1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                               C H E C K S                                --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2020, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;    use Atree;
27with Casing;   use Casing;
28with Debug;    use Debug;
29with Einfo;    use Einfo;
30with Elists;   use Elists;
31with Eval_Fat; use Eval_Fat;
32with Exp_Ch11; use Exp_Ch11;
33with Exp_Ch4;  use Exp_Ch4;
34with Exp_Pakd; use Exp_Pakd;
35with Exp_Util; use Exp_Util;
36with Expander; use Expander;
37with Freeze;   use Freeze;
38with Lib;      use Lib;
39with Nlists;   use Nlists;
40with Nmake;    use Nmake;
41with Opt;      use Opt;
42with Output;   use Output;
43with Restrict; use Restrict;
44with Rident;   use Rident;
45with Rtsfind;  use Rtsfind;
46with Sem;      use Sem;
47with Sem_Aux;  use Sem_Aux;
48with Sem_Ch3;  use Sem_Ch3;
49with Sem_Ch8;  use Sem_Ch8;
50with Sem_Disp; use Sem_Disp;
51with Sem_Eval; use Sem_Eval;
52with Sem_Mech; use Sem_Mech;
53with Sem_Res;  use Sem_Res;
54with Sem_Util; use Sem_Util;
55with Sem_Warn; use Sem_Warn;
56with Sinfo;    use Sinfo;
57with Sinput;   use Sinput;
58with Snames;   use Snames;
59with Sprint;   use Sprint;
60with Stand;    use Stand;
61with Stringt;  use Stringt;
62with Targparm; use Targparm;
63with Tbuild;   use Tbuild;
64with Ttypes;   use Ttypes;
65with Validsw;  use Validsw;
66
67package body Checks is
68
69   --  General note: many of these routines are concerned with generating
70   --  checking code to make sure that constraint error is raised at runtime.
71   --  Clearly this code is only needed if the expander is active, since
72   --  otherwise we will not be generating code or going into the runtime
73   --  execution anyway.
74
75   --  We therefore disconnect most of these checks if the expander is
76   --  inactive. This has the additional benefit that we do not need to
77   --  worry about the tree being messed up by previous errors (since errors
78   --  turn off expansion anyway).
79
80   --  There are a few exceptions to the above rule. For instance routines
81   --  such as Apply_Scalar_Range_Check that do not insert any code can be
82   --  safely called even when the Expander is inactive (but Errors_Detected
83   --  is 0). The benefit of executing this code when expansion is off, is
84   --  the ability to emit constraint error warning for static expressions
85   --  even when we are not generating code.
86
87   --  The above is modified in gnatprove mode to ensure that proper check
88   --  flags are always placed, even if expansion is off.
89
90   -------------------------------------
91   -- Suppression of Redundant Checks --
92   -------------------------------------
93
94   --  This unit implements a limited circuit for removal of redundant
95   --  checks. The processing is based on a tracing of simple sequential
96   --  flow. For any sequence of statements, we save expressions that are
97   --  marked to be checked, and then if the same expression appears later
98   --  with the same check, then under certain circumstances, the second
99   --  check can be suppressed.
100
101   --  Basically, we can suppress the check if we know for certain that
102   --  the previous expression has been elaborated (together with its
103   --  check), and we know that the exception frame is the same, and that
104   --  nothing has happened to change the result of the exception.
105
106   --  Let us examine each of these three conditions in turn to describe
107   --  how we ensure that this condition is met.
108
109   --  First, we need to know for certain that the previous expression has
110   --  been executed. This is done principally by the mechanism of calling
111   --  Conditional_Statements_Begin at the start of any statement sequence
112   --  and Conditional_Statements_End at the end. The End call causes all
113   --  checks remembered since the Begin call to be discarded. This does
114   --  miss a few cases, notably the case of a nested BEGIN-END block with
115   --  no exception handlers. But the important thing is to be conservative.
116   --  The other protection is that all checks are discarded if a label
117   --  is encountered, since then the assumption of sequential execution
118   --  is violated, and we don't know enough about the flow.
119
120   --  Second, we need to know that the exception frame is the same. We
121   --  do this by killing all remembered checks when we enter a new frame.
122   --  Again, that's over-conservative, but generally the cases we can help
123   --  with are pretty local anyway (like the body of a loop for example).
124
125   --  Third, we must be sure to forget any checks which are no longer valid.
126   --  This is done by two mechanisms, first the Kill_Checks_Variable call is
127   --  used to note any changes to local variables. We only attempt to deal
128   --  with checks involving local variables, so we do not need to worry
129   --  about global variables. Second, a call to any non-global procedure
130   --  causes us to abandon all stored checks, since such a all may affect
131   --  the values of any local variables.
132
133   --  The following define the data structures used to deal with remembering
134   --  checks so that redundant checks can be eliminated as described above.
135
136   --  Right now, the only expressions that we deal with are of the form of
137   --  simple local objects (either declared locally, or IN parameters) or
138   --  such objects plus/minus a compile time known constant. We can do
139   --  more later on if it seems worthwhile, but this catches many simple
140   --  cases in practice.
141
142   --  The following record type reflects a single saved check. An entry
143   --  is made in the stack of saved checks if and only if the expression
144   --  has been elaborated with the indicated checks.
145
146   type Saved_Check is record
147      Killed : Boolean;
148      --  Set True if entry is killed by Kill_Checks
149
150      Entity : Entity_Id;
151      --  The entity involved in the expression that is checked
152
153      Offset : Uint;
154      --  A compile time value indicating the result of adding or
155      --  subtracting a compile time value. This value is to be
156      --  added to the value of the Entity. A value of zero is
157      --  used for the case of a simple entity reference.
158
159      Check_Type : Character;
160      --  This is set to 'R' for a range check (in which case Target_Type
161      --  is set to the target type for the range check) or to 'O' for an
162      --  overflow check (in which case Target_Type is set to Empty).
163
164      Target_Type : Entity_Id;
165      --  Used only if Do_Range_Check is set. Records the target type for
166      --  the check. We need this, because a check is a duplicate only if
167      --  it has the same target type (or more accurately one with a
168      --  range that is smaller or equal to the stored target type of a
169      --  saved check).
170   end record;
171
172   --  The following table keeps track of saved checks. Rather than use an
173   --  extensible table, we just use a table of fixed size, and we discard
174   --  any saved checks that do not fit. That's very unlikely to happen and
175   --  this is only an optimization in any case.
176
177   Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
178   --  Array of saved checks
179
180   Num_Saved_Checks : Nat := 0;
181   --  Number of saved checks
182
183   --  The following stack keeps track of statement ranges. It is treated
184   --  as a stack. When Conditional_Statements_Begin is called, an entry
185   --  is pushed onto this stack containing the value of Num_Saved_Checks
186   --  at the time of the call. Then when Conditional_Statements_End is
187   --  called, this value is popped off and used to reset Num_Saved_Checks.
188
189   --  Note: again, this is a fixed length stack with a size that should
190   --  always be fine. If the value of the stack pointer goes above the
191   --  limit, then we just forget all saved checks.
192
193   Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
194   Saved_Checks_TOS : Nat := 0;
195
196   -----------------------
197   -- Local Subprograms --
198   -----------------------
199
200   procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id);
201   --  Used to apply arithmetic overflow checks for all cases except operators
202   --  on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
203   --  call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
204   --  signed integer arithmetic operator (but not an if or case expression).
205   --  It is also called for types other than signed integers.
206
207   procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id);
208   --  Used to apply arithmetic overflow checks for the case where the overflow
209   --  checking mode is MINIMIZED or ELIMINATED and we have a signed integer
210   --  arithmetic op (which includes the case of if and case expressions). Note
211   --  that Do_Overflow_Check may or may not be set for node Op. In these modes
212   --  we have work to do even if overflow checking is suppressed.
213
214   procedure Apply_Division_Check
215     (N   : Node_Id;
216      Rlo : Uint;
217      Rhi : Uint;
218      ROK : Boolean);
219   --  N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
220   --  division checks as required if the Do_Division_Check flag is set.
221   --  Rlo and Rhi give the possible range of the right operand, these values
222   --  can be referenced and trusted only if ROK is set True.
223
224   procedure Apply_Float_Conversion_Check
225     (Expr       : Node_Id;
226      Target_Typ : Entity_Id);
227   --  The checks on a conversion from a floating-point type to an integer
228   --  type are delicate. They have to be performed before conversion, they
229   --  have to raise an exception when the operand is a NaN, and rounding must
230   --  be taken into account to determine the safe bounds of the operand.
231
232   procedure Apply_Selected_Length_Checks
233     (Expr       : Node_Id;
234      Target_Typ : Entity_Id;
235      Source_Typ : Entity_Id;
236      Do_Static  : Boolean);
237   --  This is the subprogram that does all the work for Apply_Length_Check
238   --  and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
239   --  described for the above routines. The Do_Static flag indicates that
240   --  only a static check is to be done.
241
242   procedure Compute_Range_For_Arithmetic_Op
243     (Op       : Node_Kind;
244      Lo_Left  : Uint;
245      Hi_Left  : Uint;
246      Lo_Right : Uint;
247      Hi_Right : Uint;
248      OK       : out Boolean;
249      Lo       : out Uint;
250      Hi       : out Uint);
251   --  Given an integer arithmetical operation Op and the range of values of
252   --  its operand(s), try to compute a conservative estimate of the possible
253   --  range of values for the result of the operation. Thus if OK is True on
254   --  return, the result is known to lie in the range Lo .. Hi (inclusive).
255   --  If OK is false, both Lo and Hi are set to No_Uint.
256
257   type Check_Type is new Check_Id range Access_Check .. Division_Check;
258   function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
259   --  This function is used to see if an access or division by zero check is
260   --  needed. The check is to be applied to a single variable appearing in the
261   --  source, and N is the node for the reference. If N is not of this form,
262   --  True is returned with no further processing. If N is of the right form,
263   --  then further processing determines if the given Check is needed.
264   --
265   --  The particular circuit is to see if we have the case of a check that is
266   --  not needed because it appears in the right operand of a short circuited
267   --  conditional where the left operand guards the check. For example:
268   --
269   --    if Var = 0 or else Q / Var > 12 then
270   --       ...
271   --    end if;
272   --
273   --  In this example, the division check is not required. At the same time
274   --  we can issue warnings for suspicious use of non-short-circuited forms,
275   --  such as:
276   --
277   --    if Var = 0 or Q / Var > 12 then
278   --       ...
279   --    end if;
280
281   procedure Find_Check
282     (Expr        : Node_Id;
283      Check_Type  : Character;
284      Target_Type : Entity_Id;
285      Entry_OK    : out Boolean;
286      Check_Num   : out Nat;
287      Ent         : out Entity_Id;
288      Ofs         : out Uint);
289   --  This routine is used by Enable_Range_Check and Enable_Overflow_Check
290   --  to see if a check is of the form for optimization, and if so, to see
291   --  if it has already been performed. Expr is the expression to check,
292   --  and Check_Type is 'R' for a range check, 'O' for an overflow check.
293   --  Target_Type is the target type for a range check, and Empty for an
294   --  overflow check. If the entry is not of the form for optimization,
295   --  then Entry_OK is set to False, and the remaining out parameters
296   --  are undefined. If the entry is OK, then Ent/Ofs are set to the
297   --  entity and offset from the expression. Check_Num is the number of
298   --  a matching saved entry in Saved_Checks, or zero if no such entry
299   --  is located.
300
301   function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
302   --  If a discriminal is used in constraining a prival, Return reference
303   --  to the discriminal of the protected body (which renames the parameter
304   --  of the enclosing protected operation). This clumsy transformation is
305   --  needed because privals are created too late and their actual subtypes
306   --  are not available when analysing the bodies of the protected operations.
307   --  This function is called whenever the bound is an entity and the scope
308   --  indicates a protected operation. If the bound is an in-parameter of
309   --  a protected operation that is not a prival, the function returns the
310   --  bound itself.
311   --  To be cleaned up???
312
313   function Guard_Access
314     (Cond : Node_Id;
315      Loc  : Source_Ptr;
316      Expr : Node_Id) return Node_Id;
317   --  In the access type case, guard the test with a test to ensure
318   --  that the access value is non-null, since the checks do not
319   --  not apply to null access values.
320
321   procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
322   --  Called by Apply_{Length,Range}_Checks to rewrite the tree with the
323   --  Constraint_Error node.
324
325   function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean;
326   --  Returns True if node N is for an arithmetic operation with signed
327   --  integer operands. This includes unary and binary operators, and also
328   --  if and case expression nodes where the dependent expressions are of
329   --  a signed integer type. These are the kinds of nodes for which special
330   --  handling applies in MINIMIZED or ELIMINATED overflow checking mode.
331
332   function Range_Or_Validity_Checks_Suppressed
333     (Expr : Node_Id) return Boolean;
334   --  Returns True if either range or validity checks or both are suppressed
335   --  for the type of the given expression, or, if the expression is the name
336   --  of an entity, if these checks are suppressed for the entity.
337
338   function Selected_Length_Checks
339     (Expr       : Node_Id;
340      Target_Typ : Entity_Id;
341      Source_Typ : Entity_Id;
342      Warn_Node  : Node_Id) return Check_Result;
343   --  Like Apply_Selected_Length_Checks, except it doesn't modify
344   --  anything, just returns a list of nodes as described in the spec of
345   --  this package for the Range_Check function.
346   --  ??? In fact it does construct the test and insert it into the tree,
347   --  and insert actions in various ways (calling Insert_Action directly
348   --  in particular) so we do not call it in GNATprove mode, contrary to
349   --  Selected_Range_Checks.
350
351   function Selected_Range_Checks
352     (Expr       : Node_Id;
353      Target_Typ : Entity_Id;
354      Source_Typ : Entity_Id;
355      Warn_Node  : Node_Id) return Check_Result;
356   --  Like Apply_Range_Check, except it does not modify anything, just
357   --  returns a list of nodes as described in the spec of this package
358   --  for the Range_Check function.
359
360   ------------------------------
361   -- Access_Checks_Suppressed --
362   ------------------------------
363
364   function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
365   begin
366      if Present (E) and then Checks_May_Be_Suppressed (E) then
367         return Is_Check_Suppressed (E, Access_Check);
368      else
369         return Scope_Suppress.Suppress (Access_Check);
370      end if;
371   end Access_Checks_Suppressed;
372
373   -------------------------------------
374   -- Accessibility_Checks_Suppressed --
375   -------------------------------------
376
377   function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
378   begin
379      if Present (E) and then Checks_May_Be_Suppressed (E) then
380         return Is_Check_Suppressed (E, Accessibility_Check);
381      else
382         return Scope_Suppress.Suppress (Accessibility_Check);
383      end if;
384   end Accessibility_Checks_Suppressed;
385
386   -----------------------------
387   -- Activate_Division_Check --
388   -----------------------------
389
390   procedure Activate_Division_Check (N : Node_Id) is
391   begin
392      Set_Do_Division_Check (N, True);
393      Possible_Local_Raise (N, Standard_Constraint_Error);
394   end Activate_Division_Check;
395
396   -----------------------------
397   -- Activate_Overflow_Check --
398   -----------------------------
399
400   procedure Activate_Overflow_Check (N : Node_Id) is
401      Typ : constant Entity_Id := Etype (N);
402
403   begin
404      --  Floating-point case. If Etype is not set (this can happen when we
405      --  activate a check on a node that has not yet been analyzed), then
406      --  we assume we do not have a floating-point type (as per our spec).
407
408      if Present (Typ) and then Is_Floating_Point_Type (Typ) then
409
410         --  Ignore call if we have no automatic overflow checks on the target
411         --  and Check_Float_Overflow mode is not set. These are the cases in
412         --  which we expect to generate infinities and NaN's with no check.
413
414         if not (Machine_Overflows_On_Target or Check_Float_Overflow) then
415            return;
416
417         --  Ignore for unary operations ("+", "-", abs) since these can never
418         --  result in overflow for floating-point cases.
419
420         elsif Nkind (N) in N_Unary_Op then
421            return;
422
423         --  Otherwise we will set the flag
424
425         else
426            null;
427         end if;
428
429      --  Discrete case
430
431      else
432         --  Nothing to do for Rem/Mod/Plus (overflow not possible, the check
433         --  for zero-divide is a divide check, not an overflow check).
434
435         if Nkind (N) in N_Op_Rem | N_Op_Mod | N_Op_Plus then
436            return;
437         end if;
438      end if;
439
440      --  Fall through for cases where we do set the flag
441
442      Set_Do_Overflow_Check (N);
443      Possible_Local_Raise (N, Standard_Constraint_Error);
444   end Activate_Overflow_Check;
445
446   --------------------------
447   -- Activate_Range_Check --
448   --------------------------
449
450   procedure Activate_Range_Check (N : Node_Id) is
451   begin
452      Set_Do_Range_Check (N);
453      Possible_Local_Raise (N, Standard_Constraint_Error);
454   end Activate_Range_Check;
455
456   ---------------------------------
457   -- Alignment_Checks_Suppressed --
458   ---------------------------------
459
460   function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
461   begin
462      if Present (E) and then Checks_May_Be_Suppressed (E) then
463         return Is_Check_Suppressed (E, Alignment_Check);
464      else
465         return Scope_Suppress.Suppress (Alignment_Check);
466      end if;
467   end Alignment_Checks_Suppressed;
468
469   ----------------------------------
470   -- Allocation_Checks_Suppressed --
471   ----------------------------------
472
473   --  Note: at the current time there are no calls to this function, because
474   --  the relevant check is in the run-time, so it is not a check that the
475   --  compiler can suppress anyway, but we still have to recognize the check
476   --  name Allocation_Check since it is part of the standard.
477
478   function Allocation_Checks_Suppressed (E : Entity_Id) return Boolean is
479   begin
480      if Present (E) and then Checks_May_Be_Suppressed (E) then
481         return Is_Check_Suppressed (E, Allocation_Check);
482      else
483         return Scope_Suppress.Suppress (Allocation_Check);
484      end if;
485   end Allocation_Checks_Suppressed;
486
487   -------------------------
488   -- Append_Range_Checks --
489   -------------------------
490
491   procedure Append_Range_Checks
492     (Checks       : Check_Result;
493      Stmts        : List_Id;
494      Suppress_Typ : Entity_Id;
495      Static_Sloc  : Source_Ptr)
496   is
497      Checks_On : constant Boolean :=
498                    not Index_Checks_Suppressed (Suppress_Typ)
499                      or else
500                    not Range_Checks_Suppressed (Suppress_Typ);
501
502   begin
503      --  For now we just return if Checks_On is false, however this should be
504      --  enhanced to check for an always True value in the condition and to
505      --  generate a compilation warning???
506
507      if not Checks_On then
508         return;
509      end if;
510
511      for J in 1 .. 2 loop
512         exit when No (Checks (J));
513
514         if Nkind (Checks (J)) = N_Raise_Constraint_Error
515           and then Present (Condition (Checks (J)))
516         then
517            Append_To (Stmts, Checks (J));
518         else
519            Append_To
520              (Stmts,
521                Make_Raise_Constraint_Error (Static_Sloc,
522                  Reason => CE_Range_Check_Failed));
523         end if;
524      end loop;
525   end Append_Range_Checks;
526
527   ------------------------
528   -- Apply_Access_Check --
529   ------------------------
530
531   procedure Apply_Access_Check (N : Node_Id) is
532      P : constant Node_Id := Prefix (N);
533
534   begin
535      --  We do not need checks if we are not generating code (i.e. the
536      --  expander is not active). This is not just an optimization, there
537      --  are cases (e.g. with pragma Debug) where generating the checks
538      --  can cause real trouble.
539
540      if not Expander_Active then
541         return;
542      end if;
543
544      --  No check if short circuiting makes check unnecessary
545
546      if not Check_Needed (P, Access_Check) then
547         return;
548      end if;
549
550      --  No check if accessing the Offset_To_Top component of a dispatch
551      --  table. They are safe by construction.
552
553      if Tagged_Type_Expansion
554        and then Present (Etype (P))
555        and then RTU_Loaded (Ada_Tags)
556        and then RTE_Available (RE_Offset_To_Top_Ptr)
557        and then Etype (P) = RTE (RE_Offset_To_Top_Ptr)
558      then
559         return;
560      end if;
561
562      --  Otherwise go ahead and install the check
563
564      Install_Null_Excluding_Check (P);
565   end Apply_Access_Check;
566
567   -------------------------------
568   -- Apply_Accessibility_Check --
569   -------------------------------
570
571   procedure Apply_Accessibility_Check
572     (N           : Node_Id;
573      Typ         : Entity_Id;
574      Insert_Node : Node_Id)
575   is
576      Loc : constant Source_Ptr := Sloc (N);
577
578      Check_Cond  : Node_Id;
579      Param_Ent   : Entity_Id := Param_Entity (N);
580      Param_Level : Node_Id;
581      Type_Level  : Node_Id;
582
583   begin
584      if Ada_Version >= Ada_2012
585         and then not Present (Param_Ent)
586         and then Is_Entity_Name (N)
587         and then Ekind (Entity (N)) in E_Constant | E_Variable
588         and then Present (Effective_Extra_Accessibility (Entity (N)))
589      then
590         Param_Ent := Entity (N);
591         while Present (Renamed_Object (Param_Ent)) loop
592            --  Renamed_Object must return an Entity_Name here
593            --  because of preceding "Present (E_E_A (...))" test.
594
595            Param_Ent := Entity (Renamed_Object (Param_Ent));
596         end loop;
597      end if;
598
599      if Inside_A_Generic then
600         return;
601
602      --  Only apply the run-time check if the access parameter has an
603      --  associated extra access level parameter and when accessibility checks
604      --  are enabled.
605
606      elsif Present (Param_Ent)
607         and then Present (Get_Dynamic_Accessibility (Param_Ent))
608         and then not Accessibility_Checks_Suppressed (Param_Ent)
609         and then not Accessibility_Checks_Suppressed (Typ)
610      then
611         --  Obtain the parameter's accessibility level
612
613         Param_Level :=
614           New_Occurrence_Of (Get_Dynamic_Accessibility (Param_Ent), Loc);
615
616         --  Use the dynamic accessibility parameter for the function's result
617         --  when one has been created instead of statically referring to the
618         --  deepest type level so as to appropriatly handle the rules for
619         --  RM 3.10.2 (10.1/3).
620
621         if Ekind (Scope (Param_Ent)) = E_Function
622           and then In_Return_Value (N)
623           and then Ekind (Typ) = E_Anonymous_Access_Type
624         then
625            --  Associate the level of the result type to the extra result
626            --  accessibility parameter belonging to the current function.
627
628            if Present (Extra_Accessibility_Of_Result (Scope (Param_Ent))) then
629               Type_Level :=
630                 New_Occurrence_Of
631                   (Extra_Accessibility_Of_Result (Scope (Param_Ent)), Loc);
632
633            --  In Ada 2005 and earlier modes, a result extra accessibility
634            --  parameter is not generated and no dynamic check is performed.
635
636            else
637               return;
638            end if;
639
640         --  Otherwise get the type's accessibility level normally
641
642         else
643            Type_Level :=
644              Make_Integer_Literal (Loc, Deepest_Type_Access_Level (Typ));
645         end if;
646
647         --  Raise Program_Error if the accessibility level of the access
648         --  parameter is deeper than the level of the target access type.
649
650         Check_Cond :=
651           Make_Op_Gt (Loc,
652             Left_Opnd  => Param_Level,
653             Right_Opnd => Type_Level);
654
655         Insert_Action (Insert_Node,
656           Make_Raise_Program_Error (Loc,
657             Condition => Check_Cond,
658             Reason    => PE_Accessibility_Check_Failed));
659
660         Analyze_And_Resolve (N);
661
662         --  If constant folding has happened on the condition for the
663         --  generated error, then warn about it being unconditional.
664
665         if Nkind (Check_Cond) = N_Identifier
666           and then Entity (Check_Cond) = Standard_True
667         then
668            Error_Msg_Warn := SPARK_Mode /= On;
669            Error_Msg_N ("accessibility check fails<<", N);
670            Error_Msg_N ("\Program_Error [<<", N);
671         end if;
672      end if;
673   end Apply_Accessibility_Check;
674
675   --------------------------------
676   -- Apply_Address_Clause_Check --
677   --------------------------------
678
679   procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
680      pragma Assert (Nkind (N) = N_Freeze_Entity);
681
682      AC  : constant Node_Id    := Address_Clause (E);
683      Loc : constant Source_Ptr := Sloc (AC);
684      Typ : constant Entity_Id  := Etype (E);
685
686      Expr : Node_Id;
687      --  Address expression (not necessarily the same as Aexp, for example
688      --  when Aexp is a reference to a constant, in which case Expr gets
689      --  reset to reference the value expression of the constant).
