1 /* Definitions of target machine for GNU compiler.
2    Matsushita MN10300 series
3    Copyright (C) 1996-2020 Free Software Foundation, Inc.
4    Contributed by Jeff Law (law@cygnus.com).
5 
6    This file is part of GCC.
7 
8    GCC is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3, or (at your option)
11    any later version.
12 
13    GCC is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with GCC; see the file COPYING3.  If not see
20    <http://www.gnu.org/licenses/>.  */
21 
22 #undef ASM_SPEC
23 #undef LIB_SPEC
24 #undef ENDFILE_SPEC
25 #undef  LINK_SPEC
26 #define LINK_SPEC "%{mrelax:%{!r:--relax}}"
27 #undef  STARTFILE_SPEC
28 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
29 
30 /* Names to predefine in the preprocessor for this target machine.  */
31 
32 #define TARGET_CPU_CPP_BUILTINS()		\
33   do						\
34     {						\
35       builtin_define ("__mn10300__");		\
36       builtin_define ("__MN10300__");		\
37       builtin_assert ("cpu=mn10300");		\
38       builtin_assert ("machine=mn10300");	\
39 						\
40       if (TARGET_AM34)				\
41         { 					\
42           builtin_define ("__AM33__=4");	\
43           builtin_define ("__AM34__");		\
44         }					\
45       else if (TARGET_AM33_2)			\
46         { 					\
47           builtin_define ("__AM33__=2");	\
48           builtin_define ("__AM33_2__");	\
49         }					\
50       else if (TARGET_AM33)			\
51         builtin_define ("__AM33__=1");		\
52 						\
53       builtin_define (TARGET_ALLOW_LIW ?	\
54 		      "__LIW__" : "__NO_LIW__");\
55 						\
56       builtin_define (TARGET_ALLOW_SETLB  ?	\
57 		      "__SETLB__" : "__NO_SETLB__");\
58     }						\
59   while (0)
60 
61 #ifndef MN10300_OPTS_H
62 #include "config/mn10300/mn10300-opts.h"
63 #endif
64 
65 extern enum processor_type mn10300_tune_cpu;
66 
67 #define TARGET_AM33	(mn10300_processor >= PROCESSOR_AM33)
68 #define TARGET_AM33_2	(mn10300_processor >= PROCESSOR_AM33_2)
69 #define TARGET_AM34	(mn10300_processor >= PROCESSOR_AM34)
70 
71 #ifndef PROCESSOR_DEFAULT
72 #define PROCESSOR_DEFAULT PROCESSOR_MN10300
73 #endif
74 
75 
76 /* Target machine storage layout */
77 
78 /* Define this if most significant bit is lowest numbered
79    in instructions that operate on numbered bit-fields.
80    This is not true on the Matsushita MN1003.  */
81 #define BITS_BIG_ENDIAN 0
82 
83 /* Define this if most significant byte of a word is the lowest numbered.  */
84 /* This is not true on the Matsushita MN10300.  */
85 #define BYTES_BIG_ENDIAN 0
86 
87 /* Define this if most significant word of a multiword number is lowest
88    numbered.
89    This is not true on the Matsushita MN10300.  */
90 #define WORDS_BIG_ENDIAN 0
91 
92 /* Width of a word, in units (bytes).  */
93 #define UNITS_PER_WORD		4
94 
95 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
96 #define PARM_BOUNDARY		32
97 
98 /* The stack goes in 32-bit lumps.  */
99 #define STACK_BOUNDARY 		32
100 
101 /* Allocation boundary (in *bits*) for the code of a function.
