1 // Map implementation -*- C++ -*-
2 
3 // Copyright (C) 2001-2020 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /*
26  *
27  * Copyright (c) 1994
28  * Hewlett-Packard Company
29  *
30  * Permission to use, copy, modify, distribute and sell this software
31  * and its documentation for any purpose is hereby granted without fee,
32  * provided that the above copyright notice appear in all copies and
33  * that both that copyright notice and this permission notice appear
34  * in supporting documentation.  Hewlett-Packard Company makes no
35  * representations about the suitability of this software for any
36  * purpose.  It is provided "as is" without express or implied warranty.
37  *
38  *
39  * Copyright (c) 1996,1997
40  * Silicon Graphics Computer Systems, Inc.
41  *
42  * Permission to use, copy, modify, distribute and sell this software
43  * and its documentation for any purpose is hereby granted without fee,
44  * provided that the above copyright notice appear in all copies and
45  * that both that copyright notice and this permission notice appear
46  * in supporting documentation.  Silicon Graphics makes no
47  * representations about the suitability of this software for any
48  * purpose.  It is provided "as is" without express or implied warranty.
49  */
50 
51 /** @file bits/stl_map.h
52  *  This is an internal header file, included by other library headers.
53  *  Do not attempt to use it directly. @headername{map}
54  */
55 
56 #ifndef _STL_MAP_H
57 #define _STL_MAP_H 1
58 
59 #include <bits/functexcept.h>
60 #include <bits/concept_check.h>
61 #if __cplusplus >= 201103L
62 #include <initializer_list>
63 #include <tuple>
64 #endif
65 
_GLIBCXX_VISIBILITY(default)66 namespace std _GLIBCXX_VISIBILITY(default)
67 {
68 _GLIBCXX_BEGIN_NAMESPACE_VERSION
69 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
70 
71   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
72     class multimap;
73 
74   /**
75    *  @brief A standard container made up of (key,value) pairs, which can be
76    *  retrieved based on a key, in logarithmic time.
77    *
78    *  @ingroup associative_containers
79    *
80    *  @tparam _Key  Type of key objects.
81    *  @tparam  _Tp  Type of mapped objects.
82    *  @tparam _Compare  Comparison function object type, defaults to less<_Key>.
83    *  @tparam _Alloc  Allocator type, defaults to
84    *                  allocator<pair<const _Key, _Tp>.
85    *
86    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
87    *  <a href="tables.html#66">reversible container</a>, and an
88    *  <a href="tables.html#69">associative container</a> (using unique keys).
89    *  For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
90    *  value_type is std::pair<const Key,T>.
91    *
92    *  Maps support bidirectional iterators.
93    *
94    *  The private tree data is declared exactly the same way for map and
95    *  multimap; the distinction is made entirely in how the tree functions are
96    *  called (*_unique versus *_equal, same as the standard).
97   */
98   template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
99 	    typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
100     class map
101     {
102     public:
103       typedef _Key					key_type;
104       typedef _Tp					mapped_type;
105       typedef std::pair<const _Key, _Tp>		value_type;
106       typedef _Compare					key_compare;
107       typedef _Alloc					allocator_type;
108 
109     private:
110 #ifdef _GLIBCXX_CONCEPT_CHECKS
111       // concept requirements
112       typedef typename _Alloc::value_type		_Alloc_value_type;
113 # if __cplusplus < 201103L
114       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
115 # endif
116       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
117 				_BinaryFunctionConcept)
118       __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
119 #endif
120 
121 #if __cplusplus >= 201103L
122 #if __cplusplus > 201703L || defined __STRICT_ANSI__
123       static_assert(is_same<typename _Alloc::value_type, value_type>::value,
124 	  "std::map must have the same value_type as its allocator");
125 #endif
126 #endif
127 
128     public:
129       class value_compare
130       : public std::binary_function<value_type, value_type, bool>
131       {
132 	friend class map<_Key, _Tp, _Compare, _Alloc>;
133       protected:
134 	_Compare comp;
135 
136 	value_compare(_Compare __c)
137 	: comp(__c) { }
138 
139       public:
140 	bool operator()(const value_type& __x, const value_type& __y) const
141 	{ return comp(__x.first, __y.first); }
142       };
143 
144     private:
145       /// This turns a red-black tree into a [multi]map.
146       typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
147 	rebind<value_type>::other _Pair_alloc_type;
148 
149       typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
150 		       key_compare, _Pair_alloc_type> _Rep_type;
151 
152       /// The actual tree structure.
153       _Rep_type _M_t;
154 
155       typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;
156 
157     public:
158       // many of these are specified differently in ISO, but the following are
159       // "functionally equivalent"
160       typedef typename _Alloc_traits::pointer		 pointer;
161       typedef typename _Alloc_traits::const_pointer	 const_pointer;
162       typedef typename _Alloc_traits::reference		 reference;
163       typedef typename _Alloc_traits::const_reference	 const_reference;
164       typedef typename _Rep_type::iterator		 iterator;
165       typedef typename _Rep_type::const_iterator	 const_iterator;
166       typedef typename _Rep_type::size_type		 size_type;
167       typedef typename _Rep_type::difference_type	 difference_type;
168       typedef typename _Rep_type::reverse_iterator	 reverse_iterator;
169       typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
170 
171 #if __cplusplus > 201402L
172       using node_type = typename _Rep_type::node_type;
173       using insert_return_type = typename _Rep_type::insert_return_type;
174 #endif
175 
176       // [23.3.1.1] construct/copy/destroy
177       // (get_allocator() is also listed in this section)
178 
179       /**
180        *  @brief  Default constructor creates no elements.
181        */
182 #if __cplusplus < 201103L
183       map() : _M_t() { }
184 #else
185       map() = default;
186 #endif
187 
188       /**
189        *  @brief  Creates a %map with no elements.
190        *  @param  __comp  A comparison object.
191        *  @param  __a  An allocator object.
192        */
193       explicit
194       map(const _Compare& __comp,
195 	  const allocator_type& __a = allocator_type())
196       : _M_t(__comp, _Pair_alloc_type(__a)) { }
197 
198       /**
199        *  @brief  %Map copy constructor.
200        *
201        *  Whether the allocator is copied depends on the allocator traits.
202        */
203 #if __cplusplus < 201103L
204       map(const map& __x)
205       : _M_t(__x._M_t) { }
206 #else
207       map(const map&) = default;
208 
209       /**
210        *  @brief  %Map move constructor.
211        *
212        *  The newly-created %map contains the exact contents of the moved
213        *  instance. The moved instance is a valid, but unspecified, %map.
214        */
215       map(map&&) = default;
216 
217       /**
218        *  @brief  Builds a %map from an initializer_list.
219        *  @param  __l  An initializer_list.
220        *  @param  __comp  A comparison object.
221        *  @param  __a  An allocator object.
222        *
223        *  Create a %map consisting of copies of the elements in the
224        *  initializer_list @a __l.
