1 /* Definitions for the Blackfin port.
2    Copyright (C) 2005-2020 Free Software Foundation, Inc.
3    Contributed by Analog Devices.
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published
9    by the Free Software Foundation; either version 3, or (at your
10    option) any later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING3.  If not see
19    <http://www.gnu.org/licenses/>.  */
20 
21 #ifndef _BFIN_CONFIG
22 #define _BFIN_CONFIG
23 
24 #ifndef BFIN_OPTS_H
25 #include "config/bfin/bfin-opts.h"
26 #endif
27 
28 #define OBJECT_FORMAT_ELF
29 
30 #define BRT 1
31 #define BRF 0
32 
33 /* Predefinition in the preprocessor for this target machine */
34 #ifndef TARGET_CPU_CPP_BUILTINS
35 #define TARGET_CPU_CPP_BUILTINS()		\
36   do						\
37     {						\
38       builtin_define_std ("bfin");		\
39       builtin_define_std ("BFIN");		\
40       builtin_define ("__ADSPBLACKFIN__");	\
41       builtin_define ("__ADSPLPBLACKFIN__");	\
42 						\
43       switch (bfin_cpu_type)			\
44 	{					\
45 	case BFIN_CPU_UNKNOWN:			\
46 	  break;				\
47 	case BFIN_CPU_BF512:			\
48 	  builtin_define ("__ADSPBF512__");	\
49 	  builtin_define ("__ADSPBF51x__");	\
50 	  break;				\
51 	case BFIN_CPU_BF514:			\
52 	  builtin_define ("__ADSPBF514__");	\
53 	  builtin_define ("__ADSPBF51x__");	\
54 	  break;				\
55 	case BFIN_CPU_BF516:			\
56 	  builtin_define ("__ADSPBF516__");	\
57 	  builtin_define ("__ADSPBF51x__");	\
58 	  break;				\
59 	case BFIN_CPU_BF518:			\
60 	  builtin_define ("__ADSPBF518__");	\
61 	  builtin_define ("__ADSPBF51x__");	\
62 	  break;				\
63 	case BFIN_CPU_BF522:			\
64 	  builtin_define ("__ADSPBF522__");	\
65 	  builtin_define ("__ADSPBF52x__");	\
66 	  break;				\
67 	case BFIN_CPU_BF523:			\
68 	  builtin_define ("__ADSPBF523__");	\
69 	  builtin_define ("__ADSPBF52x__");	\
70 	  break;				\
71 	case BFIN_CPU_BF524:			\
72 	  builtin_define ("__ADSPBF524__");	\
73 	  builtin_define ("__ADSPBF52x__");	\
74 	  break;				\
75 	case BFIN_CPU_BF525:			\
76 	  builtin_define ("__ADSPBF525__");	\
77 	  builtin_define ("__ADSPBF52x__");	\
78 	  break;				\
79 	case BFIN_CPU_BF526:			\
80 	  builtin_define ("__ADSPBF526__");	\
81 	  builtin_define ("__ADSPBF52x__");	\
82 	  break;				\
83 	case BFIN_CPU_BF527:			\
84 	  builtin_define ("__ADSPBF527__");	\
85 	  builtin_define ("__ADSPBF52x__");	\
86 	  break;				\
87 	case BFIN_CPU_BF531:			\
88 	  builtin_define ("__ADSPBF531__");	\
89 	  break;				\
90 	case BFIN_CPU_BF532:			\
91 	  builtin_define ("__ADSPBF532__");	\
92 	  break;				\
93 	case BFIN_CPU_BF533:			\
94 	  builtin_define ("__ADSPBF533__");	\
95 	  break;				\
96 	case BFIN_CPU_BF534:			\
97 	  builtin_define ("__ADSPBF534__");	\
98 	  break;				\
99 	case BFIN_CPU_BF536:			\
100 	  builtin_define ("__ADSPBF536__");	\
101 	  break;				\
102 	case BFIN_CPU_BF537:			\
103 	  builtin_define ("__ADSPBF537__");	\
104 	  break;				\
105 	case BFIN_CPU_BF538:			\
106 	  builtin_define ("__ADSPBF538__");	\
107 	  break;				\
108 	case BFIN_CPU_BF539:			\
109 	  builtin_define ("__ADSPBF539__");	\
110 	  break;				\
111 	case BFIN_CPU_BF542M:			\
112 	  builtin_define ("__ADSPBF542M__");	\
113 	  /* FALLTHRU */			\
114 	case BFIN_CPU_BF542:			\
115 	  builtin_define ("__ADSPBF542__");	\
116 	  builtin_define ("__ADSPBF54x__");	\
117 	  break;				\
118 	case BFIN_CPU_BF544M:			\
119 	  builtin_define ("__ADSPBF544M__");	\
120 	  /* FALLTHRU */			\
121 	case BFIN_CPU_BF544:			\
122 	  builtin_define ("__ADSPBF544__");	\
123 	  builtin_define ("__ADSPBF54x__");	\
124 	  break;				\
125 	case BFIN_CPU_BF547M:			\
126 	  builtin_define ("__ADSPBF547M__");	\
127 	  /* FALLTHRU */			\
128 	case BFIN_CPU_BF547:			\
129 	  builtin_define ("__ADSPBF547__");	\
130 	  builtin_define ("__ADSPBF54x__");	\
131 	  break;				\
132 	case BFIN_CPU_BF548M:			\
133 	  builtin_define ("__ADSPBF548M__");	\
134 	  /* FALLTHRU */			\
135 	case BFIN_CPU_BF548:			\
136 	  builtin_define ("__ADSPBF548__");	\
137 	  builtin_define ("__ADSPBF54x__");	\
138 	  break;				\
139 	case BFIN_CPU_BF549M:			\
140 	  builtin_define ("__ADSPBF549M__");	\
141 	  /* FALLTHRU */			\
142 	case BFIN_CPU_BF549:			\
143 	  builtin_define ("__ADSPBF549__");	\
144 	  builtin_define ("__ADSPBF54x__");	\
145 	  break;				\
146 	case BFIN_CPU_BF561:			\
147 	  builtin_define ("__ADSPBF561__");	\
148 	  break;				\
149 	case BFIN_CPU_BF592:            \
150 	  builtin_define ("__ADSPBF592__"); \
151 	  builtin_define ("__ADSPBF59x__"); \
152 	  break;                \
153 	}					\
154 						\
155       if (bfin_si_revision != -1)		\
156 	{					\
157 	  /* space of 0xnnnn and a NUL */	\
158 	  char *buf = XALLOCAVEC (char, 7);	\
159 						\
160 	  sprintf (buf, "0x%04x", bfin_si_revision);			\
161 	  builtin_define_with_value ("__SILICON_REVISION__", buf, 0);	\
162 	}								\
163 									\
164       if (bfin_workarounds)						\
165 	builtin_define ("__WORKAROUNDS_ENABLED");			\
166       if (ENABLE_WA_SPECULATIVE_LOADS)					\
167 	builtin_define ("__WORKAROUND_SPECULATIVE_LOADS");		\
168       if (ENABLE_WA_SPECULATIVE_SYNCS)					\
169 	builtin_define ("__WORKAROUND_SPECULATIVE_SYNCS");		\
170       if (ENABLE_WA_INDIRECT_CALLS)					\
171 	builtin_define ("__WORKAROUND_INDIRECT_CALLS");			\
