1 /* Loop interchange.
2    Copyright (C) 2017-2020 Free Software Foundation, Inc.
3    Contributed by ARM Ltd.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "is-a.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "gimple-pretty-print.h"
31 #include "fold-const.h"
32 #include "gimplify.h"
33 #include "gimple-iterator.h"
34 #include "gimplify-me.h"
35 #include "cfgloop.h"
36 #include "tree-ssa.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-ssa-loop-manip.h"
39 #include "tree-ssa-loop-niter.h"
40 #include "tree-ssa-loop-ivopts.h"
41 #include "tree-ssa-dce.h"
42 #include "tree-data-ref.h"
43 #include "tree-vectorizer.h"
44 
45 /* This pass performs loop interchange: for example, the loop nest
46 
47    for (int j = 0; j < N; j++)
48      for (int k = 0; k < N; k++)
49        for (int i = 0; i < N; i++)
50 	 c[i][j] = c[i][j] + a[i][k]*b[k][j];
51 
52    is transformed to
53 
54    for (int i = 0; i < N; i++)
55      for (int j = 0; j < N; j++)
56        for (int k = 0; k < N; k++)
57 	 c[i][j] = c[i][j] + a[i][k]*b[k][j];
58 
59    This pass implements loop interchange in the following steps:
60 
61      1) Find perfect loop nest for each innermost loop and compute data
62 	dependence relations for it.  For above example, loop nest is
63 	<loop_j, loop_k, loop_i>.
64      2) From innermost to outermost loop, this pass tries to interchange
65 	each loop pair.  For above case, it firstly tries to interchange
66 	<loop_k, loop_i> and loop nest becomes <loop_j, loop_i, loop_k>.
67 	Then it tries to interchange <loop_j, loop_i> and loop nest becomes
68 	<loop_i, loop_j, loop_k>.  The overall effect is to move innermost
69 	loop to the outermost position.  For loop pair <loop_i, loop_j>
70 	to be interchanged, we:
71      3) Check if data dependence relations are valid for loop interchange.
72      4) Check if both loops can be interchanged in terms of transformation.
73      5) Check if interchanging the two loops is profitable.
74      6) Interchange the two loops by mapping induction variables.
75 
76    This pass also handles reductions in loop nest.  So far we only support
77    simple reduction of inner loop and double reduction of the loop nest.  */
78 
79 /* Maximum number of stmts in each loop that should be interchanged.  */
80 #define MAX_NUM_STMT    (param_loop_interchange_max_num_stmts)
81 /* Maximum number of data references in loop nest.  */
82 #define MAX_DATAREFS    (param_loop_max_datarefs_for_datadeps)
83 
84 /* Comparison ratio of access stride between inner/outer loops to be
85    interchanged.  This is the minimum stride ratio for loop interchange
86    to be profitable.  */
87 #define OUTER_STRIDE_RATIO  (param_loop_interchange_stride_ratio)
88 /* The same as above, but we require higher ratio for interchanging the
89    innermost two loops.  */
90 #define INNER_STRIDE_RATIO  ((OUTER_STRIDE_RATIO) + 1)
91 
92 /* Comparison ratio of stmt cost between inner/outer loops.  Loops won't
93    be interchanged if outer loop has too many stmts.  */
94 #define STMT_COST_RATIO     (3)
95 
96 /* Vector of strides that DR accesses in each level loop of a loop nest.  */
97 #define DR_ACCESS_STRIDE(dr) ((vec<tree> *) dr->aux)
98 
99 /* Structure recording loop induction variable.  */
100 typedef struct induction
101 {
102   /* IV itself.  */
103   tree var;
104   /* IV's initializing value, which is the init arg of the IV PHI node.  */
105   tree init_val;
106   /* IV's initializing expr, which is (the expanded result of) init_val.  */
107   tree init_expr;
108   /* IV's step.  */
109   tree step;
110 } *induction_p;
111 
112 /* Enum type for loop reduction variable.  */
113 enum reduction_type
114 {
115   UNKNOWN_RTYPE = 0,
116   SIMPLE_RTYPE,
117   DOUBLE_RTYPE
118 };
119 
120 /* Structure recording loop reduction variable.  */
121 typedef struct reduction
122 {
123   /* Reduction itself.  */
124   tree var;
125   /* PHI node defining reduction variable.  */
126   gphi *phi;
127   /* Init and next variables of the reduction.  */
128   tree init;
129   tree next;
130   /* Lcssa PHI node if reduction is used outside of its definition loop.  */
131   gphi *lcssa_phi;
132   /* Stmts defining init and next.  */
133   gimple *producer;
134   gimple *consumer;
135   /* If init is loaded from memory, this is the loading memory reference.  */
136   tree init_ref;
137   /* If reduction is finally stored to memory, this is the stored memory
138      reference.  */
139   tree fini_ref;
140   enum reduction_type type;
141 } *reduction_p;
142 
143 
144 /* Dump reduction RE.  */
145 
146 static void
dump_reduction(reduction_p re)147 dump_reduction (reduction_p re)
148 {
149   if (re->type == SIMPLE_RTYPE)
150     fprintf (dump_file, "  Simple reduction:  ");
151   else if (re->type == DOUBLE_RTYPE)
152     fprintf (dump_file, "  Double reduction:  ");
153   else
154     fprintf (dump_file, "  Unknown reduction:  ");
155 
156   print_gimple_stmt (dump_file, re->phi, 0);
157 }
158 
159 /* Dump LOOP's induction IV.  */
160 static void
dump_induction(class loop * loop,induction_p iv)161 dump_induction (class loop *loop, induction_p iv)
162 {
163   fprintf (dump_file, "  Induction:  ");
164   print_generic_expr (dump_file, iv->var, TDF_SLIM);
165   fprintf (dump_file, " = {");
166   print_generic_expr (dump_file, iv->init_expr, TDF_SLIM);
167   fprintf (dump_file, ", ");
168   print_generic_expr (dump_file, iv->step, TDF_SLIM);
169   fprintf (dump_file, "}_%d\n", loop->num);
170 }
171 
172 /* Loop candidate for interchange.  */
173 
174 class loop_cand
175 {
176 public:
177   loop_cand (class loop *, class loop *);
178   ~loop_cand ();
179 
180   reduction_p find_reduction_by_stmt (gimple *);
181   void classify_simple_reduction (reduction_p);
182   bool analyze_iloop_reduction_var (tree);
183   bool analyze_oloop_reduction_var (loop_cand *, tree);
184   bool analyze_induction_var (tree, tree);
185   bool analyze_carried_vars (loop_cand *);
186   bool analyze_lcssa_phis (void);
187   bool can_interchange_p (loop_cand *);
188   void undo_simple_reduction (reduction_p, bitmap);
189 
190   /* The loop itself.  */
191   class loop *m_loop;
192   /* The outer loop for interchange.  It equals to loop if this loop cand
193      itself represents the outer loop.  */
194   class loop *m_outer;
195   /* Vector of induction variables in loop.  */
196   vec<induction_p> m_inductions;
197   /* Vector of reduction variables in loop.  */
198   vec<reduction_p> m_reductions;
199   /* Lcssa PHI nodes of this loop.  */
200   vec<gphi *> m_lcssa_nodes;
201   /* Single exit edge of this loop.  */
202   edge m_exit;
203   /* Basic blocks of this loop.  */
204   basic_block *m_bbs;
205   /* Number of stmts of this loop.  Inner loops' stmts are not included.  */
206   int m_num_stmts;
207   /* Number of constant initialized simple reduction.  */
208   int m_const_init_reduc;
209 };
210 
211 /* Constructor.  */
212 
loop_cand(class loop * loop,class loop * outer)213 loop_cand::loop_cand (class loop *loop, class loop *outer)
214   : m_loop (loop), m_outer (outer), m_exit (single_exit (loop)),
215     m_bbs (get_loop_body (loop)), m_num_stmts (0), m_const_init_reduc (0)
216 {
217     m_inductions.create (3);
218     m_reductions.create (3);
219     m_lcssa_nodes.create (3);
220 }
221 
222 /* Destructor.  */
223 
~loop_cand()224 loop_cand::~loop_cand ()
225 {
226   induction_p iv;
227   for (unsigned i = 0; m_inductions.iterate (i, &iv); ++i)
228     free (iv);
229 
230   reduction_p re;
231   for (unsigned i = 0; m_reductions.iterate (i, &re); ++i)
232     free (re);
233 
234   m_inductions.release ();
235   m_reductions.release ();
236   m_lcssa_nodes.release ();
237   free (m_bbs);
238 }
239 
240 /* Return single use stmt of VAR in LOOP, otherwise return NULL.  */
241 
242 static gimple *
single_use_in_loop(tree var,class loop * loop)243 single_use_in_loop (tree var, class loop *loop)
244 {
245   gimple *stmt, *res = NULL;
246   use_operand_p use_p;
247   imm_use_iterator iterator;
248 
249   FOR_EACH_IMM_USE_FAST (use_p, iterator, var)
250     {
251       stmt = USE_STMT (use_p);
252       if (is_gimple_debug (stmt))
253 	continue;
254 
255       if (!flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
256 	continue;
257 
258       if (res)
259 	return NULL;
260 
261       res = stmt;
262     }
263   return res;
264 }
265 
266 /* Return true if E is unsupported in loop interchange, i.e, E is a complex
267    edge or part of irreducible loop.  */
268 
269 static inline bool
unsupported_edge(edge e)270 unsupported_edge (edge e)
271 {
272   return (e->flags & (EDGE_COMPLEX | EDGE_IRREDUCIBLE_LOOP));
273 }
274 
275 /* Return the reduction if STMT is one of its lcssa PHI, producer or consumer
276    stmt.  */
277 
278 reduction_p
find_reduction_by_stmt(gimple * stmt)279 loop_cand::find_reduction_by_stmt (gimple *stmt)
280 {
281   gphi *phi = dyn_cast <gphi *> (stmt);
282   reduction_p re;
283 
284   for (unsigned i = 0; m_reductions.iterate (i, &re); ++i)
285     if ((phi != NULL && phi == re->lcssa_phi)
286 	|| (stmt == re->producer || stmt == re->consumer))
287       return re;
288 
289   return NULL;
290 }
291 
292 /* Return true if current loop_cand be interchanged.  ILOOP is not NULL if
293    current loop_cand is outer loop in loop nest.  */
294 
295 bool
can_interchange_p(loop_cand * iloop)296 loop_cand::can_interchange_p (loop_cand *iloop)
297 {
298   /* For now we only support at most one reduction.  */
299   unsigned allowed_reduction_num = 1;
300 
301   /* Only support reduction if the loop nest to be interchanged is the
302      innermostin two loops.  */