102    8 is the minimum boundary; it's unclear if bigger alignments
103    would improve performance.  */
104 #define FUNCTION_BOUNDARY 8
105 
106 /* No data type wants to be aligned rounder than this.  */
107 #define BIGGEST_ALIGNMENT	32
108 
109 /* Alignment of field after `int : 0' in a structure.  */
110 #define EMPTY_FIELD_BOUNDARY    32
111 
112 /* Define this if move instructions will actually fail to work
113    when given unaligned data.  */
114 #define STRICT_ALIGNMENT 1
115 
116 /* Define this as 1 if `char' should by default be signed; else as 0.  */
117 #define DEFAULT_SIGNED_CHAR 0
118 
119 #undef  SIZE_TYPE
120 #define SIZE_TYPE "unsigned int"
121 
122 #undef  PTRDIFF_TYPE
123 #define PTRDIFF_TYPE "int"
124 
125 #undef  WCHAR_TYPE
126 #define WCHAR_TYPE "long int"
127 
128 #undef  WCHAR_TYPE_SIZE
129 #define WCHAR_TYPE_SIZE BITS_PER_WORD
130 
131 /* Standard register usage.  */
132 
133 /* Number of actual hardware registers.
134    The hardware registers are assigned numbers for the compiler
135    from 0 to just below FIRST_PSEUDO_REGISTER.
136 
137    All registers that the compiler knows about must be given numbers,
138    even those that are not normally considered general registers.  */
139 
140 #define FIRST_PSEUDO_REGISTER 52
141 
142 /* Specify machine-specific register numbers.  The commented out entries
143    are defined in mn10300.md.  */
144 #define FIRST_DATA_REGNUM      0
145 #define LAST_DATA_REGNUM       3
146 #define FIRST_ADDRESS_REGNUM   4
147 /* #define PIC_REG             6 */
148 #define LAST_ADDRESS_REGNUM    8
149 /* #define SP_REG              9 */
150 #define FIRST_EXTENDED_REGNUM 10
151 #define LAST_EXTENDED_REGNUM  17
152 #define FIRST_FP_REGNUM       18
153 #define LAST_FP_REGNUM        49
154 /* #define MDR_REG            50 */
155 /* #define CC_REG             51 */
156 #define FIRST_ARGUMENT_REGNUM  0
157 
158 /* Specify the registers used for certain standard purposes.
159    The values of these macros are register numbers.  */
160 
161 /* Register to use for pushing function arguments.  */
162 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM + 1)
163 
164 /* Base register for access to local variables of the function.  */
165 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM - 1)
166 
167 /* Base register for access to arguments of the function.  This
168    is a fake register and will be eliminated into either the frame
169    pointer or stack pointer.  */
170 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
171 
172 /* Register in which static-chain is passed to a function.  */
173 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM + 1)
174 
175 /* 1 for registers that have pervasive standard uses
176    and are not available for the register allocator.  */
177 
178 #define FIXED_REGISTERS \
179   { 0, 0, 0, 0,				/* data regs */		\
180     0, 0, 0, 0,				/* addr regs */		\
181     1,					/* arg reg */		\
182     1,					/* sp reg */		\
183     0, 0, 0, 0, 0, 0, 0, 0,		/* extended regs */	\
184     0, 0,				/* fp regs (18-19) */	\
185     0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	/* fp regs (20-29) */	\
186     0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	/* fp regs (30-39) */	\
187     0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	/* fp regs (40-49) */	\
188     0,					/* mdr reg */		\
189     1					/* cc reg */		\
190   }
191 
192 /* 1 for registers not available across function calls.
193    These must include the FIXED_REGISTERS and also any
194    registers that can be used without being saved.
195    The latter must include the registers where values are returned
196    and the register where structure-value addresses are passed.