172       if (ENABLE_WA_RETS)						\
173 	builtin_define ("__WORKAROUND_RETS");				\
174 						\
175       if (TARGET_FDPIC)				\
176 	{					\
177 	  builtin_define ("__BFIN_FDPIC__");	\
178 	  builtin_define ("__FDPIC__");		\
179 	}					\
180       if (TARGET_ID_SHARED_LIBRARY		\
181 	  && !TARGET_SEP_DATA)			\
182 	builtin_define ("__ID_SHARED_LIB__");	\
183       if (flag_no_builtin)			\
184 	builtin_define ("__NO_BUILTIN");	\
185       if (TARGET_MULTICORE)			\
186 	builtin_define ("__BFIN_MULTICORE");	\
187       if (TARGET_COREA)				\
188 	builtin_define ("__BFIN_COREA");	\
189       if (TARGET_COREB)				\
190 	builtin_define ("__BFIN_COREB");	\
191       if (TARGET_SDRAM)				\
192 	builtin_define ("__BFIN_SDRAM");	\
193     }						\
194   while (0)
195 #endif
196 
197 #define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS	"\
198  %{mleaf-id-shared-library:%{!mid-shared-library:-mid-shared-library}} \
199  %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
200    	    %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fpie}}}}}}}}} \
201 "
202 #ifndef SUBTARGET_DRIVER_SELF_SPECS
203 # define SUBTARGET_DRIVER_SELF_SPECS
204 #endif
205 
206 #define LINK_GCC_C_SEQUENCE_SPEC "\
207   %{mfast-fp:-lbffastfp} %G %{!nolibc:%L} %{mfast-fp:-lbffastfp} %G \
208 "
209 
210 #undef  ASM_SPEC
211 #define ASM_SPEC "\
212     %{mno-fdpic:-mnopic} %{mfdpic}"
213 
214 #define LINK_SPEC "\
215 %{h*} %{v:-V} \
216 %{mfdpic:-melf32bfinfd -z text} \
217 %{static:-dn -Bstatic} \
218 %{shared:-G -Bdynamic} \
219 %{symbolic:-Bsymbolic} \
220 -init __init -fini __fini "
221 
222 /* Generate DSP instructions, like DSP halfword loads */
223 #define TARGET_DSP			(1)
224 
225 #define TARGET_DEFAULT 0
226 
227 /* Maximum number of library ids we permit */
228 #define MAX_LIBRARY_ID 255
229 
230 extern const char *bfin_library_id_string;
231 
232 #define FUNCTION_MODE    SImode
233 #define Pmode            SImode
234 
235 /* store-condition-codes instructions store 0 for false
236    This is the value stored for true.  */
237 #define STORE_FLAG_VALUE 1
238 
239 /* Define this if pushing a word on the stack
240    makes the stack pointer a smaller address.  */
241 #define STACK_GROWS_DOWNWARD 1
242 
243 #define STACK_PUSH_CODE PRE_DEC
244 
245 /* Define this to nonzero if the nominal address of the stack frame
246    is at the high-address end of the local variables;
247    that is, each additional local variable allocated
248    goes at a more negative offset in the frame.  */
249 #define FRAME_GROWS_DOWNWARD 1
250 
251 /* We define a dummy ARGP register; the parameters start at offset 0 from
252    it. */
253 #define FIRST_PARM_OFFSET(DECL) 0
254 
255 /* Register to use for pushing function arguments.  */
256 #define STACK_POINTER_REGNUM REG_P6
257 
258 /* Base register for access to local variables of the function.  */
259 #define FRAME_POINTER_REGNUM REG_P7
260 
261 /* A dummy register that will be eliminated to either FP or SP.  */
262 #define ARG_POINTER_REGNUM REG_ARGP
263 
264 /* `PIC_OFFSET_TABLE_REGNUM'
265      The register number of the register used to address a table of
266      static data addresses in memory.  In some cases this register is
267      defined by a processor's "application binary interface" (ABI).
268      When this macro is defined, RTL is generated for this register
269      once, as with the stack pointer and frame pointer registers.  If
270      this macro is not defined, it is up to the machine-dependent files
271      to allocate such a register (if necessary). */
272 #define PIC_OFFSET_TABLE_REGNUM (REG_P5)
273 
274 #define FDPIC_FPTR_REGNO REG_P1
275 #define FDPIC_REGNO REG_P3
276 #define OUR_FDPIC_REG	get_hard_reg_initial_val (SImode, FDPIC_REGNO)
277 
278 /* A static chain register for nested functions.  We need to use a
279    call-clobbered register for this.  */
280 #define STATIC_CHAIN_REGNUM REG_P2
281 
282 /* Define this if functions should assume that stack space has been
283    allocated for arguments even when their values are passed in
284    registers.
285 
286    The value of this macro is the size, in bytes, of the area reserved for
287    arguments passed in registers.
288 
289    This space can either be allocated by the caller or be a part of the
290    machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
291    says which.  */
292 #define FIXED_STACK_AREA 12
293 #define REG_PARM_STACK_SPACE(FNDECL) FIXED_STACK_AREA
294 
295 /* Define this if the above stack space is to be considered part of the
296  * space allocated by the caller.  */
297 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
298 
299 /* Define this if the maximum size of all the outgoing args is to be
300    accumulated and pushed during the prologue.  The amount can be
301    found in the variable crtl->outgoing_args_size. */
302 #define ACCUMULATE_OUTGOING_ARGS 1
303 
304 /*#define DATA_ALIGNMENT(TYPE, BASIC-ALIGN) for arrays.. */
305 
306 /* If defined, a C expression to compute the alignment for a local
307    variable.  TYPE is the data type, and ALIGN is the alignment that
308    the object would ordinarily have.  The value of this macro is used
309    instead of that alignment to align the object.