303   if ((iloop == NULL && m_loop->inner != NULL)
304        || (iloop != NULL && iloop->m_loop->inner != NULL))
305     allowed_reduction_num = 0;
306 
307   if (m_reductions.length () > allowed_reduction_num
308       || (m_reductions.length () == 1
309 	  && m_reductions[0]->type == UNKNOWN_RTYPE))
310     return false;
311 
312   /* Only support lcssa PHI node which is for reduction.  */
313   if (m_lcssa_nodes.length () > allowed_reduction_num)
314     return false;
315 
316   /* Check if basic block has any unsupported operation.  Note basic blocks
317      of inner loops are not checked here.  */
318   for (unsigned i = 0; i < m_loop->num_nodes; i++)
319     {
320       basic_block bb = m_bbs[i];
321       gphi_iterator psi;
322       gimple_stmt_iterator gsi;
323 
324       /* Skip basic blocks of inner loops.  */
325       if (bb->loop_father != m_loop)
326        continue;
327 
328       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
329 	{
330 	  gimple *stmt = gsi_stmt (gsi);
331 	  if (is_gimple_debug (stmt))
332 	    continue;
333 
334 	  if (gimple_has_side_effects (stmt))
335 	    return false;
336 
337 	  m_num_stmts++;
338 	  if (gcall *call = dyn_cast <gcall *> (stmt))
339 	    {
340 	      /* In basic block of outer loop, the call should be cheap since
341 		 it will be moved to inner loop.  */
342 	      if (iloop != NULL
343 		  && !gimple_inexpensive_call_p (call))
344 		return false;
345 	      continue;
346 	    }
347 
348 	  if (!iloop || !gimple_vuse (stmt))
349 	    continue;
350 
351 	  /* Support stmt accessing memory in outer loop only if it is for
352 	     inner loop's reduction.  */
353 	  if (iloop->find_reduction_by_stmt (stmt))
354 	    continue;
355 
356 	  tree lhs;
357 	  /* Support loop invariant memory reference if it's only used once by
358 	     inner loop.  */
359 	  /* ???  How's this checking for invariantness?  */
360 	  if (gimple_assign_single_p (stmt)
361 	      && (lhs = gimple_assign_lhs (stmt)) != NULL_TREE
362 	      && TREE_CODE (lhs) == SSA_NAME
363 	      && single_use_in_loop (lhs, iloop->m_loop))
364 	    continue;
365 
366 	  return false;
367 	}
368       /* Check if loop has too many stmts.  */
369       if (m_num_stmts > MAX_NUM_STMT)
370 	return false;
371 
372       /* Allow PHI nodes in any basic block of inner loop, PHI nodes in outer
373 	 loop's header, or PHI nodes in dest bb of inner loop's exit edge.  */
374       if (!iloop || bb == m_loop->header
375 	  || bb == iloop->m_exit->dest)
376 	continue;
377 
378       /* Don't allow any other PHI nodes.  */
379       for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
380 	if (!virtual_operand_p (PHI_RESULT (psi.phi ())))
381 	  return false;
382     }
383 
384   return true;
385 }
386 
387 /* Programmers and optimizers (like loop store motion) may optimize code:
388 
389      for (int i = 0; i < N; i++)
390        for (int j = 0; j < N; j++)
391 	 a[i] += b[j][i] * c[j][i];
392 
393    into reduction:
394 
395      for (int i = 0; i < N; i++)
396        {
397 	 // producer.  Note sum can be intitialized to a constant.
398 	 int sum = a[i];
399 	 for (int j = 0; j < N; j++)
400 	   {
401 	     sum += b[j][i] * c[j][i];
402 	   }
403 	 // consumer.
404 	 a[i] = sum;
405        }
406 
407    The result code can't be interchanged without undoing the optimization.
408    This function classifies this kind reduction and records information so
409    that we can undo the store motion during interchange.  */
410 
411 void
classify_simple_reduction(reduction_p re)412 loop_cand::classify_simple_reduction (reduction_p re)
413 {
414   gimple *producer, *consumer;
415 
416   /* Check init variable of reduction and how it is initialized.  */
417   if (TREE_CODE (re->init) == SSA_NAME)
418     {
419       producer = SSA_NAME_DEF_STMT (re->init);
420       re->producer = producer;
421       basic_block bb = gimple_bb (producer);
422       if (!bb || bb->loop_father != m_outer)
423 	return;
424 
425       if (!gimple_assign_load_p (producer))
426 	return;
427 
428       re->init_ref = gimple_assign_rhs1 (producer);
429     }
430   else if (CONSTANT_CLASS_P (re->init))
431     m_const_init_reduc++;
432   else
433     return;
434 
435   /* Check how reduction variable is used.  */
436   consumer = single_use_in_loop (PHI_RESULT (re->lcssa_phi), m_outer);
437   if (!consumer
438       || !gimple_store_p (consumer))
439     return;
440 
441   re->fini_ref = gimple_get_lhs (consumer);
442   re->consumer = consumer;
443 
444   /* Simple reduction with constant initializer.  */
445   if (!re->init_ref)
446     {
447       gcc_assert (CONSTANT_CLASS_P (re->init));
448       re->init_ref = unshare_expr (re->fini_ref);
449     }
450 
451   /* Require memory references in producer and consumer are the same so
452      that we can undo reduction during interchange.  */
453   if (re->init_ref && !operand_equal_p (re->init_ref, re->fini_ref, 0))
454     return;
455 
456   re->type = SIMPLE_RTYPE;
457 }
458 
459 /* Analyze reduction variable VAR for inner loop of the loop nest to be
460    interchanged.  Return true if analysis succeeds.  */
461 
462 bool
analyze_iloop_reduction_var(tree var)463 loop_cand::analyze_iloop_reduction_var (tree var)
464 {
465   gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (var));
466   gphi *lcssa_phi = NULL, *use_phi;
467   tree init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (m_loop));
468   tree next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (m_loop));
469   reduction_p re;
470   gimple *stmt, *next_def, *single_use = NULL;
471   use_operand_p use_p;
472   imm_use_iterator iterator;
473 
474   if (TREE_CODE (next) != SSA_NAME)
475     return false;
476 
477   next_def = SSA_NAME_DEF_STMT (next);
478   basic_block bb = gimple_bb (next_def);
479   if (!bb || !flow_bb_inside_loop_p (m_loop, bb))
480     return false;
481 
482   /* In restricted reduction, the var is (and must be) used in defining
483      the updated var.  The process can be depicted as below:
484 
485 		var ;; = PHI<init, next>
486 		 |
487 		 |
488 		 v
489       +---------------------+
490       | reduction operators | <-- other operands
491       +---------------------+
492 		 |
493 		 |
494 		 v
495 		next
496 
497      In terms loop interchange, we don't change how NEXT is computed based
498      on VAR and OTHER OPERANDS.  In case of double reduction in loop nest
499      to be interchanged, we don't changed it at all.  In the case of simple
500      reduction in inner loop, we only make change how VAR/NEXT is loaded or
501      stored.  With these conditions, we can relax restrictions on reduction
502      in a way that reduction operation is seen as black box.  In general,
503      we can ignore reassociation of reduction operator; we can handle fake
504      reductions in which VAR is not even used to compute NEXT.  */
505   if (! single_imm_use (var, &use_p, &single_use)
506       || ! flow_bb_inside_loop_p (m_loop, gimple_bb (single_use)))
507     return false;
508 
509   /* Check the reduction operation.  We require a left-associative operation.
510      For FP math we also need to be allowed to associate operations.  */
511   if (gassign *ass = dyn_cast <gassign *> (single_use))
512     {
513       enum tree_code code = gimple_assign_rhs_code (ass);
514       if (! (associative_tree_code (code)
515 	     || (code == MINUS_EXPR
516 		 && use_p->use == gimple_assign_rhs1_ptr (ass)))
517 	  || (FLOAT_TYPE_P (TREE_TYPE (var))
518 	      && ! flag_associative_math))
519 	return false;
520     }
521   else
522     return false;
523 
524   /* Handle and verify a series of stmts feeding the reduction op.  */
525   if (single_use != next_def
526       && !check_reduction_path (dump_user_location_t (), m_loop, phi, next,
527 				gimple_assign_rhs_code (single_use)))
528     return false;
529 
530   /* Only support cases in which INIT is used in inner loop.  */
531   if (TREE_CODE (init) == SSA_NAME)
532     FOR_EACH_IMM_USE_FAST (use_p, iterator, init)
533       {
534 	stmt = USE_STMT (use_p);
535 	if (is_gimple_debug (stmt))
536 	  continue;
537 
538 	if (!flow_bb_inside_loop_p (m_loop, gimple_bb (stmt)))
539 	  return false;
540       }
541 
542   FOR_EACH_IMM_USE_FAST (use_p, iterator, next)
543     {
544       stmt = USE_STMT (use_p);
545       if (is_gimple_debug (stmt))
546 	continue;
547 
548       /* Or else it's used in PHI itself.  */
549       use_phi = dyn_cast <gphi *> (stmt);
550       if (use_phi == phi)
551 	continue;
552 
553       if (use_phi != NULL
554 	  && lcssa_phi == NULL
555 	  && gimple_bb (stmt) == m_exit->dest
556 	  && PHI_ARG_DEF_FROM_EDGE (use_phi, m_exit) == next)
557 	lcssa_phi = use_phi;
558       else
559 	return false;
560     }
561   if (!lcssa_phi)
562     return false;
563 
564   re = XCNEW (struct reduction);
565   re->var = var;
566   re->init = init;
567   re->next = next;
568   re->phi = phi;
569   re->lcssa_phi = lcssa_phi;
570 
571   classify_simple_reduction (re);
572 
573   if (dump_file && (dump_flags & TDF_DETAILS))
574     dump_reduction (re);
575 
576   m_reductions.safe_push (re);
577   return true;
578 }
579 
580 /* Analyze reduction variable VAR for outer loop of the loop nest to be
581    interchanged.  ILOOP is not NULL and points to inner loop.  For the
582    moment, we only support double reduction for outer loop, like:
583 
584      for (int i = 0; i < n; i++)
585        {
586 	 int sum = 0;
587 
588 	 for (int j = 0; j < n; j++)    // outer loop
589 	   for (int k = 0; k < n; k++)  // inner loop
590 	     sum += a[i][k]*b[k][j];
591 
592 	 s[i] = sum;