690
691   begin
692      --  See if alignment check needed. Note that we never need a check if the
693      --  maximum alignment is one, since the check will always succeed.
694
695      --  Note: we do not check for checks suppressed here, since that check
696      --  was done in Sem_Ch13 when the address clause was processed. We are
697      --  only called if checks were not suppressed. The reason for this is
698      --  that we have to delay the call to Apply_Alignment_Check till freeze
699      --  time (so that all types etc are elaborated), but we have to check
700      --  the status of check suppressing at the point of the address clause.
701
702      if No (AC)
703        or else not Check_Address_Alignment (AC)
704        or else Maximum_Alignment = 1
705      then
706         return;
707      end if;
708
709      --  Obtain expression from address clause
710
711      Expr := Address_Value (Expression (AC));
712
713      --  See if we know that Expr has an acceptable value at compile time. If
714      --  it hasn't or we don't know, we defer issuing the warning until the
715      --  end of the compilation to take into account back end annotations.
716
717      if Compile_Time_Known_Value (Expr)
718        and then (Known_Alignment (E) or else Known_Alignment (Typ))
719      then
720         declare
721            AL : Uint := Alignment (Typ);
722
723         begin
724            --  The object alignment might be more restrictive than the type
725            --  alignment.
726
727            if Known_Alignment (E) then
728               AL := Alignment (E);
729            end if;
730
731            if Expr_Value (Expr) mod AL = 0 then
732               return;
733            end if;
734         end;
735
736      --  If the expression has the form X'Address, then we can find out if the
737      --  object X has an alignment that is compatible with the object E. If it
738      --  hasn't or we don't know, we defer issuing the warning until the end
739      --  of the compilation to take into account back end annotations.
740
741      elsif Nkind (Expr) = N_Attribute_Reference
742        and then Attribute_Name (Expr) = Name_Address
743        and then
744          Has_Compatible_Alignment (E, Prefix (Expr), False) = Known_Compatible
745      then
746         return;
747      end if;
748
749      --  Here we do not know if the value is acceptable. Strictly we don't
750      --  have to do anything, since if the alignment is bad, we have an
751      --  erroneous program. However we are allowed to check for erroneous
752      --  conditions and we decide to do this by default if the check is not
753      --  suppressed.
754
755      --  However, don't do the check if elaboration code is unwanted
756
757      if Restriction_Active (No_Elaboration_Code) then
758         return;
759
760      --  Generate a check to raise PE if alignment may be inappropriate
761
762      else
763         --  If the original expression is a nonstatic constant, use the name
764         --  of the constant itself rather than duplicating its initialization
765         --  expression, which was extracted above.
766
767         --  Note: Expr is empty if the address-clause is applied to in-mode
768         --  actuals (allowed by 13.1(22)).
769
770         if not Present (Expr)
771           or else
772             (Is_Entity_Name (Expression (AC))
773               and then Ekind (Entity (Expression (AC))) = E_Constant
774               and then Nkind (Parent (Entity (Expression (AC)))) =
775                          N_Object_Declaration)
776         then
777            Expr := New_Copy_Tree (Expression (AC));
778         else
779            Remove_Side_Effects (Expr);
780         end if;
781
782         if No (Actions (N)) then
783            Set_Actions (N, New_List);
784         end if;
785
786         Prepend_To (Actions (N),
787           Make_Raise_Program_Error (Loc,
788             Condition =>
789               Make_Op_Ne (Loc,
790                 Left_Opnd  =>
791                   Make_Op_Mod (Loc,
792                     Left_Opnd  =>
793                       Unchecked_Convert_To
794                         (RTE (RE_Integer_Address), Expr),
795                     Right_Opnd =>
796                       Make_Attribute_Reference (Loc,
797                         Prefix         => New_Occurrence_Of (E, Loc),
798                         Attribute_Name => Name_Alignment)),
799                 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
800             Reason    => PE_Misaligned_Address_Value));
801
802         Warning_Msg := No_Error_Msg;
803         Analyze (First (Actions (N)), Suppress => All_Checks);
804
805         --  If the above raise action generated a warning message (for example
806         --  from Warn_On_Non_Local_Exception mode with the active restriction
807         --  No_Exception_Propagation).
808
809         if Warning_Msg /= No_Error_Msg then
810
811            --  If the expression has a known at compile time value, then
812            --  once we know the alignment of the type, we can check if the
813            --  exception will be raised or not, and if not, we don't need
814            --  the warning so we will kill the warning later on.
815
816            if Compile_Time_Known_Value (Expr) then
817               Alignment_Warnings.Append
818                 ((E => E,
819                   A => Expr_Value (Expr),
820                   P => Empty,
821                   W => Warning_Msg));
822
823            --  Likewise if the expression is of the form X'Address
824
825            elsif Nkind (Expr) = N_Attribute_Reference
826              and then Attribute_Name (Expr) = Name_Address
827            then
828               Alignment_Warnings.Append
829                 ((E => E,
830                   A => No_Uint,
831                   P => Prefix (Expr),
832                   W => Warning_Msg));
833
834            --  Add explanation of the warning generated by the check
835
836            else
837               Error_Msg_N
838                 ("\address value may be incompatible with alignment of "
839                  & "object?X?", AC);
840            end if;
841         end if;
842
843         return;
844      end if;
845
846   exception
847
848      --  If we have some missing run time component in configurable run time
849      --  mode then just skip the check (it is not required in any case).
850
851      when RE_Not_Available =>
852         return;
853   end Apply_Address_Clause_Check;
854
855   -------------------------------------
856   -- Apply_Arithmetic_Overflow_Check --
857   -------------------------------------
858
859   procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
860   begin
861      --  Use old routine in almost all cases (the only case we are treating
862      --  specially is the case of a signed integer arithmetic op with the
863      --  overflow checking mode set to MINIMIZED or ELIMINATED).
864
865      if Overflow_Check_Mode = Strict
866        or else not Is_Signed_Integer_Arithmetic_Op (N)
867      then
868         Apply_Arithmetic_Overflow_Strict (N);
869
870      --  Otherwise use the new routine for the case of a signed integer
871      --  arithmetic op, with Do_Overflow_Check set to True, and the checking
872      --  mode is MINIMIZED or ELIMINATED.
873
874      else
875         Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
876      end if;
877   end Apply_Arithmetic_Overflow_Check;
878
879   --------------------------------------
880   -- Apply_Arithmetic_Overflow_Strict --
881   --------------------------------------
882
883   --  This routine is called only if the type is an integer type and an
884   --  arithmetic overflow check may be needed for op (add, subtract, or
885   --  multiply). This check is performed if Backend_Overflow_Checks_On_Target
886   --  is not enabled and Do_Overflow_Check is set. In this case we expand the
887   --  operation into a more complex sequence of tests that ensures that
888   --  overflow is properly caught.
889
890   --  This is used in CHECKED modes. It is identical to the code for this
891   --  cases before the big overflow earthquake, thus ensuring that in this
892   --  modes we have compatible behavior (and reliability) to what was there
893   --  before. It is also called for types other than signed integers, and if
894   --  the Do_Overflow_Check flag is off.
895
896   --  Note: we also call this routine if we decide in the MINIMIZED case
897   --  to give up and just generate an overflow check without any fuss.
898
899   procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id) is
900      Loc  : constant Source_Ptr := Sloc (N);
901      Typ  : constant Entity_Id  := Etype (N);
902      Rtyp : constant Entity_Id  := Root_Type (Typ);
903
904   begin
905      --  Nothing to do if Do_Overflow_Check not set or overflow checks
906      --  suppressed.
907
908      if not Do_Overflow_Check (N) then
909         return;
910      end if;
911
912      --  An interesting special case. If the arithmetic operation appears as
913      --  the operand of a type conversion:
914
915      --    type1 (x op y)
916
917      --  and all the following conditions apply:
918
919      --    arithmetic operation is for a signed integer type
920      --    target type type1 is a static integer subtype
921      --    range of x and y are both included in the range of type1
922      --    range of x op y is included in the range of type1
923      --    size of type1 is at least twice the result size of op
924
925      --  then we don't do an overflow check in any case. Instead, we transform
926      --  the operation so that we end up with:
927
928      --    type1 (type1 (x) op type1 (y))
929
930      --  This avoids intermediate overflow before the conversion. It is
931      --  explicitly permitted by RM 3.5.4(24):
932
933      --    For the execution of a predefined operation of a signed integer
934      --    type, the implementation need not raise Constraint_Error if the
935      --    result is outside the base range of the type, so long as the
936      --    correct result is produced.
937
938      --  It's hard to imagine that any programmer counts on the exception
939      --  being raised in this case, and in any case it's wrong coding to
940      --  have this expectation, given the RM permission. Furthermore, other
941      --  Ada compilers do allow such out of range results.
942
943      --  Note that we do this transformation even if overflow checking is
944      --  off, since this is precisely about giving the "right" result and
945      --  avoiding the need for an overflow check.
946
947      --  Note: this circuit is partially redundant with respect to the similar
948      --  processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
949      --  with cases that do not come through here. We still need the following
950      --  processing even with the Exp_Ch4 code in place, since we want to be
951      --  sure not to generate the arithmetic overflow check in these cases
952      --  (Exp_Ch4 would have a hard time removing them once generated).
953
954      if Is_Signed_Integer_Type (Typ)
955        and then Nkind (Parent (N)) = N_Type_Conversion
956      then
957         Conversion_Optimization : declare
958            Target_Type : constant Entity_Id :=
959              Base_Type (Entity (Subtype_Mark (Parent (N))));
960
961            Llo, Lhi : Uint;
962            Rlo, Rhi : Uint;
963            LOK, ROK : Boolean;
964
965            Vlo : Uint;
966            Vhi : Uint;
967            VOK : Boolean;
968
969            Tlo : Uint;
970            Thi : Uint;
971
972         begin
973            if Is_Integer_Type (Target_Type)
974              and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
975            then
976               Tlo := Expr_Value (Type_Low_Bound  (Target_Type));
977               Thi := Expr_Value (Type_High_Bound (Target_Type));
978
979               Determine_Range
980                 (Left_Opnd  (N), LOK, Llo, Lhi, Assume_Valid => True);
981               Determine_Range
982                 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
983
984               if (LOK and ROK)
985                 and then Tlo <= Llo and then Lhi <= Thi
986                 and then Tlo <= Rlo and then Rhi <= Thi
987               then
988                  Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
989
990                  if VOK and then Tlo <= Vlo and then Vhi <= Thi then
991                     Rewrite (Left_Opnd (N),
992                       Make_Type_Conversion (Loc,
993                         Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
994                         Expression   => Relocate_Node (Left_Opnd (N))));
995
996                     Rewrite (Right_Opnd (N),
997                       Make_Type_Conversion (Loc,
998                        Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
999                        Expression   => Relocate_Node (Right_Opnd (N))));
1000
1001                     --  Rewrite the conversion operand so that the original
1002                     --  node is retained, in order to avoid the warning for
1003                     --  redundant conversions in Resolve_Type_Conversion.
1004
1005                     Rewrite (N, Relocate_Node (N));
1006
1007                     Set_Etype (N, Target_Type);
1008
1009                     Analyze_And_Resolve (Left_Opnd  (N), Target_Type);
1010                     Analyze_And_Resolve (Right_Opnd (N), Target_Type);
1011
1012                     --  Given that the target type is twice the size of the
1013                     --  source type, overflow is now impossible, so we can
1014                     --  safely kill the overflow check and return.
1015
1016                     Set_Do_Overflow_Check (N, False);
1017                     return;
1018                  end if;
1019               end if;
1020            end if;
1021         end Conversion_Optimization;
1022      end if;
1023
1024      --  Now see if an overflow check is required
1025
1026      declare
1027         Dsiz  : constant Uint := 2 * Esize (Rtyp);
1028         Opnod : Node_Id;
1029         Ctyp  : Entity_Id;
1030         Opnd  : Node_Id;
1031         Cent  : RE_Id;
1032
1033      begin
1034         --  Skip check if back end does overflow checks, or the overflow flag
1035         --  is not set anyway, or we are not doing code expansion, or the
1036         --  parent node is a type conversion whose operand is an arithmetic
1037         --  operation on signed integers on which the expander can promote
1038         --  later the operands to type Integer (see Expand_N_Type_Conversion).
1039
1040         if Backend_Overflow_Checks_On_Target
1041           or else not Do_Overflow_Check (N)
1042           or else not Expander_Active
1043           or else (Present (Parent (N))
1044                     and then Nkind (Parent (N)) = N_Type_Conversion
1045                     and then Integer_Promotion_Possible (Parent (N)))
1046         then
1047            return;
1048         end if;
1049
1050         --  Otherwise, generate the full general code for front end overflow
1051         --  detection, which works by doing arithmetic in a larger type:
1052
1053         --    x op y
1054
1055         --  is expanded into
1056
1057         --    Typ (Checktyp (x) op Checktyp (y));
1058
1059         --  where Typ is the type of the original expression, and Checktyp is
1060         --  an integer type of sufficient length to hold the largest possible
1061         --  result.
1062
1063         --  If the size of the check type exceeds the maximum integer size,
1064         --  we use a different approach, expanding to:
1065
1066         --    typ (xxx_With_Ovflo_Check (Integer_NN (x), Integer_NN (y)))
1067
1068         --  where xxx is Add, Multiply or Subtract as appropriate
1069
1070         --  Find check type if one exists
1071
1072         if Dsiz <= System_Max_Integer_Size then
1073            Ctyp := Integer_Type_For (Dsiz, Uns => False);
1074
1075         --  No check type exists, use runtime call
1076
1077         else
1078            if System_Max_Integer_Size = 64 then
1079               Ctyp := RTE (RE_Integer_64);
1080            else
1081               Ctyp := RTE (RE_Integer_128);
1082            end if;
1083
1084            if Nkind (N) = N_Op_Add then
1085               if System_Max_Integer_Size = 64 then
1086                  Cent := RE_Add_With_Ovflo_Check64;
1087               else
1088                  Cent := RE_Add_With_Ovflo_Check128;
1089               end if;
1090
1091            elsif Nkind (N) = N_Op_Subtract then
1092               if System_Max_Integer_Size = 64 then
1093                  Cent := RE_Subtract_With_Ovflo_Check64;
1094               else
1095                  Cent := RE_Subtract_With_Ovflo_Check128;
1096               end if;
1097
1098            else pragma Assert (Nkind (N) = N_Op_Multiply);
1099               if System_Max_Integer_Size = 64 then
1100                  Cent := RE_Multiply_With_Ovflo_Check64;
1101               else
1102                  Cent := RE_Multiply_With_Ovflo_Check128;
1103               end if;
1104            end if;
1105
1106            Rewrite (N,
1107              OK_Convert_To (Typ,
1108                Make_Function_Call (Loc,
1109                  Name => New_Occurrence_Of (RTE (Cent), Loc),
1110                  Parameter_Associations => New_List (
1111                    OK_Convert_To (Ctyp, Left_Opnd  (N)),
1112                    OK_Convert_To (Ctyp, Right_Opnd (N))))));
1113
1114            Analyze_And_Resolve (N, Typ);
1115            return;
1116         end if;
1117
1118         --  If we fall through, we have the case where we do the arithmetic
1119         --  in the next higher type and get the check by conversion. In these
1120         --  cases Ctyp is set to the type to be used as the check type.
1121
1122         Opnod := Relocate_Node (N);
1123
1124         Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
1125
1126         Analyze (Opnd);
1127         Set_Etype (Opnd, Ctyp);
1128         Set_Analyzed (Opnd, True);
1129         Set_Left_Opnd (Opnod, Opnd);
1130
1131         Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
1132
1133         Analyze (Opnd);
1134         Set_Etype (Opnd, Ctyp);
1135         Set_Analyzed (Opnd, True);
1136         Set_Right_Opnd (Opnod, Opnd);
1137
1138         --  The type of the operation changes to the base type of the check
1139         --  type, and we reset the overflow check indication, since clearly no
1140         --  overflow is possible now that we are using a double length type.
1141         --  We also set the Analyzed flag to avoid a recursive attempt to
1142         --  expand the node.
1143
1144         Set_Etype             (Opnod, Base_Type (Ctyp));
1145         Set_Do_Overflow_Check (Opnod, False);
1146         Set_Analyzed          (Opnod, True);
1147
1148         --  Now build the outer conversion
1149
1150         Opnd := OK_Convert_To (Typ, Opnod);
1151         Analyze (Opnd);
1152         Set_Etype (Opnd, Typ);
1153
1154         --  In the discrete type case, we directly generate the range check
1155         --  for the outer operand. This range check will implement the
1156         --  required overflow check.
1157
1158         if Is_Discrete_Type (Typ) then
1159            Rewrite (N, Opnd);
1160            Generate_Range_Check
1161              (Expression (N), Typ, CE_Overflow_Check_Failed);
1162
1163         --  For other types, we enable overflow checking on the conversion,
1164         --  after setting the node as analyzed to prevent recursive attempts
1165         --  to expand the conversion node.
1166
1167         else
1168            Set_Analyzed (Opnd, True);
1169            Enable_Overflow_Check (Opnd);
1170            Rewrite (N, Opnd);
1171         end if;
1172
1173      exception
1174         when RE_Not_Available =>
1175            return;
1176      end;
1177   end Apply_Arithmetic_Overflow_Strict;
1178
1179   ----------------------------------------------------
1180   -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
1181   ----------------------------------------------------
1182
1183   procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id) is
1184      pragma Assert (Is_Signed_Integer_Arithmetic_Op (Op));
1185
1186      Loc : constant Source_Ptr := Sloc (Op);
1187      P   : constant Node_Id    := Parent (Op);
1188
1189      LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
1190      --  Operands and results are of this type when we convert
1191
1192      Result_Type : constant Entity_Id := Etype (Op);
1193      --  Original result type
1194
1195      Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1196      pragma Assert (Check_Mode in Minimized_Or_Eliminated);
1197
1198      Lo, Hi : Uint;
1199      --  Ranges of values for result
1200
1201   begin
1202      --  Nothing to do if our parent is one of the following:
1203
1204      --    Another signed integer arithmetic op
1205      --    A membership operation
1206      --    A comparison operation
1207
1208      --  In all these cases, we will process at the higher level (and then
1209      --  this node will be processed during the downwards recursion that
1210      --  is part of the processing in Minimize_Eliminate_Overflows).
1211
1212      if Is_Signed_Integer_Arithmetic_Op (P)
1213        or else Nkind (P) in N_Membership_Test
1214        or else Nkind (P) in N_Op_Compare
1215
1216        --  This is also true for an alternative in a case expression
1217
1218        or else Nkind (P) = N_Case_Expression_Alternative
1219
1220        --  This is also true for a range operand in a membership test
1221
1222        or else (Nkind (P) = N_Range
1223                  and then Nkind (Parent (P)) in N_Membership_Test)
1224      then
1225         --  If_Expressions and Case_Expressions are treated as arithmetic
1226         --  ops, but if they appear in an assignment or similar contexts
1227         --  there is no overflow check that starts from that parent node,
1228         --  so apply check now.
1229
1230         if Nkind (P) in N_If_Expression | N_Case_Expression
1231           and then not Is_Signed_Integer_Arithmetic_Op (Parent (P))
1232         then
1233            null;
1234         else
1235            return;
1236         end if;
1237      end if;
1238
1239      --  Otherwise, we have a top level arithmetic operation node, and this
1240      --  is where we commence the special processing for MINIMIZED/ELIMINATED
1241      --  modes. This is the case where we tell the machinery not to move into
1242      --  Bignum mode at this top level (of course the top level operation
1243      --  will still be in Bignum mode if either of its operands are of type
1244      --  Bignum).
1245
1246      Minimize_Eliminate_Overflows (Op, Lo, Hi, Top_Level => True);
1247
1248      --  That call may but does not necessarily change the result type of Op.
1249      --  It is the job of this routine to undo such changes, so that at the
1250      --  top level, we have the proper type. This "undoing" is a point at
1251      --  which a final overflow check may be applied.
1252
1253      --  If the result type was not fiddled we are all set. We go to base
1254      --  types here because things may have been rewritten to generate the
1255      --  base type of the operand types.
1256
1257      if Base_Type (Etype (Op)) = Base_Type (Result_Type) then
1258         return;
1259
1260      --  Bignum case
1261
1262      elsif Is_RTE (Etype (Op), RE_Bignum) then
1263
1264         --  We need a sequence that looks like:
1265
1266         --    Rnn : Result_Type;
1267
1268         --    declare
1269         --       M : Mark_Id := SS_Mark;
1270         --    begin
1271         --       Rnn := Long_Long_Integer'Base (From_Bignum (Op));
1272         --       SS_Release (M);
1273         --    end;
1274
1275         --  This block is inserted (using Insert_Actions), and then the node
1276         --  is replaced with a reference to Rnn.
1277
1278         --  If our parent is a conversion node then there is no point in
1279         --  generating a conversion to Result_Type. Instead, we let the parent
1280         --  handle this. Note that this special case is not just about
1281         --  optimization. Consider
1282
1283         --      A,B,C : Integer;
1284         --      ...
1285         --      X := Long_Long_Integer'Base (A * (B ** C));
1286
1287         --  Now the product may fit in Long_Long_Integer but not in Integer.
1288         --  In MINIMIZED/ELIMINATED mode, we don't want to introduce an
1289         --  overflow exception for this intermediate value.
1290
1291         declare
1292            Blk : constant Node_Id  := Make_Bignum_Block (Loc);
1293            Rnn : constant Entity_Id := Make_Temporary (Loc, 'R', Op);
1294            RHS : Node_Id;
1295
1296            Rtype : Entity_Id;
1297
1298         begin
1299            RHS := Convert_From_Bignum (Op);
1300
1301            if Nkind (P) /= N_Type_Conversion then
1302               Convert_To_And_Rewrite (Result_Type, RHS);
1303               Rtype := Result_Type;
1304
1305               --  Interesting question, do we need a check on that conversion
1306               --  operation. Answer, not if we know the result is in range.
1307               --  At the moment we are not taking advantage of this. To be
1308               --  looked at later ???
1309
1310            else
1311               Rtype := LLIB;
1312            end if;
1313
1314            Insert_Before
1315              (First (Statements (Handled_Statement_Sequence (Blk))),
1316               Make_Assignment_Statement (Loc,
1317                 Name       => New_Occurrence_Of (Rnn, Loc),
1318                 Expression => RHS));
1319
1320            Insert_Actions (Op, New_List (
1321              Make_Object_Declaration (Loc,
1322                Defining_Identifier => Rnn,
1323                Object_Definition   => New_Occurrence_Of (Rtype, Loc)),
1324              Blk));
1325
1326            Rewrite (Op, New_Occurrence_Of (Rnn, Loc));
1327            Analyze_And_Resolve (Op);
1328         end;
1329
1330      --  Here we know the result is Long_Long_Integer'Base, or that it has
1331      --  been rewritten because the parent operation is a conversion. See
1332      --  Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.
1333
1334      else
1335         pragma Assert
1336           (Etype (Op) = LLIB or else Nkind (Parent (Op)) = N_Type_Conversion);
1337
1338         --  All we need to do here is to convert the result to the proper
1339         --  result type. As explained above for the Bignum case, we can
1340         --  omit this if our parent is a type conversion.
1341
1342         if Nkind (P) /= N_Type_Conversion then
1343            Convert_To_And_Rewrite (Result_Type, Op);
1344         end if;
1345
1346         Analyze_And_Resolve (Op);
1347      end if;
1348   end Apply_Arithmetic_Overflow_Minimized_Eliminated;
1349
1350   ----------------------------
1351   -- Apply_Constraint_Check --
1352   ----------------------------
1353
1354   procedure Apply_Constraint_Check
1355     (N          : Node_Id;
1356      Typ        : Entity_Id;
1357      No_Sliding : Boolean := False)
1358   is
1359      Desig_Typ : Entity_Id;
1360
1361   begin
1362      --  No checks inside a generic (check the instantiations)
1363
1364      if Inside_A_Generic then
1365         return;
1366      end if;
1367
1368      --  Apply required constraint checks
1369
1370      if Is_Scalar_Type (Typ) then
1371         Apply_Scalar_Range_Check (N, Typ);
1372
1373      elsif Is_Array_Type (Typ) then
1374
1375         --  A useful optimization: an aggregate with only an others clause
1376         --  always has the right bounds.