310 
311    If this macro is not defined, then ALIGN is used.
312 
313    One use of this macro is to increase alignment of medium-size
314    data to make it all fit in fewer cache lines.  */
315 
316 #define LOCAL_ALIGNMENT(TYPE, ALIGN) bfin_local_alignment ((TYPE), (ALIGN))
317 
318 #define TRAMPOLINE_SIZE (TARGET_FDPIC ? 30 : 18)
319 
320 /* Definitions for register eliminations.
321 
322    This is an array of structures.  Each structure initializes one pair
323    of eliminable registers.  The "from" register number is given first,
324    followed by "to".  Eliminations of the same "from" register are listed
325    in order of preference.
326 
327    There are two registers that can always be eliminated on the i386.
328    The frame pointer and the arg pointer can be replaced by either the
329    hard frame pointer or to the stack pointer, depending upon the
330    circumstances.  The hard frame pointer is not used before reload and
331    so it is not eligible for elimination.  */
332 
333 #define ELIMINABLE_REGS				\
334 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
335  { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},	\
336  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}	\
337 
338 /* Define the offset between two registers, one to be eliminated, and the other
339    its replacement, at the start of a routine.  */
340 
341 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
342   ((OFFSET) = bfin_initial_elimination_offset ((FROM), (TO)))
343 
344 /* This processor has
345    8 data register for doing arithmetic
346    8  pointer register for doing addressing, including
347       1  stack pointer P6
348       1  frame pointer P7
349    4 sets of indexing registers (I0-3, B0-3, L0-3, M0-3)
350    1  condition code flag register CC
351    5  return address registers RETS/I/X/N/E
352    1  arithmetic status register (ASTAT).  */
353 
354 #define FIRST_PSEUDO_REGISTER 50
355 
356 #define D_REGNO_P(X) ((X) <= REG_R7)
357 #define P_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_P7)
358 #define I_REGNO_P(X) ((X) >= REG_I0 && (X) <= REG_I3)
359 #define DP_REGNO_P(X) (D_REGNO_P (X) || P_REGNO_P (X))
360 #define ADDRESS_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_M3)
361 #define DREG_P(X) (REG_P (X) && D_REGNO_P (REGNO (X)))
362 #define PREG_P(X) (REG_P (X) && P_REGNO_P (REGNO (X)))
363 #define IREG_P(X) (REG_P (X) && I_REGNO_P (REGNO (X)))
364 #define DPREG_P(X) (REG_P (X) && DP_REGNO_P (REGNO (X)))
365 
366 #define REGISTER_NAMES { \
367   "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7", \
368   "P0", "P1", "P2", "P3", "P4", "P5", "SP", "FP", \
369   "I0", "I1", "I2", "I3", "B0", "B1", "B2", "B3", \
370   "L0", "L1", "L2", "L3", "M0", "M1", "M2", "M3", \
371   "A0", "A1", \
372   "CC", \
373   "RETS", "RETI", "RETX", "RETN", "RETE", "ASTAT", "SEQSTAT", "USP", \
374   "ARGP", \
375   "LT0", "LT1", "LC0", "LC1", "LB0", "LB1" \
376 }
377 
378 #define SHORT_REGISTER_NAMES { \
379 	"R0.L",	"R1.L",	"R2.L",	"R3.L", "R4.L", "R5.L", "R6.L", "R7.L", \
380 	"P0.L",	"P1.L",	"P2.L",	"P3.L", "P4.L", "P5.L", "SP.L", "FP.L", \
381 	"I0.L",	"I1.L", "I2.L",	"I3.L",	"B0.L",	"B1.L",	"B2.L",	"B3.L", \
382 	"L0.L",	"L1.L",	"L2.L",	"L3.L",	"M0.L",	"M1.L",	"M2.L",	"M3.L", }
383 
384 #define HIGH_REGISTER_NAMES { \
385 	"R0.H",	"R1.H",	"R2.H",	"R3.H", "R4.H", "R5.H", "R6.H", "R7.H", \
386 	"P0.H",	"P1.H",	"P2.H",	"P3.H", "P4.H", "P5.H", "SP.H", "FP.H", \
387 	"I0.H",	"I1.H",	"I2.H",	"I3.H",	"B0.H",	"B1.H",	"B2.H",	"B3.H", \
388 	"L0.H",	"L1.H",	"L2.H",	"L3.H",	"M0.H",	"M1.H",	"M2.H",	"M3.H", }
389 
390 #define DREGS_PAIR_NAMES { \
391   "R1:0.p", 0, "R3:2.p", 0, "R5:4.p", 0, "R7:6.p", 0,  }
392 
393 #define BYTE_REGISTER_NAMES { \
394   "R0.B", "R1.B", "R2.B", "R3.B", "R4.B", "R5.B", "R6.B", "R7.B",  }
395 
396 
397 /* 1 for registers that have pervasive standard uses
398    and are not available for the register allocator.  */
399 
400 #define FIXED_REGISTERS \
401 /*r0 r1 r2 r3 r4 r5 r6 r7   p0 p1 p2 p3 p4 p5 p6 p7 */ \
402 { 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0, 0, 0, 0, 1, 0,    \
403 /*i0 i1 i2 i3 b0 b1 b2 b3   l0 l1 l2 l3 m0 m1 m2 m3 */ \
404   0, 0, 0, 0, 0, 0, 0, 0,   1, 1, 1, 1, 0, 0, 0, 0,    \
405 /*a0 a1 cc rets/i/x/n/e     astat seqstat usp argp lt0/1 lc0/1 */ \
406   0, 0, 0, 1, 1, 1, 1, 1,   1, 1, 1, 1, 1, 1, 1, 1,    \
407 /*lb0/1 */ \
408   1, 1  \
409 }
410 
411 /* 1 for registers not available across function calls.
412    These must include the FIXED_REGISTERS and also any
413    registers that can be used without being saved.
414    The latter must include the registers where values are returned
415    and the register where structure-value addresses are passed.