593        }
594 
595    Note the innermost two loops are the loop nest to be interchanged.
596    Return true if analysis succeeds.  */
597 
598 bool
analyze_oloop_reduction_var(loop_cand * iloop,tree var)599 loop_cand::analyze_oloop_reduction_var (loop_cand *iloop, tree var)
600 {
601   gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (var));
602   gphi *lcssa_phi = NULL, *use_phi;
603   tree init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (m_loop));
604   tree next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (m_loop));
605   reduction_p re;
606   gimple *stmt, *next_def;
607   use_operand_p use_p;
608   imm_use_iterator iterator;
609 
610   if (TREE_CODE (next) != SSA_NAME)
611     return false;
612 
613   next_def = SSA_NAME_DEF_STMT (next);
614   basic_block bb = gimple_bb (next_def);
615   if (!bb || !flow_bb_inside_loop_p (m_loop, bb))
616     return false;
617 
618   /* Find inner loop's simple reduction that uses var as initializer.  */
619   reduction_p inner_re = NULL;
620   for (unsigned i = 0; iloop->m_reductions.iterate (i, &inner_re); ++i)
621     if (inner_re->init == var || operand_equal_p (inner_re->init, var, 0))
622       break;
623 
624   if (inner_re == NULL
625       || inner_re->type != UNKNOWN_RTYPE
626       || inner_re->producer != phi)
627     return false;
628 
629   /* In case of double reduction, outer loop's reduction should be updated
630      by inner loop's simple reduction.  */
631   if (next_def != inner_re->lcssa_phi)
632     return false;
633 
634   /* Outer loop's reduction should only be used to initialize inner loop's
635      simple reduction.  */
636   if (! single_imm_use (var, &use_p, &stmt)
637       || stmt != inner_re->phi)
638     return false;
639 
640   /* Check this reduction is correctly used outside of loop via lcssa phi.  */
641   FOR_EACH_IMM_USE_FAST (use_p, iterator, next)
642     {
643       stmt = USE_STMT (use_p);
644       if (is_gimple_debug (stmt))
645 	continue;
646 
647       /* Or else it's used in PHI itself.  */
648       use_phi = dyn_cast <gphi *> (stmt);
649       if (use_phi == phi)
650 	continue;
651 
652       if (lcssa_phi == NULL
653 	  && use_phi != NULL
654 	  && gimple_bb (stmt) == m_exit->dest
655 	  && PHI_ARG_DEF_FROM_EDGE (use_phi, m_exit) == next)
656 	lcssa_phi = use_phi;
657       else
658 	return false;
659     }
660   if (!lcssa_phi)
661     return false;
662 
663   re = XCNEW (struct reduction);
664   re->var = var;
665   re->init = init;
666   re->next = next;
667   re->phi = phi;
668   re->lcssa_phi = lcssa_phi;
669   re->type = DOUBLE_RTYPE;
670   inner_re->type = DOUBLE_RTYPE;
671 
672   if (dump_file && (dump_flags & TDF_DETAILS))
673     dump_reduction (re);
674 
675   m_reductions.safe_push (re);
676   return true;
677 }
678 
679 /* Return true if VAR is induction variable of current loop whose scev is
680    specified by CHREC.  */
681 
682 bool
analyze_induction_var(tree var,tree chrec)683 loop_cand::analyze_induction_var (tree var, tree chrec)
684 {
685   gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (var));
686   tree init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (m_loop));
687 
688   /* Var is loop invariant, though it's unlikely to happen.  */
689   if (tree_does_not_contain_chrecs (chrec))
690     {
691       /* Punt on floating point invariants if honoring signed zeros,
692 	 representing that as + 0.0 would change the result if init
693 	 is -0.0.  Similarly for SNaNs it can raise exception.  */
694       if (HONOR_SIGNED_ZEROS (chrec) || HONOR_SNANS (chrec))
695 	return false;
696       struct induction *iv = XCNEW (struct induction);
697       iv->var = var;
698       iv->init_val = init;
699       iv->init_expr = chrec;
700       iv->step = build_zero_cst (TREE_TYPE (chrec));
701       m_inductions.safe_push (iv);
702       return true;
703     }
704 
705   if (TREE_CODE (chrec) != POLYNOMIAL_CHREC
706       || CHREC_VARIABLE (chrec) != (unsigned) m_loop->num
707       || tree_contains_chrecs (CHREC_LEFT (chrec), NULL)
708       || tree_contains_chrecs (CHREC_RIGHT (chrec), NULL))
709     return false;
710 
711   struct induction *iv = XCNEW (struct induction);
712   iv->var = var;
713   iv->init_val = init;
714   iv->init_expr = CHREC_LEFT (chrec);
715   iv->step = CHREC_RIGHT (chrec);
716 
717   if (dump_file && (dump_flags & TDF_DETAILS))
718     dump_induction (m_loop, iv);
719 
720   m_inductions.safe_push (iv);
721   return true;
722 }
723 
724 /* Return true if all loop carried variables defined in loop header can
725    be successfully analyzed.  */
726 
727 bool
analyze_carried_vars(loop_cand * iloop)728 loop_cand::analyze_carried_vars (loop_cand *iloop)
729 {
730   edge e = loop_preheader_edge (m_outer);
731   gphi_iterator gsi;
732 
733   if (dump_file && (dump_flags & TDF_DETAILS))
734     fprintf (dump_file, "\nLoop(%d) carried vars:\n", m_loop->num);
735 
736   for (gsi = gsi_start_phis (m_loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
737     {
738       gphi *phi = gsi.phi ();
739 
740       tree var = PHI_RESULT (phi);
741       if (virtual_operand_p (var))
742 	continue;
743 
744       tree chrec = analyze_scalar_evolution (m_loop, var);
745       chrec = instantiate_scev (e, m_loop, chrec);
746 
747       /* Analyze var as reduction variable.  */
748       if (chrec_contains_undetermined (chrec)
749 	  || chrec_contains_symbols_defined_in_loop (chrec, m_outer->num))
750 	{
751 	  if (iloop && !analyze_oloop_reduction_var (iloop, var))
752 	    return false;
753 	  if (!iloop && !analyze_iloop_reduction_var (var))
754 	    return false;
755 	}
756       /* Analyze var as induction variable.  */
757       else if (!analyze_induction_var (var, chrec))
758 	return false;
759     }
760 
761   return true;
762 }
763 
764 /* Return TRUE if loop closed PHI nodes can be analyzed successfully.  */
765 
766 bool
analyze_lcssa_phis(void)767 loop_cand::analyze_lcssa_phis (void)
768 {
769   gphi_iterator gsi;
770   for (gsi = gsi_start_phis (m_exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
771     {
772       gphi *phi = gsi.phi ();
773 
774       if (virtual_operand_p (PHI_RESULT (phi)))
775 	continue;
776 
777       /* TODO: We only support lcssa phi for reduction for now.  */
778       if (!find_reduction_by_stmt (phi))
779 	return false;
780     }
781 
782   return true;
783 }
784 
785 /* CONSUMER is a stmt in BB storing reduction result into memory object.
786    When the reduction is intialized from constant value, we need to add
787    a stmt loading from the memory object to target basic block in inner
788    loop during undoing the reduction.  Problem is that memory reference
789    may use ssa variables not dominating the target basic block.  This
790    function finds all stmts on which CONSUMER depends in basic block BB,
791    records and returns them via STMTS.  */
792 
793 static void
find_deps_in_bb_for_stmt(gimple_seq * stmts,basic_block bb,gimple * consumer)794 find_deps_in_bb_for_stmt (gimple_seq *stmts, basic_block bb, gimple *consumer)
795 {
796   auto_vec<gimple *, 4> worklist;
797   use_operand_p use_p;
798   ssa_op_iter iter;
799   gimple *stmt, *def_stmt;
800   gimple_stmt_iterator gsi;
801 
802   /* First clear flag for stmts in bb.  */
803   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
804     gimple_set_plf (gsi_stmt (gsi), GF_PLF_1, false);
805 
806   /* DFS search all depended stmts in bb and mark flag for these stmts.  */
807   worklist.safe_push (consumer);
808   while (!worklist.is_empty ())
809     {
810       stmt = worklist.pop ();
811       FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
812 	{
813 	  def_stmt = SSA_NAME_DEF_STMT (USE_FROM_PTR (use_p));
814 
815 	  if (is_a <gphi *> (def_stmt)
816 	      || gimple_bb (def_stmt) != bb
817 	      || gimple_plf (def_stmt, GF_PLF_1))
818 	    continue;
819 
820 	  worklist.safe_push (def_stmt);
821 	}
822       gimple_set_plf (stmt, GF_PLF_1, true);
823     }
824   for (gsi = gsi_start_nondebug_bb (bb);
825        !gsi_end_p (gsi) && (stmt = gsi_stmt (gsi)) != consumer;)
826     {
827       /* Move dep stmts to sequence STMTS.  */
828       if (gimple_plf (stmt, GF_PLF_1))
829 	{
830 	  gsi_remove (&gsi, false);
831 	  gimple_seq_add_stmt_without_update (stmts, stmt);
832 	}
833       else
834 	gsi_next_nondebug (&gsi);
835     }
836 }
837 
838 /* User can write, optimizers can generate simple reduction RE for inner
839    loop.  In order to make interchange valid, we have to undo reduction by
840    moving producer and consumer stmts into the inner loop.  For example,
841    below code:
842 
843      init = MEM_REF[idx];		//producer
844      loop:
845        var = phi<init, next>
846        next = var op ...
847      reduc_sum = phi<next>
848      MEM_REF[idx] = reduc_sum		//consumer
849 
850    is transformed into:
851 
852      loop:
853        new_var = MEM_REF[idx];		//producer after moving
854        next = new_var op ...