1377
1378         if Nkind (N) = N_Aggregate
1379           and then No (Expressions (N))
1380           and then Nkind
1381            (First (Choices (First (Component_Associations (N)))))
1382              = N_Others_Choice
1383         then
1384            return;
1385         end if;
1386
1387         if Is_Constrained (Typ) then
1388            Apply_Length_Check (N, Typ);
1389
1390            if No_Sliding then
1391               Apply_Range_Check (N, Typ);
1392            end if;
1393         else
1394            Apply_Range_Check (N, Typ);
1395         end if;
1396
1397      elsif (Is_Record_Type (Typ) or else Is_Private_Type (Typ))
1398        and then Has_Discriminants (Base_Type (Typ))
1399        and then Is_Constrained (Typ)
1400      then
1401         Apply_Discriminant_Check (N, Typ);
1402
1403      elsif Is_Access_Type (Typ) then
1404
1405         Desig_Typ := Designated_Type (Typ);
1406
1407         --  No checks necessary if expression statically null
1408
1409         if Known_Null (N) then
1410            if Can_Never_Be_Null (Typ) then
1411               Install_Null_Excluding_Check (N);
1412            end if;
1413
1414         --  No sliding possible on access to arrays
1415
1416         elsif Is_Array_Type (Desig_Typ) then
1417            if Is_Constrained (Desig_Typ) then
1418               Apply_Length_Check (N, Typ);
1419            end if;
1420
1421            Apply_Range_Check (N, Typ);
1422
1423         --  Do not install a discriminant check for a constrained subtype
1424         --  created for an unconstrained nominal type because the subtype
1425         --  has the correct constraints by construction.
1426
1427         elsif Has_Discriminants (Base_Type (Desig_Typ))
1428           and then Is_Constrained (Desig_Typ)
1429           and then not Is_Constr_Subt_For_U_Nominal (Desig_Typ)
1430         then
1431            Apply_Discriminant_Check (N, Typ);
1432         end if;
1433
1434         --  Apply the 2005 Null_Excluding check. Note that we do not apply
1435         --  this check if the constraint node is illegal, as shown by having
1436         --  an error posted. This additional guard prevents cascaded errors
1437         --  and compiler aborts on illegal programs involving Ada 2005 checks.
1438
1439         if Can_Never_Be_Null (Typ)
1440           and then not Can_Never_Be_Null (Etype (N))
1441           and then not Error_Posted (N)
1442         then
1443            Install_Null_Excluding_Check (N);
1444         end if;
1445      end if;
1446   end Apply_Constraint_Check;
1447
1448   ------------------------------
1449   -- Apply_Discriminant_Check --
1450   ------------------------------
1451
1452   procedure Apply_Discriminant_Check
1453     (N   : Node_Id;
1454      Typ : Entity_Id;
1455      Lhs : Node_Id := Empty)
1456   is
1457      Loc       : constant Source_Ptr := Sloc (N);
1458      Do_Access : constant Boolean    := Is_Access_Type (Typ);
1459      S_Typ     : Entity_Id  := Etype (N);
1460      Cond      : Node_Id;
1461      T_Typ     : Entity_Id;
1462
1463      function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean;
1464      --  A heap object with an indefinite subtype is constrained by its
1465      --  initial value, and assigning to it requires a constraint_check.
1466      --  The target may be an explicit dereference, or a renaming of one.
1467
1468      function Is_Aliased_Unconstrained_Component return Boolean;
1469      --  It is possible for an aliased component to have a nominal
1470      --  unconstrained subtype (through instantiation). If this is a
1471      --  discriminated component assigned in the expansion of an aggregate
1472      --  in an initialization, the check must be suppressed. This unusual
1473      --  situation requires a predicate of its own.
1474
1475      ----------------------------------
1476      -- Denotes_Explicit_Dereference --
1477      ----------------------------------
1478
1479      function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean is
1480      begin
1481         return
1482           Nkind (Obj) = N_Explicit_Dereference
1483             or else
1484               (Is_Entity_Name (Obj)
1485                 and then Present (Renamed_Object (Entity (Obj)))
1486                 and then Nkind (Renamed_Object (Entity (Obj))) =
1487                                              N_Explicit_Dereference);
1488      end Denotes_Explicit_Dereference;
1489
1490      ----------------------------------------
1491      -- Is_Aliased_Unconstrained_Component --
1492      ----------------------------------------
1493
1494      function Is_Aliased_Unconstrained_Component return Boolean is
1495         Comp : Entity_Id;
1496         Pref : Node_Id;
1497
1498      begin
1499         if Nkind (Lhs) /= N_Selected_Component then
1500            return False;
1501         else
1502            Comp := Entity (Selector_Name (Lhs));
1503            Pref := Prefix (Lhs);
1504         end if;
1505
1506         if Ekind (Comp) /= E_Component
1507           or else not Is_Aliased (Comp)
1508         then
1509            return False;
1510         end if;
1511
1512         return not Comes_From_Source (Pref)
1513           and then In_Instance
1514           and then not Is_Constrained (Etype (Comp));
1515      end Is_Aliased_Unconstrained_Component;
1516
1517   --  Start of processing for Apply_Discriminant_Check
1518
1519   begin
1520      if Do_Access then
1521         T_Typ := Designated_Type (Typ);
1522      else
1523         T_Typ := Typ;
1524      end if;
1525
1526      --  If the expression is a function call that returns a limited object
1527      --  it cannot be copied. It is not clear how to perform the proper
1528      --  discriminant check in this case because the discriminant value must
1529      --  be retrieved from the constructed object itself.
1530
1531      if Nkind (N) = N_Function_Call
1532        and then Is_Limited_Type (Typ)
1533        and then Is_Entity_Name (Name (N))
1534        and then Returns_By_Ref (Entity (Name (N)))
1535      then
1536         return;
1537      end if;
1538
1539      --  Only apply checks when generating code and discriminant checks are
1540      --  not suppressed. In GNATprove mode, we do not apply the checks, but we
1541      --  still analyze the expression to possibly issue errors on SPARK code
1542      --  when a run-time error can be detected at compile time.
1543
1544      if not GNATprove_Mode then
1545         if not Expander_Active
1546           or else Discriminant_Checks_Suppressed (T_Typ)
1547         then
1548            return;
1549         end if;
1550      end if;
1551
1552      --  No discriminant checks necessary for an access when expression is
1553      --  statically Null. This is not only an optimization, it is fundamental
1554      --  because otherwise discriminant checks may be generated in init procs
1555      --  for types containing an access to a not-yet-frozen record, causing a
1556      --  deadly forward reference.
1557
1558      --  Also, if the expression is of an access type whose designated type is
1559      --  incomplete, then the access value must be null and we suppress the
1560      --  check.
1561
1562      if Known_Null (N) then
1563         return;
1564
1565      elsif Is_Access_Type (S_Typ) then
1566         S_Typ := Designated_Type (S_Typ);
1567
1568         if Ekind (S_Typ) = E_Incomplete_Type then
1569            return;
1570         end if;
1571      end if;
1572
1573      --  If an assignment target is present, then we need to generate the
1574      --  actual subtype if the target is a parameter or aliased object with
1575      --  an unconstrained nominal subtype.
1576
1577      --  Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1578      --  subtype to the parameter and dereference cases, since other aliased
1579      --  objects are unconstrained (unless the nominal subtype is explicitly
1580      --  constrained).
1581
1582      if Present (Lhs)
1583        and then (Present (Param_Entity (Lhs))
1584                   or else (Ada_Version < Ada_2005
1585                             and then not Is_Constrained (T_Typ)
1586                             and then Is_Aliased_View (Lhs)
1587                             and then not Is_Aliased_Unconstrained_Component)
1588                   or else (Ada_Version >= Ada_2005
1589                             and then not Is_Constrained (T_Typ)
1590                             and then Denotes_Explicit_Dereference (Lhs)
1591                             and then Nkind (Original_Node (Lhs)) /=
1592                                        N_Function_Call))
1593      then
1594         T_Typ := Get_Actual_Subtype (Lhs);
1595      end if;
1596
1597      --  Nothing to do if the type is unconstrained (this is the case where
1598      --  the actual subtype in the RM sense of N is unconstrained and no check
1599      --  is required).
1600
1601      if not Is_Constrained (T_Typ) then
1602         return;
1603
1604      --  Ada 2005: nothing to do if the type is one for which there is a
1605      --  partial view that is constrained.
1606
1607      elsif Ada_Version >= Ada_2005
1608        and then Object_Type_Has_Constrained_Partial_View
1609                   (Typ  => Base_Type (T_Typ),
1610                    Scop => Current_Scope)
1611      then
1612         return;
1613      end if;
1614
1615      --  Nothing to do if the type is an Unchecked_Union
1616
1617      if Is_Unchecked_Union (Base_Type (T_Typ)) then
1618         return;
1619      end if;
1620
1621      --  Suppress checks if the subtypes are the same. The check must be
1622      --  preserved in an assignment to a formal, because the constraint is
1623      --  given by the actual.
1624
1625      if Nkind (Original_Node (N)) /= N_Allocator
1626        and then (No (Lhs)
1627                   or else not Is_Entity_Name (Lhs)
1628                   or else No (Param_Entity (Lhs)))
1629      then
1630         if (Etype (N) = Typ
1631              or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1632           and then not Is_Aliased_View (Lhs)
1633         then
1634            return;
1635         end if;
1636
1637      --  We can also eliminate checks on allocators with a subtype mark that
1638      --  coincides with the context type. The context type may be a subtype
1639      --  without a constraint (common case, a generic actual).
1640
1641      elsif Nkind (Original_Node (N)) = N_Allocator
1642        and then Is_Entity_Name (Expression (Original_Node (N)))
1643      then
1644         declare
1645            Alloc_Typ : constant Entity_Id :=
1646              Entity (Expression (Original_Node (N)));
1647
1648         begin
1649            if Alloc_Typ = T_Typ
1650              or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1651                        and then Is_Entity_Name (
1652                          Subtype_Indication (Parent (T_Typ)))
1653                        and then Alloc_Typ = Base_Type (T_Typ))
1654
1655            then
1656               return;
1657            end if;
1658         end;
1659      end if;
1660
1661      --  See if we have a case where the types are both constrained, and all
1662      --  the constraints are constants. In this case, we can do the check
1663      --  successfully at compile time.
1664
1665      --  We skip this check for the case where the node is rewritten as
1666      --  an allocator, because it already carries the context subtype,
1667      --  and extracting the discriminants from the aggregate is messy.
1668
1669      if Is_Constrained (S_Typ)
1670        and then Nkind (Original_Node (N)) /= N_Allocator
1671      then
1672         declare
1673            DconT : Elmt_Id;
1674            Discr : Entity_Id;
1675            DconS : Elmt_Id;
1676            ItemS : Node_Id;
1677            ItemT : Node_Id;
1678
1679         begin
1680            --  S_Typ may not have discriminants in the case where it is a
1681            --  private type completed by a default discriminated type. In that
1682            --  case, we need to get the constraints from the underlying type.
1683            --  If the underlying type is unconstrained (i.e. has no default
1684            --  discriminants) no check is needed.
1685
1686            if Has_Discriminants (S_Typ) then
1687               Discr := First_Discriminant (S_Typ);
1688               DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1689
1690            else
1691               Discr := First_Discriminant (Underlying_Type (S_Typ));
1692               DconS :=
1693                 First_Elmt
1694                   (Discriminant_Constraint (Underlying_Type (S_Typ)));
1695
1696               if No (DconS) then
1697                  return;
1698               end if;
1699
1700               --  A further optimization: if T_Typ is derived from S_Typ
1701               --  without imposing a constraint, no check is needed.
1702
1703               if Nkind (Original_Node (Parent (T_Typ))) =
1704                 N_Full_Type_Declaration
1705               then
1706                  declare
1707                     Type_Def : constant Node_Id :=
1708                       Type_Definition (Original_Node (Parent (T_Typ)));
1709                  begin
1710                     if Nkind (Type_Def) = N_Derived_Type_Definition
1711                       and then Is_Entity_Name (Subtype_Indication (Type_Def))
1712                       and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1713                     then
1714                        return;
1715                     end if;
1716                  end;
1717               end if;
1718            end if;
1719
1720            --  Constraint may appear in full view of type
1721
1722            if Ekind (T_Typ) = E_Private_Subtype
1723              and then Present (Full_View (T_Typ))
1724            then
1725               DconT :=
1726                 First_Elmt (Discriminant_Constraint (Full_View (T_Typ)));
1727            else
1728               DconT :=
1729                 First_Elmt (Discriminant_Constraint (T_Typ));
1730            end if;
1731
1732            while Present (Discr) loop
1733               ItemS := Node (DconS);
1734               ItemT := Node (DconT);
1735
1736               --  For a discriminated component type constrained by the
1737               --  current instance of an enclosing type, there is no
1738               --  applicable discriminant check.
1739
1740               if Nkind (ItemT) = N_Attribute_Reference
1741                 and then Is_Access_Type (Etype (ItemT))
1742                 and then Is_Entity_Name (Prefix (ItemT))
1743                 and then Is_Type (Entity (Prefix (ItemT)))
1744               then
1745                  return;
1746               end if;
1747
1748               --  If the expressions for the discriminants are identical
1749               --  and it is side-effect free (for now just an entity),
1750               --  this may be a shared constraint, e.g. from a subtype
1751               --  without a constraint introduced as a generic actual.
1752               --  Examine other discriminants if any.
1753
1754               if ItemS = ItemT
1755                 and then Is_Entity_Name (ItemS)
1756               then
1757                  null;
1758
1759               elsif not Is_OK_Static_Expression (ItemS)
1760                 or else not Is_OK_Static_Expression (ItemT)
1761               then
1762                  exit;
1763
1764               elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
1765                  if Do_Access then   --  needs run-time check.
1766                     exit;
1767                  else
1768                     Apply_Compile_Time_Constraint_Error
1769                       (N, "incorrect value for discriminant&??",
1770                        CE_Discriminant_Check_Failed, Ent => Discr);
1771                     return;
1772                  end if;
1773               end if;
1774
1775               Next_Elmt (DconS);
1776               Next_Elmt (DconT);
1777               Next_Discriminant (Discr);
1778            end loop;
1779
1780            if No (Discr) then
1781               return;
1782            end if;
1783         end;
1784      end if;
1785
1786      --  In GNATprove mode, we do not apply the checks
1787
1788      if GNATprove_Mode then
1789         return;
1790      end if;
1791
1792      --  Here we need a discriminant check. First build the expression
1793      --  for the comparisons of the discriminants:
1794
1795      --    (n.disc1 /= typ.disc1) or else
1796      --    (n.disc2 /= typ.disc2) or else
1797      --     ...
1798      --    (n.discn /= typ.discn)
1799
1800      Cond := Build_Discriminant_Checks (N, T_Typ);
1801
1802      --  If Lhs is set and is a parameter, then the condition is guarded by:
1803      --  lhs'constrained and then (condition built above)
1804
1805      if Present (Param_Entity (Lhs)) then
1806         Cond :=
1807           Make_And_Then (Loc,
1808             Left_Opnd =>
1809               Make_Attribute_Reference (Loc,
1810                 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1811                 Attribute_Name => Name_Constrained),
1812             Right_Opnd => Cond);
1813      end if;
1814
1815      if Do_Access then
1816         Cond := Guard_Access (Cond, Loc, N);
1817      end if;
1818
1819      Insert_Action (N,
1820        Make_Raise_Constraint_Error (Loc,
1821          Condition => Cond,
1822          Reason    => CE_Discriminant_Check_Failed));
1823   end Apply_Discriminant_Check;
1824
1825   -------------------------
1826   -- Apply_Divide_Checks --
1827   -------------------------
1828
1829   procedure Apply_Divide_Checks (N : Node_Id) is
1830      Loc   : constant Source_Ptr := Sloc (N);
1831      Typ   : constant Entity_Id  := Etype (N);
1832      Left  : constant Node_Id    := Left_Opnd (N);
1833      Right : constant Node_Id    := Right_Opnd (N);
1834
1835      Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1836      --  Current overflow checking mode
1837
1838      LLB : Uint;
1839      Llo : Uint;
1840      Lhi : Uint;
1841      LOK : Boolean;
1842      Rlo : Uint;
1843      Rhi : Uint;
1844      ROK : Boolean;
1845
1846      pragma Warnings (Off, Lhi);
1847      --  Don't actually use this value
1848
1849   begin
1850      --  If we are operating in MINIMIZED or ELIMINATED mode, and we are
1851      --  operating on signed integer types, then the only thing this routine
1852      --  does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
1853      --  procedure will (possibly later on during recursive downward calls),
1854      --  ensure that any needed overflow/division checks are properly applied.
1855
1856      if Mode in Minimized_Or_Eliminated
1857        and then Is_Signed_Integer_Type (Typ)
1858      then
1859         Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
1860         return;
1861      end if;
1862
1863      --  Proceed here in SUPPRESSED or CHECKED modes
1864
1865      if Expander_Active
1866        and then not Backend_Divide_Checks_On_Target
1867        and then Check_Needed (Right, Division_Check)
1868      then
1869         Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
1870
1871         --  Deal with division check
1872
1873         if Do_Division_Check (N)
1874           and then not Division_Checks_Suppressed (Typ)
1875         then
1876            Apply_Division_Check (N, Rlo, Rhi, ROK);
1877         end if;
1878
1879         --  Deal with overflow check
1880
1881         if Do_Overflow_Check (N)
1882           and then not Overflow_Checks_Suppressed (Etype (N))
1883         then
1884            Set_Do_Overflow_Check (N, False);
1885
1886            --  Test for extremely annoying case of xxx'First divided by -1
1887            --  for division of signed integer types (only overflow case).
1888
1889            if Nkind (N) = N_Op_Divide
1890              and then Is_Signed_Integer_Type (Typ)
1891            then
1892               Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
1893               LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1894
1895               if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
1896                     and then
1897                  ((not LOK) or else (Llo = LLB))
1898               then
1899                  --  Ensure that expressions are not evaluated twice (once
1900                  --  for their runtime checks and once for their regular
1901                  --  computation).
1902
1903                  Force_Evaluation (Left, Mode => Strict);
1904                  Force_Evaluation (Right, Mode => Strict);
1905
1906                  Insert_Action (N,
1907                    Make_Raise_Constraint_Error (Loc,
1908                      Condition =>
1909                        Make_And_Then (Loc,
1910                          Left_Opnd  =>
1911                            Make_Op_Eq (Loc,
1912                              Left_Opnd  =>
1913                                Duplicate_Subexpr_Move_Checks (Left),
1914                              Right_Opnd => Make_Integer_Literal (Loc, LLB)),
1915
1916                          Right_Opnd =>
1917                            Make_Op_Eq (Loc,
1918                              Left_Opnd  => Duplicate_Subexpr (Right),
1919                              Right_Opnd => Make_Integer_Literal (Loc, -1))),
1920
1921                      Reason => CE_Overflow_Check_Failed));
1922               end if;
1923            end if;
1924         end if;
1925      end if;
1926   end Apply_Divide_Checks;
1927
1928   --------------------------
1929   -- Apply_Division_Check --
1930   --------------------------
1931
1932   procedure Apply_Division_Check
1933     (N   : Node_Id;
1934      Rlo : Uint;
1935      Rhi : Uint;
1936      ROK : Boolean)
1937   is
1938      pragma Assert (Do_Division_Check (N));
1939
1940      Loc   : constant Source_Ptr := Sloc (N);
1941      Right : constant Node_Id := Right_Opnd (N);
1942      Opnd  : Node_Id;
1943
1944   begin
1945      if Expander_Active
1946        and then not Backend_Divide_Checks_On_Target
1947        and then Check_Needed (Right, Division_Check)
1948
1949        --  See if division by zero possible, and if so generate test. This
1950        --  part of the test is not controlled by the -gnato switch, since it
1951        --  is a Division_Check and not an Overflow_Check.
1952
1953        and then Do_Division_Check (N)
1954      then
1955         Set_Do_Division_Check (N, False);
1956
1957         if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1958            if Is_Floating_Point_Type (Etype (N)) then
1959               Opnd := Make_Real_Literal (Loc, Ureal_0);
1960            else
1961               Opnd := Make_Integer_Literal (Loc, 0);
1962            end if;
1963
1964            Insert_Action (N,
1965              Make_Raise_Constraint_Error (Loc,
1966                Condition =>
1967                  Make_Op_Eq (Loc,
1968                    Left_Opnd  => Duplicate_Subexpr_Move_Checks (Right),
1969                    Right_Opnd => Opnd),
1970                Reason    => CE_Divide_By_Zero));
1971         end if;
1972      end if;
1973   end Apply_Division_Check;
1974
1975   ----------------------------------
1976   -- Apply_Float_Conversion_Check --
1977   ----------------------------------
1978
1979   --  Let F and I be the source and target types of the conversion. The RM
1980   --  specifies that a floating-point value X is rounded to the nearest
1981   --  integer, with halfway cases being rounded away from zero. The rounded
1982   --  value of X is checked against I'Range.
1983
1984   --  The catch in the above paragraph is that there is no good way to know
1985   --  whether the round-to-integer operation resulted in overflow. A remedy is
1986   --  to perform a range check in the floating-point domain instead, however:
1987
1988   --      (1)  The bounds may not be known at compile time
1989   --      (2)  The check must take into account rounding or truncation.
1990   --      (3)  The range of type I may not be exactly representable in F.
1991   --      (4)  For the rounding case, the end-points I'First - 0.5 and
1992   --           I'Last + 0.5 may or may not be in range, depending on the
1993   --           sign of  I'First and I'Last.
1994   --      (5)  X may be a NaN, which will fail any comparison
1995
1996   --  The following steps correctly convert X with rounding:
1997
1998   --      (1) If either I'First or I'Last is not known at compile time, use
1999   --          I'Base instead of I in the next three steps and perform a
2000   --          regular range check against I'Range after conversion.
2001   --      (2) If I'First - 0.5 is representable in F then let Lo be that
2002   --          value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
2003   --          F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
2004   --          In other words, take one of the closest floating-point numbers
2005   --          (which is an integer value) to I'First, and see if it is in
2006   --          range or not.
2007   --      (3) If I'Last + 0.5 is representable in F then let Hi be that value
2008   --          and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
2009   --          F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
2010   --      (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
2011   --                     or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
2012
2013   --  For the truncating case, replace steps (2) and (3) as follows:
2014   --      (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
2015   --          be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
2016   --          Lo_OK be True.
2017   --      (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
2018   --          be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
2019   --          Hi_OK be True.
2020
2021   procedure Apply_Float_Conversion_Check
2022     (Expr       : Node_Id;
2023      Target_Typ : Entity_Id)
2024   is
2025      LB          : constant Node_Id    := Type_Low_Bound (Target_Typ);
2026      HB          : constant Node_Id    := Type_High_Bound (Target_Typ);
2027      Loc         : constant Source_Ptr := Sloc (Expr);
2028      Expr_Type   : constant Entity_Id  := Base_Type (Etype (Expr));
2029      Target_Base : constant Entity_Id  :=
2030        Implementation_Base_Type (Target_Typ);
2031
2032      Par : constant Node_Id := Parent (Expr);
2033      pragma Assert (Nkind (Par) = N_Type_Conversion);
2034      --  Parent of check node, must be a type conversion
2035
2036      Truncate  : constant Boolean := Float_Truncate (Par);
2037      Max_Bound : constant Uint :=
2038        UI_Expon
2039          (Machine_Radix_Value (Expr_Type),
2040           Machine_Mantissa_Value (Expr_Type) - 1) - 1;
2041
2042      --  Largest bound, so bound plus or minus half is a machine number of F
2043
2044      Ifirst, Ilast : Uint;
2045      --  Bounds of integer type
2046
2047      Lo, Hi : Ureal;
2048      --  Bounds to check in floating-point domain
2049
2050      Lo_OK, Hi_OK : Boolean;
2051      --  True iff Lo resp. Hi belongs to I'Range
2052
2053      Lo_Chk, Hi_Chk : Node_Id;
2054      --  Expressions that are False iff check fails
2055
2056      Reason : RT_Exception_Code;
2057
2058   begin
2059      --  We do not need checks if we are not generating code (i.e. the full
2060      --  expander is not active). In SPARK mode, we specifically don't want
2061      --  the frontend to expand these checks, which are dealt with directly
2062      --  in the formal verification backend.
