1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// IP address manipulations
6//
7// IPv4 addresses are 4 bytes; IPv6 addresses are 16 bytes.
8// An IPv4 address can be converted to an IPv6 address by
9// adding a canonical prefix (10 zeros, 2 0xFFs).
10// This library accepts either size of byte slice but always
11// returns 16-byte addresses.
12
13package net
14
15import "internal/bytealg"
16
17// IP address lengths (bytes).
18const (
19	IPv4len = 4
20	IPv6len = 16
21)
22
23// An IP is a single IP address, a slice of bytes.
24// Functions in this package accept either 4-byte (IPv4)
25// or 16-byte (IPv6) slices as input.
26//
27// Note that in this documentation, referring to an
28// IP address as an IPv4 address or an IPv6 address
29// is a semantic property of the address, not just the
30// length of the byte slice: a 16-byte slice can still
31// be an IPv4 address.
32type IP []byte
33
34// An IPMask is a bitmask that can be used to manipulate
35// IP addresses for IP addressing and routing.
36//
37// See type IPNet and func ParseCIDR for details.
38type IPMask []byte
39
40// An IPNet represents an IP network.
41type IPNet struct {
42	IP   IP     // network number
43	Mask IPMask // network mask
44}
45
46// IPv4 returns the IP address (in 16-byte form) of the
47// IPv4 address a.b.c.d.
48func IPv4(a, b, c, d byte) IP {
49	p := make(IP, IPv6len)
50	copy(p, v4InV6Prefix)
51	p[12] = a
52	p[13] = b
53	p[14] = c
54	p[15] = d
55	return p
56}
57
58var v4InV6Prefix = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff}
59
60// IPv4Mask returns the IP mask (in 4-byte form) of the
61// IPv4 mask a.b.c.d.
62func IPv4Mask(a, b, c, d byte) IPMask {
63	p := make(IPMask, IPv4len)
64	p[0] = a
65	p[1] = b
66	p[2] = c
67	p[3] = d
68	return p
69}
70
71// CIDRMask returns an IPMask consisting of 'ones' 1 bits
72// followed by 0s up to a total length of 'bits' bits.
73// For a mask of this form, CIDRMask is the inverse of IPMask.Size.
74func CIDRMask(ones, bits int) IPMask {
75	if bits != 8*IPv4len && bits != 8*IPv6len {
76		return nil
77	}
78	if ones < 0 || ones > bits {
79		return nil
80	}
81	l := bits / 8
82	m := make(IPMask, l)
83	n := uint(ones)
84	for i := 0; i < l; i++ {
85		if n >= 8 {
86			m[i] = 0xff
87			n -= 8
88			continue
89		}
90		m[i] = ^byte(0xff >> n)
91		n = 0
92	}
93	return m
94}
95
96// Well-known IPv4 addresses
97var (
98	IPv4bcast     = IPv4(255, 255, 255, 255) // limited broadcast
99	IPv4allsys    = IPv4(224, 0, 0, 1)       // all systems
100	IPv4allrouter = IPv4(224, 0, 0, 2)       // all routers
101	IPv4zero      = IPv4(0, 0, 0, 0)         // all zeros
102)
103
104// Well-known IPv6 addresses
105var (
106	IPv6zero                   = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
107	IPv6unspecified            = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
108	IPv6loopback               = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
109	IPv6interfacelocalallnodes = IP{0xff, 0x01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01}
110	IPv6linklocalallnodes      = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01}
111	IPv6linklocalallrouters    = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x02}
112)
113
114// IsUnspecified reports whether ip is an unspecified address, either
115// the IPv4 address "0.0.0.0" or the IPv6 address "::".
116func (ip IP) IsUnspecified() bool {
117	return ip.Equal(IPv4zero) || ip.Equal(IPv6unspecified)
118}
119
120// IsLoopback reports whether ip is a loopback address.
121func (ip IP) IsLoopback() bool {
122	if ip4 := ip.To4(); ip4 != nil {
123		return ip4[0] == 127
124	}
125	return ip.Equal(IPv6loopback)
126}
127
128// IsMulticast reports whether ip is a multicast address.
129func (ip IP) IsMulticast() bool {
130	if ip4 := ip.To4(); ip4 != nil {
131		return ip4[0]&0xf0 == 0xe0
132	}
133	return len(ip) == IPv6len && ip[0] == 0xff
134}
135
136// IsInterfaceLocalMulticast reports whether ip is
137// an interface-local multicast address.
138func (ip IP) IsInterfaceLocalMulticast() bool {
139	return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x01
140}
141
142// IsLinkLocalMulticast reports whether ip is a link-local
143// multicast address.