855        MEM_REF[idx] = next;		//consumer after moving
856 
857    Note if the reduction variable is initialized to constant, like:
858 
859      var = phi<0.0, next>
860 
861    we compute new_var as below:
862 
863      loop:
864        tmp = MEM_REF[idx];
865        new_var = !first_iteration ? tmp : 0.0;
866 
867    so that the initial const is used in the first iteration of loop.  Also
868    record ssa variables for dead code elimination in DCE_SEEDS.  */
869 
870 void
undo_simple_reduction(reduction_p re,bitmap dce_seeds)871 loop_cand::undo_simple_reduction (reduction_p re, bitmap dce_seeds)
872 {
873   gimple *stmt;
874   gimple_stmt_iterator from, to = gsi_after_labels (m_loop->header);
875   gimple_seq stmts = NULL;
876   tree new_var;
877 
878   /* Prepare the initialization stmts and insert it to inner loop.  */
879   if (re->producer != NULL)
880     {
881       gimple_set_vuse (re->producer, NULL_TREE);
882       update_stmt (re->producer);
883       from = gsi_for_stmt (re->producer);
884       gsi_remove (&from, false);
885       gimple_seq_add_stmt_without_update (&stmts, re->producer);
886       new_var = re->init;
887     }
888   else
889     {
890       /* Find all stmts on which expression "MEM_REF[idx]" depends.  */
891       find_deps_in_bb_for_stmt (&stmts, gimple_bb (re->consumer), re->consumer);
892       /* Because we generate new stmt loading from the MEM_REF to TMP.  */
893       tree cond, tmp = copy_ssa_name (re->var);
894       stmt = gimple_build_assign (tmp, re->init_ref);
895       gimple_seq_add_stmt_without_update (&stmts, stmt);
896 
897       /* Init new_var to MEM_REF or CONST depending on if it is the first
898 	 iteration.  */
899       induction_p iv = m_inductions[0];
900       cond = fold_build2 (NE_EXPR, boolean_type_node, iv->var, iv->init_val);
901       new_var = copy_ssa_name (re->var);
902       stmt = gimple_build_assign (new_var, COND_EXPR, cond, tmp, re->init);
903       gimple_seq_add_stmt_without_update (&stmts, stmt);
904     }
905   gsi_insert_seq_before (&to, stmts, GSI_SAME_STMT);
906 
907   /* Replace all uses of reduction var with new variable.  */
908   use_operand_p use_p;
909   imm_use_iterator iterator;
910   FOR_EACH_IMM_USE_STMT (stmt, iterator, re->var)
911     {
912       FOR_EACH_IMM_USE_ON_STMT (use_p, iterator)
913 	SET_USE (use_p, new_var);
914 
915       update_stmt (stmt);
916     }
917 
918   /* Move consumer stmt into inner loop, just after reduction next's def.  */
919   unlink_stmt_vdef (re->consumer);
920   release_ssa_name (gimple_vdef (re->consumer));
921   gimple_set_vdef (re->consumer, NULL_TREE);
922   gimple_set_vuse (re->consumer, NULL_TREE);
923   gimple_assign_set_rhs1 (re->consumer, re->next);
924   update_stmt (re->consumer);
925   from = gsi_for_stmt (re->consumer);
926   to = gsi_for_stmt (SSA_NAME_DEF_STMT (re->next));
927   gsi_move_after (&from, &to);
928 
929   /* Mark the reduction variables for DCE.  */
930   bitmap_set_bit (dce_seeds, SSA_NAME_VERSION (re->var));
931   bitmap_set_bit (dce_seeds, SSA_NAME_VERSION (PHI_RESULT (re->lcssa_phi)));
932 }
933 
934 /* Free DATAREFS and its auxiliary memory.  */
935 
936 static void
free_data_refs_with_aux(vec<data_reference_p> datarefs)937 free_data_refs_with_aux (vec<data_reference_p> datarefs)
938 {
939   data_reference_p dr;
940   for (unsigned i = 0; datarefs.iterate (i, &dr); ++i)
941     if (dr->aux != NULL)
942       {
943 	DR_ACCESS_STRIDE (dr)->release ();
944 	delete (vec<tree> *) dr->aux;
945       }
946 
947   free_data_refs (datarefs);
948 }
949 
950 /* Class for loop interchange transformation.  */
951 
952 class tree_loop_interchange
953 {
954 public:
tree_loop_interchange(vec<class loop * > loop_nest)955   tree_loop_interchange (vec<class loop *> loop_nest)
956     : m_loop_nest (loop_nest), m_niters_iv_var (NULL_TREE),
957       m_dce_seeds (BITMAP_ALLOC (NULL)) { }
~tree_loop_interchange()958   ~tree_loop_interchange () { BITMAP_FREE (m_dce_seeds); }
959   bool interchange (vec<data_reference_p>, vec<ddr_p>);
960 
961 private:
962   void update_data_info (unsigned, unsigned, vec<data_reference_p>, vec<ddr_p>);
963   bool valid_data_dependences (unsigned, unsigned, vec<ddr_p>);
964   void interchange_loops (loop_cand &, loop_cand &);
965   void map_inductions_to_loop (loop_cand &, loop_cand &);
966   void move_code_to_inner_loop (class loop *, class loop *, basic_block *);
967 
968   /* The whole loop nest in which interchange is ongoing.  */
969   vec<class loop *> m_loop_nest;
970   /* We create new IV which is only used in loop's exit condition check.
971      In case of 3-level loop nest interchange, when we interchange the
972      innermost two loops, new IV created in the middle level loop does
973      not need to be preserved in interchanging the outermost two loops
974      later.  We record the IV so that it can be skipped.  */
975   tree m_niters_iv_var;
976   /* Bitmap of seed variables for dead code elimination after interchange.  */
977   bitmap m_dce_seeds;
978 };
979 
980 /* Update data refs' access stride and dependence information after loop
981    interchange.  I_IDX/O_IDX gives indices of interchanged loops in loop
982    nest.  DATAREFS are data references.  DDRS are data dependences.  */
983 
984 void
update_data_info(unsigned i_idx,unsigned o_idx,vec<data_reference_p> datarefs,vec<ddr_p> ddrs)985 tree_loop_interchange::update_data_info (unsigned i_idx, unsigned o_idx,
986 					 vec<data_reference_p> datarefs,
987 					 vec<ddr_p> ddrs)
988 {
989   struct data_reference *dr;
990   struct data_dependence_relation *ddr;
991 
992   /* Update strides of data references.  */
993   for (unsigned i = 0; datarefs.iterate (i, &dr); ++i)
994     {
995       vec<tree> *stride = DR_ACCESS_STRIDE (dr);
996       gcc_assert (stride->length () > i_idx);
997       std::swap ((*stride)[i_idx], (*stride)[o_idx]);
998     }
999   /* Update data dependences.  */
1000   for (unsigned i = 0; ddrs.iterate (i, &ddr); ++i)
1001     if (DDR_ARE_DEPENDENT (ddr) != chrec_known)
1002       {
1003         for (unsigned j = 0; j < DDR_NUM_DIST_VECTS (ddr); ++j)
1004 	  {
1005 	    lambda_vector dist_vect = DDR_DIST_VECT (ddr, j);
1006 	    std::swap (dist_vect[i_idx], dist_vect[o_idx]);
1007 	  }
1008       }
1009 }
1010 
1011 /* Check data dependence relations, return TRUE if it's valid to interchange
1012    two loops specified by I_IDX/O_IDX.  Theoretically, interchanging the two
1013    loops is valid only if dist vector, after interchanging, doesn't have '>'
1014    as the leftmost non-'=' direction.  Practically, this function have been
1015    conservative here by not checking some valid cases.  */
1016 
1017 bool
valid_data_dependences(unsigned i_idx,unsigned o_idx,vec<ddr_p> ddrs)1018 tree_loop_interchange::valid_data_dependences (unsigned i_idx, unsigned o_idx,
1019 					       vec<ddr_p> ddrs)
1020 {
1021   struct data_dependence_relation *ddr;
1022 
1023   for (unsigned i = 0; ddrs.iterate (i, &ddr); ++i)
1024     {
1025       /* Skip no-dependence case.  */
1026       if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1027 	continue;
1028 
1029       for (unsigned j = 0; j < DDR_NUM_DIST_VECTS (ddr); ++j)
1030 	{
1031 	  lambda_vector dist_vect = DDR_DIST_VECT (ddr, j);
1032 	  unsigned level = dependence_level (dist_vect, m_loop_nest.length ());
1033 
1034 	  /* If there is no carried dependence.  */
1035 	  if (level == 0)
1036 	    continue;
1037 
1038 	  level --;
1039 
1040 	  /* If dependence is not carried by any loop in between the two
1041 	     loops [oloop, iloop] to interchange.  */
1042 	  if (level < o_idx || level > i_idx)
1043 	    continue;
1044 
1045 	  /* Be conservative, skip case if either direction at i_idx/o_idx
1046 	     levels is not '=' or '<'.  */
1047 	  if (dist_vect[i_idx] < 0 || dist_vect[o_idx] < 0)
1048 	    return false;
1049 	}
1050     }
1051 
1052   return true;
1053 }
1054 
1055 /* Interchange two loops specified by ILOOP and OLOOP.  */
1056 
1057 void
interchange_loops(loop_cand & iloop,loop_cand & oloop)1058 tree_loop_interchange::interchange_loops (loop_cand &iloop, loop_cand &oloop)
1059 {
1060   reduction_p re;
1061   gimple_stmt_iterator gsi;
1062   tree i_niters, o_niters, var_after;
1063 
1064   /* Undo inner loop's simple reduction.  */
1065   for (unsigned i = 0; iloop.m_reductions.iterate (i, &re); ++i)
1066     if (re->type != DOUBLE_RTYPE)
1067       {
1068 	if (re->producer)
1069 	  reset_debug_uses (re->producer);
1070 
1071 	iloop.undo_simple_reduction (re, m_dce_seeds);
1072       }
1073 
1074   /* Only need to reset debug uses for double reduction.  */
1075   for (unsigned i = 0; oloop.m_reductions.iterate (i, &re); ++i)
1076     {
1077       gcc_assert (re->type == DOUBLE_RTYPE);
1078       reset_debug_uses (SSA_NAME_DEF_STMT (re->var));
1079       reset_debug_uses (SSA_NAME_DEF_STMT (re->next));
1080     }
1081 
1082   /* Prepare niters for both loops.  */
1083   class loop *loop_nest = m_loop_nest[0];
1084   edge instantiate_below = loop_preheader_edge (loop_nest);
1085   gsi = gsi_last_bb (loop_preheader_edge (loop_nest)->src);
1086   i_niters = number_of_latch_executions (iloop.m_loop);
1087   i_niters = analyze_scalar_evolution (loop_outer (iloop.m_loop), i_niters);
1088   i_niters = instantiate_scev (instantiate_below, loop_outer (iloop.m_loop),
1089 			       i_niters);
1090   i_niters = force_gimple_operand_gsi (&gsi, unshare_expr (i_niters), true,
1091 				       NULL_TREE, false, GSI_CONTINUE_LINKING);
1092   o_niters = number_of_latch_executions (oloop.m_loop);
1093   if (oloop.m_loop != loop_nest)
1094     {
1095       o_niters = analyze_scalar_evolution (loop_outer (oloop.m_loop), o_niters);
1096       o_niters = instantiate_scev (instantiate_below, loop_outer (oloop.m_loop),
1097 				   o_niters);
1098     }