197    Aside from that, you can include as many other registers as you
198    like.  */
199 
200 #define CALL_REALLY_USED_REGISTERS \
201   { 1, 1, 0, 0,				/* data regs */		\
202     1, 1, 0, 0,				/* addr regs */		\
203     1,					/* arg reg */		\
204     1,					/* sp reg */		\
205     1, 1, 1, 1, 0, 0, 0, 0,		/* extended regs */	\
206     1, 1,				/* fp regs (18-19) */	\
207     1, 1, 0, 0, 0, 0, 0, 0, 0, 0,	/* fp regs (20-29) */	\
208     0, 0, 0, 0, 0, 0, 0, 0, 1, 1,	/* fp regs (30-39) */	\
209     1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	/* fp regs (40-49) */	\
210     1,					/* mdr reg */		\
211     1					/* cc reg */		\
212   }
213 
214 #define REG_ALLOC_ORDER \
215   { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
216   , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
217   , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 50, 51 \
218   }
219 
220 /* 4 data, and effectively 3 address registers is small as far as I'm
221    concerned.  */
222 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
223 
224 /* Define the classes of registers for register constraints in the
225    machine description.  Also define ranges of constants.
226 
227    One of the classes must always be named ALL_REGS and include all hard regs.
228    If there is more than one class, another class must be named NO_REGS
229    and contain no registers.
230 
231    The name GENERAL_REGS must be the name of a class (or an alias for
232    another name such as ALL_REGS).  This is the class of registers
233    that is allowed by "g" or "r" in a register constraint.
234    Also, registers outside this class are allocated only when
235    instructions express preferences for them.
236 
237    The classes must be numbered in nondecreasing order; that is,
238    a larger-numbered class must never be contained completely
239    in a smaller-numbered class.
240 
241    For any two classes, it is very desirable that there be another
242    class that represents their union.  */
243 
244 enum reg_class
245 {
246   NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS, SP_OR_ADDRESS_REGS,
247   EXTENDED_REGS, FP_REGS, FP_ACC_REGS, CC_REGS, MDR_REGS,
248   GENERAL_REGS, SP_OR_GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
249 };
250 
251 #define N_REG_CLASSES (int) LIM_REG_CLASSES
252 
253 /* Give names of register classes as strings for dump file.  */
254 
255 #define REG_CLASS_NAMES					   		\
256 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", "SP_REGS", "SP_OR_ADDRESS_REGS", \
257   "EXTENDED_REGS", "FP_REGS", "FP_ACC_REGS", "CC_REGS", "MDR_REGS",	\
258   "GENERAL_REGS", "SP_OR_GENERAL_REGS", "ALL_REGS", "LIM_REGS"		\
259 }
260 
261 /* Define which registers fit in which classes.
262    This is an initializer for a vector of HARD_REG_SET
263    of length N_REG_CLASSES.  */
264 
265 #define REG_CLASS_CONTENTS					\
266 { { 0,	        0 },	  /* No regs */				\
267   { 0x0000000f, 0 },	  /* DATA_REGS */			\
268   { 0x000001f0, 0 },	  /* ADDRESS_REGS */			\
269   { 0x00000200, 0 },	  /* SP_REGS */				\
270   { 0x000003f0, 0 },	  /* SP_OR_ADDRESS_REGS */		\
271   { 0x0003fc00, 0 },	  /* EXTENDED_REGS */			\
272   { 0xfffc0000, 0x3ffff },/* FP_REGS */				\
273   { 0x03fc0000, 0 },	  /* FP_ACC_REGS */			\
274   { 0x00000000, 0x80000 },/* CC_REGS */				\
275   { 0x00000000, 0x40000 },/* MDR_REGS */			\
276   { 0x0003fdff, 0 }, 	  /* GENERAL_REGS */			\
277   { 0x0003ffff, 0 },      /* SP_OR_GENERAL_REGS */		\
278   { 0xffffffff, 0xfffff } /* ALL_REGS */			\
279 }
280 
281 /* The same information, inverted:
282    Return the class number of the smallest class containing
283    reg number REGNO.  This could be a conditional expression
284    or could index an array.  */
285 
286 #define REGNO_REG_CLASS(REGNO)			     \
287   ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS :	     \
288    (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS :   \
289    (REGNO) == STACK_POINTER_REGNUM ? SP_REGS :	     \
290    (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
291    (REGNO) <= LAST_FP_REGNUM ? FP_REGS :	     \
292    (REGNO) == MDR_REG ? MDR_REGS :		     \
293    (REGNO) == CC_REG ? CC_REGS :		     \
294    NO_REGS)
295 
296 /* The class value for index registers, and the one for base regs.  */
297 #define INDEX_REG_CLASS \
298   (TARGET_AM33 ? GENERAL_REGS : DATA_REGS)
299 #define BASE_REG_CLASS \
300   (TARGET_AM33 ? SP_OR_GENERAL_REGS : SP_OR_ADDRESS_REGS)
301 
302 /* Macros to check register numbers against specific register classes.  */
303 
304 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
305    and check its validity for a certain class.