2063
2064      if not Expander_Active then
2065         return;
2066      end if;
2067
2068      --  Here we will generate an explicit range check, so we don't want to
2069      --  set the Do_Range check flag, since the range check is taken care of
2070      --  by the code we will generate.
2071
2072      Set_Do_Range_Check (Expr, False);
2073
2074      if not Compile_Time_Known_Value (LB)
2075          or not Compile_Time_Known_Value (HB)
2076      then
2077         declare
2078            --  First check that the value falls in the range of the base type,
2079            --  to prevent overflow during conversion and then perform a
2080            --  regular range check against the (dynamic) bounds.
2081
2082            pragma Assert (Target_Base /= Target_Typ);
2083
2084            Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Par);
2085
2086         begin
2087            Apply_Float_Conversion_Check (Expr, Target_Base);
2088            Set_Etype (Temp, Target_Base);
2089
2090            --  Note: Previously the declaration was inserted above the parent
2091            --  of the conversion, apparently as a small optimization for the
2092            --  subequent traversal in Insert_Actions. Unfortunately a similar
2093            --  optimization takes place in Insert_Actions, assuming that the
2094            --  insertion point must be above the expression that creates
2095            --  actions. This is not correct in the presence of conditional
2096            --  expressions, where the insertion must be in the list of actions
2097            --  attached to the current alternative.
2098
2099            Insert_Action (Par,
2100              Make_Object_Declaration (Loc,
2101                Defining_Identifier => Temp,
2102                Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
2103                Expression => New_Copy_Tree (Par)),
2104                Suppress => All_Checks);
2105
2106            Insert_Action (Par,
2107              Make_Raise_Constraint_Error (Loc,
2108                Condition =>
2109                  Make_Not_In (Loc,
2110                    Left_Opnd  => New_Occurrence_Of (Temp, Loc),
2111                    Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
2112                Reason => CE_Range_Check_Failed));
2113            Rewrite (Par, New_Occurrence_Of (Temp, Loc));
2114
2115            return;
2116         end;
2117      end if;
2118
2119      --  Get the (static) bounds of the target type
2120
2121      Ifirst := Expr_Value (LB);
2122      Ilast  := Expr_Value (HB);
2123
2124      --  A simple optimization: if the expression is a universal literal,
2125      --  we can do the comparison with the bounds and the conversion to
2126      --  an integer type statically. The range checks are unchanged.
2127
2128      if Nkind (Expr) = N_Real_Literal
2129        and then Etype (Expr) = Universal_Real
2130        and then Is_Integer_Type (Target_Typ)
2131      then
2132         declare
2133            Int_Val : constant Uint := UR_To_Uint (Realval (Expr));
2134
2135         begin
2136            if Int_Val <= Ilast and then Int_Val >= Ifirst then
2137
2138               --  Conversion is safe
2139
2140               Rewrite (Parent (Expr),
2141                 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
2142               Analyze_And_Resolve (Parent (Expr), Target_Typ);
2143               return;
2144            end if;
2145         end;
2146      end if;
2147
2148      --  Check against lower bound
2149
2150      if Truncate and then Ifirst > 0 then
2151         Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
2152         Lo_OK := False;
2153
2154      elsif Truncate then
2155         Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
2156         Lo_OK := True;
2157
2158      elsif abs (Ifirst) < Max_Bound then
2159         Lo := UR_From_Uint (Ifirst) - Ureal_Half;
2160         Lo_OK := (Ifirst > 0);
2161
2162      else
2163         Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Expr);
2164         Lo_OK := (Lo >= UR_From_Uint (Ifirst));
2165      end if;
2166
2167      --  Saturate the lower bound to that of the expression's type, because
2168      --  we do not want to create an out-of-range value but we still need to
2169      --  do a comparison to catch NaNs.
2170
2171      if Lo < Expr_Value_R (Type_Low_Bound (Expr_Type)) then
2172         Lo := Expr_Value_R (Type_Low_Bound (Expr_Type));
2173         Lo_OK := True;
2174      end if;
2175
2176      if Lo_OK then
2177
2178         --  Lo_Chk := (X >= Lo)
2179
2180         Lo_Chk := Make_Op_Ge (Loc,
2181                     Left_Opnd => Duplicate_Subexpr_No_Checks (Expr),
2182                     Right_Opnd => Make_Real_Literal (Loc, Lo));
2183
2184      else
2185         --  Lo_Chk := (X > Lo)
2186
2187         Lo_Chk := Make_Op_Gt (Loc,
2188                     Left_Opnd => Duplicate_Subexpr_No_Checks (Expr),
2189                     Right_Opnd => Make_Real_Literal (Loc, Lo));
2190      end if;
2191
2192      --  Check against higher bound
2193
2194      if Truncate and then Ilast < 0 then
2195         Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
2196         Hi_OK := False;
2197
2198      elsif Truncate then
2199         Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
2200         Hi_OK := True;
2201
2202      elsif abs (Ilast) < Max_Bound then
2203         Hi := UR_From_Uint (Ilast) + Ureal_Half;
2204         Hi_OK := (Ilast < 0);
2205      else
2206         Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Expr);
2207         Hi_OK := (Hi <= UR_From_Uint (Ilast));
2208      end if;
2209
2210      --  Saturate the higher bound to that of the expression's type, because
2211      --  we do not want to create an out-of-range value but we still need to
2212      --  do a comparison to catch NaNs.
2213
2214      if Hi > Expr_Value_R (Type_High_Bound (Expr_Type)) then
2215         Hi := Expr_Value_R (Type_High_Bound (Expr_Type));
2216         Hi_OK := True;
2217      end if;
2218
2219      if Hi_OK then
2220
2221         --  Hi_Chk := (X <= Hi)
2222
2223         Hi_Chk := Make_Op_Le (Loc,
2224                     Left_Opnd => Duplicate_Subexpr_No_Checks (Expr),
2225                     Right_Opnd => Make_Real_Literal (Loc, Hi));
2226
2227      else
2228         --  Hi_Chk := (X < Hi)
2229
2230         Hi_Chk := Make_Op_Lt (Loc,
2231                     Left_Opnd => Duplicate_Subexpr_No_Checks (Expr),
2232                     Right_Opnd => Make_Real_Literal (Loc, Hi));
2233      end if;
2234
2235      --  If the bounds of the target type are the same as those of the base
2236      --  type, the check is an overflow check as a range check is not
2237      --  performed in these cases.
2238
2239      if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
2240        and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
2241      then
2242         Reason := CE_Overflow_Check_Failed;
2243      else
2244         Reason := CE_Range_Check_Failed;
2245      end if;
2246
2247      --  Raise CE if either conditions does not hold
2248
2249      Insert_Action (Expr,
2250        Make_Raise_Constraint_Error (Loc,
2251          Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
2252          Reason    => Reason));
2253   end Apply_Float_Conversion_Check;
2254
2255   ------------------------
2256   -- Apply_Length_Check --
2257   ------------------------
2258
2259   procedure Apply_Length_Check
2260     (Expr       : Node_Id;
2261      Target_Typ : Entity_Id;
2262      Source_Typ : Entity_Id := Empty)
2263   is
2264   begin
2265      Apply_Selected_Length_Checks
2266        (Expr, Target_Typ, Source_Typ, Do_Static => False);
2267   end Apply_Length_Check;
2268
2269   --------------------------------------
2270   -- Apply_Length_Check_On_Assignment --
2271   --------------------------------------
2272
2273   procedure Apply_Length_Check_On_Assignment
2274     (Expr       : Node_Id;
2275      Target_Typ : Entity_Id;
2276      Target     : Node_Id;
2277      Source_Typ : Entity_Id := Empty)
2278   is
2279      Assign : constant Node_Id := Parent (Target);
2280
2281   begin
2282      --  No check is needed for the initialization of an object whose
2283      --  nominal subtype is unconstrained.
2284
2285      if Is_Constr_Subt_For_U_Nominal (Target_Typ)
2286        and then Nkind (Parent (Assign)) = N_Freeze_Entity
2287        and then Is_Entity_Name (Target)
2288        and then Entity (Target) = Entity (Parent (Assign))
2289      then
2290         return;
2291      end if;
2292
2293      Apply_Selected_Length_Checks
2294        (Expr, Target_Typ, Source_Typ, Do_Static => False);
2295   end Apply_Length_Check_On_Assignment;
2296
2297   -------------------------------------
2298   -- Apply_Parameter_Aliasing_Checks --
2299   -------------------------------------
2300
2301   procedure Apply_Parameter_Aliasing_Checks
2302     (Call : Node_Id;
2303      Subp : Entity_Id)
2304   is
2305      Loc : constant Source_Ptr := Sloc (Call);
2306
2307      function May_Cause_Aliasing
2308        (Formal_1 : Entity_Id;
2309         Formal_2 : Entity_Id) return Boolean;
2310      --  Determine whether two formal parameters can alias each other
2311      --  depending on their modes.
2312
2313      function Original_Actual (N : Node_Id) return Node_Id;
2314      --  The expander may replace an actual with a temporary for the sake of
2315      --  side effect removal. The temporary may hide a potential aliasing as
2316      --  it does not share the address of the actual. This routine attempts
2317      --  to retrieve the original actual.
2318
2319      procedure Overlap_Check
2320        (Actual_1 : Node_Id;
2321         Actual_2 : Node_Id;
2322         Formal_1 : Entity_Id;
2323         Formal_2 : Entity_Id;
2324         Check    : in out Node_Id);
2325      --  Create a check to determine whether Actual_1 overlaps with Actual_2.
2326      --  If detailed exception messages are enabled, the check is augmented to
2327      --  provide information about the names of the corresponding formals. See
2328      --  the body for details. Actual_1 and Actual_2 denote the two actuals to
2329      --  be tested. Formal_1 and Formal_2 denote the corresponding formals.
2330      --  Check contains all and-ed simple tests generated so far or remains
2331      --  unchanged in the case of detailed exception messaged.
2332
2333      ------------------------
2334      -- May_Cause_Aliasing --
2335      ------------------------
2336
2337      function May_Cause_Aliasing
2338        (Formal_1 : Entity_Id;
2339         Formal_2 : Entity_Id) return Boolean
2340      is
2341      begin
2342         --  The following combination cannot lead to aliasing
2343
2344         --     Formal 1    Formal 2
2345         --     IN          IN
2346
2347         if Ekind (Formal_1) = E_In_Parameter
2348              and then
2349            Ekind (Formal_2) = E_In_Parameter
2350         then
2351            return False;
2352
2353         --  The following combinations may lead to aliasing
2354
2355         --     Formal 1    Formal 2
2356         --     IN          OUT
2357         --     IN          IN OUT
2358         --     OUT         IN
2359         --     OUT         IN OUT
2360         --     OUT         OUT
2361
2362         else
2363            return True;
2364         end if;
2365      end May_Cause_Aliasing;
2366
2367      ---------------------
2368      -- Original_Actual --
2369      ---------------------
2370
2371      function Original_Actual (N : Node_Id) return Node_Id is
2372      begin
2373         if Nkind (N) = N_Type_Conversion then
2374            return Expression (N);
2375
2376         --  The expander created a temporary to capture the result of a type
2377         --  conversion where the expression is the real actual.
2378
2379         elsif Nkind (N) = N_Identifier
2380           and then Present (Original_Node (N))
2381           and then Nkind (Original_Node (N)) = N_Type_Conversion
2382         then
2383            return Expression (Original_Node (N));
2384         end if;
2385
2386         return N;
2387      end Original_Actual;
2388
2389      -------------------
2390      -- Overlap_Check --
2391      -------------------
2392
2393      procedure Overlap_Check
2394        (Actual_1 : Node_Id;
2395         Actual_2 : Node_Id;
2396         Formal_1 : Entity_Id;
2397         Formal_2 : Entity_Id;
2398         Check    : in out Node_Id)
2399      is
2400         Cond      : Node_Id;
2401         ID_Casing : constant Casing_Type :=
2402                       Identifier_Casing (Source_Index (Current_Sem_Unit));
2403
2404      begin
2405         --  Generate:
2406         --    Actual_1'Overlaps_Storage (Actual_2)
2407
2408         Cond :=
2409           Make_Attribute_Reference (Loc,
2410             Prefix         => New_Copy_Tree (Original_Actual (Actual_1)),
2411             Attribute_Name => Name_Overlaps_Storage,
2412             Expressions    =>
2413               New_List (New_Copy_Tree (Original_Actual (Actual_2))));
2414
2415         --  Generate the following check when detailed exception messages are
2416         --  enabled:
2417
2418         --    if Actual_1'Overlaps_Storage (Actual_2) then
2419         --       raise Program_Error with <detailed message>;
2420         --    end if;
2421
2422         if Exception_Extra_Info then
2423            Start_String;
2424
2425            --  Do not generate location information for internal calls
2426
2427            if Comes_From_Source (Call) then
2428               Store_String_Chars (Build_Location_String (Loc));
2429               Store_String_Char (' ');
2430            end if;
2431
2432            Store_String_Chars ("aliased parameters, actuals for """);
2433
2434            Get_Name_String (Chars (Formal_1));
2435            Set_Casing (ID_Casing);
2436            Store_String_Chars (Name_Buffer (1 .. Name_Len));
2437
2438            Store_String_Chars (""" and """);
2439
2440            Get_Name_String (Chars (Formal_2));
2441            Set_Casing (ID_Casing);
2442            Store_String_Chars (Name_Buffer (1 .. Name_Len));
2443
2444            Store_String_Chars (""" overlap");
2445
2446            Insert_Action (Call,
2447              Make_If_Statement (Loc,
2448                Condition       => Cond,
2449                Then_Statements => New_List (
2450                  Make_Raise_Statement (Loc,
2451                    Name       =>
2452                      New_Occurrence_Of (Standard_Program_Error, Loc),
2453                    Expression => Make_String_Literal (Loc, End_String)))));
2454
2455         --  Create a sequence of overlapping checks by and-ing them all
2456         --  together.
2457
2458         else
2459            if No (Check) then
2460               Check := Cond;
2461            else
2462               Check :=
2463                 Make_And_Then (Loc,
2464                   Left_Opnd  => Check,
2465                   Right_Opnd => Cond);
2466            end if;
2467         end if;
2468      end Overlap_Check;
2469
2470      --  Local variables
2471
2472      Actual_1   : Node_Id;
2473      Actual_2   : Node_Id;
2474      Check      : Node_Id;
2475      Formal_1   : Entity_Id;
2476      Formal_2   : Entity_Id;
2477      Orig_Act_1 : Node_Id;
2478      Orig_Act_2 : Node_Id;
2479
2480   --  Start of processing for Apply_Parameter_Aliasing_Checks
2481
2482   begin
2483      Check := Empty;
2484
2485      Actual_1 := First_Actual (Call);
2486      Formal_1 := First_Formal (Subp);
2487      while Present (Actual_1) and then Present (Formal_1) loop
2488         Orig_Act_1 := Original_Actual (Actual_1);
2489
2490         --  Ensure that the actual is an object that is not passed by value.
2491         --  Elementary types are always passed by value, therefore actuals of
2492         --  such types cannot lead to aliasing. An aggregate is an object in
2493         --  Ada 2012, but an actual that is an aggregate cannot overlap with
2494         --  another actual. A type that is By_Reference (such as an array of
2495         --  controlled types) is not subject to the check because any update
2496         --  will be done in place and a subsequent read will always see the
2497         --  correct value, see RM 6.2 (12/3).
2498
2499         if Nkind (Orig_Act_1) = N_Aggregate
2500           or else (Nkind (Orig_Act_1) = N_Qualified_Expression
2501                     and then Nkind (Expression (Orig_Act_1)) = N_Aggregate)
2502         then
2503            null;
2504
2505         elsif Is_Object_Reference (Orig_Act_1)
2506           and then not Is_Elementary_Type (Etype (Orig_Act_1))
2507           and then not Is_By_Reference_Type (Etype (Orig_Act_1))
2508         then
2509            Actual_2 := Next_Actual (Actual_1);
2510            Formal_2 := Next_Formal (Formal_1);
2511            while Present (Actual_2) and then Present (Formal_2) loop
2512               Orig_Act_2 := Original_Actual (Actual_2);
2513
2514               --  The other actual we are testing against must also denote
2515               --  a non pass-by-value object. Generate the check only when
2516               --  the mode of the two formals may lead to aliasing.
2517
2518               if Is_Object_Reference (Orig_Act_2)
2519                 and then not Is_Elementary_Type (Etype (Orig_Act_2))
2520                 and then May_Cause_Aliasing (Formal_1, Formal_2)
2521               then
2522                  Remove_Side_Effects (Actual_1);
2523                  Remove_Side_Effects (Actual_2);
2524
2525                  Overlap_Check
2526                    (Actual_1 => Actual_1,
2527                     Actual_2 => Actual_2,
2528                     Formal_1 => Formal_1,
2529                     Formal_2 => Formal_2,
2530                     Check    => Check);
2531               end if;
2532
2533               Next_Actual (Actual_2);
2534               Next_Formal (Formal_2);
2535            end loop;
2536         end if;
2537
2538         Next_Actual (Actual_1);
2539         Next_Formal (Formal_1);
2540      end loop;
2541
2542      --  Place a simple check right before the call
2543
2544      if Present (Check) and then not Exception_Extra_Info then
2545         Insert_Action (Call,
2546           Make_Raise_Program_Error (Loc,
2547             Condition => Check,
2548             Reason    => PE_Aliased_Parameters));
2549      end if;
2550   end Apply_Parameter_Aliasing_Checks;
2551
2552   -------------------------------------
2553   -- Apply_Parameter_Validity_Checks --
2554   -------------------------------------
2555
2556   procedure Apply_Parameter_Validity_Checks (Subp : Entity_Id) is
2557      Subp_Decl : Node_Id;
2558
2559      procedure Add_Validity_Check
2560        (Formal     : Entity_Id;
2561         Prag_Nam   : Name_Id;
2562         For_Result : Boolean := False);
2563      --  Add a single 'Valid[_Scalars] check which verifies the initialization
2564      --  of Formal. Prag_Nam denotes the pre or post condition pragma name.
2565      --  Set flag For_Result when to verify the result of a function.
2566
2567      ------------------------
2568      -- Add_Validity_Check --
2569      ------------------------
2570
2571      procedure Add_Validity_Check
2572        (Formal     : Entity_Id;
2573         Prag_Nam   : Name_Id;
2574         For_Result : Boolean := False)
2575      is
2576         procedure Build_Pre_Post_Condition (Expr : Node_Id);
2577         --  Create a pre/postcondition pragma that tests expression Expr
2578
2579         ------------------------------
2580         -- Build_Pre_Post_Condition --
2581         ------------------------------
2582
2583         procedure Build_Pre_Post_Condition (Expr : Node_Id) is
2584            Loc   : constant Source_Ptr := Sloc (Subp);
2585            Decls : List_Id;
2586            Prag  : Node_Id;
2587
2588         begin
2589            Prag :=
2590              Make_Pragma (Loc,
2591                Chars                        => Prag_Nam,
2592                Pragma_Argument_Associations => New_List (
2593                  Make_Pragma_Argument_Association (Loc,
2594                    Chars      => Name_Check,
2595                    Expression => Expr)));
2596
2597            --  Add a message unless exception messages are suppressed
2598
2599            if not Exception_Locations_Suppressed then
2600               Append_To (Pragma_Argument_Associations (Prag),
2601                 Make_Pragma_Argument_Association (Loc,
2602                   Chars      => Name_Message,
2603                   Expression =>
2604                     Make_String_Literal (Loc,
2605                       Strval => "failed "
2606                                 & Get_Name_String (Prag_Nam)
2607                                 & " from "
2608                                 & Build_Location_String (Loc))));
2609            end if;
2610
2611            --  Insert the pragma in the tree
2612
2613            if Nkind (Parent (Subp_Decl)) = N_Compilation_Unit then
2614               Add_Global_Declaration (Prag);
2615               Analyze (Prag);
2616
2617            --  PPC pragmas associated with subprogram bodies must be inserted
2618            --  in the declarative part of the body.
2619
2620            elsif Nkind (Subp_Decl) = N_Subprogram_Body then
2621               Decls := Declarations (Subp_Decl);
2622
2623               if No (Decls) then
2624                  Decls := New_List;
2625                  Set_Declarations (Subp_Decl, Decls);
2626               end if;
2627
2628               Prepend_To (Decls, Prag);
2629               Analyze (Prag);
2630
2631            --  For subprogram declarations insert the PPC pragma right after
2632            --  the declarative node.
2633
2634            else
2635               Insert_After_And_Analyze (Subp_Decl, Prag);
2636            end if;
2637         end Build_Pre_Post_Condition;
2638
2639         --  Local variables
2640
2641         Loc   : constant Source_Ptr := Sloc (Subp);
2642         Typ   : constant Entity_Id  := Etype (Formal);
2643         Check : Node_Id;
2644         Nam   : Name_Id;
2645
2646      --  Start of processing for Add_Validity_Check
2647
2648      begin
2649         --  For scalars, generate 'Valid test
2650
2651         if Is_Scalar_Type (Typ) then
2652            Nam := Name_Valid;
2653
2654         --  For any non-scalar with scalar parts, generate 'Valid_Scalars test
2655
2656         elsif Scalar_Part_Present (Typ) then
2657            Nam := Name_Valid_Scalars;
2658
2659         --  No test needed for other cases (no scalars to test)
2660
2661         else
2662            return;
2663         end if;
2664
2665         --  Step 1: Create the expression to verify the validity of the
2666         --  context.
2667
2668         Check := New_Occurrence_Of (Formal, Loc);
2669
2670         --  When processing a function result, use 'Result. Generate
2671         --    Context'Result
2672
2673         if For_Result then
2674            Check :=
2675              Make_Attribute_Reference (Loc,
2676                Prefix         => Check,
2677                Attribute_Name => Name_Result);
2678         end if;
2679
2680         --  Generate:
2681         --    Context['Result]'Valid[_Scalars]
2682
2683         Check :=
2684           Make_Attribute_Reference (Loc,
2685             Prefix         => Check,
2686             Attribute_Name => Nam);
2687
2688         --  Step 2: Create a pre or post condition pragma
2689
2690         Build_Pre_Post_Condition (Check);
2691      end Add_Validity_Check;
2692
2693      --  Local variables
2694
2695      Formal    : Entity_Id;
2696      Subp_Spec : Node_Id;
2697
2698   --  Start of processing for Apply_Parameter_Validity_Checks
2699
2700   begin
2701      --  Extract the subprogram specification and declaration nodes
2702
2703      Subp_Spec := Parent (Subp);
2704
2705      if Nkind (Subp_Spec) = N_Defining_Program_Unit_Name then
2706         Subp_Spec := Parent (Subp_Spec);
2707      end if;
2708
2709      Subp_Decl := Parent (Subp_Spec);
2710
2711      if not Comes_From_Source (Subp)
2712
2713        --  Do not process formal subprograms because the corresponding actual
2714        --  will receive the proper checks when the instance is analyzed.
2715
2716        or else Is_Formal_Subprogram (Subp)
2717
2718        --  Do not process imported subprograms since pre and postconditions
2719        --  are never verified on routines coming from a different language.
2720
2721        or else Is_Imported (Subp)
2722        or else Is_Intrinsic_Subprogram (Subp)
2723
2724        --  The PPC pragmas generated by this routine do not correspond to
2725        --  source aspects, therefore they cannot be applied to abstract
2726        --  subprograms.
2727
2728        or else Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration
2729
2730        --  Do not consider subprogram renaminds because the renamed entity
2731        --  already has the proper PPC pragmas.
2732
2733        or else Nkind (Subp_Decl) = N_Subprogram_Renaming_Declaration
2734
2735        --  Do not process null procedures because there is no benefit of
2736        --  adding the checks to a no action routine.
2737
2738        or else (Nkind (Subp_Spec) = N_Procedure_Specification
2739                  and then Null_Present (Subp_Spec))
2740      then
2741         return;
2742      end if;
2743
2744      --  Inspect all the formals applying aliasing and scalar initialization
2745      --  checks where applicable.