1099   o_niters = force_gimple_operand_gsi (&gsi, unshare_expr (o_niters), true,
1100 				       NULL_TREE, false, GSI_CONTINUE_LINKING);
1101 
1102   /* Move src's code to tgt loop.  This is necessary when src is the outer
1103      loop and tgt is the inner loop.  */
1104   move_code_to_inner_loop (oloop.m_loop, iloop.m_loop, oloop.m_bbs);
1105 
1106   /* Map outer loop's IV to inner loop, and vice versa.  */
1107   map_inductions_to_loop (oloop, iloop);
1108   map_inductions_to_loop (iloop, oloop);
1109 
1110   /* Create canonical IV for both loops.  Note canonical IV for outer/inner
1111      loop is actually from inner/outer loop.  Also we record the new IV
1112      created for the outer loop so that it can be skipped in later loop
1113      interchange.  */
1114   create_canonical_iv (oloop.m_loop, oloop.m_exit,
1115 		       i_niters, &m_niters_iv_var, &var_after);
1116   bitmap_set_bit (m_dce_seeds, SSA_NAME_VERSION (var_after));
1117   create_canonical_iv (iloop.m_loop, iloop.m_exit,
1118 		       o_niters, NULL, &var_after);
1119   bitmap_set_bit (m_dce_seeds, SSA_NAME_VERSION (var_after));
1120 
1121   /* Scrap niters estimation of interchanged loops.  */
1122   iloop.m_loop->any_upper_bound = false;
1123   iloop.m_loop->any_likely_upper_bound = false;
1124   free_numbers_of_iterations_estimates (iloop.m_loop);
1125   oloop.m_loop->any_upper_bound = false;
1126   oloop.m_loop->any_likely_upper_bound = false;
1127   free_numbers_of_iterations_estimates (oloop.m_loop);
1128 
1129   /* Clear all cached scev information.  This is expensive but shouldn't be
1130      a problem given we interchange in very limited times.  */
1131   scev_reset_htab ();
1132 
1133   /* ???  The association between the loop data structure and the
1134      CFG changed, so what was loop N at the source level is now
1135      loop M.  We should think of retaining the association or breaking
1136      it fully by creating a new loop instead of re-using the "wrong" one.  */
1137 }
1138 
1139 /* Map induction variables of SRC loop to TGT loop.  The function firstly
1140    creates the same IV of SRC loop in TGT loop, then deletes the original
1141    IV and re-initialize it using the newly created IV.  For example, loop
1142    nest:
1143 
1144      for (i = 0; i < N; i++)
1145        for (j = 0; j < M; j++)
1146 	 {
1147 	   //use of i;
1148 	   //use of j;
1149 	 }
1150 
1151    will be transformed into:
1152 
1153      for (jj = 0; jj < M; jj++)
1154        for (ii = 0; ii < N; ii++)
1155 	 {
1156 	   //use of ii;
1157 	   //use of jj;
1158 	 }
1159 
1160    after loop interchange.  */
1161 
1162 void
map_inductions_to_loop(loop_cand & src,loop_cand & tgt)1163 tree_loop_interchange::map_inductions_to_loop (loop_cand &src, loop_cand &tgt)
1164 {
1165   induction_p iv;
1166   edge e = tgt.m_exit;
1167   gimple_stmt_iterator incr_pos = gsi_last_bb (e->src), gsi;
1168 
1169   /* Map source loop's IV to target loop.  */
1170   for (unsigned i = 0; src.m_inductions.iterate (i, &iv); ++i)
1171     {
1172       gimple *use_stmt, *stmt = SSA_NAME_DEF_STMT (iv->var);
1173       gcc_assert (is_a <gphi *> (stmt));
1174 
1175       use_operand_p use_p;
1176       /* Only map original IV to target loop.  */
1177       if (m_niters_iv_var != iv->var)
1178 	{
1179 	  /* Map the IV by creating the same one in target loop.  */
1180 	  tree var_before, var_after;
1181 	  tree base = unshare_expr (iv->init_expr);
1182 	  tree step = unshare_expr (iv->step);
1183 	  create_iv (base, step, SSA_NAME_VAR (iv->var),
1184 		     tgt.m_loop, &incr_pos, false, &var_before, &var_after);
1185 	  bitmap_set_bit (m_dce_seeds, SSA_NAME_VERSION (var_before));
1186 	  bitmap_set_bit (m_dce_seeds, SSA_NAME_VERSION (var_after));
1187 
1188 	  /* Replace uses of the original IV var with newly created IV var.  */
1189 	  imm_use_iterator imm_iter;
1190 	  FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, iv->var)
1191 	    {
1192 	      FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1193 		SET_USE (use_p, var_before);
1194 
1195 	      update_stmt (use_stmt);
1196 	    }
1197 	}
1198 
1199       /* Mark all uses for DCE.  */
1200       ssa_op_iter op_iter;
1201       FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, op_iter, SSA_OP_USE)
1202 	{
1203 	  tree use = USE_FROM_PTR (use_p);
1204 	  if (TREE_CODE (use) == SSA_NAME
1205 	      && ! SSA_NAME_IS_DEFAULT_DEF (use))
1206 	    bitmap_set_bit (m_dce_seeds, SSA_NAME_VERSION (use));
1207 	}
1208 
1209       /* Delete definition of the original IV in the source loop.  */
1210       gsi = gsi_for_stmt (stmt);
1211       remove_phi_node (&gsi, true);
1212     }
1213 }
1214 
1215 /* Move stmts of outer loop to inner loop.  */
1216 
1217 void
move_code_to_inner_loop(class loop * outer,class loop * inner,basic_block * outer_bbs)1218 tree_loop_interchange::move_code_to_inner_loop (class loop *outer,
1219 						class loop *inner,
1220 						basic_block *outer_bbs)
1221 {
1222   basic_block oloop_exit_bb = single_exit (outer)->src;
1223   gimple_stmt_iterator gsi, to;
1224 
1225   for (unsigned i = 0; i < outer->num_nodes; i++)
1226     {
1227       basic_block bb = outer_bbs[i];
1228 
1229       /* Skip basic blocks of inner loop.  */
1230       if (flow_bb_inside_loop_p (inner, bb))
1231 	continue;
1232 
1233       /* Move code from header/latch to header/latch.  */
1234       if (bb == outer->header)
1235 	to = gsi_after_labels (inner->header);
1236       else if (bb == outer->latch)
1237 	to = gsi_after_labels (inner->latch);
1238       else
1239 	/* Otherwise, simply move to exit->src.  */
1240 	to = gsi_last_bb (single_exit (inner)->src);
1241 
1242       for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
1243 	{
1244 	  gimple *stmt = gsi_stmt (gsi);
1245 
1246 	  if (oloop_exit_bb == bb
1247 	      && stmt == gsi_stmt (gsi_last_bb (oloop_exit_bb)))
1248 	    {
1249 	      gsi_next (&gsi);
1250 	      continue;
1251 	    }
1252 
1253 	  if (gimple_vdef (stmt))
1254 	    {
1255 	      unlink_stmt_vdef (stmt);
1256 	      release_ssa_name (gimple_vdef (stmt));
1257 	      gimple_set_vdef (stmt, NULL_TREE);
1258 	    }
1259 	  if (gimple_vuse (stmt))
1260 	    {
1261 	      gimple_set_vuse (stmt, NULL_TREE);
1262 	      update_stmt (stmt);
1263 	    }
1264 
1265 	  reset_debug_uses (stmt);
1266 	  gsi_move_before (&gsi, &to);
1267 	}
1268     }
1269 }
1270 
1271 /* Given data reference DR in LOOP_NEST, the function computes DR's access
1272    stride at each level of loop from innermost LOOP to outer.  On success,
1273    it saves access stride at each level loop in a vector which is pointed
1274    by DR->aux.  For example:
1275 
1276      int arr[100][100][100];
1277      for (i = 0; i < 100; i++)       ;(DR->aux)strides[0] = 40000
1278        for (j = 100; j > 0; j--)     ;(DR->aux)strides[1] = 400
1279 	 for (k = 0; k < 100; k++)   ;(DR->aux)strides[2] = 4
1280 	   arr[i][j - 1][k] = 0;  */
1281 
1282 static void
compute_access_stride(class loop * loop_nest,class loop * loop,data_reference_p dr)1283 compute_access_stride (class loop *loop_nest, class loop *loop,
1284 		       data_reference_p dr)
1285 {
1286   vec<tree> *strides = new vec<tree> ();
1287   basic_block bb = gimple_bb (DR_STMT (dr));
1288 
1289   while (!flow_bb_inside_loop_p (loop, bb))
1290     {
1291       strides->safe_push (build_int_cst (sizetype, 0));
1292       loop = loop_outer (loop);
1293     }
1294   gcc_assert (loop == bb->loop_father);
1295 
1296   tree ref = DR_REF (dr);
1297   if (TREE_CODE (ref) == COMPONENT_REF
1298       && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
1299     {
1300       /* We can't take address of bitfields.  If the bitfield is at constant
1301 	 offset from the start of the struct, just use address of the
1302 	 struct, for analysis of the strides that shouldn't matter.  */
1303       if (!TREE_OPERAND (ref, 2)
1304 	  || TREE_CODE (TREE_OPERAND (ref, 2)) == INTEGER_CST)
1305 	ref = TREE_OPERAND (ref, 0);
1306       /* Otherwise, if we have a bit field representative, use that.  */
1307       else if (DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (ref, 1))
1308 	       != NULL_TREE)
1309 	{
1310 	  tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (ref, 1));
1311 	  ref = build3 (COMPONENT_REF, TREE_TYPE (repr), TREE_OPERAND (ref, 0),
1312 			repr, TREE_OPERAND (ref, 2));
1313 	}
1314       /* Otherwise punt.  */
1315       else
1316 	{
1317 	  dr->aux = strides;
1318 	  return;
1319 	}
1320     }
1321   tree scev_base = build_fold_addr_expr (ref);
1322   tree scev = analyze_scalar_evolution (loop, scev_base);
1323   scev = instantiate_scev (loop_preheader_edge (loop_nest), loop, scev);
1324   if (! chrec_contains_undetermined (scev))
1325     {
1326       tree sl = scev;
1327       class loop *expected = loop;
1328       while (TREE_CODE (sl) == POLYNOMIAL_CHREC)
1329 	{
1330 	  class loop *sl_loop = get_chrec_loop (sl);
1331 	  while (sl_loop != expected)
1332 	    {
1333 	      strides->safe_push (size_int (0));
1334 	      expected = loop_outer (expected);
1335 	    }
1336 	  strides->safe_push (CHREC_RIGHT (sl));
1337 	  sl = CHREC_LEFT (sl);
1338 	  expected = loop_outer (expected);
1339 	}
1340       if (! tree_contains_chrecs (sl, NULL))
1341 	while (expected != loop_outer (loop_nest))
1342 	  {
1343 	    strides->safe_push (size_int (0));
1344 	    expected = loop_outer (expected);
1345 	  }
1346     }
1347 
1348   dr->aux = strides;
1349 }
1350 
1351 /* Given loop nest LOOP_NEST with innermost LOOP, the function computes
1352    access strides with respect to each level loop for all data refs in
1353    DATAREFS from inner loop to outer loop.  On success, it returns the
1354    outermost loop that access strides can be computed successfully for
1355    all data references.  If access strides cannot be computed at least
1356    for two levels of loop for any data reference, it returns NULL.  */