225        *  This is linear in N if the range is already sorted, and NlogN
226        *  otherwise (where N is @a __l.size()).
227        */
228       map(initializer_list<value_type> __l,
229 	  const _Compare& __comp = _Compare(),
230 	  const allocator_type& __a = allocator_type())
231       : _M_t(__comp, _Pair_alloc_type(__a))
232       { _M_t._M_insert_range_unique(__l.begin(), __l.end()); }
233 
234       /// Allocator-extended default constructor.
235       explicit
236       map(const allocator_type& __a)
237       : _M_t(_Pair_alloc_type(__a)) { }
238 
239       /// Allocator-extended copy constructor.
240       map(const map& __m, const allocator_type& __a)
241       : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
242 
243       /// Allocator-extended move constructor.
244       map(map&& __m, const allocator_type& __a)
245       noexcept(is_nothrow_copy_constructible<_Compare>::value
246 	       && _Alloc_traits::_S_always_equal())
247       : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
248 
249       /// Allocator-extended initialier-list constructor.
250       map(initializer_list<value_type> __l, const allocator_type& __a)
251       : _M_t(_Pair_alloc_type(__a))
252       { _M_t._M_insert_range_unique(__l.begin(), __l.end()); }
253 
254       /// Allocator-extended range constructor.
255       template<typename _InputIterator>
256 	map(_InputIterator __first, _InputIterator __last,
257 	    const allocator_type& __a)
258 	: _M_t(_Pair_alloc_type(__a))
259 	{ _M_t._M_insert_range_unique(__first, __last); }
260 #endif
261 
262       /**
263        *  @brief  Builds a %map from a range.
264        *  @param  __first  An input iterator.
265        *  @param  __last  An input iterator.
266        *
267        *  Create a %map consisting of copies of the elements from
268        *  [__first,__last).  This is linear in N if the range is
269        *  already sorted, and NlogN otherwise (where N is
270        *  distance(__first,__last)).
271        */
272       template<typename _InputIterator>
273 	map(_InputIterator __first, _InputIterator __last)
274 	: _M_t()
275 	{ _M_t._M_insert_range_unique(__first, __last); }
276 
277       /**
278        *  @brief  Builds a %map from a range.
279        *  @param  __first  An input iterator.
280        *  @param  __last  An input iterator.
281        *  @param  __comp  A comparison functor.
282        *  @param  __a  An allocator object.
283        *
284        *  Create a %map consisting of copies of the elements from
285        *  [__first,__last).  This is linear in N if the range is
286        *  already sorted, and NlogN otherwise (where N is
287        *  distance(__first,__last)).
288        */
289       template<typename _InputIterator>
290 	map(_InputIterator __first, _InputIterator __last,
291 	    const _Compare& __comp,
292 	    const allocator_type& __a = allocator_type())
293 	: _M_t(__comp, _Pair_alloc_type(__a))
294 	{ _M_t._M_insert_range_unique(__first, __last); }
295 
296 #if __cplusplus >= 201103L
297       /**
298        *  The dtor only erases the elements, and note that if the elements
299        *  themselves are pointers, the pointed-to memory is not touched in any
300        *  way.  Managing the pointer is the user's responsibility.
301        */
302       ~map() = default;
303 #endif
304 
305       /**
306        *  @brief  %Map assignment operator.
307        *
308        *  Whether the allocator is copied depends on the allocator traits.
309        */
310 #if __cplusplus < 201103L
311       map&
312       operator=(const map& __x)
313       {
314 	_M_t = __x._M_t;
315 	return *this;
316       }
317 #else
318       map&
319       operator=(const map&) = default;
320 
321       /// Move assignment operator.
322       map&
323       operator=(map&&) = default;
324 
325       /**
326        *  @brief  %Map list assignment operator.
327        *  @param  __l  An initializer_list.
328        *
329        *  This function fills a %map with copies of the elements in the
330        *  initializer list @a __l.
331        *
332        *  Note that the assignment completely changes the %map and
333        *  that the resulting %map's size is the same as the number
334        *  of elements assigned.
335        */
336       map&
337       operator=(initializer_list<value_type> __l)
338       {
339 	_M_t._M_assign_unique(__l.begin(), __l.end());
340 	return *this;
341       }
342 #endif
343 
344       /// Get a copy of the memory allocation object.
345       allocator_type
346       get_allocator() const _GLIBCXX_NOEXCEPT
347       { return allocator_type(_M_t.get_allocator()); }
348 
349       // iterators
350       /**
351        *  Returns a read/write iterator that points to the first pair in the
352        *  %map.
353        *  Iteration is done in ascending order according to the keys.
354        */
355       iterator
356       begin() _GLIBCXX_NOEXCEPT
357       { return _M_t.begin(); }
358 
359       /**
360        *  Returns a read-only (constant) iterator that points to the first pair
361        *  in the %map.  Iteration is done in ascending order according to the
362        *  keys.
363        */
364       const_iterator
365       begin() const _GLIBCXX_NOEXCEPT
366       { return _M_t.begin(); }
367 
368       /**
369        *  Returns a read/write iterator that points one past the last
370        *  pair in the %map.  Iteration is done in ascending order
371        *  according to the keys.
372        */
373       iterator
374       end() _GLIBCXX_NOEXCEPT
375       { return _M_t.end(); }
376 
377       /**
378        *  Returns a read-only (constant) iterator that points one past the last
379        *  pair in the %map.  Iteration is done in ascending order according to
380        *  the keys.
381        */
382       const_iterator
383       end() const _GLIBCXX_NOEXCEPT
384       { return _M_t.end(); }
385 
386       /**
387        *  Returns a read/write reverse iterator that points to the last pair in
388        *  the %map.  Iteration is done in descending order according to the
389        *  keys.
390        */
391       reverse_iterator
392       rbegin() _GLIBCXX_NOEXCEPT
393       { return _M_t.rbegin(); }
394 
395       /**
396        *  Returns a read-only (constant) reverse iterator that points to the
397        *  last pair in the %map.  Iteration is done in descending order
398        *  according to the keys.
399        */
400       const_reverse_iterator
401       rbegin() const _GLIBCXX_NOEXCEPT
402       { return _M_t.rbegin(); }
403 
404       /**
405        *  Returns a read/write reverse iterator that points to one before the
406        *  first pair in the %map.  Iteration is done in descending order
407        *  according to the keys.
408        */
409       reverse_iterator
410       rend() _GLIBCXX_NOEXCEPT
411       { return _M_t.rend(); }
412 
413       /**
414        *  Returns a read-only (constant) reverse iterator that points to one
415        *  before the first pair in the %map.  Iteration is done in descending
416        *  order according to the keys.
417        */
418       const_reverse_iterator
419       rend() const _GLIBCXX_NOEXCEPT
420       { return _M_t.rend(); }
421 
422 #if __cplusplus >= 201103L
423       /**
424        *  Returns a read-only (constant) iterator that points to the first pair
425        *  in the %map.  Iteration is done in ascending order according to the
426        *  keys.