144func (ip IP) IsLinkLocalMulticast() bool {
145	if ip4 := ip.To4(); ip4 != nil {
146		return ip4[0] == 224 && ip4[1] == 0 && ip4[2] == 0
147	}
148	return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x02
149}
150
151// IsLinkLocalUnicast reports whether ip is a link-local
152// unicast address.
153func (ip IP) IsLinkLocalUnicast() bool {
154	if ip4 := ip.To4(); ip4 != nil {
155		return ip4[0] == 169 && ip4[1] == 254
156	}
157	return len(ip) == IPv6len && ip[0] == 0xfe && ip[1]&0xc0 == 0x80
158}
159
160// IsGlobalUnicast reports whether ip is a global unicast
161// address.
162//
163// The identification of global unicast addresses uses address type
164// identification as defined in RFC 1122, RFC 4632 and RFC 4291 with
165// the exception of IPv4 directed broadcast addresses.
166// It returns true even if ip is in IPv4 private address space or
167// local IPv6 unicast address space.
168func (ip IP) IsGlobalUnicast() bool {
169	return (len(ip) == IPv4len || len(ip) == IPv6len) &&
170		!ip.Equal(IPv4bcast) &&
171		!ip.IsUnspecified() &&
172		!ip.IsLoopback() &&
173		!ip.IsMulticast() &&
174		!ip.IsLinkLocalUnicast()
175}
176
177// Is p all zeros?
178func isZeros(p IP) bool {
179	for i := 0; i < len(p); i++ {
180		if p[i] != 0 {
181			return false
182		}
183	}
184	return true
185}
186
187// To4 converts the IPv4 address ip to a 4-byte representation.
188// If ip is not an IPv4 address, To4 returns nil.
189func (ip IP) To4() IP {
190	if len(ip) == IPv4len {
191		return ip
192	}
193	if len(ip) == IPv6len &&
194		isZeros(ip[0:10]) &&
195		ip[10] == 0xff &&
196		ip[11] == 0xff {
197		return ip[12:16]
198	}
199	return nil
200}
201
202// To16 converts the IP address ip to a 16-byte representation.
203// If ip is not an IP address (it is the wrong length), To16 returns nil.
204func (ip IP) To16() IP {
205	if len(ip) == IPv4len {
206		return IPv4(ip[0], ip[1], ip[2], ip[3])
207	}
208	if len(ip) == IPv6len {
209		return ip
210	}
211	return nil
212}
213
214// Default route masks for IPv4.
215var (
216	classAMask = IPv4Mask(0xff, 0, 0, 0)
217	classBMask = IPv4Mask(0xff, 0xff, 0, 0)
218	classCMask = IPv4Mask(0xff, 0xff, 0xff, 0)
219)
220
221// DefaultMask returns the default IP mask for the IP address ip.
222// Only IPv4 addresses have default masks; DefaultMask returns
223// nil if ip is not a valid IPv4 address.
224func (ip IP) DefaultMask() IPMask {
225	if ip = ip.To4(); ip == nil {
226		return nil
227	}
228	switch {
229	case ip[0] < 0x80:
230		return classAMask
231	case ip[0] < 0xC0:
232		return classBMask
233	default:
234		return classCMask
235	}
236}
237
238func allFF(b []byte) bool {
239	for _, c := range b {
240		if c != 0xff {
241			return false
242		}
243	}
244	return true
245}
246
247// Mask returns the result of masking the IP address ip with mask.
248func (ip IP) Mask(mask IPMask) IP {
249	if len(mask) == IPv6len && len(ip) == IPv4len && allFF(mask[:12]) {
250		mask = mask[12:]
251	}
252	if len(mask) == IPv4len && len(ip) == IPv6len && bytealg.Equal(ip[:12], v4InV6Prefix) {
253		ip = ip[12:]
254	}
255	n := len(ip)
256	if n != len(mask) {
257		return nil
258	}
259	out := make(IP, n)
260	for i := 0; i < n; i++ {
261		out[i] = ip[i] & mask[i]
262	}
263	return out
264}
265
266// ubtoa encodes the string form of the integer v to dst[start:] and
267// returns the number of bytes written to dst. The caller must ensure
268// that dst has sufficient length.
269func ubtoa(dst []byte, start int, v byte) int {
270	if v < 10 {
271		dst[start] = v + '0'
272		return 1
273	} else if v < 100 {
274		dst[start+1] = v%10 + '0'
275		dst[start] = v/10 + '0'
276		return 2
277	}
278
279	dst[start+2] = v%10 + '0'
280	dst[start+1] = (v/10)%10 + '0'
281	dst[start] = v/100 + '0'
282	return 3
283}
284
285// String returns the string form of the IP address ip.