306    We have two alternate definitions for each of them.
307    The usual definition accepts all pseudo regs; the other rejects
308    them unless they have been allocated suitable hard regs.
309    The symbol REG_OK_STRICT causes the latter definition to be used.
310 
311    Most source files want to accept pseudo regs in the hope that
312    they will get allocated to the class that the insn wants them to be in.
313    Source files for reload pass need to be strict.
314    After reload, it makes no difference, since pseudo regs have
315    been eliminated by then.  */
316 
317 /* These assume that REGNO is a hard or pseudo reg number.
318    They give nonzero only if REGNO is a hard reg of the suitable class
319    or a pseudo reg currently allocated to a suitable hard reg.
320    Since they use reg_renumber, they are safe only once reg_renumber
321    has been allocated, which happens in reginfo.c during register
322    allocation.  */
323 
324 #ifndef REG_OK_STRICT
325 # define REG_STRICT 0
326 #else
327 # define REG_STRICT 1
328 #endif
329 
330 #define REGNO_DATA_P(regno, strict) \
331   mn10300_regno_in_class_p (regno, DATA_REGS, strict)
332 #define REGNO_ADDRESS_P(regno, strict) \
333   mn10300_regno_in_class_p (regno, ADDRESS_REGS, strict)
334 #define REGNO_EXTENDED_P(regno, strict) \
335   mn10300_regno_in_class_p (regno, EXTENDED_REGS, strict)
336 #define REGNO_GENERAL_P(regno, strict) \
337   mn10300_regno_in_class_p (regno, GENERAL_REGS, strict)
338 
339 #define REGNO_STRICT_OK_FOR_BASE_P(regno, strict) \
340   mn10300_regno_in_class_p (regno, BASE_REG_CLASS, strict)
341 #define REGNO_OK_FOR_BASE_P(regno) \
342   (REGNO_STRICT_OK_FOR_BASE_P ((regno), REG_STRICT))
343 #define REG_OK_FOR_BASE_P(X) \
344   (REGNO_OK_FOR_BASE_P (REGNO (X)))
345 
346 #define REGNO_STRICT_OK_FOR_BIT_BASE_P(regno, strict) \
347   mn10300_regno_in_class_p (regno, ADDRESS_REGS, strict)
348 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
349   (REGNO_STRICT_OK_FOR_BIT_BASE_P ((regno), REG_STRICT))
350 #define REG_OK_FOR_BIT_BASE_P(X) \
351   (REGNO_OK_FOR_BIT_BASE_P (REGNO (X)))
352 
353 #define REGNO_STRICT_OK_FOR_INDEX_P(regno, strict) \
354   mn10300_regno_in_class_p (regno, INDEX_REG_CLASS, strict)
355 #define REGNO_OK_FOR_INDEX_P(regno) \
356   (REGNO_STRICT_OK_FOR_INDEX_P ((regno), REG_STRICT))
357 #define REG_OK_FOR_INDEX_P(X) \
358   (REGNO_OK_FOR_INDEX_P (REGNO (X)))
359 
360 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
361   (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
362 
363 /* A class that contains registers which the compiler must always
364    access in a mode that is the same size as the mode in which it
365    loaded the register.  */
366 #define CLASS_CANNOT_CHANGE_SIZE FP_REGS
367 
368 /* Return 1 if VALUE is in the range specified.  */
369 
370 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
371 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
372 
373 
374 /* Stack layout; function entry, exit and calling.  */
375 
376 /* Define this if pushing a word on the stack
377    makes the stack pointer a smaller address.  */
378 
379 #define STACK_GROWS_DOWNWARD 1
380 
381 /* Define this to nonzero if the nominal address of the stack frame
382    is at the high-address end of the local variables;