427        */
428       const_iterator
429       cbegin() const noexcept
430       { return _M_t.begin(); }
431 
432       /**
433        *  Returns a read-only (constant) iterator that points one past the last
434        *  pair in the %map.  Iteration is done in ascending order according to
435        *  the keys.
436        */
437       const_iterator
438       cend() const noexcept
439       { return _M_t.end(); }
440 
441       /**
442        *  Returns a read-only (constant) reverse iterator that points to the
443        *  last pair in the %map.  Iteration is done in descending order
444        *  according to the keys.
445        */
446       const_reverse_iterator
447       crbegin() const noexcept
448       { return _M_t.rbegin(); }
449 
450       /**
451        *  Returns a read-only (constant) reverse iterator that points to one
452        *  before the first pair in the %map.  Iteration is done in descending
453        *  order according to the keys.
454        */
455       const_reverse_iterator
456       crend() const noexcept
457       { return _M_t.rend(); }
458 #endif
459 
460       // capacity
461       /** Returns true if the %map is empty.  (Thus begin() would equal
462        *  end().)
463       */
464       _GLIBCXX_NODISCARD bool
465       empty() const _GLIBCXX_NOEXCEPT
466       { return _M_t.empty(); }
467 
468       /** Returns the size of the %map.  */
469       size_type
470       size() const _GLIBCXX_NOEXCEPT
471       { return _M_t.size(); }
472 
473       /** Returns the maximum size of the %map.  */
474       size_type
475       max_size() const _GLIBCXX_NOEXCEPT
476       { return _M_t.max_size(); }
477 
478       // [23.3.1.2] element access
479       /**
480        *  @brief  Subscript ( @c [] ) access to %map data.
481        *  @param  __k  The key for which data should be retrieved.
482        *  @return  A reference to the data of the (key,data) %pair.
483        *
484        *  Allows for easy lookup with the subscript ( @c [] )
485        *  operator.  Returns data associated with the key specified in
486        *  subscript.  If the key does not exist, a pair with that key
487        *  is created using default values, which is then returned.
488        *
489        *  Lookup requires logarithmic time.
490        */
491       mapped_type&
492       operator[](const key_type& __k)
493       {
494 	// concept requirements
495 	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
496 
497 	iterator __i = lower_bound(__k);
498 	// __i->first is greater than or equivalent to __k.
499 	if (__i == end() || key_comp()(__k, (*__i).first))
500 #if __cplusplus >= 201103L
501 	  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
502 					    std::tuple<const key_type&>(__k),
503 					    std::tuple<>());
504 #else
505 	  __i = insert(__i, value_type(__k, mapped_type()));
506 #endif
507 	return (*__i).second;
508       }
509 
510 #if __cplusplus >= 201103L
511       mapped_type&
512       operator[](key_type&& __k)
513       {
514 	// concept requirements
515 	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
516 
517 	iterator __i = lower_bound(__k);
518 	// __i->first is greater than or equivalent to __k.
519 	if (__i == end() || key_comp()(__k, (*__i).first))
520 	  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
521 					std::forward_as_tuple(std::move(__k)),
522 					std::tuple<>());
523 	return (*__i).second;
524       }
525 #endif
526 
527       // _GLIBCXX_RESOLVE_LIB_DEFECTS
528       // DR 464. Suggestion for new member functions in standard containers.
529       /**
530        *  @brief  Access to %map data.
531        *  @param  __k  The key for which data should be retrieved.
532        *  @return  A reference to the data whose key is equivalent to @a __k, if
533        *           such a data is present in the %map.
534        *  @throw  std::out_of_range  If no such data is present.
535        */
536       mapped_type&
537       at(const key_type& __k)
538       {
539 	iterator __i = lower_bound(__k);
540 	if (__i == end() || key_comp()(__k, (*__i).first))
541 	  __throw_out_of_range(__N("map::at"));
542 	return (*__i).second;
543       }
544 
545       const mapped_type&
546       at(const key_type& __k) const
547       {
548 	const_iterator __i = lower_bound(__k);
549 	if (__i == end() || key_comp()(__k, (*__i).first))
550 	  __throw_out_of_range(__N("map::at"));
551 	return (*__i).second;
552       }
553 
554       // modifiers
555 #if __cplusplus >= 201103L
556       /**
557        *  @brief Attempts to build and insert a std::pair into the %map.
558        *
559        *  @param __args  Arguments used to generate a new pair instance (see
560        *	        std::piecewise_contruct for passing arguments to each
561        *	        part of the pair constructor).
562        *
563        *  @return  A pair, of which the first element is an iterator that points
564        *           to the possibly inserted pair, and the second is a bool that
565        *           is true if the pair was actually inserted.
566        *
567        *  This function attempts to build and insert a (key, value) %pair into
568        *  the %map.
569        *  A %map relies on unique keys and thus a %pair is only inserted if its
570        *  first element (the key) is not already present in the %map.
571        *
572        *  Insertion requires logarithmic time.
573        */
574       template<typename... _Args>
575 	std::pair<iterator, bool>
576 	emplace(_Args&&... __args)
577 	{ return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); }
578 
579       /**
580        *  @brief Attempts to build and insert a std::pair into the %map.
581        *
582        *  @param  __pos  An iterator that serves as a hint as to where the pair
583        *                should be inserted.
584        *  @param  __args  Arguments used to generate a new pair instance (see
585        *	         std::piecewise_contruct for passing arguments to each
586        *	         part of the pair constructor).
587        *  @return An iterator that points to the element with key of the
588        *          std::pair built from @a __args (may or may not be that
589        *          std::pair).
590        *
591        *  This function is not concerned about whether the insertion took place,
592        *  and thus does not return a boolean like the single-argument emplace()
593        *  does.
594        *  Note that the first parameter is only a hint and can potentially
595        *  improve the performance of the insertion process. A bad hint would
596        *  cause no gains in efficiency.
597        *
598        *  See
599        *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
600        *  for more on @a hinting.
601        *
602        *  Insertion requires logarithmic time (if the hint is not taken).
603        */
604       template<typename... _Args>
605 	iterator
606 	emplace_hint(const_iterator __pos, _Args&&... __args)
607 	{
608 	  return _M_t._M_emplace_hint_unique(__pos,
609 					     std::forward<_Args>(__args)...);
610 	}
611 #endif
612 
613 #if __cplusplus > 201402L
614       /// Extract a node.
615       node_type
616       extract(const_iterator __pos)
617       {
618 	__glibcxx_assert(__pos != end());
619 	return _M_t.extract(__pos);
620       }
621 
622       /// Extract a node.
623       node_type
624       extract(const key_type& __x)
625       { return _M_t.extract(__x); }
626 
627       /// Re-insert an extracted node.
628       insert_return_type
629       insert(node_type&& __nh)
630       { return _M_t._M_reinsert_node_unique(std::move(__nh)); }
631 
632       /// Re-insert an extracted node.