416    Aside from that, you can include as many other registers as you like.  */
417 
418 #define CALL_USED_REGISTERS \
419 /*r0 r1 r2 r3 r4 r5 r6 r7   p0 p1 p2 p3 p4 p5 p6 p7 */ \
420 { 1, 1, 1, 1, 0, 0, 0, 0,   1, 1, 1, 0, 0, 0, 1, 0, \
421 /*i0 i1 i2 i3 b0 b1 b2 b3   l0 l1 l2 l3 m0 m1 m2 m3 */ \
422   1, 1, 1, 1, 1, 1, 1, 1,   1, 1, 1, 1, 1, 1, 1, 1,   \
423 /*a0 a1 cc rets/i/x/n/e     astat seqstat usp argp lt0/1 lc0/1 */ \
424   1, 1, 1, 1, 1, 1, 1, 1,   1, 1, 1, 1, 1, 1, 1, 1, \
425 /*lb0/1 */ \
426   1, 1  \
427 }
428 
429 /* Order in which to allocate registers.  Each register must be
430    listed once, even those in FIXED_REGISTERS.  List frame pointer
431    late and fixed registers last.  Note that, in general, we prefer
432    registers listed in CALL_USED_REGISTERS, keeping the others
433    available for storage of persistent values. */
434 
435 #define REG_ALLOC_ORDER \
436 { REG_R0, REG_R1, REG_R2, REG_R3, REG_R7, REG_R6, REG_R5, REG_R4, \
437   REG_P2, REG_P1, REG_P0, REG_P5, REG_P4, REG_P3, REG_P6, REG_P7, \
438   REG_A0, REG_A1, \
439   REG_I0, REG_I1, REG_I2, REG_I3, REG_B0, REG_B1, REG_B2, REG_B3, \
440   REG_L0, REG_L1, REG_L2, REG_L3, REG_M0, REG_M1, REG_M2, REG_M3, \
441   REG_RETS, REG_RETI, REG_RETX, REG_RETN, REG_RETE,		  \
442   REG_ASTAT, REG_SEQSTAT, REG_USP, 				  \
443   REG_CC, REG_ARGP,						  \
444   REG_LT0, REG_LT1, REG_LC0, REG_LC1, REG_LB0, REG_LB1		  \
445 }
446 
447 /* Define the classes of registers for register constraints in the
448    machine description.  Also define ranges of constants.
449 
450    One of the classes must always be named ALL_REGS and include all hard regs.
451    If there is more than one class, another class must be named NO_REGS
452    and contain no registers.
453 
454    The name GENERAL_REGS must be the name of a class (or an alias for
455    another name such as ALL_REGS).  This is the class of registers
456    that is allowed by "g" or "r" in a register constraint.
457    Also, registers outside this class are allocated only when
458    instructions express preferences for them.
459 
460    The classes must be numbered in nondecreasing order; that is,
461    a larger-numbered class must never be contained completely
462    in a smaller-numbered class.
463 
464    For any two classes, it is very desirable that there be another
465    class that represents their union. */
466 
467 
468 enum reg_class
469 {
470   NO_REGS,
471   IREGS,
472   BREGS,
473   LREGS,
474   MREGS,
475   CIRCREGS, /* Circular buffering registers, Ix, Bx, Lx together form.  See Automatic Circular Buffering.  */
476   DAGREGS,
477   EVEN_AREGS,
478   ODD_AREGS,
479   AREGS,
480   CCREGS,
481   EVEN_DREGS,
482   ODD_DREGS,
483   D0REGS,
484   D1REGS,
485   D2REGS,
486   D3REGS,
487   D4REGS,
488   D5REGS,
489   D6REGS,
490   D7REGS,
491   DREGS,
492   P0REGS,
493   FDPIC_REGS,
494   FDPIC_FPTR_REGS,
495   PREGS_CLOBBERED,
496   PREGS,
497   IPREGS,
498   DPREGS,
499   MOST_REGS,
500   LT_REGS,
501   LC_REGS,
502   LB_REGS,
503   PROLOGUE_REGS,
504   NON_A_CC_REGS,
505   ALL_REGS, LIM_REG_CLASSES
506 };
507 
508 #define N_REG_CLASSES ((int)LIM_REG_CLASSES)
509 
510 #define GENERAL_REGS DPREGS
511 
512 /* Give names of register classes as strings for dump file.   */
513 
514 #define REG_CLASS_NAMES \
515 {  "NO_REGS",		\
516    "IREGS",		\
517    "BREGS",		\
518    "LREGS",		\
519    "MREGS",		\
520    "CIRCREGS",		\
521    "DAGREGS",		\
522    "EVEN_AREGS",	\
523    "ODD_AREGS",		\
524    "AREGS",		\
525    "CCREGS",		\
526    "EVEN_DREGS",	\
527    "ODD_DREGS",		\
528    "D0REGS",		\
529    "D1REGS",		\
530    "D2REGS",		\
531    "D3REGS",		\
532    "D4REGS",		\
533    "D5REGS",		\
534    "D6REGS",		\
535    "D7REGS",		\
536    "DREGS",		\
537    "P0REGS",		\
538    "FDPIC_REGS",	\
539    "FDPIC_FPTR_REGS",	\
540    "PREGS_CLOBBERED",	\
541    "PREGS",		\
542    "IPREGS",		\
543    "DPREGS",		\
544    "MOST_REGS",		\
545    "LT_REGS",		\
546    "LC_REGS",		\
547    "LB_REGS",		\
548    "PROLOGUE_REGS",	\
549    "NON_A_CC_REGS",	\
550    "ALL_REGS" }
551 
552 /* An initializer containing the contents of the register classes, as integers
553    which are bit masks.  The Nth integer specifies the contents of class N.
554    The way the integer MASK is interpreted is that register R is in the class
555    if `MASK & (1 << R)' is 1.