1357 
1358 static class loop *
compute_access_strides(class loop * loop_nest,class loop * loop,vec<data_reference_p> datarefs)1359 compute_access_strides (class loop *loop_nest, class loop *loop,
1360 			vec<data_reference_p> datarefs)
1361 {
1362   unsigned i, j, num_loops = (unsigned) -1;
1363   data_reference_p dr;
1364   vec<tree> *stride;
1365 
1366   for (i = 0; datarefs.iterate (i, &dr); ++i)
1367     {
1368       compute_access_stride (loop_nest, loop, dr);
1369       stride = DR_ACCESS_STRIDE (dr);
1370       if (stride->length () < num_loops)
1371 	{
1372 	  num_loops = stride->length ();
1373 	  if (num_loops < 2)
1374 	    return NULL;
1375 	}
1376     }
1377 
1378   for (i = 0; datarefs.iterate (i, &dr); ++i)
1379     {
1380       stride = DR_ACCESS_STRIDE (dr);
1381       if (stride->length () > num_loops)
1382 	stride->truncate (num_loops);
1383 
1384       for (j = 0; j < (num_loops >> 1); ++j)
1385 	std::swap ((*stride)[j], (*stride)[num_loops - j - 1]);
1386     }
1387 
1388   loop = superloop_at_depth (loop, loop_depth (loop) + 1 - num_loops);
1389   gcc_assert (loop_nest == loop || flow_loop_nested_p (loop_nest, loop));
1390   return loop;
1391 }
1392 
1393 /* Prune access strides for data references in DATAREFS by removing strides
1394    of loops that isn't in current LOOP_NEST.  */
1395 
1396 static void
prune_access_strides_not_in_loop(class loop * loop_nest,class loop * innermost,vec<data_reference_p> datarefs)1397 prune_access_strides_not_in_loop (class loop *loop_nest,
1398 				  class loop *innermost,
1399 				  vec<data_reference_p> datarefs)
1400 {
1401   data_reference_p dr;
1402   unsigned num_loops = loop_depth (innermost) - loop_depth (loop_nest) + 1;
1403   gcc_assert (num_loops > 1);
1404 
1405   /* Block remove strides of loops that is not in current loop nest.  */
1406   for (unsigned i = 0; datarefs.iterate (i, &dr); ++i)
1407     {
1408       vec<tree> *stride = DR_ACCESS_STRIDE (dr);
1409       if (stride->length () > num_loops)
1410 	stride->block_remove (0, stride->length () - num_loops);
1411     }
1412 }
1413 
1414 /* Dump access strides for all DATAREFS.  */
1415 
1416 static void
dump_access_strides(vec<data_reference_p> datarefs)1417 dump_access_strides (vec<data_reference_p> datarefs)
1418 {
1419   data_reference_p dr;
1420   fprintf (dump_file, "Access Strides for DRs:\n");
1421   for (unsigned i = 0; datarefs.iterate (i, &dr); ++i)
1422     {
1423       fprintf (dump_file, "  ");
1424       print_generic_expr (dump_file, DR_REF (dr), TDF_SLIM);
1425       fprintf (dump_file, ":\t\t<");
1426 
1427       vec<tree> *stride = DR_ACCESS_STRIDE (dr);
1428       unsigned num_loops = stride->length ();
1429       for (unsigned j = 0; j < num_loops; ++j)
1430 	{
1431 	  print_generic_expr (dump_file, (*stride)[j], TDF_SLIM);
1432 	  fprintf (dump_file, "%s", (j < num_loops - 1) ? ",\t" : ">\n");
1433 	}
1434     }
1435 }
1436 
1437 /* Return true if it's profitable to interchange two loops whose index
1438    in whole loop nest vector are I_IDX/O_IDX respectively.  The function
1439    computes and compares three types information from all DATAREFS:
1440      1) Access stride for loop I_IDX and O_IDX.
1441      2) Number of invariant memory references with respect to I_IDX before
1442 	and after loop interchange.
1443      3) Flags indicating if all memory references access sequential memory
1444 	in ILOOP, before and after loop interchange.
1445    If INNMOST_LOOP_P is true, the two loops for interchanging are the two
1446    innermost loops in loop nest.  This function also dumps information if
1447    DUMP_INFO_P is true.  */
1448 
1449 static bool
should_interchange_loops(unsigned i_idx,unsigned o_idx,vec<data_reference_p> datarefs,unsigned i_stmt_cost,unsigned o_stmt_cost,bool innermost_loops_p,bool dump_info_p=true)1450 should_interchange_loops (unsigned i_idx, unsigned o_idx,
1451 			  vec<data_reference_p> datarefs,
1452 			  unsigned i_stmt_cost, unsigned o_stmt_cost,
1453 			  bool innermost_loops_p, bool dump_info_p = true)
1454 {
1455   unsigned HOST_WIDE_INT ratio;
1456   unsigned i, j, num_old_inv_drs = 0, num_new_inv_drs = 0;
1457   struct data_reference *dr;
1458   bool all_seq_dr_before_p = true, all_seq_dr_after_p = true;
1459   widest_int iloop_strides = 0, oloop_strides = 0;
1460   unsigned num_unresolved_drs = 0;
1461   unsigned num_resolved_ok_drs = 0;
1462   unsigned num_resolved_not_ok_drs = 0;
1463 
1464   if (dump_info_p && dump_file && (dump_flags & TDF_DETAILS))
1465     fprintf (dump_file, "\nData ref strides:\n\tmem_ref:\t\tiloop\toloop\n");
1466 
1467   for (i = 0; datarefs.iterate (i, &dr); ++i)
1468     {
1469       vec<tree> *stride = DR_ACCESS_STRIDE (dr);
1470       tree iloop_stride = (*stride)[i_idx], oloop_stride = (*stride)[o_idx];
1471 
1472       bool subloop_stride_p = false;
1473       /* Data ref can't be invariant or sequential access at current loop if
1474 	 its address changes with respect to any subloops.  */
1475       for (j = i_idx + 1; j < stride->length (); ++j)
1476 	if (!integer_zerop ((*stride)[j]))
1477 	  {
1478 	    subloop_stride_p = true;
1479 	    break;
1480 	  }
1481 
1482       if (integer_zerop (iloop_stride))
1483 	{
1484 	  if (!subloop_stride_p)
1485 	    num_old_inv_drs++;
1486 	}
1487       if (integer_zerop (oloop_stride))
1488 	{
1489 	  if (!subloop_stride_p)
1490 	    num_new_inv_drs++;
1491 	}
1492 
1493       if (TREE_CODE (iloop_stride) == INTEGER_CST
1494 	  && TREE_CODE (oloop_stride) == INTEGER_CST)
1495 	{
1496 	  iloop_strides = wi::add (iloop_strides, wi::to_widest (iloop_stride));
1497 	  oloop_strides = wi::add (oloop_strides, wi::to_widest (oloop_stride));
1498 	}
1499       else if (multiple_of_p (TREE_TYPE (iloop_stride),
1500 			      iloop_stride, oloop_stride))
1501 	num_resolved_ok_drs++;
1502       else if (multiple_of_p (TREE_TYPE (iloop_stride),
1503 			      oloop_stride, iloop_stride))
1504 	num_resolved_not_ok_drs++;
1505       else
1506 	num_unresolved_drs++;
1507 
1508       /* Data ref can't be sequential access if its address changes in sub
1509 	 loop.  */
1510       if (subloop_stride_p)
1511 	{
1512 	  all_seq_dr_before_p = false;
1513 	  all_seq_dr_after_p = false;
1514 	  continue;
1515 	}
1516       /* Track if all data references are sequential accesses before/after loop
1517 	 interchange.  Note invariant is considered sequential here.  */
1518       tree access_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
1519       if (all_seq_dr_before_p
1520 	  && ! (integer_zerop (iloop_stride)
1521 		|| operand_equal_p (access_size, iloop_stride, 0)))
1522 	all_seq_dr_before_p = false;
1523       if (all_seq_dr_after_p
1524 	  && ! (integer_zerop (oloop_stride)
1525 		|| operand_equal_p (access_size, oloop_stride, 0)))
1526 	all_seq_dr_after_p = false;
1527     }
1528 
1529   if (dump_info_p && dump_file && (dump_flags & TDF_DETAILS))
1530     {
1531       fprintf (dump_file, "\toverall:\t\t");
1532       print_decu (iloop_strides, dump_file);
1533       fprintf (dump_file, "\t");
1534       print_decu (oloop_strides, dump_file);
1535       fprintf (dump_file, "\n");
1536 
1537       fprintf (dump_file, "Invariant data ref: before(%d), after(%d)\n",
1538 	       num_old_inv_drs, num_new_inv_drs);
1539       fprintf (dump_file, "All consecutive stride: before(%s), after(%s)\n",
1540 	       all_seq_dr_before_p ? "true" : "false",
1541 	       all_seq_dr_after_p ? "true" : "false");
1542       fprintf (dump_file, "OK to interchage with variable strides: %d\n",
1543 	       num_resolved_ok_drs);
1544       fprintf (dump_file, "Not OK to interchage with variable strides: %d\n",
1545 	       num_resolved_not_ok_drs);
1546       fprintf (dump_file, "Variable strides we cannot decide: %d\n",
1547 	       num_unresolved_drs);
1548       fprintf (dump_file, "Stmt cost of inner loop: %d\n", i_stmt_cost);
1549       fprintf (dump_file, "Stmt cost of outer loop: %d\n", o_stmt_cost);
1550     }
1551 
1552   if (num_unresolved_drs != 0 || num_resolved_not_ok_drs != 0)
1553     return false;
1554 
1555   /* Stmts of outer loop will be moved to inner loop.  If there are two many
1556      such stmts, it could make inner loop costly.  Here we compare stmt cost
1557      between outer and inner loops.  */
1558   if (i_stmt_cost && o_stmt_cost
1559       && num_old_inv_drs + o_stmt_cost > num_new_inv_drs
1560       && o_stmt_cost * STMT_COST_RATIO > i_stmt_cost)
1561     return false;
1562 
1563   /* We use different stride comparison ratio for interchanging innermost
1564      two loops or not.  The idea is to be conservative in interchange for
1565      the innermost loops.  */
1566   ratio = innermost_loops_p ? INNER_STRIDE_RATIO : OUTER_STRIDE_RATIO;
1567   /* Do interchange if it gives better data locality behavior.  */
1568   if (wi::gtu_p (iloop_strides, wi::mul (oloop_strides, ratio)))
1569     return true;
1570   if (wi::gtu_p (iloop_strides, oloop_strides))
1571     {
1572       /* Or it creates more invariant memory references.  */
1573       if ((!all_seq_dr_before_p || all_seq_dr_after_p)
1574 	  && num_new_inv_drs > num_old_inv_drs)
1575 	return true;
1576       /* Or it makes all memory references sequential.  */
1577       if (num_new_inv_drs >= num_old_inv_drs
1578 	  && !all_seq_dr_before_p && all_seq_dr_after_p)
1579 	return true;
1580     }
1581 
1582   return false;
1583 }
1584 
1585 /* Try to interchange inner loop of a loop nest to outer level.  */
1586 
1587 bool
interchange(vec<data_reference_p> datarefs,vec<ddr_p> ddrs)1588 tree_loop_interchange::interchange (vec<data_reference_p> datarefs,
1589 				    vec<ddr_p> ddrs)
1590 {
1591   dump_user_location_t loc = find_loop_location (m_loop_nest[0]);
1592   bool changed_p = false;
1593   /* In each iteration we try to interchange I-th loop with (I+1)-th loop.