633       iterator
634       insert(const_iterator __hint, node_type&& __nh)
635       { return _M_t._M_reinsert_node_hint_unique(__hint, std::move(__nh)); }
636 
637       template<typename, typename>
638 	friend class std::_Rb_tree_merge_helper;
639 
640       template<typename _Cmp2>
641 	void
642 	merge(map<_Key, _Tp, _Cmp2, _Alloc>& __source)
643 	{
644 	  using _Merge_helper = _Rb_tree_merge_helper<map, _Cmp2>;
645 	  _M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source));
646 	}
647 
648       template<typename _Cmp2>
649 	void
650 	merge(map<_Key, _Tp, _Cmp2, _Alloc>&& __source)
651 	{ merge(__source); }
652 
653       template<typename _Cmp2>
654 	void
655 	merge(multimap<_Key, _Tp, _Cmp2, _Alloc>& __source)
656 	{
657 	  using _Merge_helper = _Rb_tree_merge_helper<map, _Cmp2>;
658 	  _M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source));
659 	}
660 
661       template<typename _Cmp2>
662 	void
663 	merge(multimap<_Key, _Tp, _Cmp2, _Alloc>&& __source)
664 	{ merge(__source); }
665 #endif // C++17
666 
667 #if __cplusplus > 201402L
668 #define __cpp_lib_map_try_emplace 201411
669       /**
670        *  @brief Attempts to build and insert a std::pair into the %map.
671        *
672        *  @param __k    Key to use for finding a possibly existing pair in
673        *                the map.
674        *  @param __args  Arguments used to generate the .second for a new pair
675        *                instance.
676        *
677        *  @return  A pair, of which the first element is an iterator that points
678        *           to the possibly inserted pair, and the second is a bool that
679        *           is true if the pair was actually inserted.
680        *
681        *  This function attempts to build and insert a (key, value) %pair into
682        *  the %map.
683        *  A %map relies on unique keys and thus a %pair is only inserted if its
684        *  first element (the key) is not already present in the %map.
685        *  If a %pair is not inserted, this function has no effect.
686        *
687        *  Insertion requires logarithmic time.
688        */
689       template <typename... _Args>
690 	pair<iterator, bool>
691 	try_emplace(const key_type& __k, _Args&&... __args)
692 	{
693 	  iterator __i = lower_bound(__k);
694 	  if (__i == end() || key_comp()(__k, (*__i).first))
695 	    {
696 	      __i = emplace_hint(__i, std::piecewise_construct,
697 				 std::forward_as_tuple(__k),
698 				 std::forward_as_tuple(
699 				   std::forward<_Args>(__args)...));
700 	      return {__i, true};
701 	    }
702 	  return {__i, false};
703 	}
704 
705       // move-capable overload
706       template <typename... _Args>
707 	pair<iterator, bool>
708 	try_emplace(key_type&& __k, _Args&&... __args)
709 	{
710 	  iterator __i = lower_bound(__k);
711 	  if (__i == end() || key_comp()(__k, (*__i).first))
712 	    {
713 	      __i = emplace_hint(__i, std::piecewise_construct,
714 				 std::forward_as_tuple(std::move(__k)),
715 				 std::forward_as_tuple(
716 				   std::forward<_Args>(__args)...));
717 	      return {__i, true};
718 	    }
719 	  return {__i, false};
720 	}
721 
722       /**
723        *  @brief Attempts to build and insert a std::pair into the %map.
724        *
725        *  @param  __hint  An iterator that serves as a hint as to where the
726        *                  pair should be inserted.
727        *  @param __k    Key to use for finding a possibly existing pair in
728        *                the map.
729        *  @param __args  Arguments used to generate the .second for a new pair
730        *                instance.
731        *  @return An iterator that points to the element with key of the
732        *          std::pair built from @a __args (may or may not be that
733        *          std::pair).
734        *
735        *  This function is not concerned about whether the insertion took place,
736        *  and thus does not return a boolean like the single-argument
737        *  try_emplace() does. However, if insertion did not take place,
738        *  this function has no effect.
739        *  Note that the first parameter is only a hint and can potentially
740        *  improve the performance of the insertion process. A bad hint would
741        *  cause no gains in efficiency.
742        *
743        *  See
744        *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
745        *  for more on @a hinting.
746        *
747        *  Insertion requires logarithmic time (if the hint is not taken).
748        */
749       template <typename... _Args>
750 	iterator
751 	try_emplace(const_iterator __hint, const key_type& __k,
752 		    _Args&&... __args)
753 	{
754 	  iterator __i;
755 	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
756 	  if (__true_hint.second)
757 	    __i = emplace_hint(iterator(__true_hint.second),
758 			       std::piecewise_construct,
759 			       std::forward_as_tuple(__k),
760 			       std::forward_as_tuple(
761 				 std::forward<_Args>(__args)...));
762 	  else
763 	    __i = iterator(__true_hint.first);
764 	  return __i;
765 	}
766 
767       // move-capable overload
768       template <typename... _Args>
769 	iterator
770 	try_emplace(const_iterator __hint, key_type&& __k, _Args&&... __args)
771 	{
772 	  iterator __i;
773 	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
774 	  if (__true_hint.second)
775 	    __i = emplace_hint(iterator(__true_hint.second),
776 			       std::piecewise_construct,
777 			       std::forward_as_tuple(std::move(__k)),
778 			       std::forward_as_tuple(
779 				 std::forward<_Args>(__args)...));
780 	  else
781 	    __i = iterator(__true_hint.first);
782 	  return __i;
783 	}
784 #endif
785 
786       /**
787        *  @brief Attempts to insert a std::pair into the %map.
788        *  @param __x Pair to be inserted (see std::make_pair for easy
789        *	     creation of pairs).
790        *
791        *  @return  A pair, of which the first element is an iterator that
792        *           points to the possibly inserted pair, and the second is
793        *           a bool that is true if the pair was actually inserted.
794        *
795        *  This function attempts to insert a (key, value) %pair into the %map.
796        *  A %map relies on unique keys and thus a %pair is only inserted if its
797        *  first element (the key) is not already present in the %map.
798        *
799        *  Insertion requires logarithmic time.
800        *  @{
801        */
802       std::pair<iterator, bool>
803       insert(const value_type& __x)
804       { return _M_t._M_insert_unique(__x); }
805 
806 #if __cplusplus >= 201103L
807       // _GLIBCXX_RESOLVE_LIB_DEFECTS
808       // 2354. Unnecessary copying when inserting into maps with braced-init
809       std::pair<iterator, bool>
810       insert(value_type&& __x)
811       { return _M_t._M_insert_unique(std::move(__x)); }
812 
813       template<typename _Pair>
814 	__enable_if_t<is_constructible<value_type, _Pair>::value,
815 		      pair<iterator, bool>>
816 	insert(_Pair&& __x)
817 	{ return _M_t._M_emplace_unique(std::forward<_Pair>(__x)); }
818 #endif
819       /// @}
820 
821 #if __cplusplus >= 201103L
822       /**
823        *  @brief Attempts to insert a list of std::pairs into the %map.
824        *  @param  __list  A std::initializer_list<value_type> of pairs to be
825        *                  inserted.