2746
2747      Formal := First_Formal (Subp);
2748      while Present (Formal) loop
2749
2750         --  Generate the following scalar initialization checks for each
2751         --  formal parameter:
2752
2753         --    mode IN     - Pre       => Formal'Valid[_Scalars]
2754         --    mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
2755         --    mode    OUT -      Post => Formal'Valid[_Scalars]
2756
2757         if Ekind (Formal) in E_In_Parameter | E_In_Out_Parameter then
2758            Add_Validity_Check (Formal, Name_Precondition, False);
2759         end if;
2760
2761         if Ekind (Formal) in E_In_Out_Parameter | E_Out_Parameter then
2762            Add_Validity_Check (Formal, Name_Postcondition, False);
2763         end if;
2764
2765         Next_Formal (Formal);
2766      end loop;
2767
2768      --  Generate following scalar initialization check for function result:
2769
2770      --    Post => Subp'Result'Valid[_Scalars]
2771
2772      if Ekind (Subp) = E_Function then
2773         Add_Validity_Check (Subp, Name_Postcondition, True);
2774      end if;
2775   end Apply_Parameter_Validity_Checks;
2776
2777   ---------------------------
2778   -- Apply_Predicate_Check --
2779   ---------------------------
2780
2781   procedure Apply_Predicate_Check
2782     (N   : Node_Id;
2783      Typ : Entity_Id;
2784      Fun : Entity_Id := Empty)
2785   is
2786      Par : Node_Id;
2787      S   : Entity_Id;
2788
2789      Check_Disabled : constant Boolean := (not Predicate_Enabled (Typ))
2790        or else not Predicate_Check_In_Scope (N);
2791   begin
2792      S := Current_Scope;
2793      while Present (S) and then not Is_Subprogram (S) loop
2794         S := Scope (S);
2795      end loop;
2796
2797      --  If the check appears within the predicate function itself, it means
2798      --  that the user specified a check whose formal is the predicated
2799      --  subtype itself, rather than some covering type. This is likely to be
2800      --  a common error, and thus deserves a warning. We want to emit this
2801      --  warning even if predicate checking is disabled (in which case the
2802      --  warning is still useful even if it is not strictly accurate).
2803
2804      if Present (S) and then S = Predicate_Function (Typ) then
2805         Error_Msg_NE
2806           ("predicate check includes a call to& that requires a "
2807            & "predicate check??", Parent (N), Fun);
2808         Error_Msg_N
2809           ("\this will result in infinite recursion??", Parent (N));
2810
2811         if Is_First_Subtype (Typ) then
2812            Error_Msg_NE
2813              ("\use an explicit subtype of& to carry the predicate",
2814               Parent (N), Typ);
2815         end if;
2816
2817         if not Check_Disabled then
2818            Insert_Action (N,
2819              Make_Raise_Storage_Error (Sloc (N),
2820                Reason => SE_Infinite_Recursion));
2821            return;
2822         end if;
2823      end if;
2824
2825      if Check_Disabled then
2826         return;
2827      end if;
2828
2829      --  Normal case of predicate active
2830
2831      --  If the expression is an IN parameter, the predicate will have
2832      --  been applied at the point of call. An additional check would
2833      --  be redundant, or will lead to out-of-scope references if the
2834      --  call appears within an aspect specification for a precondition.
2835
2836      --  However, if the reference is within the body of the subprogram
2837      --  that declares the formal, the predicate can safely be applied,
2838      --  which may be necessary for a nested call whose formal has a
2839      --  different predicate.
2840
2841      if Is_Entity_Name (N)
2842        and then Ekind (Entity (N)) = E_In_Parameter
2843      then
2844         declare
2845            In_Body : Boolean := False;
2846            P       : Node_Id := Parent (N);
2847
2848         begin
2849            while Present (P) loop
2850               if Nkind (P) = N_Subprogram_Body
2851                 and then
2852                   ((Present (Corresponding_Spec (P))
2853                      and then
2854                        Corresponding_Spec (P) = Scope (Entity (N)))
2855                      or else
2856                        Defining_Unit_Name (Specification (P)) =
2857                          Scope (Entity (N)))
2858               then
2859                  In_Body := True;
2860                  exit;
2861               end if;
2862
2863               P := Parent (P);
2864            end loop;
2865
2866            if not In_Body then
2867               return;
2868            end if;
2869         end;
2870      end if;
2871
2872      --  If the type has a static predicate and the expression is known
2873      --  at compile time, see if the expression satisfies the predicate.
2874
2875      Check_Expression_Against_Static_Predicate (N, Typ);
2876
2877      if not Expander_Active then
2878         return;
2879      end if;
2880
2881      Par := Parent (N);
2882      if Nkind (Par) = N_Qualified_Expression then
2883         Par := Parent (Par);
2884      end if;
2885
2886      --  For an entity of the type, generate a call to the predicate
2887      --  function, unless its type is an actual subtype, which is not
2888      --  visible outside of the enclosing subprogram.
2889
2890      if Is_Entity_Name (N)
2891        and then not Is_Actual_Subtype (Typ)
2892      then
2893         Insert_Action (N,
2894           Make_Predicate_Check
2895             (Typ, New_Occurrence_Of (Entity (N), Sloc (N))));
2896         return;
2897
2898      elsif Nkind (N) in N_Aggregate | N_Extension_Aggregate then
2899
2900         --  If the expression is an aggregate in an assignment, apply the
2901         --  check to the LHS after the assignment, rather than create a
2902         --  redundant temporary. This is only necessary in rare cases
2903         --  of array types (including strings) initialized with an
2904         --  aggregate with an "others" clause, either coming from source
2905         --  or generated by an Initialize_Scalars pragma.
2906
2907         if Nkind (Par) = N_Assignment_Statement then
2908            Insert_Action_After (Par,
2909              Make_Predicate_Check
2910                (Typ, Duplicate_Subexpr (Name (Par))));
2911            return;
2912
2913         --  Similarly, if the expression is an aggregate in an object
2914         --  declaration, apply it to the object after the declaration.
2915         --  This is only necessary in rare cases of tagged extensions
2916         --  initialized with an aggregate with an "others => <>" clause.
2917
2918         elsif Nkind (Par) = N_Object_Declaration then
2919            Insert_Action_After (Par,
2920              Make_Predicate_Check (Typ,
2921                New_Occurrence_Of (Defining_Identifier (Par), Sloc (N))));
2922            return;
2923         end if;
2924      end if;
2925
2926      --  If the expression is not an entity it may have side effects,
2927      --  and the following call will create an object declaration for
2928      --  it. We disable checks during its analysis, to prevent an
2929      --  infinite recursion.
2930
2931      Insert_Action (N,
2932        Make_Predicate_Check
2933          (Typ, Duplicate_Subexpr (N)), Suppress => All_Checks);
2934   end Apply_Predicate_Check;
2935
2936   -----------------------
2937   -- Apply_Range_Check --
2938   -----------------------
2939
2940   procedure Apply_Range_Check
2941     (Expr        : Node_Id;
2942      Target_Typ  : Entity_Id;
2943      Source_Typ  : Entity_Id := Empty;
2944      Insert_Node : Node_Id   := Empty)
2945   is
2946      Checks_On : constant Boolean :=
2947                    not Index_Checks_Suppressed (Target_Typ)
2948                      or else
2949                    not Range_Checks_Suppressed (Target_Typ);
2950
2951      Loc : constant Source_Ptr := Sloc (Expr);
2952
2953      Cond     : Node_Id;
2954      R_Cno    : Node_Id;
2955      R_Result : Check_Result;
2956
2957   begin
2958      --  Only apply checks when generating code. In GNATprove mode, we do not
2959      --  apply the checks, but we still call Selected_Range_Checks to possibly
2960      --  issue errors on SPARK code when a run-time error can be detected at
2961      --  compile time.
2962
2963      if not GNATprove_Mode then
2964         if not Expander_Active or not Checks_On then
2965            return;
2966         end if;
2967      end if;
2968
2969      R_Result :=
2970        Selected_Range_Checks (Expr, Target_Typ, Source_Typ, Insert_Node);
2971
2972      if GNATprove_Mode then
2973         return;
2974      end if;
2975
2976      for J in 1 .. 2 loop
2977         R_Cno := R_Result (J);
2978         exit when No (R_Cno);
2979
2980         --  The range check requires runtime evaluation. Depending on what its
2981         --  triggering condition is, the check may be converted into a compile
2982         --  time constraint check.
2983
2984         if Nkind (R_Cno) = N_Raise_Constraint_Error
2985           and then Present (Condition (R_Cno))
2986         then
2987            Cond := Condition (R_Cno);
2988
2989            --  Insert the range check before the related context. Note that
2990            --  this action analyses the triggering condition.
2991
2992            if Present (Insert_Node) then
2993               Insert_Action (Insert_Node, R_Cno);
2994            else
2995               Insert_Action (Expr, R_Cno);
2996            end if;
2997
2998            --  The triggering condition evaluates to True, the range check
2999            --  can be converted into a compile time constraint check.
3000
3001            if Is_Entity_Name (Cond)
3002              and then Entity (Cond) = Standard_True
3003            then
3004               --  Since an N_Range is technically not an expression, we have
3005               --  to set one of the bounds to C_E and then just flag the
3006               --  N_Range. The warning message will point to the lower bound
3007               --  and complain about a range, which seems OK.
3008
3009               if Nkind (Expr) = N_Range then
3010                  Apply_Compile_Time_Constraint_Error
3011                    (Low_Bound (Expr),
3012                     "static range out of bounds of}??",
3013                     CE_Range_Check_Failed,
3014                     Ent => Target_Typ,
3015                     Typ => Target_Typ);
3016
3017                  Set_Raises_Constraint_Error (Expr);
3018
3019               else
3020                  Apply_Compile_Time_Constraint_Error
3021                    (Expr,
3022                     "static value out of range of}??",
3023                     CE_Range_Check_Failed,
3024                     Ent => Target_Typ,
3025                     Typ => Target_Typ);
3026               end if;
3027            end if;
3028
3029         --  The range check raises Constraint_Error explicitly
3030
3031         elsif Present (Insert_Node) then
3032            R_Cno :=
3033              Make_Raise_Constraint_Error (Sloc (Insert_Node),
3034                Reason => CE_Range_Check_Failed);
3035
3036            Insert_Action (Insert_Node, R_Cno);
3037
3038         else
3039            Install_Static_Check (R_Cno, Loc);
3040         end if;
3041      end loop;
3042   end Apply_Range_Check;
3043
3044   ------------------------------
3045   -- Apply_Scalar_Range_Check --
3046   ------------------------------
3047
3048   --  Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
3049   --  off if it is already set on.
3050
3051   procedure Apply_Scalar_Range_Check
3052     (Expr       : Node_Id;
3053      Target_Typ : Entity_Id;
3054      Source_Typ : Entity_Id := Empty;
3055      Fixed_Int  : Boolean   := False)
3056   is
3057      Parnt   : constant Node_Id := Parent (Expr);
3058      S_Typ   : Entity_Id;
3059      Arr     : Node_Id   := Empty;  -- initialize to prevent warning
3060      Arr_Typ : Entity_Id := Empty;  -- initialize to prevent warning
3061
3062      Is_Subscr_Ref : Boolean;
3063      --  Set true if Expr is a subscript
3064
3065      Is_Unconstrained_Subscr_Ref : Boolean;
3066      --  Set true if Expr is a subscript of an unconstrained array. In this
3067      --  case we do not attempt to do an analysis of the value against the
3068      --  range of the subscript, since we don't know the actual subtype.
3069
3070      Int_Real : Boolean;
3071      --  Set to True if Expr should be regarded as a real value even though
3072      --  the type of Expr might be discrete.
3073
3074      procedure Bad_Value (Warn : Boolean := False);
3075      --  Procedure called if value is determined to be out of range. Warn is
3076      --  True to force a warning instead of an error, even when SPARK_Mode is
3077      --  On.
3078
3079      ---------------
3080      -- Bad_Value --
3081      ---------------
3082
3083      procedure Bad_Value (Warn : Boolean := False) is
3084      begin
3085         Apply_Compile_Time_Constraint_Error
3086           (Expr, "value not in range of}??", CE_Range_Check_Failed,
3087            Ent  => Target_Typ,
3088            Typ  => Target_Typ,
3089            Warn => Warn);
3090      end Bad_Value;
3091
3092   --  Start of processing for Apply_Scalar_Range_Check
3093
3094   begin
3095      --  Return if check obviously not needed
3096
3097      if
3098         --  Not needed inside generic
3099
3100         Inside_A_Generic
3101
3102         --  Not needed if previous error
3103
3104         or else Target_Typ = Any_Type
3105         or else Nkind (Expr) = N_Error
3106
3107         --  Not needed for non-scalar type
3108
3109         or else not Is_Scalar_Type (Target_Typ)
3110
3111         --  Not needed if we know node raises CE already
3112
3113         or else Raises_Constraint_Error (Expr)
3114      then
3115         return;
3116      end if;
3117
3118      --  Now, see if checks are suppressed
3119
3120      Is_Subscr_Ref :=
3121        Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
3122
3123      if Is_Subscr_Ref then
3124         Arr := Prefix (Parnt);
3125         Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
3126
3127         if Is_Access_Type (Arr_Typ) then
3128            Arr_Typ := Designated_Type (Arr_Typ);
3129         end if;
3130      end if;
3131
3132      if not Do_Range_Check (Expr) then
3133
3134         --  Subscript reference. Check for Index_Checks suppressed
3135
3136         if Is_Subscr_Ref then
3137
3138            --  Check array type and its base type
3139
3140            if Index_Checks_Suppressed (Arr_Typ)
3141              or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
3142            then
3143               return;
3144
3145            --  Check array itself if it is an entity name
3146
3147            elsif Is_Entity_Name (Arr)
3148              and then Index_Checks_Suppressed (Entity (Arr))
3149            then
3150               return;
3151
3152            --  Check expression itself if it is an entity name
3153
3154            elsif Is_Entity_Name (Expr)
3155              and then Index_Checks_Suppressed (Entity (Expr))
3156            then
3157               return;
3158            end if;
3159
3160         --  All other cases, check for Range_Checks suppressed
3161
3162         else
3163            --  Check target type and its base type
3164
3165            if Range_Checks_Suppressed (Target_Typ)
3166              or else Range_Checks_Suppressed (Base_Type (Target_Typ))
3167            then
3168               return;
3169
3170            --  Check expression itself if it is an entity name
3171
3172            elsif Is_Entity_Name (Expr)
3173              and then Range_Checks_Suppressed (Entity (Expr))
3174            then
3175               return;
3176
3177            --  If Expr is part of an assignment statement, then check left
3178            --  side of assignment if it is an entity name.
3179
3180            elsif Nkind (Parnt) = N_Assignment_Statement
3181              and then Is_Entity_Name (Name (Parnt))
3182              and then Range_Checks_Suppressed (Entity (Name (Parnt)))
3183            then
3184               return;
3185            end if;
3186         end if;
3187      end if;
3188
3189      --  Do not set range checks if they are killed
3190
3191      if Nkind (Expr) = N_Unchecked_Type_Conversion
3192        and then Kill_Range_Check (Expr)
3193      then
3194         return;
3195      end if;
3196
3197      --  Do not set range checks for any values from System.Scalar_Values
3198      --  since the whole idea of such values is to avoid checking them.
3199
3200      if Is_Entity_Name (Expr)
3201        and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
3202      then
3203         return;
3204      end if;
3205
3206      --  Now see if we need a check
3207
3208      if No (Source_Typ) then
3209         S_Typ := Etype (Expr);
3210      else
3211         S_Typ := Source_Typ;
3212      end if;
3213
3214      if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
3215         return;
3216      end if;
3217
3218      Is_Unconstrained_Subscr_Ref :=
3219        Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
3220
3221      --  Special checks for floating-point type
3222
3223      if Is_Floating_Point_Type (S_Typ) then
3224
3225         --  Always do a range check if the source type includes infinities and
3226         --  the target type does not include infinities. We do not do this if
3227         --  range checks are killed.
3228         --  If the expression is a literal and the bounds of the type are
3229         --  static constants it may be possible to optimize the check.
3230
3231         if Has_Infinities (S_Typ)
3232           and then not Has_Infinities (Target_Typ)
3233         then
3234            --  If the expression is a literal and the bounds of the type are
3235            --  static constants it may be possible to optimize the check.
3236
3237            if Nkind (Expr) = N_Real_Literal then
3238               declare
3239                  Tlo : constant Node_Id := Type_Low_Bound  (Target_Typ);
3240                  Thi : constant Node_Id := Type_High_Bound (Target_Typ);
3241
3242               begin
3243                  if Compile_Time_Known_Value (Tlo)
3244                    and then Compile_Time_Known_Value (Thi)
3245                    and then Expr_Value_R (Expr) >= Expr_Value_R (Tlo)
3246                    and then Expr_Value_R (Expr) <= Expr_Value_R (Thi)
3247                  then
3248                     return;
3249                  else
3250                     Enable_Range_Check (Expr);
3251                  end if;
3252               end;
3253
3254            else
3255               Enable_Range_Check (Expr);
3256            end if;
3257         end if;
3258      end if;
3259
3260      --  Return if we know expression is definitely in the range of the target
3261      --  type as determined by Determine_Range_To_Discrete. Right now we only
3262      --  do this for discrete target types, i.e. neither for fixed-point nor
3263      --  for floating-point types. But the additional less precise tests below
3264      --  catch these cases.
3265
3266      --  Note: skip this if we are given a source_typ, since the point of
3267      --  supplying a Source_Typ is to stop us looking at the expression.
3268      --  We could sharpen this test to be out parameters only ???
3269
3270      if Is_Discrete_Type (Target_Typ)
3271        and then not Is_Unconstrained_Subscr_Ref
3272        and then No (Source_Typ)
3273      then
3274         declare
3275            Thi : constant Node_Id := Type_High_Bound (Target_Typ);
3276            Tlo : constant Node_Id := Type_Low_Bound  (Target_Typ);
3277
3278         begin
3279            if Compile_Time_Known_Value (Tlo)
3280              and then Compile_Time_Known_Value (Thi)
3281            then
3282               declare
3283                  OK  : Boolean := False;  -- initialize to prevent warning
3284                  Hiv : constant Uint := Expr_Value (Thi);
3285                  Lov : constant Uint := Expr_Value (Tlo);
3286                  Hi  : Uint := No_Uint;
3287                  Lo  : Uint := No_Uint;
3288
3289               begin
3290                  --  If range is null, we for sure have a constraint error (we
3291                  --  don't even need to look at the value involved, since all
3292                  --  possible values will raise CE).
3293
3294                  if Lov > Hiv then
3295
3296                     --  When SPARK_Mode is On, force a warning instead of
3297                     --  an error in that case, as this likely corresponds
3298                     --  to deactivated code.
3299
3300                     Bad_Value (Warn => SPARK_Mode = On);
3301
3302                     --  In GNATprove mode, we enable the range check so that
3303                     --  GNATprove will issue a message if it cannot be proved.
3304
3305                     if GNATprove_Mode then
3306                        Enable_Range_Check (Expr);
3307                     end if;
3308
3309                     return;
3310                  end if;
3311
3312                  --  Otherwise determine range of value
3313
3314                  Determine_Range_To_Discrete
3315                    (Expr, OK, Lo, Hi, Fixed_Int, Assume_Valid => True);
3316
3317                  if OK then
3318
3319                     --  If definitely in range, all OK
3320
3321                     if Lo >= Lov and then Hi <= Hiv then
3322                        return;
3323
3324                     --  If definitely not in range, warn
3325
3326                     elsif Lov > Hi or else Hiv < Lo then
3327
3328                        --  Ignore out of range values for System.Priority in
3329                        --  CodePeer mode since the actual target compiler may
3330                        --  provide a wider range.
3331
3332                        if not CodePeer_Mode
3333                          or else not Is_RTE (Target_Typ, RE_Priority)
3334                        then
3335                           Bad_Value;
3336                        end if;
3337
3338                        return;
3339
3340                     --  Otherwise we don't know
3341
3342                     else
3343                        null;
3344                     end if;
3345                  end if;
3346               end;
3347            end if;
3348         end;
3349      end if;
3350
3351      Int_Real :=
3352        Is_Floating_Point_Type (S_Typ)
3353          or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
3354
3355      --  Check if we can determine at compile time whether Expr is in the
3356      --  range of the target type. Note that if S_Typ is within the bounds
3357      --  of Target_Typ then this must be the case. This check is meaningful
3358      --  only if this is not a conversion between integer and real types,
3359      --  unless for a fixed-point type if Fixed_Int is set.
3360
3361      if not Is_Unconstrained_Subscr_Ref
3362        and then (Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
3363                   or else (Fixed_Int and then Is_Discrete_Type (Target_Typ)))
3364        and then
3365          (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
3366
3367             --  Also check if the expression itself is in the range of the
3368             --  target type if it is a known at compile time value. We skip
3369             --  this test if S_Typ is set since for OUT and IN OUT parameters
3370             --  the Expr itself is not relevant to the checking.
3371
3372             or else
3373               (No (Source_Typ)
3374                  and then Is_In_Range (Expr, Target_Typ,
3375                                        Assume_Valid => True,
3376                                        Fixed_Int    => Fixed_Int,
3377                                        Int_Real     => Int_Real)))
3378      then
3379         return;
3380
3381      elsif Is_Out_Of_Range (Expr, Target_Typ,
3382                             Assume_Valid => True,
3383                             Fixed_Int    => Fixed_Int,
3384                             Int_Real     => Int_Real)
3385      then
3386         Bad_Value;
3387         return;
3388
3389      --  Floating-point case
3390      --  In the floating-point case, we only do range checks if the type is
3391      --  constrained. We definitely do NOT want range checks for unconstrained
3392      --  types, since we want to have infinities, except when
3393      --  Check_Float_Overflow is set.
3394
3395      elsif Is_Floating_Point_Type (S_Typ) then
3396         if Is_Constrained (S_Typ) or else Check_Float_Overflow then
3397            Enable_Range_Check (Expr);
3398         end if;
3399
3400      --  For all other cases we enable a range check unconditionally
3401
3402      else
3403         Enable_Range_Check (Expr);
3404         return;
3405      end if;
3406   end Apply_Scalar_Range_Check;
3407
3408   ----------------------------------
3409   -- Apply_Selected_Length_Checks --
3410   ----------------------------------
3411
3412   procedure Apply_Selected_Length_Checks
3413     (Expr       : Node_Id;
3414      Target_Typ : Entity_Id;
3415      Source_Typ : Entity_Id;
3416      Do_Static  : Boolean)
3417   is
3418      Checks_On : constant Boolean :=
3419                    not Index_Checks_Suppressed (Target_Typ)
3420                      or else
3421                    not Length_Checks_Suppressed (Target_Typ);
3422
3423      Loc : constant Source_Ptr := Sloc (Expr);
3424
3425      Cond     : Node_Id;
3426      R_Cno    : Node_Id;
3427      R_Result : Check_Result;
3428
3429   begin
3430      --  Only apply checks when generating code
3431
3432      --  Note: this means that we lose some useful warnings if the expander
3433      --  is not active.
3434
3435      if not Expander_Active then
3436         return;
3437      end if;
3438
3439      R_Result :=
3440        Selected_Length_Checks (Expr, Target_Typ, Source_Typ, Empty);
3441
3442      for J in 1 .. 2 loop
3443         R_Cno := R_Result (J);
3444         exit when No (R_Cno);
3445
3446         --  A length check may mention an Itype which is attached to a
3447         --  subsequent node. At the top level in a package this can cause
3448         --  an order-of-elaboration problem, so we make sure that the itype
3449         --  is referenced now.
3450
3451         if Ekind (Current_Scope) = E_Package
3452           and then Is_Compilation_Unit (Current_Scope)
3453         then
3454            Ensure_Defined (Target_Typ, Expr);
3455
3456            if Present (Source_Typ) then
3457               Ensure_Defined (Source_Typ, Expr);
3458
3459            elsif Is_Itype (Etype (Expr)) then
3460               Ensure_Defined (Etype (Expr), Expr);
3461            end if;
3462         end if;
3463
3464         --  If the item is a conditional raise of constraint error, then have
3465         --  a look at what check is being performed and ???
3466
3467         if Nkind (R_Cno) = N_Raise_Constraint_Error
3468           and then Present (Condition (R_Cno))
3469         then
3470            Cond := Condition (R_Cno);
3471
3472            --  Case where node does not now have a dynamic check
3473
3474            if not Has_Dynamic_Length_Check (Expr) then
3475
3476               --  If checks are on, just insert the check
3477
3478               if Checks_On then
3479                  Insert_Action (Expr, R_Cno);
3480
3481                  if not Do_Static then
3482                     Set_Has_Dynamic_Length_Check (Expr);
3483                  end if;
3484
3485               --  If checks are off, then analyze the length check after
3486               --  temporarily attaching it to the tree in case the relevant
3487               --  condition can be evaluated at compile time. We still want a
3488               --  compile time warning in this case.