1594      The overall effect is to push inner loop to outermost level in whole
1595      loop nest.  */
1596   for (unsigned i = m_loop_nest.length (); i > 1; --i)
1597     {
1598       unsigned i_idx = i - 1, o_idx = i - 2;
1599 
1600       /* Check validity for loop interchange.  */
1601       if (!valid_data_dependences (i_idx, o_idx, ddrs))
1602 	break;
1603 
1604       loop_cand iloop (m_loop_nest[i_idx], m_loop_nest[o_idx]);
1605       loop_cand oloop (m_loop_nest[o_idx], m_loop_nest[o_idx]);
1606 
1607       /* Check if we can do transformation for loop interchange.  */
1608       if (!iloop.analyze_carried_vars (NULL)
1609 	  || !iloop.analyze_lcssa_phis ()
1610 	  || !oloop.analyze_carried_vars (&iloop)
1611 	  || !oloop.analyze_lcssa_phis ()
1612 	  || !iloop.can_interchange_p (NULL)
1613 	  || !oloop.can_interchange_p (&iloop))
1614 	break;
1615 
1616       /* Outer loop's stmts will be moved to inner loop during interchange.
1617 	 If there are many of them, it may make inner loop very costly.  We
1618 	 need to check number of outer loop's stmts in profit cost model of
1619 	 interchange.  */
1620       int stmt_cost = oloop.m_num_stmts;
1621       /* Count out the exit checking stmt of outer loop.  */
1622       stmt_cost --;
1623       /* Count out IV's increasing stmt, IVOPTs takes care if it.  */
1624       stmt_cost -= oloop.m_inductions.length ();
1625       /* Count in the additional load and cond_expr stmts caused by inner
1626 	 loop's constant initialized reduction.  */
1627       stmt_cost += iloop.m_const_init_reduc * 2;
1628       if (stmt_cost < 0)
1629 	stmt_cost = 0;
1630 
1631       /* Check profitability for loop interchange.  */
1632       if (should_interchange_loops (i_idx, o_idx, datarefs,
1633 				    (unsigned) iloop.m_num_stmts,
1634 				    (unsigned) stmt_cost,
1635 				    iloop.m_loop->inner == NULL))
1636 	{
1637 	  if (dump_file && (dump_flags & TDF_DETAILS))
1638 	    fprintf (dump_file,
1639 		     "Loop_pair<outer:%d, inner:%d> is interchanged\n\n",
1640 		     oloop.m_loop->num, iloop.m_loop->num);
1641 
1642 	  changed_p = true;
1643 	  interchange_loops (iloop, oloop);
1644 	  /* No need to update if there is no further loop interchange.  */
1645 	  if (o_idx > 0)
1646 	    update_data_info (i_idx, o_idx, datarefs, ddrs);
1647 	}
1648       else
1649 	{
1650 	  if (dump_file && (dump_flags & TDF_DETAILS))
1651 	    fprintf (dump_file,
1652 		     "Loop_pair<outer:%d, inner:%d> is not interchanged\n\n",
1653 		     oloop.m_loop->num, iloop.m_loop->num);
1654 	}
1655     }
1656   simple_dce_from_worklist (m_dce_seeds);
1657 
1658   if (changed_p && dump_enabled_p ())
1659     dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loc,
1660 		     "loops interchanged in loop nest\n");
1661 
1662   return changed_p;
1663 }
1664 
1665 
1666 /* Loop interchange pass.  */
1667 
1668 namespace {
1669 
1670 const pass_data pass_data_linterchange =
1671 {
1672   GIMPLE_PASS, /* type */
1673   "linterchange", /* name */
1674   OPTGROUP_LOOP, /* optinfo_flags */
1675   TV_LINTERCHANGE, /* tv_id */
1676   PROP_cfg, /* properties_required */
1677   0, /* properties_provided */
1678   0, /* properties_destroyed */
1679   0, /* todo_flags_start */
1680   0, /* todo_flags_finish */
1681 };
1682 
1683 class pass_linterchange : public gimple_opt_pass
1684 {
1685 public:
pass_linterchange(gcc::context * ctxt)1686   pass_linterchange (gcc::context *ctxt)
1687     : gimple_opt_pass (pass_data_linterchange, ctxt)
1688   {}
1689 
1690   /* opt_pass methods: */
clone()1691   opt_pass * clone () { return new pass_linterchange (m_ctxt); }
gate(function *)1692   virtual bool gate (function *) { return flag_loop_interchange; }
1693   virtual unsigned int execute (function *);
1694 
1695 }; // class pass_linterchange
1696 
1697 
1698 /* Return true if LOOP has proper form for interchange.  We check three
1699    conditions in the function:
1700      1) In general, a loop can be interchanged only if it doesn't have
1701 	basic blocks other than header, exit and latch besides possible
1702 	inner loop nest.  This basically restricts loop interchange to
1703 	below form loop nests:
1704 
1705           header<---+
1706             |       |
1707             v       |
1708         INNER_LOOP  |
1709             |       |
1710             v       |
1711           exit--->latch
1712 
1713      2) Data reference in basic block that executes in different times
1714 	than loop head/exit is not allowed.
1715      3) Record the innermost outer loop that doesn't form rectangle loop
1716 	nest with LOOP.  */
1717 
1718 static bool
proper_loop_form_for_interchange(class loop * loop,class loop ** min_outer)1719 proper_loop_form_for_interchange (class loop *loop, class loop **min_outer)
1720 {
1721   edge e0, e1, exit;
1722 
1723   /* Don't interchange if loop has unsupported information for the moment.  */
1724   if (loop->safelen > 0
1725       || loop->constraints != 0
1726       || loop->can_be_parallel
1727       || loop->dont_vectorize
1728       || loop->force_vectorize
1729       || loop->in_oacc_kernels_region
1730       || loop->orig_loop_num != 0
1731       || loop->simduid != NULL_TREE)
1732     return false;
1733 
1734   /* Don't interchange if outer loop has basic block other than header, exit
1735      and latch.  */
1736   if (loop->inner != NULL
1737       && loop->num_nodes != loop->inner->num_nodes + 3)
1738     return false;
1739 
1740   if ((exit = single_dom_exit (loop)) == NULL)
1741     return false;
1742 
1743   /* Check control flow on loop header/exit blocks.  */
1744   if (loop->header == exit->src
1745       && (EDGE_COUNT (loop->header->preds) != 2
1746 	  || EDGE_COUNT (loop->header->succs) != 2))
1747     return false;
1748   else if (loop->header != exit->src
1749 	   && (EDGE_COUNT (loop->header->preds) != 2
1750 	       || !single_succ_p (loop->header)
1751 	       || unsupported_edge (single_succ_edge (loop->header))
1752 	       || EDGE_COUNT (exit->src->succs) != 2
1753 	       || !single_pred_p (exit->src)
1754 	       || unsupported_edge (single_pred_edge (exit->src))))
1755     return false;
1756 
1757   e0 = EDGE_PRED (loop->header, 0);
1758   e1 = EDGE_PRED (loop->header, 1);
1759   if (unsupported_edge (e0) || unsupported_edge (e1)
1760       || (e0->src != loop->latch && e1->src != loop->latch)
1761       || (e0->src->loop_father == loop && e1->src->loop_father == loop))
1762     return false;
1763 
1764   e0 = EDGE_SUCC (exit->src, 0);
1765   e1 = EDGE_SUCC (exit->src, 1);
1766   if (unsupported_edge (e0) || unsupported_edge (e1)
1767       || (e0->dest != loop->latch && e1->dest != loop->latch)
1768       || (e0->dest->loop_father == loop && e1->dest->loop_father == loop))
1769     return false;
1770 
1771   /* Don't interchange if any reference is in basic block that doesn't
1772      dominate exit block.  */
1773   basic_block *bbs = get_loop_body (loop);
1774   for (unsigned i = 0; i < loop->num_nodes; i++)
1775     {
1776       basic_block bb = bbs[i];
1777 
1778       if (bb->loop_father != loop
1779 	  || bb == loop->header || bb == exit->src
1780 	  || dominated_by_p (CDI_DOMINATORS, exit->src, bb))
1781 	continue;
1782 
1783       for (gimple_stmt_iterator gsi = gsi_start_nondebug_bb (bb);
1784 	   !gsi_end_p (gsi); gsi_next_nondebug (&gsi))
1785 	if (gimple_vuse (gsi_stmt (gsi)))
1786 	  {
1787 	    free (bbs);
1788 	    return false;
1789 	  }
1790     }
1791   free (bbs);
1792 
1793   tree niters = number_of_latch_executions (loop);
1794   niters = analyze_scalar_evolution (loop_outer (loop), niters);
1795   if (!niters || chrec_contains_undetermined (niters))
1796     return false;
1797 
1798   /* Record the innermost outer loop that doesn't form rectangle loop nest.  */
1799   for (loop_p loop2 = loop_outer (loop);
1800        loop2 && flow_loop_nested_p (*min_outer, loop2);
1801        loop2 = loop_outer (loop2))
1802     {
1803       niters = instantiate_scev (loop_preheader_edge (loop2),
1804 				 loop_outer (loop), niters);
1805       if (!evolution_function_is_invariant_p (niters, loop2->num))
1806 	{
1807 	  *min_outer = loop2;
1808 	  break;
1809 	}
1810     }
1811   return true;
1812 }
1813 
1814 /* Return true if any two adjacent loops in loop nest [INNERMOST, LOOP_NEST]
1815    should be interchanged by looking into all DATAREFS.  */
1816 
1817 static bool
should_interchange_loop_nest(class loop * loop_nest,class loop * innermost,vec<data_reference_p> datarefs)1818 should_interchange_loop_nest (class loop *loop_nest, class loop *innermost,
1819 			      vec<data_reference_p> datarefs)
1820 {
1821   unsigned idx = loop_depth (innermost) - loop_depth (loop_nest);
1822   gcc_assert (idx > 0);
1823 
1824   /* Check if any two adjacent loops should be interchanged.  */
1825   for (class loop *loop = innermost;
1826        loop != loop_nest; loop = loop_outer (loop), idx--)
1827     if (should_interchange_loops (idx, idx - 1, datarefs, 0, 0,
1828 				  loop == innermost, false))
1829       return true;
1830 
1831   return false;
1832 }
1833 
1834 /* Given loop nest LOOP_NEST and data references DATAREFS, compute data
1835    dependences for loop interchange and store it in DDRS.  Note we compute
1836    dependences directly rather than call generic interface so that we can
1837    return on unknown dependence instantly.  */
1838 
1839 static bool