286// It returns one of 4 forms:
287//   - "<nil>", if ip has length 0
288//   - dotted decimal ("192.0.2.1"), if ip is an IPv4 or IP4-mapped IPv6 address
289//   - IPv6 ("2001:db8::1"), if ip is a valid IPv6 address
290//   - the hexadecimal form of ip, without punctuation, if no other cases apply
291func (ip IP) String() string {
292	p := ip
293
294	if len(ip) == 0 {
295		return "<nil>"
296	}
297
298	// If IPv4, use dotted notation.
299	if p4 := p.To4(); len(p4) == IPv4len {
300		const maxIPv4StringLen = len("255.255.255.255")
301		b := make([]byte, maxIPv4StringLen)
302
303		n := ubtoa(b, 0, p4[0])
304		b[n] = '.'
305		n++
306
307		n += ubtoa(b, n, p4[1])
308		b[n] = '.'
309		n++
310
311		n += ubtoa(b, n, p4[2])
312		b[n] = '.'
313		n++
314
315		n += ubtoa(b, n, p4[3])
316		return string(b[:n])
317	}
318	if len(p) != IPv6len {
319		return "?" + hexString(ip)
320	}
321
322	// Find longest run of zeros.
323	e0 := -1
324	e1 := -1
325	for i := 0; i < IPv6len; i += 2 {
326		j := i
327		for j < IPv6len && p[j] == 0 && p[j+1] == 0 {
328			j += 2
329		}
330		if j > i && j-i > e1-e0 {
331			e0 = i
332			e1 = j
333			i = j
334		}
335	}
336	// The symbol "::" MUST NOT be used to shorten just one 16 bit 0 field.
337	if e1-e0 <= 2 {
338		e0 = -1
339		e1 = -1
340	}
341
342	const maxLen = len("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff")
343	b := make([]byte, 0, maxLen)
344
345	// Print with possible :: in place of run of zeros
346	for i := 0; i < IPv6len; i += 2 {
347		if i == e0 {
348			b = append(b, ':', ':')
349			i = e1
350			if i >= IPv6len {
351				break
352			}
353		} else if i > 0 {
354			b = append(b, ':')
355		}
356		b = appendHex(b, (uint32(p[i])<<8)|uint32(p[i+1]))
357	}
358	return string(b)
359}
360
361func hexString(b []byte) string {
362	s := make([]byte, len(b)*2)
363	for i, tn := range b {
364		s[i*2], s[i*2+1] = hexDigit[tn>>4], hexDigit[tn&0xf]
365	}
366	return string(s)
367}
368
369// ipEmptyString is like ip.String except that it returns
370// an empty string when ip is unset.
371func ipEmptyString(ip IP) string {
372	if len(ip) == 0 {
373		return ""
374	}
375	return ip.String()
376}
377
378// MarshalText implements the encoding.TextMarshaler interface.
379// The encoding is the same as returned by String, with one exception:
380// When len(ip) is zero, it returns an empty slice.
381func (ip IP) MarshalText() ([]byte, error) {
382	if len(ip) == 0 {
383		return []byte(""), nil
384	}
385	if len(ip) != IPv4len && len(ip) != IPv6len {
386		return nil, &AddrError{Err: "invalid IP address", Addr: hexString(ip)}
387	}
388	return []byte(ip.String()), nil
389}
390
391// UnmarshalText implements the encoding.TextUnmarshaler interface.
392// The IP address is expected in a form accepted by ParseIP.
393func (ip *IP) UnmarshalText(text []byte) error {
394	if len(text) == 0 {
395		*ip = nil
396		return nil
397	}
398	s := string(text)
399	x := ParseIP(s)
400	if x == nil {
401		return &ParseError{Type: "IP address", Text: s}
402	}
403	*ip = x
404	return nil
405}
406
407// Equal reports whether ip and x are the same IP address.
408// An IPv4 address and that same address in IPv6 form are
409// considered to be equal.
410func (ip IP) Equal(x IP) bool {
411	if len(ip) == len(x) {
412		return bytealg.Equal(ip, x)
413	}
414	if len(ip) == IPv4len && len(x) == IPv6len {
415		return bytealg.Equal(x[0:12], v4InV6Prefix) && bytealg.Equal(ip, x[12:])
416	}
417	if len(ip) == IPv6len && len(x) == IPv4len {
418		return bytealg.Equal(ip[0:12], v4InV6Prefix) && bytealg.Equal(ip[12:], x)
419	}
420	return false
421}
422
423func (ip IP) matchAddrFamily(x IP) bool {
424	return ip.To4() != nil && x.To4() != nil || ip.To16() != nil && ip.To4() == nil && x.To16() != nil && x.To4() == nil
425}
426
427// If mask is a sequence of 1 bits followed by 0 bits,
428// return the number of 1 bits.