826        *
827        *  Complexity similar to that of the range constructor.
828        */
829       void
830       insert(std::initializer_list<value_type> __list)
831       { insert(__list.begin(), __list.end()); }
832 #endif
833 
834       /**
835        *  @brief Attempts to insert a std::pair into the %map.
836        *  @param  __position  An iterator that serves as a hint as to where the
837        *                    pair should be inserted.
838        *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
839        *               of pairs).
840        *  @return An iterator that points to the element with key of
841        *           @a __x (may or may not be the %pair passed in).
842        *
843 
844        *  This function is not concerned about whether the insertion
845        *  took place, and thus does not return a boolean like the
846        *  single-argument insert() does.  Note that the first
847        *  parameter is only a hint and can potentially improve the
848        *  performance of the insertion process.  A bad hint would
849        *  cause no gains in efficiency.
850        *
851        *  See
852        *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
853        *  for more on @a hinting.
854        *
855        *  Insertion requires logarithmic time (if the hint is not taken).
856        *  @{
857        */
858       iterator
859 #if __cplusplus >= 201103L
860       insert(const_iterator __position, const value_type& __x)
861 #else
862       insert(iterator __position, const value_type& __x)
863 #endif
864       { return _M_t._M_insert_unique_(__position, __x); }
865 
866 #if __cplusplus >= 201103L
867       // _GLIBCXX_RESOLVE_LIB_DEFECTS
868       // 2354. Unnecessary copying when inserting into maps with braced-init
869       iterator
870       insert(const_iterator __position, value_type&& __x)
871       { return _M_t._M_insert_unique_(__position, std::move(__x)); }
872 
873       template<typename _Pair>
874 	__enable_if_t<is_constructible<value_type, _Pair>::value, iterator>
875 	insert(const_iterator __position, _Pair&& __x)
876 	{
877 	  return _M_t._M_emplace_hint_unique(__position,
878 					     std::forward<_Pair>(__x));
879 	}
880 #endif
881       /// @}
882 
883       /**
884        *  @brief Template function that attempts to insert a range of elements.
885        *  @param  __first  Iterator pointing to the start of the range to be
886        *                   inserted.
887        *  @param  __last  Iterator pointing to the end of the range.
888        *
889        *  Complexity similar to that of the range constructor.
890        */
891       template<typename _InputIterator>
892 	void
893 	insert(_InputIterator __first, _InputIterator __last)
894 	{ _M_t._M_insert_range_unique(__first, __last); }
895 
896 #if __cplusplus > 201402L
897       /**
898        *  @brief Attempts to insert or assign a std::pair into the %map.
899        *  @param __k    Key to use for finding a possibly existing pair in
900        *                the map.
901        *  @param __obj  Argument used to generate the .second for a pair
902        *                instance.
903        *
904        *  @return  A pair, of which the first element is an iterator that
905        *           points to the possibly inserted pair, and the second is
906        *           a bool that is true if the pair was actually inserted.
907        *
908        *  This function attempts to insert a (key, value) %pair into the %map.
909        *  A %map relies on unique keys and thus a %pair is only inserted if its
910        *  first element (the key) is not already present in the %map.
911        *  If the %pair was already in the %map, the .second of the %pair
912        *  is assigned from __obj.
913        *
914        *  Insertion requires logarithmic time.
915        */
916       template <typename _Obj>
917 	pair<iterator, bool>
918 	insert_or_assign(const key_type& __k, _Obj&& __obj)
919 	{
920 	  iterator __i = lower_bound(__k);
921 	  if (__i == end() || key_comp()(__k, (*__i).first))
922 	    {
923 	      __i = emplace_hint(__i, std::piecewise_construct,
924 				 std::forward_as_tuple(__k),
925 				 std::forward_as_tuple(
926 				   std::forward<_Obj>(__obj)));
927 	      return {__i, true};
928 	    }
929 	  (*__i).second = std::forward<_Obj>(__obj);
930 	  return {__i, false};
931 	}
932 
933       // move-capable overload
934       template <typename _Obj>
935 	pair<iterator, bool>
936 	insert_or_assign(key_type&& __k, _Obj&& __obj)
937 	{
938 	  iterator __i = lower_bound(__k);
939 	  if (__i == end() || key_comp()(__k, (*__i).first))
940 	    {
941 	      __i = emplace_hint(__i, std::piecewise_construct,
942 				 std::forward_as_tuple(std::move(__k)),
943 				 std::forward_as_tuple(
944 				   std::forward<_Obj>(__obj)));
945 	      return {__i, true};
946 	    }
947 	  (*__i).second = std::forward<_Obj>(__obj);
948 	  return {__i, false};
949 	}
950 
951       /**
952        *  @brief Attempts to insert or assign a std::pair into the %map.
953        *  @param  __hint  An iterator that serves as a hint as to where the
954        *                  pair should be inserted.
955        *  @param __k    Key to use for finding a possibly existing pair in
956        *                the map.
957        *  @param __obj  Argument used to generate the .second for a pair
958        *                instance.
959        *
960        *  @return An iterator that points to the element with key of
961        *           @a __x (may or may not be the %pair passed in).
962        *
963        *  This function attempts to insert a (key, value) %pair into the %map.
964        *  A %map relies on unique keys and thus a %pair is only inserted if its
965        *  first element (the key) is not already present in the %map.
966        *  If the %pair was already in the %map, the .second of the %pair
967        *  is assigned from __obj.
968        *
969        *  Insertion requires logarithmic time.
970        */
971       template <typename _Obj>
972 	iterator
973 	insert_or_assign(const_iterator __hint,
974 			 const key_type& __k, _Obj&& __obj)
975 	{
976 	  iterator __i;
977 	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
978 	  if (__true_hint.second)
979 	    {
980 	      return emplace_hint(iterator(__true_hint.second),
981 				  std::piecewise_construct,
982 				  std::forward_as_tuple(__k),
983 				  std::forward_as_tuple(
984 				    std::forward<_Obj>(__obj)));
985 	    }
986 	  __i = iterator(__true_hint.first);
987 	  (*__i).second = std::forward<_Obj>(__obj);
988 	  return __i;
989 	}
990 
991       // move-capable overload
992       template <typename _Obj>
993 	iterator
994 	insert_or_assign(const_iterator __hint, key_type&& __k, _Obj&& __obj)
995 	{
996 	  iterator __i;
997 	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
998 	  if (__true_hint.second)
999 	    {
1000 	      return emplace_hint(iterator(__true_hint.second),
1001 				  std::piecewise_construct,
1002 				  std::forward_as_tuple(std::move(__k)),
1003 				  std::forward_as_tuple(
1004 				    std::forward<_Obj>(__obj)));
1005 	    }
1006 	  __i = iterator(__true_hint.first);
1007 	  (*__i).second = std::forward<_Obj>(__obj);
1008 	  return __i;
1009 	}
1010 #endif
1011 
1012 #if __cplusplus >= 201103L
1013       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1014       // DR 130. Associative erase should return an iterator.