tree_loop_interchange_compute_ddrs(vec<loop_p> loop_nest,vec<data_reference_p> datarefs,vec<ddr_p> * ddrs)1840 tree_loop_interchange_compute_ddrs (vec<loop_p> loop_nest,
1841 				    vec<data_reference_p> datarefs,
1842 				    vec<ddr_p> *ddrs)
1843 {
1844   struct data_reference *a, *b;
1845   class loop *innermost = loop_nest.last ();
1846 
1847   for (unsigned i = 0; datarefs.iterate (i, &a); ++i)
1848     {
1849       bool a_outer_p = gimple_bb (DR_STMT (a))->loop_father != innermost;
1850       for (unsigned j = i + 1; datarefs.iterate (j, &b); ++j)
1851 	if (DR_IS_WRITE (a) || DR_IS_WRITE (b))
1852 	  {
1853 	    bool b_outer_p = gimple_bb (DR_STMT (b))->loop_father != innermost;
1854 	    /* Don't support multiple write references in outer loop.  */
1855 	    if (a_outer_p && b_outer_p && DR_IS_WRITE (a) && DR_IS_WRITE (b))
1856 	      return false;
1857 
1858 	    ddr_p ddr = initialize_data_dependence_relation (a, b, loop_nest);
1859 	    ddrs->safe_push (ddr);
1860 	    compute_affine_dependence (ddr, loop_nest[0]);
1861 
1862 	    /* Give up if ddr is unknown dependence or classic direct vector
1863 	       is not available.  */
1864 	    if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
1865 		|| (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
1866 		    && DDR_NUM_DIR_VECTS (ddr) == 0))
1867 	      return false;
1868 
1869 	    /* If either data references is in outer loop of nest, we require
1870 	       no dependence here because the data reference need to be moved
1871 	       into inner loop during interchange.  */
1872 	    if (a_outer_p && b_outer_p
1873 		&& operand_equal_p (DR_REF (a), DR_REF (b), 0))
1874 	      continue;
1875 	    if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1876 		&& (a_outer_p || b_outer_p))
1877 	      return false;
1878 	}
1879     }
1880 
1881   return true;
1882 }
1883 
1884 /* Prune DATAREFS by removing any data reference not inside of LOOP.  */
1885 
1886 static inline void
prune_datarefs_not_in_loop(class loop * loop,vec<data_reference_p> datarefs)1887 prune_datarefs_not_in_loop (class loop *loop, vec<data_reference_p> datarefs)
1888 {
1889   unsigned i, j;
1890   struct data_reference *dr;
1891 
1892   for (i = 0, j = 0; datarefs.iterate (i, &dr); ++i)
1893     {
1894       if (flow_bb_inside_loop_p (loop, gimple_bb (DR_STMT (dr))))
1895 	datarefs[j++] = dr;
1896       else
1897 	{
1898 	  if (dr->aux)
1899 	    {
1900 	      DR_ACCESS_STRIDE (dr)->release ();
1901 	      delete (vec<tree> *) dr->aux;
1902 	    }
1903 	  free_data_ref (dr);
1904 	}
1905     }
1906   datarefs.truncate (j);
1907 }
1908 
1909 /* Find and store data references in DATAREFS for LOOP nest.  If there's
1910    difficult data reference in a basic block, we shrink the loop nest to
1911    inner loop of that basic block's father loop.  On success, return the
1912    outer loop of the result loop nest.  */
1913 
1914 static class loop *
prepare_data_references(class loop * loop,vec<data_reference_p> * datarefs)1915 prepare_data_references (class loop *loop, vec<data_reference_p> *datarefs)
1916 {
1917   class loop *loop_nest = loop;
1918   vec<data_reference_p> *bb_refs;
1919   basic_block bb, *bbs = get_loop_body_in_dom_order (loop);
1920 
1921   for (unsigned i = 0; i < loop->num_nodes; i++)
1922     bbs[i]->aux = NULL;
1923 
1924   /* Find data references for all basic blocks.  Shrink loop nest on difficult
1925      data reference.  */
1926   for (unsigned i = 0; loop_nest && i < loop->num_nodes; ++i)
1927     {
1928       bb = bbs[i];
1929       if (!flow_bb_inside_loop_p (loop_nest, bb))
1930 	continue;
1931 
1932       bb_refs = new vec<data_reference_p> ();
1933       if (find_data_references_in_bb (loop, bb, bb_refs) == chrec_dont_know)
1934         {
1935 	  loop_nest = bb->loop_father->inner;
1936 	  if (loop_nest && !loop_nest->inner)
1937 	    loop_nest = NULL;
1938 
1939 	  free_data_refs (*bb_refs);
1940           delete bb_refs;
1941         }
1942       else if (bb_refs->is_empty ())
1943 	delete bb_refs;
1944       else
1945 	bb->aux = bb_refs;
1946     }
1947 
1948   /* Collect all data references in loop nest.  */
1949   for (unsigned i = 0; i < loop->num_nodes; i++)
1950     {
1951       bb = bbs[i];
1952       if (!bb->aux)
1953 	continue;
1954 
1955       bb_refs = (vec<data_reference_p> *) bb->aux;
1956       if (loop_nest && flow_bb_inside_loop_p (loop_nest, bb))
1957 	datarefs->safe_splice (*bb_refs);
1958       else
1959 	free_data_refs (*bb_refs);
1960 
1961       delete bb_refs;
1962       bb->aux = NULL;
1963     }
1964   free (bbs);
1965 
1966   return loop_nest;
1967 }
1968 
1969 /* Given innermost LOOP, return true if perfect loop nest can be found and
1970    data dependences can be computed.  If succeed, record the perfect loop
1971    nest in LOOP_NEST; record all data references in DATAREFS and record all
1972    data dependence relations in DDRS.
1973 
1974    We do support a restricted form of imperfect loop nest, i.e, loop nest
1975    with load/store in outer loop initializing/finalizing simple reduction
1976    of the innermost loop.  For such outer loop reference, we require that
1977    it has no dependence with others sinve it will be moved to inner loop
1978    in interchange.  */
1979 
1980 static bool
prepare_perfect_loop_nest(class loop * loop,vec<loop_p> * loop_nest,vec<data_reference_p> * datarefs,vec<ddr_p> * ddrs)1981 prepare_perfect_loop_nest (class loop *loop, vec<loop_p> *loop_nest,
1982 			   vec<data_reference_p> *datarefs, vec<ddr_p> *ddrs)
1983 {
1984   class loop *start_loop = NULL, *innermost = loop;
1985   class loop *outermost = loops_for_fn (cfun)->tree_root;
1986 
1987   /* Find loop nest from the innermost loop.  The outermost is the innermost
1988      outer*/
1989   while (loop->num != 0 && loop->inner == start_loop
1990 	 && flow_loop_nested_p (outermost, loop))
1991     {
1992       if (!proper_loop_form_for_interchange (loop, &outermost))
1993 	break;
1994 
1995       start_loop = loop;
1996       /* If this loop has sibling loop, the father loop won't be in perfect
1997 	 loop nest.  */
1998       if (loop->next != NULL)
1999 	break;
2000 
2001       loop = loop_outer (loop);
2002     }
2003   if (!start_loop || !start_loop->inner)
2004     return false;
2005 
2006   /* Prepare the data reference vector for the loop nest, pruning outer
2007      loops we cannot handle.  */
2008   start_loop = prepare_data_references (start_loop, datarefs);
2009   if (!start_loop
2010       /* Check if there is no data reference.  */
2011       || datarefs->is_empty ()
2012       /* Check if there are too many of data references.  */
2013       || (int) datarefs->length () > MAX_DATAREFS)
2014     return false;
2015 
2016   /* Compute access strides for all data references, pruning outer
2017      loops we cannot analyze refs in.  */
2018   start_loop = compute_access_strides (start_loop, innermost, *datarefs);
2019   if (!start_loop)
2020     return false;
2021 
2022   /* Check if any interchange is profitable in the loop nest.  */
2023   if (!should_interchange_loop_nest (start_loop, innermost, *datarefs))
2024     return false;
2025 
2026   /* Check if data dependences can be computed for loop nest starting from
2027      start_loop.  */
2028   loop = start_loop;
2029   do {
2030     loop_nest->truncate (0);
2031 
2032     if (loop != start_loop)
2033       prune_datarefs_not_in_loop (start_loop, *datarefs);
2034 
2035     if (find_loop_nest (start_loop, loop_nest)
2036 	&& tree_loop_interchange_compute_ddrs (*loop_nest, *datarefs, ddrs))
2037       {
2038 	if (dump_file && (dump_flags & TDF_DETAILS))
2039 	  fprintf (dump_file,
2040 		   "\nConsider loop interchange for loop_nest<%d - %d>\n",
2041 		   start_loop->num, innermost->num);
2042 
2043 	if (loop != start_loop)
2044 	  prune_access_strides_not_in_loop (start_loop, innermost, *datarefs);
2045 
2046 	if (dump_file && (dump_flags & TDF_DETAILS))
2047 	  dump_access_strides (*datarefs);
2048 
2049 	return true;
2050       }
2051 
2052     free_dependence_relations (*ddrs);
2053     *ddrs = vNULL;
2054     /* Try to compute data dependences with the outermost loop stripped.  */
2055     loop = start_loop;
2056     start_loop = start_loop->inner;
2057   } while (start_loop && start_loop->inner);
2058 
2059   return false;
2060 }
2061 
2062 /* Main entry for loop interchange pass.  */
2063 
2064 unsigned int
execute(function * fun)2065 pass_linterchange::execute (function *fun)
2066 {
2067   if (number_of_loops (fun) <= 2)
2068     return 0;
2069 
2070   bool changed_p = false;
2071   class loop *loop;
2072   FOR_EACH_LOOP (loop, LI_ONLY_INNERMOST)
2073     {
2074       vec<loop_p> loop_nest = vNULL;
2075       vec<data_reference_p> datarefs = vNULL;
2076       vec<ddr_p> ddrs = vNULL;
2077       if (prepare_perfect_loop_nest (loop, &loop_nest, &datarefs, &ddrs))
2078 	{
2079 	  tree_loop_interchange loop_interchange (loop_nest);
2080 	  changed_p |= loop_interchange.interchange (datarefs, ddrs);
2081 	}
2082       free_dependence_relations (ddrs);
2083       free_data_refs_with_aux (datarefs);
2084       loop_nest.release ();
2085     }
2086 
2087   return changed_p ? (TODO_update_ssa_only_virtuals) : 0;
2088 }
2089 
2090 } // anon namespace
2091 
2092 gimple_opt_pass *
make_pass_linterchange(gcc::context * ctxt)2093 make_pass_linterchange (gcc::context *ctxt)
2094 {
2095   return new pass_linterchange (ctxt);
2096 }
2097