3489
3490               else
3491                  Set_Parent (R_Cno, Expr);
3492                  Analyze (R_Cno);
3493               end if;
3494            end if;
3495
3496            --  Output a warning if the condition is known to be True
3497
3498            if Is_Entity_Name (Cond)
3499              and then Entity (Cond) = Standard_True
3500            then
3501               Apply_Compile_Time_Constraint_Error
3502                 (Expr, "wrong length for array of}??",
3503                  CE_Length_Check_Failed,
3504                  Ent => Target_Typ,
3505                  Typ => Target_Typ);
3506
3507            --  If we were only doing a static check, or if checks are not
3508            --  on, then we want to delete the check, since it is not needed.
3509            --  We do this by replacing the if statement by a null statement
3510
3511            elsif Do_Static or else not Checks_On then
3512               Remove_Warning_Messages (R_Cno);
3513               Rewrite (R_Cno, Make_Null_Statement (Loc));
3514            end if;
3515
3516         else
3517            Install_Static_Check (R_Cno, Loc);
3518         end if;
3519      end loop;
3520   end Apply_Selected_Length_Checks;
3521
3522   -------------------------------
3523   -- Apply_Static_Length_Check --
3524   -------------------------------
3525
3526   procedure Apply_Static_Length_Check
3527     (Expr       : Node_Id;
3528      Target_Typ : Entity_Id;
3529      Source_Typ : Entity_Id := Empty)
3530   is
3531   begin
3532      Apply_Selected_Length_Checks
3533        (Expr, Target_Typ, Source_Typ, Do_Static => True);
3534   end Apply_Static_Length_Check;
3535
3536   -------------------------------------
3537   -- Apply_Subscript_Validity_Checks --
3538   -------------------------------------
3539
3540   procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
3541      Sub : Node_Id;
3542
3543   begin
3544      pragma Assert (Nkind (Expr) = N_Indexed_Component);
3545
3546      --  Loop through subscripts
3547
3548      Sub := First (Expressions (Expr));
3549      while Present (Sub) loop
3550
3551         --  Check one subscript. Note that we do not worry about enumeration
3552         --  type with holes, since we will convert the value to a Pos value
3553         --  for the subscript, and that convert will do the necessary validity
3554         --  check.
3555
3556         Ensure_Valid (Sub, Holes_OK => True);
3557
3558         --  Move to next subscript
3559
3560         Next (Sub);
3561      end loop;
3562   end Apply_Subscript_Validity_Checks;
3563
3564   ----------------------------------
3565   -- Apply_Type_Conversion_Checks --
3566   ----------------------------------
3567
3568   procedure Apply_Type_Conversion_Checks (N : Node_Id) is
3569      Target_Type : constant Entity_Id := Etype (N);
3570      Target_Base : constant Entity_Id := Base_Type (Target_Type);
3571      Expr        : constant Node_Id   := Expression (N);
3572
3573      Expr_Type : constant Entity_Id := Underlying_Type (Etype (Expr));
3574      --  Note: if Etype (Expr) is a private type without discriminants, its
3575      --  full view might have discriminants with defaults, so we need the
3576      --  full view here to retrieve the constraints.
3577
3578   begin
3579      if Inside_A_Generic then
3580         return;
3581
3582      --  Skip these checks if serious errors detected, there are some nasty
3583      --  situations of incomplete trees that blow things up.
3584
3585      elsif Serious_Errors_Detected > 0 then
3586         return;
3587
3588      --  Never generate discriminant checks for Unchecked_Union types
3589
3590      elsif Present (Expr_Type)
3591        and then Is_Unchecked_Union (Expr_Type)
3592      then
3593         return;
3594
3595      --  Scalar type conversions of the form Target_Type (Expr) require a
3596      --  range check if we cannot be sure that Expr is in the base type of
3597      --  Target_Typ and also that Expr is in the range of Target_Typ. These
3598      --  are not quite the same condition from an implementation point of
3599      --  view, but clearly the second includes the first.
3600
3601      elsif Is_Scalar_Type (Target_Type) then
3602         declare
3603            Conv_OK : constant Boolean := Conversion_OK (N);
3604            --  If the Conversion_OK flag on the type conversion is set and no
3605            --  floating-point type is involved in the type conversion then
3606            --  fixed-point values must be read as integral values.
3607
3608            Float_To_Int : constant Boolean :=
3609              Is_Floating_Point_Type (Expr_Type)
3610              and then Is_Integer_Type (Target_Type);
3611
3612         begin
3613            if not Overflow_Checks_Suppressed (Target_Base)
3614              and then not Overflow_Checks_Suppressed (Target_Type)
3615              and then not
3616                In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
3617              and then not Float_To_Int
3618            then
3619               --  A small optimization: the attribute 'Pos applied to an
3620               --  enumeration type has a known range, even though its type is
3621               --  Universal_Integer. So in numeric conversions it is usually
3622               --  within range of the target integer type. Use the static
3623               --  bounds of the base types to check. Disable this optimization
3624               --  in case of a generic formal discrete type, because we don't
3625               --  necessarily know the upper bound yet.
3626
3627               if Nkind (Expr) = N_Attribute_Reference
3628                 and then Attribute_Name (Expr) = Name_Pos
3629                 and then Is_Enumeration_Type (Etype (Prefix (Expr)))
3630                 and then not Is_Generic_Type (Etype (Prefix (Expr)))
3631                 and then Is_Integer_Type (Target_Type)
3632               then
3633                  declare
3634                     Enum_T : constant Entity_Id :=
3635                                Root_Type (Etype (Prefix (Expr)));
3636                     Int_T  : constant Entity_Id := Base_Type (Target_Type);
3637                     Last_I : constant Uint      :=
3638                                Intval (High_Bound (Scalar_Range (Int_T)));
3639                     Last_E : Uint;
3640
3641                  begin
3642                     --  Character types have no explicit literals, so we use
3643                     --  the known number of characters in the type.
3644
3645                     if Root_Type (Enum_T) = Standard_Character then
3646                        Last_E := UI_From_Int (255);
3647
3648                     elsif Enum_T = Standard_Wide_Character
3649                       or else Enum_T = Standard_Wide_Wide_Character
3650                     then
3651                        Last_E := UI_From_Int (65535);
3652
3653                     else
3654                        Last_E :=
3655                          Enumeration_Pos
3656                            (Entity (High_Bound (Scalar_Range (Enum_T))));
3657                     end if;
3658
3659                     if Last_E > Last_I then
3660                        Activate_Overflow_Check (N);
3661                     end if;
3662                  end;
3663               else
3664                  Activate_Overflow_Check (N);
3665               end if;
3666            end if;
3667
3668            if not Range_Checks_Suppressed (Target_Type)
3669              and then not Range_Checks_Suppressed (Expr_Type)
3670            then
3671               if Float_To_Int
3672                 and then not GNATprove_Mode
3673               then
3674                  Apply_Float_Conversion_Check (Expr, Target_Type);
3675               else
3676                  --  Raw conversions involving fixed-point types are expanded
3677                  --  separately and do not need a Range_Check flag yet, except
3678                  --  in GNATprove_Mode where this expansion is not performed.
3679                  --  This does not apply to conversion where fixed-point types
3680                  --  are treated as integers, which are precisely generated by
3681                  --  this expansion.
3682
3683                  if GNATprove_Mode
3684                    or else Conv_OK
3685                    or else (not Is_Fixed_Point_Type (Expr_Type)
3686                              and then not Is_Fixed_Point_Type (Target_Type))
3687                  then
3688                     Apply_Scalar_Range_Check
3689                       (Expr, Target_Type, Fixed_Int => Conv_OK);
3690
3691                  else
3692                     Set_Do_Range_Check (Expr, False);
3693                  end if;
3694
3695                  --  If the target type has predicates, we need to indicate
3696                  --  the need for a check, even if Determine_Range finds that
3697                  --  the value is within bounds. This may be the case e.g for
3698                  --  a division with a constant denominator.
3699
3700                  if Has_Predicates (Target_Type) then
3701                     Enable_Range_Check (Expr);
3702                  end if;
3703               end if;
3704            end if;
3705         end;
3706
3707      elsif Comes_From_Source (N)
3708        and then not Discriminant_Checks_Suppressed (Target_Type)
3709        and then Is_Record_Type (Target_Type)
3710        and then Is_Derived_Type (Target_Type)
3711        and then not Is_Tagged_Type (Target_Type)
3712        and then not Is_Constrained (Target_Type)
3713        and then Present (Stored_Constraint (Target_Type))
3714      then
3715         --  An unconstrained derived type may have inherited discriminant.
3716         --  Build an actual discriminant constraint list using the stored
3717         --  constraint, to verify that the expression of the parent type
3718         --  satisfies the constraints imposed by the (unconstrained) derived
3719         --  type. This applies to value conversions, not to view conversions
3720         --  of tagged types.
3721
3722         declare
3723            Loc         : constant Source_Ptr := Sloc (N);
3724            Cond        : Node_Id;
3725            Constraint  : Elmt_Id;
3726            Discr_Value : Node_Id;
3727            Discr       : Entity_Id;
3728
3729            New_Constraints : constant Elist_Id := New_Elmt_List;
3730            Old_Constraints : constant Elist_Id :=
3731              Discriminant_Constraint (Expr_Type);
3732
3733         begin
3734            Constraint := First_Elmt (Stored_Constraint (Target_Type));
3735            while Present (Constraint) loop
3736               Discr_Value := Node (Constraint);
3737
3738               if Is_Entity_Name (Discr_Value)
3739                 and then Ekind (Entity (Discr_Value)) = E_Discriminant
3740               then
3741                  Discr := Corresponding_Discriminant (Entity (Discr_Value));
3742
3743                  if Present (Discr)
3744                    and then Scope (Discr) = Base_Type (Expr_Type)
3745                  then
3746                     --  Parent is constrained by new discriminant. Obtain
3747                     --  Value of original discriminant in expression. If the
3748                     --  new discriminant has been used to constrain more than
3749                     --  one of the stored discriminants, this will provide the
3750                     --  required consistency check.
3751
3752                     Append_Elmt
3753                       (Make_Selected_Component (Loc,
3754                          Prefix        =>
3755                            Duplicate_Subexpr_No_Checks
3756                              (Expr, Name_Req => True),
3757                          Selector_Name =>
3758                            Make_Identifier (Loc, Chars (Discr))),
3759                        New_Constraints);
3760
3761                  else
3762                     --  Discriminant of more remote ancestor ???
3763
3764                     return;
3765                  end if;
3766
3767               --  Derived type definition has an explicit value for this
3768               --  stored discriminant.
3769
3770               else
3771                  Append_Elmt
3772                    (Duplicate_Subexpr_No_Checks (Discr_Value),
3773                     New_Constraints);
3774               end if;
3775
3776               Next_Elmt (Constraint);
3777            end loop;
3778
3779            --  Use the unconstrained expression type to retrieve the
3780            --  discriminants of the parent, and apply momentarily the
3781            --  discriminant constraint synthesized above.
3782
3783            Set_Discriminant_Constraint (Expr_Type, New_Constraints);
3784            Cond := Build_Discriminant_Checks (Expr, Expr_Type);
3785            Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
3786
3787            Insert_Action (N,
3788              Make_Raise_Constraint_Error (Loc,
3789                Condition => Cond,
3790                Reason    => CE_Discriminant_Check_Failed));
3791         end;
3792
3793      --  For arrays, checks are set now, but conversions are applied during
3794      --  expansion, to take into accounts changes of representation. The
3795      --  checks become range checks on the base type or length checks on the
3796      --  subtype, depending on whether the target type is unconstrained or
3797      --  constrained. Note that the range check is put on the expression of a
3798      --  type conversion, while the length check is put on the type conversion
3799      --  itself.
3800
3801      elsif Is_Array_Type (Target_Type) then
3802         if Is_Constrained (Target_Type) then
3803            Set_Do_Length_Check (N);
3804         else
3805            Set_Do_Range_Check (Expr);
3806         end if;
3807      end if;
3808   end Apply_Type_Conversion_Checks;
3809
3810   ----------------------------------------------
3811   -- Apply_Universal_Integer_Attribute_Checks --
3812   ----------------------------------------------
3813
3814   procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
3815      Loc : constant Source_Ptr := Sloc (N);
3816      Typ : constant Entity_Id  := Etype (N);
3817
3818   begin
3819      if Inside_A_Generic then
3820         return;
3821
3822      --  Nothing to do if the result type is universal integer
3823
3824      elsif Typ = Universal_Integer then
3825         return;
3826
3827      --  Nothing to do if checks are suppressed
3828
3829      elsif Range_Checks_Suppressed (Typ)
3830        and then Overflow_Checks_Suppressed (Typ)
3831      then
3832         return;
3833
3834      --  Nothing to do if the attribute does not come from source. The
3835      --  internal attributes we generate of this type do not need checks,
3836      --  and furthermore the attempt to check them causes some circular
3837      --  elaboration orders when dealing with packed types.
3838
3839      elsif not Comes_From_Source (N) then
3840         return;
3841
3842      --  If the prefix is a selected component that depends on a discriminant
3843      --  the check may improperly expose a discriminant instead of using
3844      --  the bounds of the object itself. Set the type of the attribute to
3845      --  the base type of the context, so that a check will be imposed when
3846      --  needed (e.g. if the node appears as an index).
3847
3848      elsif Nkind (Prefix (N)) = N_Selected_Component
3849        and then Ekind (Typ) = E_Signed_Integer_Subtype
3850        and then Depends_On_Discriminant (Scalar_Range (Typ))
3851      then
3852         Set_Etype (N, Base_Type (Typ));
3853
3854      --  Otherwise, replace the attribute node with a type conversion node
3855      --  whose expression is the attribute, retyped to universal integer, and
3856      --  whose subtype mark is the target type. The call to analyze this
3857      --  conversion will set range and overflow checks as required for proper
3858      --  detection of an out of range value.
3859
3860      else
3861         Set_Etype    (N, Universal_Integer);
3862         Set_Analyzed (N, True);
3863
3864         Rewrite (N,
3865           Make_Type_Conversion (Loc,
3866             Subtype_Mark => New_Occurrence_Of (Typ, Loc),
3867             Expression   => Relocate_Node (N)));
3868
3869         Analyze_And_Resolve (N, Typ);
3870         return;
3871      end if;
3872   end Apply_Universal_Integer_Attribute_Checks;
3873
3874   -------------------------------------
3875   -- Atomic_Synchronization_Disabled --
3876   -------------------------------------
3877
3878   --  Note: internally Disable/Enable_Atomic_Synchronization is implemented
3879   --  using a bogus check called Atomic_Synchronization. This is to make it
3880   --  more convenient to get exactly the same semantics as [Un]Suppress.
3881
3882   function Atomic_Synchronization_Disabled (E : Entity_Id) return Boolean is
3883   begin
3884      --  If debug flag d.e is set, always return False, i.e. all atomic sync
3885      --  looks enabled, since it is never disabled.
3886
3887      if Debug_Flag_Dot_E then
3888         return False;
3889
3890      --  If debug flag d.d is set then always return True, i.e. all atomic
3891      --  sync looks disabled, since it always tests True.
3892
3893      elsif Debug_Flag_Dot_D then
3894         return True;
3895
3896      --  If entity present, then check result for that entity
3897
3898      elsif Present (E) and then Checks_May_Be_Suppressed (E) then
3899         return Is_Check_Suppressed (E, Atomic_Synchronization);
3900
3901      --  Otherwise result depends on current scope setting
3902
3903      else
3904         return Scope_Suppress.Suppress (Atomic_Synchronization);
3905      end if;
3906   end Atomic_Synchronization_Disabled;
3907
3908   -------------------------------
3909   -- Build_Discriminant_Checks --
3910   -------------------------------
3911
3912   function Build_Discriminant_Checks
3913     (N     : Node_Id;
3914      T_Typ : Entity_Id) return Node_Id
3915   is
3916      Loc      : constant Source_Ptr := Sloc (N);
3917      Cond     : Node_Id;
3918      Disc     : Elmt_Id;
3919      Disc_Ent : Entity_Id;
3920      Dref     : Node_Id;
3921      Dval     : Node_Id;
3922
3923      function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
3924
3925      function Replace_Current_Instance
3926        (N : Node_Id) return Traverse_Result;
3927      --  Replace a reference to the current instance of the type with the
3928      --  corresponding _init formal of the initialization procedure. Note:
3929      --  this function relies on us currently being within the initialization
3930      --  procedure.
3931
3932      --------------------------------
3933      -- Aggregate_Discriminant_Val --
3934      --------------------------------
3935
3936      function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
3937         Assoc : Node_Id;
3938
3939      begin
3940         --  The aggregate has been normalized with named associations. We use
3941         --  the Chars field to locate the discriminant to take into account
3942         --  discriminants in derived types, which carry the same name as those
3943         --  in the parent.
3944
3945         Assoc := First (Component_Associations (N));
3946         while Present (Assoc) loop
3947            if Chars (First (Choices (Assoc))) = Chars (Disc) then
3948               return Expression (Assoc);
3949            else
3950               Next (Assoc);
3951            end if;
3952         end loop;
3953
3954         --  Discriminant must have been found in the loop above
3955
3956         raise Program_Error;
3957      end Aggregate_Discriminant_Val;
3958
3959      ------------------------------
3960      -- Replace_Current_Instance --
3961      ------------------------------
3962
3963      function Replace_Current_Instance
3964        (N : Node_Id) return Traverse_Result is
3965      begin
3966         if Is_Entity_Name (N)
3967           and then Etype (N) = Entity (N)
3968         then
3969            Rewrite (N,
3970              New_Occurrence_Of (First_Formal (Current_Subprogram), Loc));
3971         end if;
3972
3973         return OK;
3974      end Replace_Current_Instance;
3975
3976      procedure Search_And_Replace_Current_Instance is new
3977        Traverse_Proc (Replace_Current_Instance);
3978
3979   --  Start of processing for Build_Discriminant_Checks
3980
3981   begin
3982      --  Loop through discriminants evolving the condition
3983
3984      Cond := Empty;
3985      Disc := First_Elmt (Discriminant_Constraint (T_Typ));
3986
3987      --  For a fully private type, use the discriminants of the parent type
3988
3989      if Is_Private_Type (T_Typ)
3990        and then No (Full_View (T_Typ))
3991      then
3992         Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
3993      else
3994         Disc_Ent := First_Discriminant (T_Typ);
3995      end if;
3996
3997      while Present (Disc) loop
3998         Dval := Node (Disc);
3999
4000         if Nkind (Dval) = N_Identifier
4001           and then Ekind (Entity (Dval)) = E_Discriminant
4002         then
4003            Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
4004         else
4005            Dval := Duplicate_Subexpr_No_Checks (Dval);
4006         end if;
4007
4008         --  Replace references to the current instance of the type with the
4009         --  corresponding _init formal of the initialization procedure.
4010
4011         if Within_Init_Proc then
4012            Search_And_Replace_Current_Instance (Dval);
4013         end if;
4014
4015         --  If we have an Unchecked_Union node, we can infer the discriminants
4016         --  of the node.
4017
4018         if Is_Unchecked_Union (Base_Type (T_Typ)) then
4019            Dref := New_Copy (
4020              Get_Discriminant_Value (
4021                First_Discriminant (T_Typ),
4022                T_Typ,
4023                Stored_Constraint (T_Typ)));
4024
4025         elsif Nkind (N) = N_Aggregate then
4026            Dref :=
4027               Duplicate_Subexpr_No_Checks
4028                 (Aggregate_Discriminant_Val (Disc_Ent));
4029
4030         elsif Is_Access_Type (Etype (N)) then
4031            Dref :=
4032              Make_Selected_Component (Loc,
4033                Prefix        =>
4034                  Make_Explicit_Dereference (Loc,
4035                    Duplicate_Subexpr_No_Checks (N, Name_Req => True)),
4036                Selector_Name => Make_Identifier (Loc, Chars (Disc_Ent)));
4037
4038            Set_Is_In_Discriminant_Check (Dref);
4039         else
4040            Dref :=
4041              Make_Selected_Component (Loc,
4042                Prefix        =>
4043                  Duplicate_Subexpr_No_Checks (N, Name_Req => True),
4044                Selector_Name => Make_Identifier (Loc, Chars (Disc_Ent)));
4045
4046            Set_Is_In_Discriminant_Check (Dref);
4047         end if;
4048
4049         Evolve_Or_Else (Cond,
4050           Make_Op_Ne (Loc,
4051             Left_Opnd  => Dref,
4052             Right_Opnd => Dval));
4053
4054         Next_Elmt (Disc);
4055         Next_Discriminant (Disc_Ent);
4056      end loop;
4057
4058      return Cond;
4059   end Build_Discriminant_Checks;
4060
4061   ------------------
4062   -- Check_Needed --
4063   ------------------
4064
4065   function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
4066      N : Node_Id;
4067      P : Node_Id;
4068      K : Node_Kind;
4069      L : Node_Id;
4070      R : Node_Id;
4071
4072      function Left_Expression (Op : Node_Id) return Node_Id;
4073      --  Return the relevant expression from the left operand of the given
4074      --  short circuit form: this is LO itself, except if LO is a qualified
4075      --  expression, a type conversion, or an expression with actions, in
4076      --  which case this is Left_Expression (Expression (LO)).
4077
4078      ---------------------
4079      -- Left_Expression --
4080      ---------------------
4081
4082      function Left_Expression (Op : Node_Id) return Node_Id is
4083         LE : Node_Id := Left_Opnd (Op);
4084      begin
4085         while Nkind (LE) in N_Qualified_Expression
4086                           | N_Type_Conversion
4087                           | N_Expression_With_Actions
4088         loop
4089            LE := Expression (LE);
4090         end loop;
4091
4092         return LE;
4093      end Left_Expression;
4094
4095   --  Start of processing for Check_Needed
4096
4097   begin
4098      --  Always check if not simple entity
4099
4100      if Nkind (Nod) not in N_Has_Entity
4101        or else not Comes_From_Source (Nod)
4102      then
4103         return True;
4104      end if;
4105
4106      --  Look up tree for short circuit
4107
4108      N := Nod;
4109      loop
4110         P := Parent (N);
4111         K := Nkind (P);
4112
4113         --  Done if out of subexpression (note that we allow generated stuff
4114         --  such as itype declarations in this context, to keep the loop going
4115         --  since we may well have generated such stuff in complex situations.
4116         --  Also done if no parent (probably an error condition, but no point
4117         --  in behaving nasty if we find it).
4118
4119         if No (P)
4120           or else (K not in N_Subexpr and then Comes_From_Source (P))
4121         then
4122            return True;
4123
4124         --  Or/Or Else case, where test is part of the right operand, or is
4125         --  part of one of the actions associated with the right operand, and
4126         --  the left operand is an equality test.
4127
4128         elsif K = N_Op_Or then
4129            exit when N = Right_Opnd (P)
4130              and then Nkind (Left_Expression (P)) = N_Op_Eq;
4131
4132         elsif K = N_Or_Else then
4133            exit when (N = Right_Opnd (P)
4134                        or else
4135                          (Is_List_Member (N)
4136                             and then List_Containing (N) = Actions (P)))
4137              and then Nkind (Left_Expression (P)) = N_Op_Eq;
4138
4139         --  Similar test for the And/And then case, where the left operand
4140         --  is an inequality test.
4141
4142         elsif K = N_Op_And then
4143            exit when N = Right_Opnd (P)
4144              and then Nkind (Left_Expression (P)) = N_Op_Ne;
4145
4146         elsif K = N_And_Then then
4147            exit when (N = Right_Opnd (P)
4148                        or else
4149                          (Is_List_Member (N)
4150                            and then List_Containing (N) = Actions (P)))
4151              and then Nkind (Left_Expression (P)) = N_Op_Ne;
4152         end if;
4153
4154         N := P;
4155      end loop;
4156
4157      --  If we fall through the loop, then we have a conditional with an
4158      --  appropriate test as its left operand, so look further.