383    that is, each additional local variable allocated
384    goes at a more negative offset in the frame.  */
385 
386 #define FRAME_GROWS_DOWNWARD 1
387 
388 /* Offset of first parameter from the argument pointer register value.  */
389 /* Is equal to the size of the saved fp + pc, even if an fp isn't
390    saved since the value is used before we know.  */
391 
392 #define FIRST_PARM_OFFSET(FNDECL) 4
393 
394 /* But the CFA is at the arg pointer directly, not at the first argument.  */
395 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
396 
397 #define ELIMINABLE_REGS				\
398 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
399  { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},	\
400  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
401 
402 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
403   OFFSET = mn10300_initial_offset (FROM, TO)
404 
405 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
406    for a register flushback area.  */
407 #define REG_PARM_STACK_SPACE(DECL) 8
408 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
409 #define ACCUMULATE_OUTGOING_ARGS 1
410 
411 /* So we can allocate space for return pointers once for the function
412    instead of around every call.  */
413 #define STACK_POINTER_OFFSET 4
414 
415 /* 1 if N is a possible register number for function argument passing.
416    On the MN10300, d0 and d1 are used in this way.  */
417 
418 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
419 
420 
421 /* Define a data type for recording info about an argument list
422    during the scan of that argument list.  This data type should
423    hold all necessary information about the function itself
424    and about the args processed so far, enough to enable macros
425    such as FUNCTION_ARG to determine where the next arg should go.
426 
427    On the MN10300, this is a single integer, which is a number of bytes
428    of arguments scanned so far.  */
429 
430 #define CUMULATIVE_ARGS struct cum_arg
431 
432 struct cum_arg
433 {
434   int nbytes;
435 };
436 
437 /* Initialize a variable CUM of type CUMULATIVE_ARGS
438    for a call to a function whose data type is FNTYPE.
439    For a library call, FNTYPE is 0.
440 
441    On the MN10300, the offset starts at 0.  */
442 
443 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
444  ((CUM).nbytes = 0)
445 
446 #define FUNCTION_VALUE_REGNO_P(N)  mn10300_function_value_regno_p (N)
447 
448 #define DEFAULT_PCC_STRUCT_RETURN 0
449 
450 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
451    the stack pointer does not matter.  The value is tested only in
452    functions that have frame pointers.
453    No definition is equivalent to always zero.  */
454 
455 #define EXIT_IGNORE_STACK 1
456 
457 /* Output assembler code to FILE to increment profiler label # LABELNO
458    for profiling a function entry.  */
459 
460 #define FUNCTION_PROFILER(FILE, LABELNO) ;
461 
462 /* Length in units of the trampoline for entering a nested function.  */
463 
464 #define TRAMPOLINE_SIZE		16
465 #define TRAMPOLINE_ALIGNMENT	32
466 
467 /* A C expression whose value is RTL representing the value of the return
468    address for the frame COUNT steps up from the current frame.