556 
557    When the machine has more than 32 registers, an integer does not suffice.
558    Then the integers are replaced by sub-initializers, braced groupings
559    containing several integers.  Each sub-initializer must be suitable as an
560    initializer for the type `HARD_REG_SET' which is defined in
561    `hard-reg-set.h'.  */
562 
563 /* NOTE: DSP registers, IREGS - AREGS, are not GENERAL_REGS.  We use
564    MOST_REGS as the union of DPREGS and DAGREGS.  */
565 
566 #define REG_CLASS_CONTENTS \
567     /* 31 - 0       63-32   */ \
568 {   { 0x00000000,    0 },		/* NO_REGS */	\
569     { 0x000f0000,    0 },		/* IREGS */	\
570     { 0x00f00000,    0 },		/* BREGS */		\
571     { 0x0f000000,    0 },		/* LREGS */	\
572     { 0xf0000000,    0 },		/* MREGS */   \
573     { 0x0fff0000,    0 },		/* CIRCREGS */   \
574     { 0xffff0000,    0 },		/* DAGREGS */   \
575     { 0x00000000,    0x1 },		/* EVEN_AREGS */   \
576     { 0x00000000,    0x2 },		/* ODD_AREGS */   \
577     { 0x00000000,    0x3 },		/* AREGS */   \
578     { 0x00000000,    0x4 },		/* CCREGS */  \
579     { 0x00000055,    0 },		/* EVEN_DREGS */   \
580     { 0x000000aa,    0 },		/* ODD_DREGS */   \
581     { 0x00000001,    0 },		/* D0REGS */   \
582     { 0x00000002,    0 },		/* D1REGS */   \
583     { 0x00000004,    0 },		/* D2REGS */   \
584     { 0x00000008,    0 },		/* D3REGS */   \
585     { 0x00000010,    0 },		/* D4REGS */   \
586     { 0x00000020,    0 },		/* D5REGS */   \
587     { 0x00000040,    0 },		/* D6REGS */   \
588     { 0x00000080,    0 },		/* D7REGS */   \
589     { 0x000000ff,    0 },		/* DREGS */   \
590     { 0x00000100,    0x000 },		/* P0REGS */   \
591     { 0x00000800,    0x000 },		/* FDPIC_REGS */   \
592     { 0x00000200,    0x000 },		/* FDPIC_FPTR_REGS */   \
593     { 0x00004700,    0x800 },		/* PREGS_CLOBBERED */   \
594     { 0x0000ff00,    0x800 },		/* PREGS */   \
595     { 0x000fff00,    0x800 },		/* IPREGS */	\
596     { 0x0000ffff,    0x800 },		/* DPREGS */   \
597     { 0xffffffff,    0x800 },		/* MOST_REGS */\
598     { 0x00000000,    0x3000 },		/* LT_REGS */\
599     { 0x00000000,    0xc000 },		/* LC_REGS */\
600     { 0x00000000,    0x30000 },		/* LB_REGS */\
601     { 0x00000000,    0x3f7f8 },		/* PROLOGUE_REGS */\
602     { 0xffffffff,    0x3fff8 },		/* NON_A_CC_REGS */\
603     { 0xffffffff,    0x3ffff }}		/* ALL_REGS */
604 
605 #define IREG_POSSIBLE_P(OUTER)				     \
606   ((OUTER) == POST_INC || (OUTER) == PRE_INC		     \
607    || (OUTER) == POST_DEC || (OUTER) == PRE_DEC		     \
608    || (OUTER) == MEM || (OUTER) == ADDRESS)
609 
610 #define MODE_CODE_BASE_REG_CLASS(MODE, AS, OUTER, INDEX)	\
611   ((MODE) == HImode && IREG_POSSIBLE_P (OUTER) ? IPREGS : PREGS)
612 
613 #define INDEX_REG_CLASS         PREGS
614 
615 #define REGNO_OK_FOR_BASE_STRICT_P(X, MODE, OUTER, INDEX)	\
616   (P_REGNO_P (X) || (X) == REG_ARGP				\
617    || (IREG_POSSIBLE_P (OUTER) && (MODE) == HImode		\
618        && I_REGNO_P (X)))
619 
620 #define REGNO_OK_FOR_BASE_NONSTRICT_P(X, MODE, OUTER, INDEX)	\
621   ((X) >= FIRST_PSEUDO_REGISTER					\
622    || REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX))
623 
624 #ifdef REG_OK_STRICT
625 #define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, AS, OUTER, INDEX) \
626   REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX)
627 #else
628 #define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, AS, OUTER, INDEX) \
629   REGNO_OK_FOR_BASE_NONSTRICT_P (X, MODE, OUTER, INDEX)
630 #endif
631 
632 #define REGNO_OK_FOR_INDEX_P(X)   0
633 
634 /* The same information, inverted:
635    Return the class number of the smallest class containing
636    reg number REGNO.  This could be a conditional expression
637    or could index an array.  */
638 
639 #define REGNO_REG_CLASS(REGNO) \
640 ((REGNO) == REG_R0 ? D0REGS				\
641  : (REGNO) == REG_R1 ? D1REGS				\
642  : (REGNO) == REG_R2 ? D2REGS				\
643  : (REGNO) == REG_R3 ? D3REGS				\
644  : (REGNO) == REG_R4 ? D4REGS				\
645  : (REGNO) == REG_R5 ? D5REGS				\
646  : (REGNO) == REG_R6 ? D6REGS				\
647  : (REGNO) == REG_R7 ? D7REGS				\
648  : (REGNO) == REG_P0 ? P0REGS				\
649  : (REGNO) < REG_I0 ? PREGS				\
650  : (REGNO) == REG_ARGP ? PREGS				\
651  : (REGNO) >= REG_I0 && (REGNO) <= REG_I3 ? IREGS	\
652  : (REGNO) >= REG_L0 && (REGNO) <= REG_L3 ? LREGS	\
653  : (REGNO) >= REG_B0 && (REGNO) <= REG_B3 ? BREGS	\
654  : (REGNO) >= REG_M0 && (REGNO) <= REG_M3 ? MREGS	\
655  : (REGNO) == REG_A0 || (REGNO) == REG_A1 ? AREGS	\
656  : (REGNO) == REG_LT0 || (REGNO) == REG_LT1 ? LT_REGS	\
657  : (REGNO) == REG_LC0 || (REGNO) == REG_LC1 ? LC_REGS	\
658  : (REGNO) == REG_LB0 || (REGNO) == REG_LB1 ? LB_REGS	\
659  : (REGNO) == REG_CC ? CCREGS				\
660  : (REGNO) >= REG_RETS ? PROLOGUE_REGS			\
661  : NO_REGS)
662 
663 /* When this hook returns true for MODE, the compiler allows
664    registers explicitly used in the rtl to be used as spill registers
665    but prevents the compiler from extending the lifetime of these
666    registers.  */
667 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
668 
669 /* Return the maximum number of consecutive registers
670    needed to represent mode MODE in a register of class CLASS.  */
671 #define CLASS_MAX_NREGS(CLASS, MODE)					\
672   ((MODE) == V2PDImode && (CLASS) == AREGS ? 2				\
673    : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
674 
675 /* A C expression that is nonzero if hard register TO can be
676    considered for use as a rename register for FROM register */