429func simpleMaskLength(mask IPMask) int {
430	var n int
431	for i, v := range mask {
432		if v == 0xff {
433			n += 8
434			continue
435		}
436		// found non-ff byte
437		// count 1 bits
438		for v&0x80 != 0 {
439			n++
440			v <<= 1
441		}
442		// rest must be 0 bits
443		if v != 0 {
444			return -1
445		}
446		for i++; i < len(mask); i++ {
447			if mask[i] != 0 {
448				return -1
449			}
450		}
451		break
452	}
453	return n
454}
455
456// Size returns the number of leading ones and total bits in the mask.
457// If the mask is not in the canonical form--ones followed by zeros--then
458// Size returns 0, 0.
459func (m IPMask) Size() (ones, bits int) {
460	ones, bits = simpleMaskLength(m), len(m)*8
461	if ones == -1 {
462		return 0, 0
463	}
464	return
465}
466
467// String returns the hexadecimal form of m, with no punctuation.
468func (m IPMask) String() string {
469	if len(m) == 0 {
470		return "<nil>"
471	}
472	return hexString(m)
473}
474
475func networkNumberAndMask(n *IPNet) (ip IP, m IPMask) {
476	if ip = n.IP.To4(); ip == nil {
477		ip = n.IP
478		if len(ip) != IPv6len {
479			return nil, nil
480		}
481	}
482	m = n.Mask
483	switch len(m) {
484	case IPv4len:
485		if len(ip) != IPv4len {
486			return nil, nil
487		}
488	case IPv6len:
489		if len(ip) == IPv4len {
490			m = m[12:]
491		}
492	default:
493		return nil, nil
494	}
495	return
496}
497
498// Contains reports whether the network includes ip.
499func (n *IPNet) Contains(ip IP) bool {
500	nn, m := networkNumberAndMask(n)
501	if x := ip.To4(); x != nil {
502		ip = x
503	}
504	l := len(ip)
505	if l != len(nn) {
506		return false
507	}
508	for i := 0; i < l; i++ {
509		if nn[i]&m[i] != ip[i]&m[i] {
510			return false
511		}
512	}
513	return true
514}
515
516// Network returns the address's network name, "ip+net".
517func (n *IPNet) Network() string { return "ip+net" }
518
519// String returns the CIDR notation of n like "192.0.2.0/24"
520// or "2001:db8::/48" as defined in RFC 4632 and RFC 4291.
521// If the mask is not in the canonical form, it returns the
522// string which consists of an IP address, followed by a slash
523// character and a mask expressed as hexadecimal form with no
524// punctuation like "198.51.100.0/c000ff00".
525func (n *IPNet) String() string {
526	nn, m := networkNumberAndMask(n)
527	if nn == nil || m == nil {
528		return "<nil>"
529	}
530	l := simpleMaskLength(m)
531	if l == -1 {
532		return nn.String() + "/" + m.String()
533	}
534	return nn.String() + "/" + uitoa(uint(l))
535}
536
537// Parse IPv4 address (d.d.d.d).
538func parseIPv4(s string) IP {
539	var p [IPv4len]byte
540	for i := 0; i < IPv4len; i++ {
541		if len(s) == 0 {
542			// Missing octets.
543			return nil
544		}
545		if i > 0 {
546			if s[0] != '.' {
547				return nil
548			}
549			s = s[1:]
550		}
551		n, c, ok := dtoi(s)
552		if !ok || n > 0xFF {
553			return nil
554		}
555		s = s[c:]
556		p[i] = byte(n)
557	}
558	if len(s) != 0 {
559		return nil
560	}
561	return IPv4(p[0], p[1], p[2], p[3])
562}
563
564// parseIPv6Zone parses s as a literal IPv6 address and its associated zone
565// identifier which is described in RFC 4007.
566func parseIPv6Zone(s string) (IP, string) {
567	s, zone := splitHostZone(s)
568	return parseIPv6(s), zone
569}
570
571// parseIPv6 parses s as a literal IPv6 address described in RFC 4291
572// and RFC 5952.