469 
470    On the mn10300, the return address is not at a constant location
471    due to the frame layout.  Luckily, it is at a constant offset from
472    the argument pointer, so we define RETURN_ADDR_RTX to return a
473    MEM using arg_pointer_rtx.  Reload will replace arg_pointer_rtx
474    with a reference to the stack/frame pointer + an appropriate offset.  */
475 
476 #define RETURN_ADDR_RTX(COUNT, FRAME)   \
477   ((COUNT == 0)                         \
478    ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
479    : (rtx) 0)
480 
481 /* The return address is saved both in the stack and in MDR.  Using
482    the stack location is handiest for what unwinding needs.  */
483 #define INCOMING_RETURN_ADDR_RTX \
484   gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode, STACK_POINTER_REGNUM))
485 
486 /* Maximum number of registers that can appear in a valid memory address.  */
487 
488 #define MAX_REGS_PER_ADDRESS 2
489 
490 
491 /* We have post-increments.  */
492 #define HAVE_POST_INCREMENT	TARGET_AM33
493 #define HAVE_POST_MODIFY_DISP	TARGET_AM33
494 
495 /* ... But we don't want to use them for block moves.  Small offsets are
496    just as effective, at least for inline block move sizes, and appears
497    to produce cleaner code.  */
498 #define USE_LOAD_POST_INCREMENT(M)	0
499 #define USE_STORE_POST_INCREMENT(M)	0
500 
501 /* Accept either REG or SUBREG where a register is valid.  */
502 
503 #define RTX_OK_FOR_BASE_P(X, strict)				\
504   ((REG_P (X) && REGNO_STRICT_OK_FOR_BASE_P (REGNO (X),		\
505  					     (strict))) 	\
506    || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X))		\
507        && REGNO_STRICT_OK_FOR_BASE_P (REGNO (SUBREG_REG (X)),	\
508  				      (strict))))
509 
510 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN)		     \
511 do {									     \
512   rtx new_x = mn10300_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
513   if (new_x)								     \
514     {									     \
515       X = new_x;							     \
516       goto WIN;								     \
517     }									     \
518 } while (0)
519 
520 
521 /* Zero if this needs fixing up to become PIC.  */
522 
523 #define LEGITIMATE_PIC_OPERAND_P(X) \
524   mn10300_legitimate_pic_operand_p (X)
525 
526 /* Register to hold the addressing base for
527    position independent code access to data items.  */
528 #define PIC_OFFSET_TABLE_REGNUM	PIC_REG
529 
530 /* The name of the pseudo-symbol representing the Global Offset Table.  */
531 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
532 
533 #define SYMBOLIC_CONST_P(X)	\
534 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF)	\
535   && ! LEGITIMATE_PIC_OPERAND_P (X))
536 
537 /* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled.  */
538 #define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X))
539 
540 #define SELECT_CC_MODE(OP, X, Y)  mn10300_select_cc_mode (OP, X, Y)
541 #define REVERSIBLE_CC_MODE(MODE)  0
542 
543 /* Nonzero if access to memory by bytes or half words is no faster
544    than accessing full words.  */
545 #define SLOW_BYTE_ACCESS 1
546 
547 #define NO_FUNCTION_CSE 1
548 
549 /* According expr.c, a value of around 6 should minimize code size, and
550    for the MN10300 series, that's our primary concern.  */
551 #define MOVE_RATIO(speed) 6
552 
553 #define TEXT_SECTION_ASM_OP "\t.section .text"
554 #define DATA_SECTION_ASM_OP "\t.section .data"
555 #define BSS_SECTION_ASM_OP  "\t.section .bss"
556 
557 #define ASM_COMMENT_START "#"
558 
559 /* Output to assembler file text saying following lines
560    may contain character constants, extra white space, comments, etc.  */
561 
562 #define ASM_APP_ON "#APP\n"
563 
564 /* Output to assembler file text saying following lines
565    no longer contain unusual constructs.  */
566 
567 #define ASM_APP_OFF "#NO_APP\n"
568 
569 #undef  USER_LABEL_PREFIX
570 #define USER_LABEL_PREFIX "_"
571 
572 /* This says how to output the assembler to define a global
573    uninitialized but not common symbol.