1015       /**
1016        *  @brief Erases an element from a %map.
1017        *  @param  __position  An iterator pointing to the element to be erased.
1018        *  @return An iterator pointing to the element immediately following
1019        *          @a position prior to the element being erased. If no such
1020        *          element exists, end() is returned.
1021        *
1022        *  This function erases an element, pointed to by the given
1023        *  iterator, from a %map.  Note that this function only erases
1024        *  the element, and that if the element is itself a pointer,
1025        *  the pointed-to memory is not touched in any way.  Managing
1026        *  the pointer is the user's responsibility.
1027        *
1028        *  @{
1029        */
1030       iterator
1031       erase(const_iterator __position)
1032       { return _M_t.erase(__position); }
1033 
1034       // LWG 2059
1035       _GLIBCXX_ABI_TAG_CXX11
1036       iterator
1037       erase(iterator __position)
1038       { return _M_t.erase(__position); }
1039       /// @}
1040 #else
1041       /**
1042        *  @brief Erases an element from a %map.
1043        *  @param  __position  An iterator pointing to the element to be erased.
1044        *
1045        *  This function erases an element, pointed to by the given
1046        *  iterator, from a %map.  Note that this function only erases
1047        *  the element, and that if the element is itself a pointer,
1048        *  the pointed-to memory is not touched in any way.  Managing
1049        *  the pointer is the user's responsibility.
1050        */
1051       void
1052       erase(iterator __position)
1053       { _M_t.erase(__position); }
1054 #endif
1055 
1056       /**
1057        *  @brief Erases elements according to the provided key.
1058        *  @param  __x  Key of element to be erased.
1059        *  @return  The number of elements erased.
1060        *
1061        *  This function erases all the elements located by the given key from
1062        *  a %map.
1063        *  Note that this function only erases the element, and that if
1064        *  the element is itself a pointer, the pointed-to memory is not touched
1065        *  in any way.  Managing the pointer is the user's responsibility.
1066        */
1067       size_type
1068       erase(const key_type& __x)
1069       { return _M_t.erase(__x); }
1070 
1071 #if __cplusplus >= 201103L
1072       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1073       // DR 130. Associative erase should return an iterator.
1074       /**
1075        *  @brief Erases a [first,last) range of elements from a %map.
1076        *  @param  __first  Iterator pointing to the start of the range to be
1077        *                   erased.
1078        *  @param __last Iterator pointing to the end of the range to
1079        *                be erased.
1080        *  @return The iterator @a __last.
1081        *
1082        *  This function erases a sequence of elements from a %map.
1083        *  Note that this function only erases the element, and that if
1084        *  the element is itself a pointer, the pointed-to memory is not touched
1085        *  in any way.  Managing the pointer is the user's responsibility.
1086        */
1087       iterator
1088       erase(const_iterator __first, const_iterator __last)
1089       { return _M_t.erase(__first, __last); }
1090 #else
1091       /**
1092        *  @brief Erases a [__first,__last) range of elements from a %map.
1093        *  @param  __first  Iterator pointing to the start of the range to be
1094        *                   erased.
1095        *  @param __last Iterator pointing to the end of the range to
1096        *                be erased.
1097        *
1098        *  This function erases a sequence of elements from a %map.
1099        *  Note that this function only erases the element, and that if
1100        *  the element is itself a pointer, the pointed-to memory is not touched
1101        *  in any way.  Managing the pointer is the user's responsibility.
1102        */
1103       void
1104       erase(iterator __first, iterator __last)
1105       { _M_t.erase(__first, __last); }
1106 #endif
1107 
1108       /**
1109        *  @brief  Swaps data with another %map.
1110        *  @param  __x  A %map of the same element and allocator types.
1111        *
1112        *  This exchanges the elements between two maps in constant
1113        *  time.  (It is only swapping a pointer, an integer, and an
1114        *  instance of the @c Compare type (which itself is often
1115        *  stateless and empty), so it should be quite fast.)  Note
1116        *  that the global std::swap() function is specialized such
1117        *  that std::swap(m1,m2) will feed to this function.
1118        *
1119        *  Whether the allocators are swapped depends on the allocator traits.
1120        */
1121       void
1122       swap(map& __x)
1123       _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value)
1124       { _M_t.swap(__x._M_t); }
1125 
1126       /**
1127        *  Erases all elements in a %map.  Note that this function only
1128        *  erases the elements, and that if the elements themselves are
1129        *  pointers, the pointed-to memory is not touched in any way.
1130        *  Managing the pointer is the user's responsibility.
1131        */
1132       void
1133       clear() _GLIBCXX_NOEXCEPT
1134       { _M_t.clear(); }
1135 
1136       // observers
1137       /**
1138        *  Returns the key comparison object out of which the %map was
1139        *  constructed.
1140        */
1141       key_compare
1142       key_comp() const
1143       { return _M_t.key_comp(); }
1144 
1145       /**
1146        *  Returns a value comparison object, built from the key comparison
1147        *  object out of which the %map was constructed.
1148        */
1149       value_compare
1150       value_comp() const
1151       { return value_compare(_M_t.key_comp()); }
1152 
1153       // [23.3.1.3] map operations
1154 
1155       ///@{
1156       /**
1157        *  @brief Tries to locate an element in a %map.
1158        *  @param  __x  Key of (key, value) %pair to be located.
1159        *  @return  Iterator pointing to sought-after element, or end() if not
1160        *           found.
1161        *
1162        *  This function takes a key and tries to locate the element with which
1163        *  the key matches.  If successful the function returns an iterator
1164        *  pointing to the sought after %pair.  If unsuccessful it returns the
1165        *  past-the-end ( @c end() ) iterator.
1166        */
1167 
1168       iterator
1169       find(const key_type& __x)
1170       { return _M_t.find(__x); }
1171 
1172 #if __cplusplus > 201103L
1173       template<typename _Kt>
1174 	auto
1175 	find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
1176 	{ return _M_t._M_find_tr(__x); }
1177 #endif
1178       ///@}
1179 
1180       ///@{
1181       /**
1182        *  @brief Tries to locate an element in a %map.
1183        *  @param  __x  Key of (key, value) %pair to be located.
1184        *  @return  Read-only (constant) iterator pointing to sought-after
1185        *           element, or end() if not found.
1186        *
1187        *  This function takes a key and tries to locate the element with which
1188        *  the key matches.  If successful the function returns a constant
1189        *  iterator pointing to the sought after %pair. If unsuccessful it
1190        *  returns the past-the-end ( @c end() ) iterator.
1191        */
1192 
1193       const_iterator
1194       find(const key_type& __x) const
1195       { return _M_t.find(__x); }
1196 
1197 #if __cplusplus > 201103L
1198       template<typename _Kt>
1199 	auto
1200 	find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
1201 	{ return _M_t._M_find_tr(__x); }
1202 #endif
1203       ///@}
1204 
1205       ///@{
1206       /**
1207        *  @brief  Finds the number of elements with given key.
