340
127}
128
129// floatBits returns the bits of the float64 that best approximates
130// the extFloat passed as receiver. Overflow is set to true if
131// the resulting float64 is ±Inf.
132func (f *extFloat) floatBits(flt *floatInfo) (bits uint64, overflow bool) {
133	f.Normalize()
134
135	exp := f.exp + 63
136
137	// Exponent too small.
138	if exp < flt.bias+1 {
139		n := flt.bias + 1 - exp
140		f.mant >>= uint(n)
141		exp += n
142	}
143
144	// Extract 1+flt.mantbits bits from the 64-bit mantissa.
145	mant := f.mant >> (63 - flt.mantbits)
146	if f.mant&(1<<(62-flt.mantbits)) != 0 {
147		// Round up.
148		mant += 1
149	}
150
151	// Rounding might have added a bit; shift down.
152	if mant == 2<<flt.mantbits {
153		mant >>= 1
154		exp++
155	}
156
157	// Infinities.
158	if exp-flt.bias >= 1<<flt.expbits-1 {
159		// ±Inf
160		mant = 0
161		exp = 1<<flt.expbits - 1 + flt.bias
162		overflow = true
163	} else if mant&(1<<flt.mantbits) == 0 {
164		// Denormalized?
165		exp = flt.bias
166	}
167	// Assemble bits.
168	bits = mant & (uint64(1)<<flt.mantbits - 1)
169	bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
170	if f.neg {
171		bits |= 1 << (flt.mantbits + flt.expbits)
172	}
173	return
174}
175
176// AssignComputeBounds sets f to the floating point value
177// defined by mant, exp and precision given by flt. It returns
178// lower, upper such that any number in the closed interval
179// [lower, upper] is converted back to the same floating point number.
180func (f *extFloat) AssignComputeBounds(mant uint64, exp int, neg bool, flt *floatInfo) (lower, upper extFloat) {
181	f.mant = mant
182	f.exp = exp - int(flt.mantbits)
183	f.neg = neg
184	if f.exp <= 0 && mant == (mant>>uint(-f.exp))<<uint(-f.exp) {
185		// An exact integer
186		f.mant >>= uint(-f.exp)
187		f.exp = 0
188		return *f, *f
189	}
190	expBiased := exp - flt.bias
191
192	upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg}
193	if mant != 1<<flt.mantbits || expBiased == 1 {
194		lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg}
195	} else {
196		lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg}
197	}
198	return
199}
200
201// Normalize normalizes f so that the highest bit of the mantissa is
202// set, and returns the number by which the mantissa was left-shifted.
203func (f *extFloat) Normalize() uint {
204	// bits.LeadingZeros64 would return 64
205	if f.mant == 0 {
206		return 0
207	}
208	shift := bits.LeadingZeros64(f.mant)
209	f.mant <<= uint(shift)
210	f.exp -= shift
211	return uint(shift)
212}
213
214// Multiply sets f to the product f*g: the result is correctly rounded,
215// but not normalized.
216func (f *extFloat) Multiply(g extFloat) {
217	hi, lo := bits.Mul64(f.mant, g.mant)
218	// Round up.
219	f.mant = hi + (lo >> 63)
220	f.exp = f.exp + g.exp + 64
221}
222
223var uint64pow10 = [...]uint64{
224	1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
225	1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
226}
227
228// AssignDecimal sets f to an approximate value mantissa*10^exp. It
229// reports whether the value represented by f is guaranteed to be the
230// best approximation of d after being rounded to a float64 or
231// float32 depending on flt.
232func (f *extFloat) AssignDecimal(mantissa uint64, exp10 int, neg bool, trunc bool, flt *floatInfo) (ok bool) {
233	const uint64digits = 19
234	const errorscale = 8
235	errors := 0 // An upper bound for error, computed in errorscale*ulp.
236	if trunc {
237		// the decimal number was truncated.
238		errors += errorscale / 2
239	}
240
241	f.mant = mantissa
242	f.exp = 0
243	f.neg = neg
244
245	// Multiply by powers of ten.
246	i := (exp10 - firstPowerOfTen) / stepPowerOfTen
247	if exp10 < firstPowerOfTen || i >= len(powersOfTen) {
248		return false
249	}
250	adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen
251
252	// We multiply by exp%step
253	if adjExp < uint64digits && mantissa < uint64pow10[uint64digits-adjExp] {
254		// We can multiply the mantissa exactly.