574    Try to use asm_output_bss to implement this macro.  */
575 
576 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
577   asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
578 
579 /* Globalizing directive for a label.  */
580 #define GLOBAL_ASM_OP "\t.global "
581 
582 /* This is how to output a reference to a user-level label named NAME.
583    `assemble_name' uses this.  */
584 
585 #undef  ASM_OUTPUT_LABELREF
586 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
587   asm_fprintf (FILE, "%U%s", (*targetm.strip_name_encoding) (NAME))
588 
589 /* This is how we tell the assembler that two symbols have the same value.  */
590 
591 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
592   do					 \
593     {					 \
594       assemble_name (FILE, NAME1);	 \
595       fputs (" = ", FILE);		 \
596       assemble_name (FILE, NAME2);	 \
597       fputc ('\n', FILE);		 \
598     }					 \
599   while (0)
600 
601 /* How to refer to registers in assembler output.
602    This sequence is indexed by compiler's hard-register-number (see above).  */
603 
604 #define REGISTER_NAMES							\
605 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp",		\
606   "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7"			\
607 , "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7"		\
608 , "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15"		\
609 , "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23"	\
610 , "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31"	\
611 , "mdr", "EPSW"								\
612 }
613 
614 #define ADDITIONAL_REGISTER_NAMES				\
615 { {"r8",  4}, {"r9",  5}, {"r10", 6}, {"r11", 7},		\
616   {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3},		\
617   {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13},		\
618   {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17}		\
619 , {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24}		\
620 , {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32}		\
621 , {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40}	\
622 , {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48}	\
623 , {"cc", CC_REG}						\
624 }
625 
626 /* Print an instruction operand X on file FILE.
627    look in mn10300.c for details */
628 
629 #define PRINT_OPERAND(FILE, X, CODE) \
630   mn10300_print_operand (FILE, X, CODE)
631 
632 /* Print a memory operand whose address is X, on file FILE.
633    This uses a function in output-vax.c.  */
634 
635 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
636   mn10300_print_operand_address (FILE, ADDR)
637 
638 /* This is how to output an element of a case-vector that is absolute.  */
639 
640 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
641   fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
642 
643 /* This is how to output an element of a case-vector that is relative.  */
644 
645 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
646   fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
647 
648 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
649   if ((LOG) != 0)			\
650     fprintf (FILE, "\t.align %d\n", (LOG))
651 
652 /* We don't have to worry about dbx compatibility for the mn10300.  */
653 #define DEFAULT_GDB_EXTENSIONS 1
654 
655 /* Use dwarf2 debugging info by default.  */
656 #undef  PREFERRED_DEBUGGING_TYPE
657 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
658 #define DWARF2_DEBUGGING_INFO 1
659 #define DWARF2_ASM_LINE_DEBUG_INFO 1
660 
661 /* Specify the machine mode that this machine uses
662    for the index in the tablejump instruction.  */
663 #define CASE_VECTOR_MODE Pmode
664 
665 /* Define if operations between registers always perform the operation
666    on the full register even if a narrower mode is specified.  */
667 #define WORD_REGISTER_OPERATIONS 1
668 
669 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
670 
671 /* Max number of bytes we can move from memory to memory
672    in one reasonably fast instruction.  */
673 #define MOVE_MAX	4
674 
675 /* Define if shifts truncate the shift count
676    which implies one can omit a sign-extension or zero-extension
677    of a shift count.  */
678 #define SHIFT_COUNT_TRUNCATED 1
679 
680 /* Specify the machine mode that pointers have.
681    After generation of rtl, the compiler makes no further distinction
682    between pointers and any other objects of this machine mode.  */
683 #define Pmode SImode
684 
685 /* A function address in a call instruction
686    is a byte address (for indexing purposes)
687    so give the MEM rtx a byte's mode.  */
688 #define FUNCTION_MODE QImode
689 
690 /* The assembler op to get a word.  */
691 
692 #define FILE_ASM_OP "\t.file\n"
693 
694