1208        *  @param  __x  Key of (key, value) pairs to be located.
1209        *  @return  Number of elements with specified key.
1210        *
1211        *  This function only makes sense for multimaps; for map the result will
1212        *  either be 0 (not present) or 1 (present).
1213        */
1214       size_type
1215       count(const key_type& __x) const
1216       { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
1217 
1218 #if __cplusplus > 201103L
1219       template<typename _Kt>
1220 	auto
1221 	count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
1222 	{ return _M_t._M_count_tr(__x); }
1223 #endif
1224       ///@}
1225 
1226 #if __cplusplus > 201703L
1227       ///@{
1228       /**
1229        *  @brief  Finds whether an element with the given key exists.
1230        *  @param  __x  Key of (key, value) pairs to be located.
1231        *  @return  True if there is an element with the specified key.
1232        */
1233       bool
1234       contains(const key_type& __x) const
1235       { return _M_t.find(__x) != _M_t.end(); }
1236 
1237       template<typename _Kt>
1238 	auto
1239 	contains(const _Kt& __x) const
1240 	-> decltype(_M_t._M_find_tr(__x), void(), true)
1241 	{ return _M_t._M_find_tr(__x) != _M_t.end(); }
1242       ///@}
1243 #endif
1244 
1245       ///@{
1246       /**
1247        *  @brief Finds the beginning of a subsequence matching given key.
1248        *  @param  __x  Key of (key, value) pair to be located.
1249        *  @return  Iterator pointing to first element equal to or greater
1250        *           than key, or end().
1251        *
1252        *  This function returns the first element of a subsequence of elements
1253        *  that matches the given key.  If unsuccessful it returns an iterator
1254        *  pointing to the first element that has a greater value than given key
1255        *  or end() if no such element exists.
1256        */
1257       iterator
1258       lower_bound(const key_type& __x)
1259       { return _M_t.lower_bound(__x); }
1260 
1261 #if __cplusplus > 201103L
1262       template<typename _Kt>
1263 	auto
1264 	lower_bound(const _Kt& __x)
1265 	-> decltype(iterator(_M_t._M_lower_bound_tr(__x)))
1266 	{ return iterator(_M_t._M_lower_bound_tr(__x)); }
1267 #endif
1268       ///@}
1269 
1270       ///@{
1271       /**
1272        *  @brief Finds the beginning of a subsequence matching given key.
1273        *  @param  __x  Key of (key, value) pair to be located.
1274        *  @return  Read-only (constant) iterator pointing to first element
1275        *           equal to or greater than key, or end().
1276        *
1277        *  This function returns the first element of a subsequence of elements
1278        *  that matches the given key.  If unsuccessful it returns an iterator
1279        *  pointing to the first element that has a greater value than given key
1280        *  or end() if no such element exists.
1281        */
1282       const_iterator
1283       lower_bound(const key_type& __x) const
1284       { return _M_t.lower_bound(__x); }
1285 
1286 #if __cplusplus > 201103L
1287       template<typename _Kt>
1288 	auto
1289 	lower_bound(const _Kt& __x) const
1290 	-> decltype(const_iterator(_M_t._M_lower_bound_tr(__x)))
1291 	{ return const_iterator(_M_t._M_lower_bound_tr(__x)); }
1292 #endif
1293       ///@}
1294 
1295       ///@{
1296       /**
1297        *  @brief Finds the end of a subsequence matching given key.
1298        *  @param  __x  Key of (key, value) pair to be located.
1299        *  @return Iterator pointing to the first element
1300        *          greater than key, or end().
1301        */
1302       iterator
1303       upper_bound(const key_type& __x)
1304       { return _M_t.upper_bound(__x); }
1305 
1306 #if __cplusplus > 201103L
1307       template<typename _Kt>
1308 	auto
1309 	upper_bound(const _Kt& __x)
1310 	-> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
1311 	{ return iterator(_M_t._M_upper_bound_tr(__x)); }
1312 #endif
1313       ///@}
1314 
1315       ///@{
1316       /**
1317        *  @brief Finds the end of a subsequence matching given key.
1318        *  @param  __x  Key of (key, value) pair to be located.
1319        *  @return  Read-only (constant) iterator pointing to first iterator
1320        *           greater than key, or end().
1321        */
1322       const_iterator
1323       upper_bound(const key_type& __x) const
1324       { return _M_t.upper_bound(__x); }
1325 
1326 #if __cplusplus > 201103L
1327       template<typename _Kt>
1328 	auto
1329 	upper_bound(const _Kt& __x) const
1330 	-> decltype(const_iterator(_M_t._M_upper_bound_tr(__x)))
1331 	{ return const_iterator(_M_t._M_upper_bound_tr(__x)); }
1332 #endif
1333       ///@}
1334 
1335       ///@{
1336       /**
1337        *  @brief Finds a subsequence matching given key.
1338        *  @param  __x  Key of (key, value) pairs to be located.
1339        *  @return  Pair of iterators that possibly points to the subsequence
1340        *           matching given key.
1341        *
1342        *  This function is equivalent to
1343        *  @code
1344        *    std::make_pair(c.lower_bound(val),
1345        *                   c.upper_bound(val))
1346        *  @endcode
1347        *  (but is faster than making the calls separately).
1348        *
1349        *  This function probably only makes sense for multimaps.
1350        */
1351       std::pair<iterator, iterator>
1352       equal_range(const key_type& __x)
1353       { return _M_t.equal_range(__x); }
1354 
1355 #if __cplusplus > 201103L
1356       template<typename _Kt>
1357 	auto
1358 	equal_range(const _Kt& __x)
1359 	-> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)))
1360 	{ return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); }
1361 #endif
1362       ///@}
1363 
1364       ///@{
1365       /**
1366        *  @brief Finds a subsequence matching given key.
1367        *  @param  __x  Key of (key, value) pairs to be located.
1368        *  @return  Pair of read-only (constant) iterators that possibly points
1369        *           to the subsequence matching given key.
1370        *
1371        *  This function is equivalent to
1372        *  @code
1373        *    std::make_pair(c.lower_bound(val),
1374        *                   c.upper_bound(val))
1375        *  @endcode
1376        *  (but is faster than making the calls separately).
1377        *
1378        *  This function probably only makes sense for multimaps.