4159
4160      L := Left_Expression (P);
4161
4162      --  L is an "=" or "/=" operator: extract its operands
4163
4164      R := Right_Opnd (L);
4165      L := Left_Opnd (L);
4166
4167      --  Left operand of test must match original variable
4168
4169      if Nkind (L) not in N_Has_Entity or else Entity (L) /= Entity (Nod) then
4170         return True;
4171      end if;
4172
4173      --  Right operand of test must be key value (zero or null)
4174
4175      case Check is
4176         when Access_Check =>
4177            if not Known_Null (R) then
4178               return True;
4179            end if;
4180
4181         when Division_Check =>
4182            if not Compile_Time_Known_Value (R)
4183              or else Expr_Value (R) /= Uint_0
4184            then
4185               return True;
4186            end if;
4187
4188         when others =>
4189            raise Program_Error;
4190      end case;
4191
4192      --  Here we have the optimizable case, warn if not short-circuited
4193
4194      if K = N_Op_And or else K = N_Op_Or then
4195         Error_Msg_Warn := SPARK_Mode /= On;
4196
4197         case Check is
4198            when Access_Check =>
4199               if GNATprove_Mode then
4200                  Error_Msg_N
4201                    ("Constraint_Error might have been raised (access check)",
4202                     Parent (Nod));
4203               else
4204                  Error_Msg_N
4205                    ("Constraint_Error may be raised (access check)??",
4206                     Parent (Nod));
4207               end if;
4208
4209            when Division_Check =>
4210               if GNATprove_Mode then
4211                  Error_Msg_N
4212                    ("Constraint_Error might have been raised (zero divide)",
4213                     Parent (Nod));
4214               else
4215                  Error_Msg_N
4216                    ("Constraint_Error may be raised (zero divide)??",
4217                     Parent (Nod));
4218               end if;
4219
4220            when others =>
4221               raise Program_Error;
4222         end case;
4223
4224         if K = N_Op_And then
4225            Error_Msg_N -- CODEFIX
4226              ("use `AND THEN` instead of AND??", P);
4227         else
4228            Error_Msg_N -- CODEFIX
4229              ("use `OR ELSE` instead of OR??", P);
4230         end if;
4231
4232         --  If not short-circuited, we need the check
4233
4234         return True;
4235
4236      --  If short-circuited, we can omit the check
4237
4238      else
4239         return False;
4240      end if;
4241   end Check_Needed;
4242
4243   -----------------------------------
4244   -- Check_Valid_Lvalue_Subscripts --
4245   -----------------------------------
4246
4247   procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
4248   begin
4249      --  Skip this if range checks are suppressed
4250
4251      if Range_Checks_Suppressed (Etype (Expr)) then
4252         return;
4253
4254      --  Only do this check for expressions that come from source. We assume
4255      --  that expander generated assignments explicitly include any necessary
4256      --  checks. Note that this is not just an optimization, it avoids
4257      --  infinite recursions.
4258
4259      elsif not Comes_From_Source (Expr) then
4260         return;
4261
4262      --  For a selected component, check the prefix
4263
4264      elsif Nkind (Expr) = N_Selected_Component then
4265         Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4266         return;
4267
4268      --  Case of indexed component
4269
4270      elsif Nkind (Expr) = N_Indexed_Component then
4271         Apply_Subscript_Validity_Checks (Expr);
4272
4273         --  Prefix may itself be or contain an indexed component, and these
4274         --  subscripts need checking as well.
4275
4276         Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4277      end if;
4278   end Check_Valid_Lvalue_Subscripts;
4279
4280   ----------------------------------
4281   -- Null_Exclusion_Static_Checks --
4282   ----------------------------------
4283
4284   procedure Null_Exclusion_Static_Checks
4285     (N          : Node_Id;
4286      Comp       : Node_Id := Empty;
4287      Array_Comp : Boolean := False)
4288   is
4289      Has_Null  : constant Boolean   := Has_Null_Exclusion (N);
4290      Kind      : constant Node_Kind := Nkind (N);
4291      Error_Nod : Node_Id;
4292      Expr      : Node_Id;
4293      Typ       : Entity_Id;
4294
4295   begin
4296      pragma Assert
4297        (Kind in N_Component_Declaration
4298               | N_Discriminant_Specification
4299               | N_Function_Specification
4300               | N_Object_Declaration
4301               | N_Parameter_Specification);
4302
4303      if Kind = N_Function_Specification then
4304         Typ := Etype (Defining_Entity (N));
4305      else
4306         Typ := Etype (Defining_Identifier (N));
4307      end if;
4308
4309      case Kind is
4310         when N_Component_Declaration =>
4311            if Present (Access_Definition (Component_Definition (N))) then
4312               Error_Nod := Component_Definition (N);
4313            else
4314               Error_Nod := Subtype_Indication (Component_Definition (N));
4315            end if;
4316
4317         when N_Discriminant_Specification =>
4318            Error_Nod := Discriminant_Type (N);
4319
4320         when N_Function_Specification =>
4321            Error_Nod := Result_Definition (N);
4322
4323         when N_Object_Declaration =>
4324            Error_Nod := Object_Definition (N);
4325
4326         when N_Parameter_Specification =>
4327            Error_Nod := Parameter_Type (N);
4328
4329         when others =>
4330            raise Program_Error;
4331      end case;
4332
4333      if Has_Null then
4334
4335         --  Enforce legality rule 3.10 (13): A null exclusion can only be
4336         --  applied to an access [sub]type.
4337
4338         if not Is_Access_Type (Typ) then
4339            Error_Msg_N
4340              ("`NOT NULL` allowed only for an access type", Error_Nod);
4341
4342         --  Enforce legality rule RM 3.10(14/1): A null exclusion can only
4343         --  be applied to a [sub]type that does not exclude null already.
4344
4345         elsif Can_Never_Be_Null (Typ) and then Comes_From_Source (Typ) then
4346            Error_Msg_NE
4347              ("`NOT NULL` not allowed (& already excludes null)",
4348               Error_Nod, Typ);
4349         end if;
4350      end if;
4351
4352      --  Check that null-excluding objects are always initialized, except for
4353      --  deferred constants, for which the expression will appear in the full
4354      --  declaration.
4355
4356      if Kind = N_Object_Declaration
4357        and then No (Expression (N))
4358        and then not Constant_Present (N)
4359        and then not No_Initialization (N)
4360      then
4361         if Present (Comp) then
4362
4363            --  Specialize the warning message to indicate that we are dealing
4364            --  with an uninitialized composite object that has a defaulted
4365            --  null-excluding component.
4366
4367            Error_Msg_Name_1 := Chars (Defining_Identifier (Comp));
4368            Error_Msg_Name_2 := Chars (Defining_Identifier (N));
4369
4370            Discard_Node
4371              (Compile_Time_Constraint_Error
4372                 (N      => N,
4373                  Msg    =>
4374                    "(Ada 2005) null-excluding component % of object % must "
4375                    & "be initialized??",
4376                  Ent => Defining_Identifier (Comp)));
4377
4378         --  This is a case of an array with null-excluding components, so
4379         --  indicate that in the warning.
4380
4381         elsif Array_Comp then
4382            Discard_Node
4383              (Compile_Time_Constraint_Error
4384                 (N      => N,
4385                  Msg    =>
4386                    "(Ada 2005) null-excluding array components must "
4387                    & "be initialized??",
4388                  Ent => Defining_Identifier (N)));
4389
4390         --  Normal case of object of a null-excluding access type
4391
4392         else
4393            --  Add an expression that assigns null. This node is needed by
4394            --  Apply_Compile_Time_Constraint_Error, which will replace this
4395            --  with a Constraint_Error node.
4396
4397            Set_Expression (N, Make_Null (Sloc (N)));
4398            Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
4399
4400            Apply_Compile_Time_Constraint_Error
4401              (N      => Expression (N),
4402               Msg    =>
4403                 "(Ada 2005) null-excluding objects must be initialized??",
4404               Reason => CE_Null_Not_Allowed);
4405         end if;
4406      end if;
4407
4408      --  Check that a null-excluding component, formal or object is not being
4409      --  assigned a null value. Otherwise generate a warning message and
4410      --  replace Expression (N) by an N_Constraint_Error node.
4411
4412      if Kind /= N_Function_Specification then
4413         Expr := Expression (N);
4414
4415         if Present (Expr) and then Known_Null (Expr) then
4416            case Kind is
4417               when N_Component_Declaration
4418                  | N_Discriminant_Specification
4419               =>
4420                  Apply_Compile_Time_Constraint_Error
4421                    (N      => Expr,
4422                     Msg    =>
4423                       "(Ada 2005) NULL not allowed in null-excluding "
4424                       & "components??",
4425                     Reason => CE_Null_Not_Allowed);
4426
4427               when N_Object_Declaration =>
4428                  Apply_Compile_Time_Constraint_Error
4429                    (N      => Expr,
4430                     Msg    =>
4431                       "(Ada 2005) NULL not allowed in null-excluding "
4432                       & "objects??",
4433                     Reason => CE_Null_Not_Allowed);
4434
4435               when N_Parameter_Specification =>
4436                  Apply_Compile_Time_Constraint_Error
4437                    (N      => Expr,
4438                     Msg    =>
4439                       "(Ada 2005) NULL not allowed in null-excluding "
4440                       & "formals??",
4441                     Reason => CE_Null_Not_Allowed);
4442
4443               when others =>
4444                  null;
4445            end case;
4446         end if;
4447      end if;
4448   end Null_Exclusion_Static_Checks;
4449
4450   -------------------------------------
4451   -- Compute_Range_For_Arithmetic_Op --
4452   -------------------------------------
4453
4454   procedure Compute_Range_For_Arithmetic_Op
4455     (Op       : Node_Kind;
4456      Lo_Left  : Uint;
4457      Hi_Left  : Uint;
4458      Lo_Right : Uint;
4459      Hi_Right : Uint;
4460      OK       : out Boolean;
4461      Lo       : out Uint;
4462      Hi       : out Uint)
4463   is
4464      --  Use local variables for possible adjustments
4465
4466      Llo : Uint renames Lo_Left;
4467      Lhi : Uint renames Hi_Left;
4468      Rlo : Uint := Lo_Right;
4469      Rhi : Uint := Hi_Right;
4470
4471   begin
4472      --  We will compute a range for the result in almost all cases
4473
4474      OK := True;
4475
4476      case Op is
4477
4478         --  Absolute value
4479
4480         when N_Op_Abs =>
4481            Lo := Uint_0;
4482            Hi := UI_Max (abs Rlo, abs Rhi);
4483
4484         --  Addition
4485
4486         when N_Op_Add =>
4487            Lo := Llo + Rlo;
4488            Hi := Lhi + Rhi;
4489
4490         --  Division
4491
4492         when N_Op_Divide =>
4493
4494            --  If the right operand can only be zero, set 0..0
4495
4496            if Rlo = 0 and then Rhi = 0 then
4497               Lo := Uint_0;
4498               Hi := Uint_0;
4499
4500            --  Possible bounds of division must come from dividing end
4501            --  values of the input ranges (four possibilities), provided
4502            --  zero is not included in the possible values of the right
4503            --  operand.
4504
4505            --  Otherwise, we just consider two intervals of values for
4506            --  the right operand: the interval of negative values (up to
4507            --  -1) and the interval of positive values (starting at 1).
4508            --  Since division by 1 is the identity, and division by -1
4509            --  is negation, we get all possible bounds of division in that
4510            --  case by considering:
4511            --    - all values from the division of end values of input
4512            --      ranges;
4513            --    - the end values of the left operand;
4514            --    - the negation of the end values of the left operand.
4515
4516            else
4517               declare
4518                  Mrk : constant Uintp.Save_Mark := Mark;
4519                  --  Mark so we can release the RR and Ev values
4520
4521                  Ev1 : Uint;
4522                  Ev2 : Uint;
4523                  Ev3 : Uint;
4524                  Ev4 : Uint;
4525
4526               begin
4527                  --  Discard extreme values of zero for the divisor, since
4528                  --  they will simply result in an exception in any case.
4529
4530                  if Rlo = 0 then
4531                     Rlo := Uint_1;
4532                  elsif Rhi = 0 then
4533                     Rhi := -Uint_1;
4534                  end if;
4535
4536                  --  Compute possible bounds coming from dividing end
4537                  --  values of the input ranges.
4538
4539                  Ev1 := Llo / Rlo;
4540                  Ev2 := Llo / Rhi;
4541                  Ev3 := Lhi / Rlo;
4542                  Ev4 := Lhi / Rhi;
4543
4544                  Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
4545                  Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
4546
4547                  --  If the right operand can be both negative or positive,
4548                  --  include the end values of the left operand in the
4549                  --  extreme values, as well as their negation.
4550
4551                  if Rlo < 0 and then Rhi > 0 then
4552                     Ev1 := Llo;
4553                     Ev2 := -Llo;
4554                     Ev3 := Lhi;
4555                     Ev4 := -Lhi;
4556
4557                     Lo := UI_Min (Lo,
4558                             UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4)));
4559                     Hi := UI_Max (Hi,
4560                             UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4)));
4561                  end if;
4562
4563                  --  Release the RR and Ev values
4564
4565                  Release_And_Save (Mrk, Lo, Hi);
4566               end;
4567            end if;
4568
4569         --  Exponentiation
4570
4571         when N_Op_Expon =>
4572
4573            --  Discard negative values for the exponent, since they will
4574            --  simply result in an exception in any case.
4575
4576            if Rhi < 0 then
4577               Rhi := Uint_0;
4578            elsif Rlo < 0 then
4579               Rlo := Uint_0;
4580            end if;
4581
4582            --  Estimate number of bits in result before we go computing
4583            --  giant useless bounds. Basically the number of bits in the
4584            --  result is the number of bits in the base multiplied by the
4585            --  value of the exponent. If this is big enough that the result
4586            --  definitely won't fit in Long_Long_Integer, return immediately
4587            --  and avoid computing giant bounds.
4588
4589            --  The comparison here is approximate, but conservative, it
4590            --  only clicks on cases that are sure to exceed the bounds.
4591
4592            if Num_Bits (UI_Max (abs Llo, abs Lhi)) * Rhi + 1 > 100 then
4593               Lo := No_Uint;
4594               Hi := No_Uint;
4595               OK := False;
4596               return;
4597
4598            --  If right operand is zero then result is 1
4599
4600            elsif Rhi = 0 then
4601               Lo := Uint_1;
4602               Hi := Uint_1;
4603
4604            else
4605               --  High bound comes either from exponentiation of largest
4606               --  positive value to largest exponent value, or from
4607               --  the exponentiation of most negative value to an
4608               --  even exponent.
4609
4610               declare
4611                  Hi1, Hi2 : Uint;
4612
4613               begin
4614                  if Lhi > 0 then
4615                     Hi1 := Lhi ** Rhi;
4616                  else
4617                     Hi1 := Uint_0;
4618                  end if;
4619
4620                  if Llo < 0 then
4621                     if Rhi mod 2 = 0 then
4622                        Hi2 := Llo ** Rhi;
4623                     else
4624                        Hi2 := Llo ** (Rhi - 1);
4625                     end if;
4626                  else
4627                     Hi2 := Uint_0;
4628                  end if;
4629
4630                  Hi := UI_Max (Hi1, Hi2);
4631               end;
4632
4633               --  Result can only be negative if base can be negative
4634
4635               if Llo < 0 then
4636                  if Rhi mod 2 = 0 then
4637                     Lo := Llo ** (Rhi - 1);
4638                  else
4639                     Lo := Llo ** Rhi;
4640                  end if;
4641
4642               --  Otherwise low bound is minimum ** minimum
4643
4644               else
4645                  Lo := Llo ** Rlo;
4646               end if;
4647            end if;
4648
4649         --  Negation
4650
4651         when N_Op_Minus =>
4652            Lo := -Rhi;
4653            Hi := -Rlo;
4654
4655         --  Mod
4656
4657         when N_Op_Mod =>
4658            declare
4659               Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
4660               --  This is the maximum absolute value of the result
4661
4662            begin
4663               Lo := Uint_0;
4664               Hi := Uint_0;
4665
4666               --  The result depends only on the sign and magnitude of
4667               --  the right operand, it does not depend on the sign or
4668               --  magnitude of the left operand.
4669
4670               if Rlo < 0 then
4671                  Lo := -Maxabs;
4672               end if;
4673
4674               if Rhi > 0 then
4675                  Hi := Maxabs;
4676               end if;
4677            end;
4678
4679         --  Multiplication
4680
4681         when N_Op_Multiply =>
4682
4683            --  Possible bounds of multiplication must come from multiplying
4684            --  end values of the input ranges (four possibilities).
4685
4686            declare
4687               Mrk : constant Uintp.Save_Mark := Mark;
4688               --  Mark so we can release the Ev values
4689
4690               Ev1 : constant Uint := Llo * Rlo;
4691               Ev2 : constant Uint := Llo * Rhi;
4692               Ev3 : constant Uint := Lhi * Rlo;
4693               Ev4 : constant Uint := Lhi * Rhi;
4694
4695            begin
4696               Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
4697               Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
4698
4699               --  Release the Ev values
4700
4701               Release_And_Save (Mrk, Lo, Hi);
4702            end;
4703
4704         --  Plus operator (affirmation)
4705
4706         when N_Op_Plus =>
4707            Lo := Rlo;
4708            Hi := Rhi;
4709
4710         --  Remainder
4711
4712         when N_Op_Rem =>
4713            declare
4714               Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
4715               --  This is the maximum absolute value of the result. Note
4716               --  that the result range does not depend on the sign of the
4717               --  right operand.
4718
4719            begin
4720               Lo := Uint_0;
4721               Hi := Uint_0;
4722
4723               --  Case of left operand negative, which results in a range
4724               --  of -Maxabs .. 0 for those negative values. If there are
4725               --  no negative values then Lo value of result is always 0.
4726
4727               if Llo < 0 then
4728                  Lo := -Maxabs;
4729               end if;
4730
4731               --  Case of left operand positive
4732
4733               if Lhi > 0 then
4734                  Hi := Maxabs;
4735               end if;
4736            end;
4737
4738         --  Subtract
4739
4740         when N_Op_Subtract =>
4741            Lo := Llo - Rhi;
4742            Hi := Lhi - Rlo;
4743
4744         --  Nothing else should be possible
4745
4746         when others =>
4747            raise Program_Error;
4748      end case;
4749   end Compute_Range_For_Arithmetic_Op;
4750
4751   ----------------------------------
4752   -- Conditional_Statements_Begin --
4753   ----------------------------------
4754
4755   procedure Conditional_Statements_Begin is
4756   begin
4757      Saved_Checks_TOS := Saved_Checks_TOS + 1;
4758
4759      --  If stack overflows, kill all checks, that way we know to simply reset
4760      --  the number of saved checks to zero on return. This should never occur
4761      --  in practice.
4762
4763      if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4764         Kill_All_Checks;
4765
4766      --  In the normal case, we just make a new stack entry saving the current
4767      --  number of saved checks for a later restore.
4768
4769      else
4770         Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
4771
4772         if Debug_Flag_CC then
4773            w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
4774               Num_Saved_Checks);
4775         end if;
4776      end if;
4777   end Conditional_Statements_Begin;
4778
4779   --------------------------------
4780   -- Conditional_Statements_End --
4781   --------------------------------
4782
4783   procedure Conditional_Statements_End is
4784   begin
4785      pragma Assert (Saved_Checks_TOS > 0);
4786
4787      --  If the saved checks stack overflowed, then we killed all checks, so
4788      --  setting the number of saved checks back to zero is correct. This
4789      --  should never occur in practice.
4790
4791      if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4792         Num_Saved_Checks := 0;
4793
4794      --  In the normal case, restore the number of saved checks from the top
4795      --  stack entry.
4796
4797      else
4798         Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
4799
4800         if Debug_Flag_CC then
4801            w ("Conditional_Statements_End: Num_Saved_Checks = ",
4802               Num_Saved_Checks);
4803         end if;
4804      end if;
4805
4806      Saved_Checks_TOS := Saved_Checks_TOS - 1;
4807   end Conditional_Statements_End;
4808
4809   -------------------------
4810   -- Convert_From_Bignum --
4811   -------------------------
4812
4813   function Convert_From_Bignum (N : Node_Id) return Node_Id is
4814      Loc : constant Source_Ptr := Sloc (N);
4815
4816   begin
4817      pragma Assert (Is_RTE (Etype (N), RE_Bignum));
4818
4819      --  Construct call From Bignum
4820
4821      return
4822        Make_Function_Call (Loc,
4823          Name                   =>
4824            New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
4825          Parameter_Associations => New_List (Relocate_Node (N)));
4826   end Convert_From_Bignum;
4827
4828   -----------------------
4829   -- Convert_To_Bignum --
4830   -----------------------
4831
4832   function Convert_To_Bignum (N : Node_Id) return Node_Id is
4833      Loc : constant Source_Ptr := Sloc (N);
4834
4835   begin
4836      --  Nothing to do if Bignum already except call Relocate_Node
4837
4838      if Is_RTE (Etype (N), RE_Bignum) then
4839         return Relocate_Node (N);
4840
4841      --  Otherwise construct call to To_Bignum, converting the operand to the
4842      --  required Long_Long_Integer form.
4843
4844      else
4845         pragma Assert (Is_Signed_Integer_Type (Etype (N)));
4846         return
4847           Make_Function_Call (Loc,
4848             Name                   =>
4849               New_Occurrence_Of (RTE (RE_To_Bignum), Loc),
4850             Parameter_Associations => New_List (
4851               Convert_To (Standard_Long_Long_Integer, Relocate_Node (N))));
4852      end if;
4853   end Convert_To_Bignum;
4854
4855   ---------------------
4856   -- Determine_Range --
4857   ---------------------
4858
4859   Cache_Size : constant := 2 ** 10;
4860   type Cache_Index is range 0 .. Cache_Size - 1;
4861   --  Determine size of below cache (power of 2 is more efficient)
4862
4863   Determine_Range_Cache_N    : array (Cache_Index) of Node_Id;
4864   Determine_Range_Cache_O    : array (Cache_Index) of Node_Id;
4865   Determine_Range_Cache_V    : array (Cache_Index) of Boolean;
4866   Determine_Range_Cache_Lo   : array (Cache_Index) of Uint;
4867   Determine_Range_Cache_Hi   : array (Cache_Index) of Uint;
4868   Determine_Range_Cache_Lo_R : array (Cache_Index) of Ureal;
4869   Determine_Range_Cache_Hi_R : array (Cache_Index) of Ureal;
4870   --  The above arrays are used to implement a small direct cache for
4871   --  Determine_Range and Determine_Range_R calls. Because of the way these
4872   --  subprograms recursively traces subexpressions, and because overflow
4873   --  checking calls the routine on the way up the tree, a quadratic behavior
4874   --  can otherwise be encountered in large expressions. The cache entry for
4875   --  node N is stored in the (N mod Cache_Size) entry, and can be validated
4876   --  by checking the actual node value stored there. The Range_Cache_O array
4877   --  records the setting of Original_Node (N) so that the cache entry does
4878   --  not become stale when the node N is rewritten. The Range_Cache_V array
4879   --  records the setting of Assume_Valid for the cache entry.
4880
4881   procedure Determine_Range
4882     (N            : Node_Id;
4883      OK           : out Boolean;
4884      Lo           : out Uint;
4885      Hi           : out Uint;
4886      Assume_Valid : Boolean := False)
4887   is
4888      Kind : constant Node_Kind := Nkind (N);
4889      --  Kind of node
4890
4891      function Half_Address_Space return Uint;
4892      --  The size of half the total addressable memory space in storage units
4893      --  (minus one, so that the size fits in a signed integer whose size is
4894      --  System_Address_Size, which helps in various cases).
4895
4896      ------------------------
4897      -- Half_Address_Space --
4898      ------------------------
4899
4900      function Half_Address_Space return Uint is
4901      begin
4902         return Uint_2 ** (System_Address_Size - 1) - 1;
4903      end Half_Address_Space;
4904
4905      --  Local variables
4906
4907      Typ : Entity_Id := Etype (N);
4908      --  Type to use, may get reset to base type for possibly invalid entity
4909
4910      Lo_Left : Uint := No_Uint;
4911      Hi_Left : Uint := No_Uint;
4912      --  Lo and Hi bounds of left operand
4913
4914      Lo_Right : Uint := No_Uint;
4915      Hi_Right : Uint := No_Uint;
4916      --  Lo and Hi bounds of right (or only) operand
4917
4918      Bound : Node_Id;
4919      --  Temp variable used to hold a bound node
4920
4921      Hbound : Uint;
4922      --  High bound of base type of expression
4923
4924      Lor : Uint;
4925      Hir : Uint;
4926      --  Refined values for low and high bounds, after tightening
4927
4928      OK1 : Boolean;
4929      --  Used in lower level calls to indicate if call succeeded
4930
4931      Cindex : Cache_Index;
4932      --  Used to search cache
4933
4934      Btyp : Entity_Id;
4935      --  Base type
4936
4937   --  Start of processing for Determine_Range
4938
4939   begin
4940      --  Prevent junk warnings by initializing range variables
4941
4942      Lo  := No_Uint;
4943      Hi  := No_Uint;
4944      Lor := No_Uint;
4945      Hir := No_Uint;
4946
4947      --  For temporary constants internally generated to remove side effects
4948      --  we must use the corresponding expression to determine the range of
4949      --  the expression. But note that the expander can also generate
4950      --  constants in other cases, including deferred constants.