573func parseIPv6(s string) (ip IP) {
574	ip = make(IP, IPv6len)
575	ellipsis := -1 // position of ellipsis in ip
576
577	// Might have leading ellipsis
578	if len(s) >= 2 && s[0] == ':' && s[1] == ':' {
579		ellipsis = 0
580		s = s[2:]
581		// Might be only ellipsis
582		if len(s) == 0 {
583			return ip
584		}
585	}
586
587	// Loop, parsing hex numbers followed by colon.
588	i := 0
589	for i < IPv6len {
590		// Hex number.
591		n, c, ok := xtoi(s)
592		if !ok || n > 0xFFFF {
593			return nil
594		}
595
596		// If followed by dot, might be in trailing IPv4.
597		if c < len(s) && s[c] == '.' {
598			if ellipsis < 0 && i != IPv6len-IPv4len {
599				// Not the right place.
600				return nil
601			}
602			if i+IPv4len > IPv6len {
603				// Not enough room.
604				return nil
605			}
606			ip4 := parseIPv4(s)
607			if ip4 == nil {
608				return nil
609			}
610			ip[i] = ip4[12]
611			ip[i+1] = ip4[13]
612			ip[i+2] = ip4[14]
613			ip[i+3] = ip4[15]
614			s = ""
615			i += IPv4len
616			break
617		}
618
619		// Save this 16-bit chunk.
620		ip[i] = byte(n >> 8)
621		ip[i+1] = byte(n)
622		i += 2
623
624		// Stop at end of string.
625		s = s[c:]
626		if len(s) == 0 {
627			break
628		}
629
630		// Otherwise must be followed by colon and more.
631		if s[0] != ':' || len(s) == 1 {
632			return nil
633		}
634		s = s[1:]
635
636		// Look for ellipsis.
637		if s[0] == ':' {
638			if ellipsis >= 0 { // already have one
639				return nil
640			}
641			ellipsis = i
642			s = s[1:]
643			if len(s) == 0 { // can be at end
644				break
645			}
646		}
647	}
648
649	// Must have used entire string.
650	if len(s) != 0 {
651		return nil
652	}
653
654	// If didn't parse enough, expand ellipsis.
655	if i < IPv6len {
656		if ellipsis < 0 {
657			return nil
658		}
659		n := IPv6len - i
660		for j := i - 1; j >= ellipsis; j-- {
661			ip[j+n] = ip[j]
662		}
663		for j := ellipsis + n - 1; j >= ellipsis; j-- {
664			ip[j] = 0
665		}
666	} else if ellipsis >= 0 {
667		// Ellipsis must represent at least one 0 group.
668		return nil
669	}
670	return ip
671}
672
673// ParseIP parses s as an IP address, returning the result.
674// The string s can be in dotted decimal ("192.0.2.1")
675// or IPv6 ("2001:db8::68") form.
676// If s is not a valid textual representation of an IP address,
677// ParseIP returns nil.
678func ParseIP(s string) IP {
679	for i := 0; i < len(s); i++ {
680		switch s[i] {
681		case '.':
682			return parseIPv4(s)
683		case ':':
684			return parseIPv6(s)
685		}
686	}
687	return nil
688}
689
690// parseIPZone parses s as an IP address, return it and its associated zone
691// identifier (IPv6 only).
692func parseIPZone(s string) (IP, string) {
693	for i := 0; i < len(s); i++ {
694		switch s[i] {
695		case '.':
696			return parseIPv4(s), ""
697		case ':':
698			return parseIPv6Zone(s)
699		}
700	}
701	return nil, ""
702}
703
704// ParseCIDR parses s as a CIDR notation IP address and prefix length,
705// like "192.0.2.0/24" or "2001:db8::/32", as defined in
706// RFC 4632 and RFC 4291.
707//
708// It returns the IP address and the network implied by the IP and
709// prefix length.
710// For example, ParseCIDR("192.0.2.1/24") returns the IP address
711// 192.0.2.1 and the network 192.0.2.0/24.
712func ParseCIDR(s string) (IP, *IPNet, error) {
713	i := bytealg.IndexByteString(s, '/')
714	if i < 0 {
715		return nil, nil, &ParseError{Type: "CIDR address", Text: s}
716	}
717	addr, mask := s[:i], s[i+1:]
718	iplen := IPv4len
719	ip := parseIPv4(addr)
720	if ip == nil {
721		iplen = IPv6len
722		ip = parseIPv6(addr)
723	}
724	n, i, ok := dtoi(mask)
725	if ip == nil || !ok || i != len(mask) || n < 0 || n > 8*iplen {
726		return nil, nil, &ParseError{Type: "CIDR address", Text: s}
727	}
728	m := CIDRMask(n, 8*iplen)
729	return ip, &IPNet{IP: ip.Mask(m), Mask: m}, nil
730}
731