677 #define HARD_REGNO_RENAME_OK(FROM, TO) bfin_hard_regno_rename_ok (FROM, TO)
678 
679 /* `PREFERRED_RELOAD_CLASS (X, CLASS)'
680    A C expression that places additional restrictions on the register
681    class to use when it is necessary to copy value X into a register
682    in class CLASS.  The value is a register class; perhaps CLASS, or
683    perhaps another, smaller class.  */
684 #define PREFERRED_RELOAD_CLASS(X, CLASS)		\
685   (GET_CODE (X) == POST_INC				\
686    || GET_CODE (X) == POST_DEC				\
687    || GET_CODE (X) == PRE_DEC ? PREGS : (CLASS))
688 
689 /* Function Calling Conventions. */
690 
691 /* The type of the current function; normal functions are of type
692    SUBROUTINE.  */
693 typedef enum {
694   SUBROUTINE, INTERRUPT_HANDLER, EXCPT_HANDLER, NMI_HANDLER
695 } e_funkind;
696 #define FUNCTION_RETURN_REGISTERS { REG_RETS, REG_RETI, REG_RETX, REG_RETN }
697 
698 #define FUNCTION_ARG_REGISTERS { REG_R0, REG_R1, REG_R2, -1 }
699 
700 /* Flags for the call/call_value rtl operations set up by function_arg */
701 #define CALL_NORMAL		0x00000000	/* no special processing */
702 #define CALL_LONG		0x00000001	/* always call indirect */
703 #define CALL_SHORT		0x00000002	/* always call by symbol */
704 
705 typedef struct {
706   int words;			/* # words passed so far */
707   int nregs;			/* # registers available for passing */
708   int *arg_regs;		/* array of register -1 terminated */
709   int call_cookie;		/* Do special things for this call */
710 } CUMULATIVE_ARGS;
711 
712 #define FUNCTION_ARG_REGNO_P(REGNO) function_arg_regno_p (REGNO)
713 
714 
715 /* Initialize a variable CUM of type CUMULATIVE_ARGS
716    for a call to a function whose data type is FNTYPE.
717    For a library call, FNTYPE is 0.  */
718 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, N_NAMED_ARGS)	\
719   (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
720 
721 /* Define how to find the value returned by a function.
722    VALTYPE is the data type of the value (as a tree).
723    If the precise function being called is known, FUNC is its FUNCTION_DECL;
724    otherwise, FUNC is 0.
725 */
726 
727 #define VALUE_REGNO(MODE) (REG_R0)
728 
729 #define FUNCTION_VALUE(VALTYPE, FUNC)		\
730   gen_rtx_REG (TYPE_MODE (VALTYPE),		\
731 	       VALUE_REGNO(TYPE_MODE(VALTYPE)))
732 
733 /* Define how to find the value returned by a library function
734    assuming the value has mode MODE.  */
735 
736 #define LIBCALL_VALUE(MODE)  gen_rtx_REG (MODE, VALUE_REGNO(MODE))
737 
738 #define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_R0)
739 
740 #define DEFAULT_PCC_STRUCT_RETURN 0
741 
742 /* Before the prologue, the return address is in the RETS register.  */
743 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, REG_RETS)
744 
745 #define RETURN_ADDR_RTX(COUNT, FRAME) bfin_return_addr_rtx (COUNT)
746 
747 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (REG_RETS)
748 
749 /* Call instructions don't modify the stack pointer on the Blackfin.  */
750 #define INCOMING_FRAME_SP_OFFSET 0
751 
752 /* Describe how we implement __builtin_eh_return.  */
753 #define EH_RETURN_DATA_REGNO(N)	((N) < 2 ? (N) : INVALID_REGNUM)
754 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, REG_P2)
755 #define EH_RETURN_HANDLER_RTX \
756   gen_frame_mem (Pmode, plus_constant (Pmode, frame_pointer_rtx, \
757 				       UNITS_PER_WORD))
758 
759 /* Addressing Modes */
760 
761 /*   A number, the maximum number of registers that can appear in a
762      valid memory address.  Note that it is up to you to specify a
763      value equal to the maximum number that `TARGET_LEGITIMATE_ADDRESS_P'
764      would ever accept. */
765 #define MAX_REGS_PER_ADDRESS 1
766 
767 #define LEGITIMATE_MODE_FOR_AUTOINC_P(MODE) \
768       (GET_MODE_SIZE (MODE) <= 4 || (MODE) == PDImode)
769 
770 #define HAVE_POST_INCREMENT 1
771 #define HAVE_POST_DECREMENT 1
772 #define HAVE_PRE_DECREMENT  1
773 
774 /* `LEGITIMATE_PIC_OPERAND_P (X)'
775      A C expression that is nonzero if X is a legitimate immediate
776      operand on the target machine when generating position independent
777      code.  You can assume that X satisfies `CONSTANT_P', so you need
778      not check this.  You can also assume FLAG_PIC is true, so you need
779      not check it either.  You need not define this macro if all
780      constants (including `SYMBOL_REF') can be immediate operands when
781      generating position independent code. */
782 #define LEGITIMATE_PIC_OPERAND_P(X) ! SYMBOLIC_CONST (X)
783 
784 #define SYMBOLIC_CONST(X)	\
785 (GET_CODE (X) == SYMBOL_REF						\
786  || GET_CODE (X) == LABEL_REF						\
787  || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
788 
789 #define NOTICE_UPDATE_CC(EXPR, INSN) 0
790 
791 /* Max number of bytes we can move from memory to memory
792    in one reasonably fast instruction.  */
793 #define MOVE_MAX UNITS_PER_WORD
794 
795 /* If a memory-to-memory move would take MOVE_RATIO or more simple
796    move-instruction pairs, we will do a cpymem or libcall instead.  */
797 
798 #define MOVE_RATIO(speed) 5
799 
800 /* STORAGE LAYOUT: target machine storage layout
801    Define this macro as a C expression which is nonzero if accessing
802    less than a word of memory (i.e. a `char' or a `short') is no
803    faster than accessing a word of memory, i.e., if such access
804    require more than one instruction or if there is no difference in
805    cost between byte and (aligned) word loads.