255		f.mant *= uint64pow10[adjExp]
256		f.Normalize()
257	} else {
258		f.Normalize()
259		f.Multiply(smallPowersOfTen[adjExp])
260		errors += errorscale / 2
261	}
262
263	// We multiply by 10 to the exp - exp%step.
264	f.Multiply(powersOfTen[i])
265	if errors > 0 {
266		errors += 1
267	}
268	errors += errorscale / 2
269
270	// Normalize
271	shift := f.Normalize()
272	errors <<= shift
273
274	// Now f is a good approximation of the decimal.
275	// Check whether the error is too large: that is, if the mantissa
276	// is perturbated by the error, the resulting float64 will change.
277	// The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits.
278	//
279	// In many cases the approximation will be good enough.
280	denormalExp := flt.bias - 63
281	var extrabits uint
282	if f.exp <= denormalExp {
283		// f.mant * 2^f.exp is smaller than 2^(flt.bias+1).
284		extrabits = 63 - flt.mantbits + 1 + uint(denormalExp-f.exp)
285	} else {
286		extrabits = 63 - flt.mantbits
287	}
288
289	halfway := uint64(1) << (extrabits - 1)
290	mant_extra := f.mant & (1<<extrabits - 1)
291
292	// Do a signed comparison here! If the error estimate could make
293	// the mantissa round differently for the conversion to double,
294	// then we can't give a definite answer.
295	if int64(halfway)-int64(errors) < int64(mant_extra) &&
296		int64(mant_extra) < int64(halfway)+int64(errors) {
297		return false
298	}
299	return true
300}
301
302// Frexp10 is an analogue of math.Frexp for decimal powers. It scales
303// f by an approximate power of ten 10^-exp, and returns exp10, so
304// that f*10^exp10 has the same value as the old f, up to an ulp,
305// as well as the index of 10^-exp in the powersOfTen table.
306func (f *extFloat) frexp10() (exp10, index int) {
307	// The constants expMin and expMax constrain the final value of the
308	// binary exponent of f. We want a small integral part in the result
309	// because finding digits of an integer requires divisions, whereas
310	// digits of the fractional part can be found by repeatedly multiplying
311	// by 10.
312	const expMin = -60
313	const expMax = -32
314	// Find power of ten such that x * 10^n has a binary exponent
315	// between expMin and expMax.
316	approxExp10 := ((expMin+expMax)/2 - f.exp) * 28 / 93 // log(10)/log(2) is close to 93/28.
317	i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen
318Loop:
319	for {
320		exp := f.exp + powersOfTen[i].exp + 64
321		switch {
322		case exp < expMin:
323			i++
324		case exp > expMax:
325			i--
326		default:
327			break Loop
328		}
329	}
330	// Apply the desired decimal shift on f. It will have exponent
331	// in the desired range. This is multiplication by 10^-exp10.
332	f.Multiply(powersOfTen[i])
333
334	return -(firstPowerOfTen + i*stepPowerOfTen), i
335}
336
337// frexp10Many applies a common shift by a power of ten to a, b, c.
338func frexp10Many(a, b, c *extFloat) (exp10 int) {
339	exp10, i := c.frexp10()
340	a.Multiply(powersOfTen[i])
341	b.Multiply(powersOfTen[i])
342	return
343}
344
345// FixedDecimal stores in d the first n significant digits
346// of the decimal representation of f. It returns false
347// if it cannot be sure of the answer.
348func (f *extFloat) FixedDecimal(d *decimalSlice, n int) bool {
349	if f.mant == 0 {
350		d.nd = 0
351		d.dp = 0
352		d.neg = f.neg
353		return true
354	}
355	if n == 0 {
356		panic("strconv: internal error: extFloat.FixedDecimal called with n == 0")
357	}
358	// Multiply by an appropriate power of ten to have a reasonable
359	// number to process.
360	f.Normalize()
361	exp10, _ := f.frexp10()
362
363	shift := uint(-f.exp)
364	integer := uint32(f.mant >> shift)
365	fraction := f.mant - (uint64(integer) << shift)
366	ε := uint64(1) // ε is the uncertainty we have on the mantissa of f.
367
368	// Write exactly n digits to d.
369	needed := n        // how many digits are left to write.
370	integerDigits := 0 // the number of decimal digits of integer.
371	pow10 := uint64(1) // the power of ten by which f was scaled.