1379        */
1380       std::pair<const_iterator, const_iterator>
1381       equal_range(const key_type& __x) const
1382       { return _M_t.equal_range(__x); }
1383 
1384 #if __cplusplus > 201103L
1385       template<typename _Kt>
1386 	auto
1387 	equal_range(const _Kt& __x) const
1388 	-> decltype(pair<const_iterator, const_iterator>(
1389 	      _M_t._M_equal_range_tr(__x)))
1390 	{
1391 	  return pair<const_iterator, const_iterator>(
1392 	      _M_t._M_equal_range_tr(__x));
1393 	}
1394 #endif
1395       ///@}
1396 
1397       template<typename _K1, typename _T1, typename _C1, typename _A1>
1398 	friend bool
1399 	operator==(const map<_K1, _T1, _C1, _A1>&,
1400 		   const map<_K1, _T1, _C1, _A1>&);
1401 
1402 #if __cpp_lib_three_way_comparison
1403       template<typename _K1, typename _T1, typename _C1, typename _A1>
1404 	friend __detail::__synth3way_t<pair<const _K1, _T1>>
1405 	operator<=>(const map<_K1, _T1, _C1, _A1>&,
1406 		    const map<_K1, _T1, _C1, _A1>&);
1407 #else
1408       template<typename _K1, typename _T1, typename _C1, typename _A1>
1409 	friend bool
1410 	operator<(const map<_K1, _T1, _C1, _A1>&,
1411 		  const map<_K1, _T1, _C1, _A1>&);
1412 #endif
1413     };
1414 
1415 
1416 #if __cpp_deduction_guides >= 201606
1417 
1418   template<typename _InputIterator,
1419 	   typename _Compare = less<__iter_key_t<_InputIterator>>,
1420 	   typename _Allocator = allocator<__iter_to_alloc_t<_InputIterator>>,
1421 	   typename = _RequireInputIter<_InputIterator>,
1422 	   typename = _RequireNotAllocator<_Compare>,
1423 	   typename = _RequireAllocator<_Allocator>>
1424     map(_InputIterator, _InputIterator,
1425 	_Compare = _Compare(), _Allocator = _Allocator())
1426     -> map<__iter_key_t<_InputIterator>, __iter_val_t<_InputIterator>,
1427 	   _Compare, _Allocator>;
1428 
1429   template<typename _Key, typename _Tp, typename _Compare = less<_Key>,
1430 	   typename _Allocator = allocator<pair<const _Key, _Tp>>,
1431 	   typename = _RequireNotAllocator<_Compare>,
1432 	   typename = _RequireAllocator<_Allocator>>
1433     map(initializer_list<pair<_Key, _Tp>>,
1434 	_Compare = _Compare(), _Allocator = _Allocator())
1435     -> map<_Key, _Tp, _Compare, _Allocator>;
1436 
1437   template <typename _InputIterator, typename _Allocator,
1438 	    typename = _RequireInputIter<_InputIterator>,
1439 	    typename = _RequireAllocator<_Allocator>>
1440     map(_InputIterator, _InputIterator, _Allocator)
1441     -> map<__iter_key_t<_InputIterator>, __iter_val_t<_InputIterator>,
1442 	   less<__iter_key_t<_InputIterator>>, _Allocator>;
1443 
1444   template<typename _Key, typename _Tp, typename _Allocator,
1445 	   typename = _RequireAllocator<_Allocator>>
1446     map(initializer_list<pair<_Key, _Tp>>, _Allocator)
1447     -> map<_Key, _Tp, less<_Key>, _Allocator>;
1448 
1449 #endif // deduction guides
1450 
1451   /**
1452    *  @brief  Map equality comparison.
1453    *  @param  __x  A %map.
1454    *  @param  __y  A %map of the same type as @a x.
1455    *  @return  True iff the size and elements of the maps are equal.
1456    *
1457    *  This is an equivalence relation.  It is linear in the size of the
1458    *  maps.  Maps are considered equivalent if their sizes are equal,
1459    *  and if corresponding elements compare equal.
1460   */
1461   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1462     inline bool
1463     operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1464 	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
1465     { return __x._M_t == __y._M_t; }
1466 
1467 #if __cpp_lib_three_way_comparison
1468   /**
1469    *  @brief  Map ordering relation.
1470    *  @param  __x  A `map`.
1471    *  @param  __y  A `map` of the same type as `x`.
1472    *  @return  A value indicating whether `__x` is less than, equal to,
1473    *           greater than, or incomparable with `__y`.
1474    *
1475    *  This is a total ordering relation.  It is linear in the size of the
1476    *  maps.  The elements must be comparable with @c <.
1477    *
1478    *  See `std::lexicographical_compare_three_way()` for how the determination
1479    *  is made. This operator is used to synthesize relational operators like
1480    *  `<` and `>=` etc.
1481   */
1482   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1483     inline __detail::__synth3way_t<pair<const _Key, _Tp>>
1484     operator<=>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1485 		const map<_Key, _Tp, _Compare, _Alloc>& __y)
1486     { return __x._M_t <=> __y._M_t; }
1487 #else
1488   /**
1489    *  @brief  Map ordering relation.
1490    *  @param  __x  A %map.
1491    *  @param  __y  A %map of the same type as @a x.
1492    *  @return  True iff @a x is lexicographically less than @a y.
1493    *
1494    *  This is a total ordering relation.  It is linear in the size of the
1495    *  maps.  The elements must be comparable with @c <.
1496    *
1497    *  See std::lexicographical_compare() for how the determination is made.
1498   */
1499   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1500     inline bool
1501     operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1502 	      const map<_Key, _Tp, _Compare, _Alloc>& __y)
1503     { return __x._M_t < __y._M_t; }
1504 
1505   /// Based on operator==
1506   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1507     inline bool
1508     operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1509 	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
1510     { return !(__x == __y); }
1511 
1512   /// Based on operator<
1513   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1514     inline bool
1515     operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1516 	      const map<_Key, _Tp, _Compare, _Alloc>& __y)
1517     { return __y < __x; }
1518 
1519   /// Based on operator<
1520   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1521     inline bool
1522     operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1523 	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
1524     { return !(__y < __x); }
1525 
1526   /// Based on operator<
1527   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1528     inline bool
1529     operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1530 	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
1531     { return !(__x < __y); }
1532 #endif // three-way comparison
1533 
1534   /// See std::map::swap().
1535   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1536     inline void
1537     swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
1538 	 map<_Key, _Tp, _Compare, _Alloc>& __y)
1539     _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
1540     { __x.swap(__y); }
1541 
1542 _GLIBCXX_END_NAMESPACE_CONTAINER
1543 
1544 #if __cplusplus > 201402L
1545   // Allow std::map access to internals of compatible maps.
1546   template<typename _Key, typename _Val, typename _Cmp1, typename _Alloc,
1547 	   typename _Cmp2>
1548     struct
1549     _Rb_tree_merge_helper<_GLIBCXX_STD_C::map<_Key, _Val, _Cmp1, _Alloc>,
1550 			  _Cmp2>
1551     {
1552     private:
1553       friend class _GLIBCXX_STD_C::map<_Key, _Val, _Cmp1, _Alloc>;
1554 
1555       static auto&
1556       _S_get_tree(_GLIBCXX_STD_C::map<_Key, _Val, _Cmp2, _Alloc>& __map)
1557       { return __map._M_t; }
1558 
1559       static auto&
1560       _S_get_tree(_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp2, _Alloc>& __map)
1561       { return __map._M_t; }
1562     };
1563 #endif // C++17
1564 
1565 _GLIBCXX_END_NAMESPACE_VERSION
1566 } // namespace std
1567 
1568 #endif /* _STL_MAP_H */
1569