806 
807    When this macro is not defined, the compiler will access a field by
808    finding the smallest containing object; when it is defined, a
809    fullword load will be used if alignment permits.  Unless bytes
810    accesses are faster than word accesses, using word accesses is
811    preferable since it may eliminate subsequent memory access if
812    subsequent accesses occur to other fields in the same word of the
813    structure, but to different bytes.  */
814 #define SLOW_BYTE_ACCESS  0
815 #define SLOW_SHORT_ACCESS 0
816 
817 /* Define this if most significant bit is lowest numbered
818    in instructions that operate on numbered bit-fields. */
819 #define BITS_BIG_ENDIAN  0
820 
821 /* Define this if most significant byte of a word is the lowest numbered.
822    We can't access bytes but if we could we would in the Big Endian order. */
823 #define BYTES_BIG_ENDIAN 0
824 
825 /* Define this if most significant word of a multiword number is numbered. */
826 #define WORDS_BIG_ENDIAN 0
827 
828 /* Width in bits of a "word", which is the contents of a machine register.
829    Note that this is not necessarily the width of data type `int';
830    if using 16-bit ints on a 68000, this would still be 32.
831    But on a machine with 16-bit registers, this would be 16.  */
832 #define BITS_PER_WORD 32
833 
834 /* Width of a word, in units (bytes).  */
835 #define UNITS_PER_WORD 4
836 
837 /* Width in bits of a pointer.
838    See also the macro `Pmode1' defined below.  */
839 #define POINTER_SIZE 32
840 
841 /* Allocation boundary (in *bits*) for storing pointers in memory.  */
842 #define POINTER_BOUNDARY 32
843 
844 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
845 #define PARM_BOUNDARY 32
846 
847 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
848 #define STACK_BOUNDARY 32
849 
850 /* Allocation boundary (in *bits*) for the code of a function.  */
851 #define FUNCTION_BOUNDARY 32
852 
853 /* Alignment of field after `int : 0' in a structure.  */
854 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
855 
856 /* No data type wants to be aligned rounder than this.  */
857 #define BIGGEST_ALIGNMENT 32
858 
859 /* Define this if move instructions will actually fail to work
860    when given unaligned data.  */
861 #define STRICT_ALIGNMENT 1
862 
863 /* (shell-command "rm c-decl.o stor-layout.o")
864  *  never define PCC_BITFIELD_TYPE_MATTERS
865  *  really cause some alignment problem
866  */
867 
868 #define UNITS_PER_FLOAT  ((FLOAT_TYPE_SIZE  + BITS_PER_UNIT - 1) / \
869 			   BITS_PER_UNIT)
870 
871 #define UNITS_PER_DOUBLE ((DOUBLE_TYPE_SIZE + BITS_PER_UNIT - 1) / \
872  			   BITS_PER_UNIT)
873 
874 
875 /* what is the 'type' of size_t */
876 #define SIZE_TYPE "long unsigned int"
877 
878 /* Define this as 1 if `char' should by default be signed; else as 0.  */
879 #define DEFAULT_SIGNED_CHAR 1
880 #define FLOAT_TYPE_SIZE BITS_PER_WORD
881 #define SHORT_TYPE_SIZE 16
882 #define CHAR_TYPE_SIZE	8
883 #define INT_TYPE_SIZE	32
884 #define LONG_TYPE_SIZE	32
885 #define LONG_LONG_TYPE_SIZE 64
886 
887 /* Note: Fix this to depend on target switch. -- lev */
888 
889 /* Note: Try to implement double and force long double. -- tonyko
890  * #define __DOUBLES_ARE_FLOATS__
891  * #define DOUBLE_TYPE_SIZE FLOAT_TYPE_SIZE
892  * #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
893  * #define DOUBLES_ARE_FLOATS 1
894  */
895 
896 #define DOUBLE_TYPE_SIZE	64
897 #define LONG_DOUBLE_TYPE_SIZE	64
898 
899 /* `PROMOTE_MODE (M, UNSIGNEDP, TYPE)'
900      A macro to update M and UNSIGNEDP when an object whose type is
901      TYPE and which has the specified mode and signedness is to be
902      stored in a register.  This macro is only called when TYPE is a
903      scalar type.
904 
905      On most RISC machines, which only have operations that operate on
906      a full register, define this macro to set M to `word_mode' if M is
907      an integer mode narrower than `BITS_PER_WORD'.  In most cases,
908      only integer modes should be widened because wider-precision
909      floating-point operations are usually more expensive than their
910      narrower counterparts.
911 
912      For most machines, the macro definition does not change UNSIGNEDP.
913      However, some machines, have instructions that preferentially
914      handle either signed or unsigned quantities of certain modes.  For
915      example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
916      instructions sign-extend the result to 64 bits.  On such machines,
917      set UNSIGNEDP according to which kind of extension is more
918      efficient.
919 
920      Do not define this macro if it would never modify M.*/
921 
922 #define BFIN_PROMOTE_MODE_P(MODE) \
923     (!TARGET_DSP && GET_MODE_CLASS (MODE) == MODE_INT	\
924       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)
925 
926 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)     \
927   if (BFIN_PROMOTE_MODE_P(MODE))		\
928     {                                           \
929       if (MODE == QImode)                       \
930         UNSIGNEDP = 1;                          \
931       else if (MODE == HImode)                  \
932         UNSIGNEDP = 0;      			\
933       (MODE) = SImode;                          \
934     }
935 
936 /* Describing Relative Costs of Operations */
937 
938 /* Do not put function addr into constant pool */
939 #define NO_FUNCTION_CSE 1
940 
941 /* Specify the machine mode that this machine uses
942    for the index in the tablejump instruction.  */
943 #define CASE_VECTOR_MODE SImode
944 
945 #define JUMP_TABLES_IN_TEXT_SECTION flag_pic
946 
947 /* Define if operations between registers always perform the operation
948    on the full register even if a narrower mode is specified.