372	for i, pow := 0, uint64(1); i < 20; i++ {
373		if pow > uint64(integer) {
374			integerDigits = i
375			break
376		}
377		pow *= 10
378	}
379	rest := integer
380	if integerDigits > needed {
381		// the integral part is already large, trim the last digits.
382		pow10 = uint64pow10[integerDigits-needed]
383		integer /= uint32(pow10)
384		rest -= integer * uint32(pow10)
385	} else {
386		rest = 0
387	}
388
389	// Write the digits of integer: the digits of rest are omitted.
390	var buf [32]byte
391	pos := len(buf)
392	for v := integer; v > 0; {
393		v1 := v / 10
394		v -= 10 * v1
395		pos--
396		buf[pos] = byte(v + '0')
397		v = v1
398	}
399	for i := pos; i < len(buf); i++ {
400		d.d[i-pos] = buf[i]
401	}
402	nd := len(buf) - pos
403	d.nd = nd
404	d.dp = integerDigits + exp10
405	needed -= nd
406
407	if needed > 0 {
408		if rest != 0 || pow10 != 1 {
409			panic("strconv: internal error, rest != 0 but needed > 0")
410		}
411		// Emit digits for the fractional part. Each time, 10*fraction
412		// fits in a uint64 without overflow.
413		for needed > 0 {
414			fraction *= 10
415			ε *= 10 // the uncertainty scales as we multiply by ten.
416			if 2*ε > 1<<shift {
417				// the error is so large it could modify which digit to write, abort.
418				return false
419			}
420			digit := fraction >> shift
421			d.d[nd] = byte(digit + '0')
422			fraction -= digit << shift
423			nd++
424			needed--
425		}
426		d.nd = nd
427	}
428
429	// We have written a truncation of f (a numerator / 10^d.dp). The remaining part
430	// can be interpreted as a small number (< 1) to be added to the last digit of the
431	// numerator.
432	//
433	// If rest > 0, the amount is:
434	//    (rest<<shift | fraction) / (pow10 << shift)
435	//    fraction being known with a ±ε uncertainty.
436	//    The fact that n > 0 guarantees that pow10 << shift does not overflow a uint64.
437	//
438	// If rest = 0, pow10 == 1 and the amount is
439	//    fraction / (1 << shift)
440	//    fraction being known with a ±ε uncertainty.
441	//
442	// We pass this information to the rounding routine for adjustment.
443
444	ok := adjustLastDigitFixed(d, uint64(rest)<<shift|fraction, pow10, shift, ε)
445	if !ok {
446		return false
447	}
448	// Trim trailing zeros.
449	for i := d.nd - 1; i >= 0; i-- {
450		if d.d[i] != '0' {
451			d.nd = i + 1
452			break
453		}
454	}
455	return true
456}
457
458// adjustLastDigitFixed assumes d contains the representation of the integral part
459// of some number, whose fractional part is num / (den << shift). The numerator
460// num is only known up to an uncertainty of size ε, assumed to be less than
461// (den << shift)/2.
462//
463// It will increase the last digit by one to account for correct rounding, typically
464// when the fractional part is greater than 1/2, and will return false if ε is such
465// that no correct answer can be given.
466func adjustLastDigitFixed(d *decimalSlice, num, den uint64, shift uint, ε uint64) bool {
467	if num > den<<shift {
468		panic("strconv: num > den<<shift in adjustLastDigitFixed")
469	}
470	if 2*ε > den<<shift {
471		panic("strconv: ε > (den<<shift)/2")
472	}
473	if 2*(num+ε) < den<<shift {
474		return true
475	}
476	if 2*(num-ε) > den<<shift {
477		// increment d by 1.
478		i := d.nd - 1
479		for ; i >= 0; i-- {
480			if d.d[i] == '9' {
481				d.nd--
482			} else {
483				break
484			}
485		}
486		if i < 0 {
487			d.d[0] = '1'
488			d.nd = 1
489			d.dp++
490		} else {
491			d.d[i]++
492		}
493		return true
494	}
495	return false
496}
497
498// ShortestDecimal stores in d the shortest decimal representation of f
499// which belongs to the open interval (lower, upper), where f is supposed
500// to lie. It returns false whenever the result is unsure. The implementation
501// uses the Grisu3 algorithm.
502func (f *extFloat) ShortestDecimal(d *decimalSlice, lower, upper *extFloat) bool {
503	if f.mant == 0 {
504		d.nd = 0
505		d.dp = 0
506		d.neg = f.neg
507		return true
508	}
509	if f.exp == 0 && *lower == *f && *lower == *upper {
510		// an exact integer.