949 #define WORD_REGISTER_OPERATIONS 1
950 */
951 
952 /* Evaluates to true if A and B are mac flags that can be used
953    together in a single multiply insn.  That is the case if they are
954    both the same flag not involving M, or if one is a combination of
955    the other with M.  */
956 #define MACFLAGS_MATCH_P(A, B) \
957  ((A) == (B) \
958   || ((A) == MACFLAG_NONE && (B) == MACFLAG_M) \
959   || ((A) == MACFLAG_M && (B) == MACFLAG_NONE) \
960   || ((A) == MACFLAG_IS && (B) == MACFLAG_IS_M) \
961   || ((A) == MACFLAG_IS_M && (B) == MACFLAG_IS))
962 
963 /* Switch into a generic section.  */
964 #define TARGET_ASM_NAMED_SECTION  default_elf_asm_named_section
965 
966 #define PRINT_OPERAND(FILE, RTX, CODE)	 print_operand (FILE, RTX, CODE)
967 #define PRINT_OPERAND_ADDRESS(FILE, RTX) print_address_operand (FILE, RTX)
968 
969 typedef enum sections {
970     CODE_DIR,
971     DATA_DIR,
972     LAST_SECT_NM
973 } SECT_ENUM_T;
974 
975 typedef enum directives {
976     LONG_CONST_DIR,
977     SHORT_CONST_DIR,
978     BYTE_CONST_DIR,
979     SPACE_DIR,
980     INIT_DIR,
981     LAST_DIR_NM
982 } DIR_ENUM_T;
983 
984 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR)	\
985   ((C) == ';'					\
986    || ((C) == '|' && (STR)[1] == '|'))
987 
988 #define TEXT_SECTION_ASM_OP ".text;"
989 #define DATA_SECTION_ASM_OP ".data;"
990 
991 #define ASM_APP_ON  ""
992 #define ASM_APP_OFF ""
993 
994 #define ASM_GLOBALIZE_LABEL1(FILE, NAME) \
995   do {  fputs (".global ", FILE);		\
996         assemble_name (FILE, NAME);	        \
997         fputc (';',FILE);			\
998         fputc ('\n',FILE);			\
999       } while (0)
1000 
1001 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1002   do {					\
1003     fputs (".type ", FILE);           	\
1004     assemble_name (FILE, NAME);         \
1005     fputs (", STT_FUNC", FILE);         \
1006     fputc (';',FILE);                   \
1007     fputc ('\n',FILE);			\
1008     ASM_OUTPUT_LABEL(FILE, NAME);	\
1009   } while (0)
1010 
1011 #define ASM_OUTPUT_LABEL(FILE, NAME)    \
1012   do {  assemble_name (FILE, NAME);		\
1013         fputs (":\n",FILE);			\
1014       } while (0)
1015 
1016 #define ASM_OUTPUT_LABELREF(FILE,NAME) 	\
1017     do {  fprintf (FILE, "_%s", NAME); \
1018         } while (0)
1019 
1020 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)    	\
1021 do { char __buf[256];					\
1022      fprintf (FILE, "\t.dd\t");				\
1023      ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE);	\
1024      assemble_name (FILE, __buf);			\
1025      fputc (';', FILE);					\
1026      fputc ('\n', FILE);				\
1027    } while (0)
1028 
1029 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1030     MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)
1031 
1032 #define MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)		\
1033     do {							\
1034 	char __buf[256];					\
1035 	fprintf (FILE, "\t.dd\t");				\
1036 	ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE);	\
1037 	assemble_name (FILE, __buf);				\
1038 	fputs (" - ", FILE);					\
1039 	ASM_GENERATE_INTERNAL_LABEL (__buf, "L", REL);		\
1040 	assemble_name (FILE, __buf);				\
1041 	fputc (';', FILE);					\
1042 	fputc ('\n', FILE);					\
1043     } while (0)
1044 
1045 #define ASM_OUTPUT_ALIGN(FILE,LOG) 				\
1046     do {							\
1047       if ((LOG) != 0)						\
1048 	fprintf (FILE, "\t.align %d\n", 1 << (LOG));		\
1049     } while (0)
1050 
1051 #define ASM_OUTPUT_SKIP(FILE,SIZE)		\
1052     do {					\
1053 	asm_output_skip (FILE, SIZE);		\
1054     } while (0)
1055 
1056 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) 	\
1057 do { 						\
1058     switch_to_section (data_section);				\
1059     if ((SIZE) >= (unsigned int) 4 ) ASM_OUTPUT_ALIGN(FILE,2);	\
1060     ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE);		\
1061     ASM_OUTPUT_LABEL (FILE, NAME);				\
1062     fprintf (FILE, "%s %ld;\n", ASM_SPACE,			\
1063 	     (ROUNDED) > (unsigned int) 1 ? (ROUNDED) : 1);	\
1064 } while (0)
1065 
1066 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)	\
1067      do {						\
1068 	ASM_GLOBALIZE_LABEL1(FILE,NAME); 		\
1069         ASM_OUTPUT_LOCAL (FILE, NAME, SIZE, ROUNDED); } while(0)
1070 
1071 #define ASM_COMMENT_START "//"
1072 
1073 #define PROFILE_BEFORE_PROLOGUE
1074 #define FUNCTION_PROFILER(FILE, LABELNO)	\
1075   do {						\
1076     fprintf (FILE, "\t[--SP] = RETS;\n");	\
1077     if (TARGET_LONG_CALLS)			\
1078       {						\
1079 	fprintf (FILE, "\tP2.h = __mcount;\n");	\
1080 	fprintf (FILE, "\tP2.l = __mcount;\n");	\
1081 	fprintf (FILE, "\tCALL (P2);\n");	\
1082       }						\
1083     else					\
1084       fprintf (FILE, "\tCALL __mcount;\n");	\
1085     fprintf (FILE, "\tRETS = [SP++];\n");	\
1086   } while(0)
1087 
1088 #undef NO_PROFILE_COUNTERS
1089 #define NO_PROFILE_COUNTERS 1
1090 
1091 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) fprintf (FILE, "\t[--SP] = %s;\n", reg_names[REGNO])
1092 #define ASM_OUTPUT_REG_POP(FILE, REGNO)  fprintf (FILE, "\t%s = [SP++];\n", reg_names[REGNO])
1093 
1094 extern rtx bfin_cc_rtx, bfin_rets_rtx;
1095 
1096 /* This works for GAS and some other assemblers.  */
1097 #define SET_ASM_OP              ".set "
1098 
1099 /* DBX register number for a given compiler register number */
1100 #define DBX_REGISTER_NUMBER(REGNO)  (REGNO)
1101 
1102 #define SIZE_ASM_OP     "\t.size\t"
1103 
1104 extern int splitting_for_sched, splitting_loops;
1105 
1106 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) ((CHAR) == '!')
1107 
1108 #ifndef TARGET_SUPPORTS_SYNC_CALLS
1109 #define TARGET_SUPPORTS_SYNC_CALLS 0
1110 #endif
1111 
1112 struct bfin_cpu
1113 {
1114   const char *name;
1115   bfin_cpu_t type;
1116   int si_revision;
1117   unsigned int workarounds;
1118 };
1119 
1120 extern const struct bfin_cpu bfin_cpus[];
1121 
1122 #endif /*  _BFIN_CONFIG */
1123