511		var buf [24]byte
512		n := len(buf) - 1
513		for v := f.mant; v > 0; {
514			v1 := v / 10
515			v -= 10 * v1
516			buf[n] = byte(v + '0')
517			n--
518			v = v1
519		}
520		nd := len(buf) - n - 1
521		for i := 0; i < nd; i++ {
522			d.d[i] = buf[n+1+i]
523		}
524		d.nd, d.dp = nd, nd
525		for d.nd > 0 && d.d[d.nd-1] == '0' {
526			d.nd--
527		}
528		if d.nd == 0 {
529			d.dp = 0
530		}
531		d.neg = f.neg
532		return true
533	}
534	upper.Normalize()
535	// Uniformize exponents.
536	if f.exp > upper.exp {
537		f.mant <<= uint(f.exp - upper.exp)
538		f.exp = upper.exp
539	}
540	if lower.exp > upper.exp {
541		lower.mant <<= uint(lower.exp - upper.exp)
542		lower.exp = upper.exp
543	}
544
545	exp10 := frexp10Many(lower, f, upper)
546	// Take a safety margin due to rounding in frexp10Many, but we lose precision.
547	upper.mant++
548	lower.mant--
549
550	// The shortest representation of f is either rounded up or down, but
551	// in any case, it is a truncation of upper.
552	shift := uint(-upper.exp)
553	integer := uint32(upper.mant >> shift)
554	fraction := upper.mant - (uint64(integer) << shift)
555
556	// How far we can go down from upper until the result is wrong.
557	allowance := upper.mant - lower.mant
558	// How far we should go to get a very precise result.
559	targetDiff := upper.mant - f.mant
560
561	// Count integral digits: there are at most 10.
562	var integerDigits int
563	for i, pow := 0, uint64(1); i < 20; i++ {
564		if pow > uint64(integer) {
565			integerDigits = i
566			break
567		}
568		pow *= 10
569	}
570	for i := 0; i < integerDigits; i++ {
571		pow := uint64pow10[integerDigits-i-1]
572		digit := integer / uint32(pow)
573		d.d[i] = byte(digit + '0')
574		integer -= digit * uint32(pow)
575		// evaluate whether we should stop.
576		if currentDiff := uint64(integer)<<shift + fraction; currentDiff < allowance {
577			d.nd = i + 1
578			d.dp = integerDigits + exp10
579			d.neg = f.neg
580			// Sometimes allowance is so large the last digit might need to be
581			// decremented to get closer to f.
582			return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<<shift, 2)
583		}
584	}
585	d.nd = integerDigits
586	d.dp = d.nd + exp10
587	d.neg = f.neg
588
589	// Compute digits of the fractional part. At each step fraction does not
590	// overflow. The choice of minExp implies that fraction is less than 2^60.
591	var digit int
592	multiplier := uint64(1)
593	for {
594		fraction *= 10
595		multiplier *= 10
596		digit = int(fraction >> shift)
597		d.d[d.nd] = byte(digit + '0')
598		d.nd++
599		fraction -= uint64(digit) << shift
600		if fraction < allowance*multiplier {
601			// We are in the admissible range. Note that if allowance is about to
602			// overflow, that is, allowance > 2^64/10, the condition is automatically
603			// true due to the limited range of fraction.
604			return adjustLastDigit(d,
605				fraction, targetDiff*multiplier, allowance*multiplier,
606				1<<shift, multiplier*2)
607		}
608	}
609}
610
611// adjustLastDigit modifies d = x-currentDiff*ε, to get closest to
612// d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε.
613// It assumes that a decimal digit is worth ulpDecimal*ε, and that
614// all data is known with an error estimate of ulpBinary*ε.
615func adjustLastDigit(d *decimalSlice, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool {
616	if ulpDecimal < 2*ulpBinary {
617		// Approximation is too wide.
618		return false
619	}
620	for currentDiff+ulpDecimal/2+ulpBinary < targetDiff {
621		d.d[d.nd-1]--
622		currentDiff += ulpDecimal
623	}
624	if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary {
625		// we have two choices, and don't know what to do.
626		return false
627	}
628	if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary {
629		// we went too far
630		return false
631	}
632	if d.nd == 1 && d.d[0] == '0' {
633		// the number has actually reached zero.
634		d.nd = 0
635		d.dp = 0
636	}
637	return true
638}
639