4951
4952      if Is_Entity_Name (N)
4953        and then Nkind (Parent (Entity (N))) = N_Object_Declaration
4954        and then Ekind (Entity (N)) = E_Constant
4955        and then Is_Internal_Name (Chars (Entity (N)))
4956      then
4957         if Present (Expression (Parent (Entity (N)))) then
4958            Determine_Range
4959              (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
4960
4961         elsif Present (Full_View (Entity (N))) then
4962            Determine_Range
4963              (Expression (Parent (Full_View (Entity (N)))),
4964               OK, Lo, Hi, Assume_Valid);
4965
4966         else
4967            OK := False;
4968         end if;
4969         return;
4970      end if;
4971
4972      --  If type is not defined, we can't determine its range
4973
4974      if No (Typ)
4975
4976        --  We don't deal with anything except discrete types
4977
4978        or else not Is_Discrete_Type (Typ)
4979
4980        --  Don't deal with enumerated types with non-standard representation
4981
4982        or else (Is_Enumeration_Type (Typ)
4983                   and then Present (Enum_Pos_To_Rep (Base_Type (Typ))))
4984
4985        --  Ignore type for which an error has been posted, since range in
4986        --  this case may well be a bogosity deriving from the error. Also
4987        --  ignore if error posted on the reference node.
4988
4989        or else Error_Posted (N) or else Error_Posted (Typ)
4990      then
4991         OK := False;
4992         return;
4993      end if;
4994
4995      --  For all other cases, we can determine the range
4996
4997      OK := True;
4998
4999      --  If value is compile time known, then the possible range is the one
5000      --  value that we know this expression definitely has.
5001
5002      if Compile_Time_Known_Value (N) then
5003         Lo := Expr_Value (N);
5004         Hi := Lo;
5005         return;
5006      end if;
5007
5008      --  Return if already in the cache
5009
5010      Cindex := Cache_Index (N mod Cache_Size);
5011
5012      if Determine_Range_Cache_N (Cindex) = N
5013           and then
5014         Determine_Range_Cache_O (Cindex) = Original_Node (N)
5015           and then
5016         Determine_Range_Cache_V (Cindex) = Assume_Valid
5017      then
5018         Lo := Determine_Range_Cache_Lo (Cindex);
5019         Hi := Determine_Range_Cache_Hi (Cindex);
5020         return;
5021      end if;
5022
5023      --  Otherwise, start by finding the bounds of the type of the expression,
5024      --  the value cannot be outside this range (if it is, then we have an
5025      --  overflow situation, which is a separate check, we are talking here
5026      --  only about the expression value).
5027
5028      --  First a check, never try to find the bounds of a generic type, since
5029      --  these bounds are always junk values, and it is only valid to look at
5030      --  the bounds in an instance.
5031
5032      if Is_Generic_Type (Typ) then
5033         OK := False;
5034         return;
5035      end if;
5036
5037      --  First step, change to use base type unless we know the value is valid
5038
5039      if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
5040        or else Assume_No_Invalid_Values
5041        or else Assume_Valid
5042      then
5043         --  If this is a known valid constant with a nonstatic value, it may
5044         --  have inherited a narrower subtype from its initial value; use this
5045         --  saved subtype (see sem_ch3.adb).
5046
5047         if Is_Entity_Name (N)
5048           and then Ekind (Entity (N)) = E_Constant
5049           and then Present (Actual_Subtype (Entity (N)))
5050         then
5051            Typ := Actual_Subtype (Entity (N));
5052         end if;
5053
5054      else
5055         Typ := Underlying_Type (Base_Type (Typ));
5056      end if;
5057
5058      --  Retrieve the base type. Handle the case where the base type is a
5059      --  private enumeration type.
5060
5061      Btyp := Base_Type (Typ);
5062
5063      if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
5064         Btyp := Full_View (Btyp);
5065      end if;
5066
5067      --  We use the actual bound unless it is dynamic, in which case use the
5068      --  corresponding base type bound if possible. If we can't get a bound
5069      --  then we figure we can't determine the range (a peculiar case, that
5070      --  perhaps cannot happen, but there is no point in bombing in this
5071      --  optimization circuit).
5072
5073      --  First the low bound
5074
5075      Bound := Type_Low_Bound (Typ);
5076
5077      if Compile_Time_Known_Value (Bound) then
5078         Lo := Expr_Value (Bound);
5079
5080      elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
5081         Lo := Expr_Value (Type_Low_Bound (Btyp));
5082
5083      else
5084         OK := False;
5085         return;
5086      end if;
5087
5088      --  Now the high bound
5089
5090      Bound := Type_High_Bound (Typ);
5091
5092      --  We need the high bound of the base type later on, and this should
5093      --  always be compile time known. Again, it is not clear that this
5094      --  can ever be false, but no point in bombing.
5095
5096      if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
5097         Hbound := Expr_Value (Type_High_Bound (Btyp));
5098         Hi := Hbound;
5099
5100      else
5101         OK := False;
5102         return;
5103      end if;
5104
5105      --  If we have a static subtype, then that may have a tighter bound so
5106      --  use the upper bound of the subtype instead in this case.
5107
5108      if Compile_Time_Known_Value (Bound) then
5109         Hi := Expr_Value (Bound);
5110      end if;
5111
5112      --  We may be able to refine this value in certain situations. If any
5113      --  refinement is possible, then Lor and Hir are set to possibly tighter
5114      --  bounds, and OK1 is set to True.
5115
5116      case Kind is
5117
5118         --  Unary operation case
5119
5120         when N_Op_Abs
5121            | N_Op_Minus
5122            | N_Op_Plus
5123         =>
5124            Determine_Range
5125              (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5126
5127            if OK1 then
5128               Compute_Range_For_Arithmetic_Op
5129                 (Kind, Lo_Left, Hi_Left, Lo_Right, Hi_Right, OK1, Lor, Hir);
5130            end if;
5131
5132         --  Binary operation case
5133
5134         when N_Op_Add
5135            | N_Op_Divide
5136            | N_Op_Expon
5137            | N_Op_Mod
5138            | N_Op_Multiply
5139            | N_Op_Rem
5140            | N_Op_Subtract
5141         =>
5142            Determine_Range
5143              (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
5144
5145            if OK1 then
5146               Determine_Range
5147                 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5148            end if;
5149
5150            if OK1 then
5151               Compute_Range_For_Arithmetic_Op
5152                 (Kind, Lo_Left, Hi_Left, Lo_Right, Hi_Right, OK1, Lor, Hir);
5153            end if;
5154
5155         --  Attribute reference cases
5156
5157         when N_Attribute_Reference =>
5158            case Get_Attribute_Id (Attribute_Name (N)) is
5159
5160               --  For Min/Max attributes, we can refine the range using the
5161               --  possible range of values of the attribute expressions.
5162
5163               when Attribute_Min
5164                  | Attribute_Max
5165               =>
5166                  Determine_Range
5167                    (First (Expressions (N)),
5168                     OK1, Lo_Left, Hi_Left, Assume_Valid);
5169
5170                  if OK1 then
5171                     Determine_Range
5172                       (Next (First (Expressions (N))),
5173                        OK1, Lo_Right, Hi_Right, Assume_Valid);
5174                  end if;
5175
5176                  if OK1 then
5177                     Lor := UI_Min (Lo_Left, Lo_Right);
5178                     Hir := UI_Max (Hi_Left, Hi_Right);
5179                  end if;
5180
5181               --  For Pos/Val attributes, we can refine the range using the
5182               --  possible range of values of the attribute expression.
5183
5184               when Attribute_Pos
5185                  | Attribute_Val
5186               =>
5187                  Determine_Range
5188                    (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
5189
5190               --  For Length and Range_Length attributes, use the bounds of
5191               --  the (corresponding index) type to refine the range.
5192
5193               when Attribute_Length
5194                  | Attribute_Range_Length
5195               =>
5196                  declare
5197                     Ptyp : Entity_Id;
5198                     Ityp : Entity_Id;
5199
5200                     LL, LU : Uint;
5201                     UL, UU : Uint;
5202
5203                  begin
5204                     Ptyp := Etype (Prefix (N));
5205                     if Is_Access_Type (Ptyp) then
5206                        Ptyp := Designated_Type (Ptyp);
5207                     end if;
5208
5209                     --  For string literal, we know exact value
5210
5211                     if Ekind (Ptyp) = E_String_Literal_Subtype then
5212                        OK := True;
5213                        Lo := String_Literal_Length (Ptyp);
5214                        Hi := String_Literal_Length (Ptyp);
5215                        return;
5216                     end if;
5217
5218                     if Is_Array_Type (Ptyp) then
5219                        Ityp := Get_Index_Subtype (N);
5220                     else
5221                        Ityp := Ptyp;
5222                     end if;
5223
5224                     --  If the (index) type is a formal type or derived from
5225                     --  one, the bounds are not static.
5226
5227                     if Is_Generic_Type (Root_Type (Ityp)) then
5228                        OK := False;
5229                        return;
5230                     end if;
5231
5232                     Determine_Range
5233                       (Type_Low_Bound (Ityp), OK1, LL, LU, Assume_Valid);
5234
5235                     if OK1 then
5236                        Determine_Range
5237                          (Type_High_Bound (Ityp), OK1, UL, UU, Assume_Valid);
5238
5239                        if OK1 then
5240                           --  The maximum value for Length is the biggest
5241                           --  possible gap between the values of the bounds.
5242                           --  But of course, this value cannot be negative.
5243
5244                           Hir := UI_Max (Uint_0, UU - LL + 1);
5245
5246                           --  For a constrained array, the minimum value for
5247                           --  Length is taken from the actual value of the
5248                           --  bounds, since the index will be exactly of this
5249                           --  subtype.
5250
5251                           if Is_Constrained (Ptyp) then
5252                              Lor := UI_Max (Uint_0, UL - LU + 1);
5253
5254                           --  For an unconstrained array, the minimum value
5255                           --  for length is always zero.
5256
5257                           else
5258                              Lor := Uint_0;
5259                           end if;
5260                        end if;
5261                     end if;
5262
5263                     --  Small optimization: the maximum size in storage units
5264                     --  an object can have with GNAT is half of the address
5265                     --  space, so we can bound the length of an array declared
5266                     --  in Interfaces (or its children) because its component
5267                     --  size is at least the storage unit and it is meant to
5268                     --  be used to interface actual array objects.
5269
5270                     if Is_Array_Type (Ptyp) then
5271                        declare
5272                           S : constant Entity_Id := Scope (Base_Type (Ptyp));
5273                        begin
5274                           if Is_RTU (S, Interfaces)
5275                             or else (S /= Standard_Standard
5276                                       and then Is_RTU (Scope (S), Interfaces))
5277                           then
5278                              Hir := UI_Min (Hir, Half_Address_Space);
5279                           end if;
5280                        end;
5281                     end if;
5282                  end;
5283
5284               --  The maximum default alignment is quite low, but GNAT accepts
5285               --  alignment clauses that are fairly large, but not as large as
5286               --  the maximum size of objects, see below.
5287
5288               when Attribute_Alignment =>
5289                  Lor := Uint_0;
5290                  Hir := Half_Address_Space;
5291                  OK1 := True;
5292
5293               --  The attribute should have been folded if a component clause
5294               --  was specified, so we assume there is none.
5295
5296               when Attribute_Bit
5297                  | Attribute_First_Bit
5298               =>
5299                  Lor := Uint_0;
5300                  Hir := UI_From_Int (System_Storage_Unit - 1);
5301                  OK1 := True;
5302
5303               --  Likewise about the component clause. Note that Last_Bit
5304               --  yields -1 for a field of size 0 if First_Bit is 0.
5305
5306               when Attribute_Last_Bit =>
5307                  Lor := Uint_Minus_1;
5308                  Hir := Hi;
5309                  OK1 := True;
5310
5311               --  Likewise about the component clause for Position. The
5312               --  maximum size in storage units that an object can have
5313               --  with GNAT is half of the address space.
5314
5315               when Attribute_Max_Size_In_Storage_Elements
5316                  | Attribute_Position
5317               =>
5318                  Lor := Uint_0;
5319                  Hir := Half_Address_Space;
5320                  OK1 := True;
5321
5322               --  These attributes yield a nonnegative value (we do not set
5323               --  the maximum value because it is too large to be useful).
5324
5325               when Attribute_Bit_Position
5326                  | Attribute_Component_Size
5327                  | Attribute_Object_Size
5328                  | Attribute_Size
5329                  | Attribute_Value_Size
5330               =>
5331                  Lor := Uint_0;
5332                  Hir := Hi;
5333                  OK1 := True;
5334
5335               --  The maximum size is the sum of twice the size of the largest
5336               --  integer for every dimension, rounded up to the next multiple
5337               --  of the maximum alignment, but we add instead of rounding.
5338
5339               when Attribute_Descriptor_Size =>
5340                  declare
5341                     Max_Align : constant Pos :=
5342                                   Maximum_Alignment * System_Storage_Unit;
5343                     Max_Size  : constant Uint :=
5344                                   2 * Esize (Universal_Integer);
5345                     Ndims     : constant Pos :=
5346                                   Number_Dimensions (Etype (Prefix (N)));
5347                  begin
5348                     Lor := Uint_0;
5349                     Hir := Max_Size * Ndims + Max_Align;
5350                     OK1 := True;
5351                  end;
5352
5353               --  No special handling for other attributes
5354               --  Probably more opportunities exist here???
5355
5356               when others =>
5357                  OK1 := False;
5358
5359            end case;
5360
5361         when N_Type_Conversion =>
5362            --  For a type conversion, we can try to refine the range using the
5363            --  converted value.
5364
5365            Determine_Range_To_Discrete
5366              (Expression (N), OK1, Lor, Hir, Conversion_OK (N), Assume_Valid);
5367
5368         --  Nothing special to do for all other expression kinds
5369
5370         when others =>
5371            OK1 := False;
5372            Lor := No_Uint;
5373            Hir := No_Uint;
5374      end case;
5375
5376      --  At this stage, if OK1 is true, then we know that the actual result of
5377      --  the computed expression is in the range Lor .. Hir. We can use this
5378      --  to restrict the possible range of results.
5379
5380      if OK1 then
5381
5382         --  If the refined value of the low bound is greater than the type
5383         --  low bound, then reset it to the more restrictive value. However,
5384         --  we do NOT do this for the case of a modular type where the
5385         --  possible upper bound on the value is above the base type high
5386         --  bound, because that means the result could wrap.
5387
5388         if Lor > Lo
5389           and then not (Is_Modular_Integer_Type (Typ) and then Hir > Hbound)
5390         then
5391            Lo := Lor;
5392         end if;
5393
5394         --  Similarly, if the refined value of the high bound is less than the
5395         --  value so far, then reset it to the more restrictive value. Again,
5396         --  we do not do this if the refined low bound is negative for a
5397         --  modular type, since this would wrap.
5398
5399         if Hir < Hi
5400           and then not (Is_Modular_Integer_Type (Typ) and then Lor < Uint_0)
5401         then
5402            Hi := Hir;
5403         end if;
5404      end if;
5405
5406      --  Set cache entry for future call and we are all done
5407
5408      Determine_Range_Cache_N  (Cindex) := N;
5409      Determine_Range_Cache_O  (Cindex) := Original_Node (N);
5410      Determine_Range_Cache_V  (Cindex) := Assume_Valid;
5411      Determine_Range_Cache_Lo (Cindex) := Lo;
5412      Determine_Range_Cache_Hi (Cindex) := Hi;
5413      return;
5414
5415   --  If any exception occurs, it means that we have some bug in the compiler,
5416   --  possibly triggered by a previous error, or by some unforeseen peculiar
5417   --  occurrence. However, this is only an optimization attempt, so there is
5418   --  really no point in crashing the compiler. Instead we just decide, too
5419   --  bad, we can't figure out a range in this case after all.
5420
5421   exception
5422      when others =>
5423
5424         --  Debug flag K disables this behavior (useful for debugging)
5425
5426         if Debug_Flag_K then
5427            raise;
5428         else
5429            OK := False;
5430            Lo := No_Uint;
5431            Hi := No_Uint;
5432            return;
5433         end if;
5434   end Determine_Range;
5435
5436   -----------------------
5437   -- Determine_Range_R --
5438   -----------------------
5439
5440   procedure Determine_Range_R
5441     (N            : Node_Id;
5442      OK           : out Boolean;
5443      Lo           : out Ureal;
5444      Hi           : out Ureal;
5445      Assume_Valid : Boolean := False)
5446   is
5447      Typ : Entity_Id := Etype (N);
5448      --  Type to use, may get reset to base type for possibly invalid entity
5449
5450      Lo_Left : Ureal;
5451      Hi_Left : Ureal;
5452      --  Lo and Hi bounds of left operand
5453
5454      Lo_Right : Ureal := No_Ureal;
5455      Hi_Right : Ureal := No_Ureal;
5456      --  Lo and Hi bounds of right (or only) operand
5457
5458      Bound : Node_Id;
5459      --  Temp variable used to hold a bound node
5460
5461      Hbound : Ureal;
5462      --  High bound of base type of expression
5463
5464      Lor : Ureal;
5465      Hir : Ureal;
5466      --  Refined values for low and high bounds, after tightening
5467
5468      OK1 : Boolean;
5469      --  Used in lower level calls to indicate if call succeeded
5470
5471      Cindex : Cache_Index;
5472      --  Used to search cache
5473
5474      Btyp : Entity_Id;
5475      --  Base type
5476
5477      function OK_Operands return Boolean;
5478      --  Used for binary operators. Determines the ranges of the left and
5479      --  right operands, and if they are both OK, returns True, and puts
5480      --  the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
5481
5482      function Round_Machine (B : Ureal) return Ureal;
5483      --  B is a real bound. Round it using mode Round_Even.
5484
5485      -----------------
5486      -- OK_Operands --
5487      -----------------
5488
5489      function OK_Operands return Boolean is
5490      begin
5491         Determine_Range_R
5492           (Left_Opnd  (N), OK1, Lo_Left,  Hi_Left, Assume_Valid);
5493
5494         if not OK1 then
5495            return False;
5496         end if;
5497
5498         Determine_Range_R
5499           (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5500         return OK1;
5501      end OK_Operands;
5502
5503      -------------------
5504      -- Round_Machine --
5505      -------------------
5506
5507      function Round_Machine (B : Ureal) return Ureal is
5508      begin
5509         return Machine (Typ, B, Round_Even, N);
5510      end Round_Machine;
5511
5512   --  Start of processing for Determine_Range_R
5513
5514   begin
5515      --  Prevent junk warnings by initializing range variables
5516
5517      Lo  := No_Ureal;
5518      Hi  := No_Ureal;
5519      Lor := No_Ureal;
5520      Hir := No_Ureal;
5521
5522      --  For temporary constants internally generated to remove side effects
5523      --  we must use the corresponding expression to determine the range of
5524      --  the expression. But note that the expander can also generate
5525      --  constants in other cases, including deferred constants.
5526
5527      if Is_Entity_Name (N)
5528        and then Nkind (Parent (Entity (N))) = N_Object_Declaration
5529        and then Ekind (Entity (N)) = E_Constant
5530        and then Is_Internal_Name (Chars (Entity (N)))
5531      then
5532         if Present (Expression (Parent (Entity (N)))) then
5533            Determine_Range_R
5534              (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
5535
5536         elsif Present (Full_View (Entity (N))) then
5537            Determine_Range_R
5538              (Expression (Parent (Full_View (Entity (N)))),
5539               OK, Lo, Hi, Assume_Valid);
5540
5541         else
5542            OK := False;
5543         end if;
5544
5545         return;
5546      end if;
5547
5548      --  If type is not defined, we can't determine its range
5549
5550      if No (Typ)
5551
5552        --  We don't deal with anything except IEEE floating-point types
5553
5554        or else not Is_Floating_Point_Type (Typ)
5555        or else Float_Rep (Typ) /= IEEE_Binary
5556
5557        --  Ignore type for which an error has been posted, since range in
5558        --  this case may well be a bogosity deriving from the error. Also
5559        --  ignore if error posted on the reference node.
5560
5561        or else Error_Posted (N) or else Error_Posted (Typ)
5562      then
5563         OK := False;
5564         return;
5565      end if;
5566
5567      --  For all other cases, we can determine the range
5568
5569      OK := True;
5570
5571      --  If value is compile time known, then the possible range is the one
5572      --  value that we know this expression definitely has.
5573
5574      if Compile_Time_Known_Value (N) then
5575         Lo := Expr_Value_R (N);
5576         Hi := Lo;
5577         return;
5578      end if;
5579
5580      --  Return if already in the cache
5581
5582      Cindex := Cache_Index (N mod Cache_Size);
5583
5584      if Determine_Range_Cache_N (Cindex) = N
5585           and then
5586         Determine_Range_Cache_O (Cindex) = Original_Node (N)
5587           and then
5588         Determine_Range_Cache_V (Cindex) = Assume_Valid
5589      then
5590         Lo := Determine_Range_Cache_Lo_R (Cindex);
5591         Hi := Determine_Range_Cache_Hi_R (Cindex);
5592         return;
5593      end if;
5594
5595      --  Otherwise, start by finding the bounds of the type of the expression,
5596      --  the value cannot be outside this range (if it is, then we have an
5597      --  overflow situation, which is a separate check, we are talking here
5598      --  only about the expression value).
5599
5600      --  First a check, never try to find the bounds of a generic type, since
5601      --  these bounds are always junk values, and it is only valid to look at
5602      --  the bounds in an instance.
5603
5604      if Is_Generic_Type (Typ) then
5605         OK := False;
5606         return;
5607      end if;
5608
5609      --  First step, change to use base type unless we know the value is valid
5610
5611      if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
5612        or else Assume_No_Invalid_Values
5613        or else Assume_Valid
5614      then
5615         null;
5616      else
5617         Typ := Underlying_Type (Base_Type (Typ));
5618      end if;
5619
5620      --  Retrieve the base type. Handle the case where the base type is a
5621      --  private type.
5622
5623      Btyp := Base_Type (Typ);
5624
5625      if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
5626         Btyp := Full_View (Btyp);
5627      end if;
5628
5629      --  We use the actual bound unless it is dynamic, in which case use the
5630      --  corresponding base type bound if possible. If we can't get a bound
5631      --  then we figure we can't determine the range (a peculiar case, that
5632      --  perhaps cannot happen, but there is no point in bombing in this
5633      --  optimization circuit).
5634
5635      --  First the low bound
5636
5637      Bound := Type_Low_Bound (Typ);
5638
5639      if Compile_Time_Known_Value (Bound) then
5640         Lo := Expr_Value_R (Bound);
5641
5642      elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
5643         Lo := Expr_Value_R (Type_Low_Bound (Btyp));
5644
5645      else
5646         OK := False;
5647         return;
5648      end if;
5649
5650      --  Now the high bound
5651
5652      Bound := Type_High_Bound (Typ);
5653
5654      --  We need the high bound of the base type later on, and this should
5655      --  always be compile time known. Again, it is not clear that this
5656      --  can ever be false, but no point in bombing.
5657
5658      if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
5659         Hbound := Expr_Value_R (Type_High_Bound (Btyp));
5660         Hi := Hbound;
5661
5662      else
5663         OK := False;
5664         return;
5665      end if;
5666
5667      --  If we have a static subtype, then that may have a tighter bound so
5668      --  use the upper bound of the subtype instead in this case.
5669
5670      if Compile_Time_Known_Value (Bound) then
5671         Hi := Expr_Value_R (Bound);
5672      end if;
5673
5674      --  We may be able to refine this value in certain situations. If any
5675      --  refinement is possible, then Lor and Hir are set to possibly tighter
5676      --  bounds, and OK1 is set to True.
5677
5678      case Nkind (N) is
5679
5680         --  For unary plus, result is limited by range of operand
5681
5682         when N_Op_Plus =>
5683            Determine_Range_R
5684              (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
5685
5686         --  For unary minus, determine range of operand, and negate it
5687
5688         when N_Op_Minus =>
5689            Determine_Range_R
5690              (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5691
5692            if OK1 then
5693               Lor := -Hi_Right;
5694               Hir := -Lo_Right;
5695            end if;
5696
5697         --  For binary addition, get range of each operand and do the
5698         --  addition to get the result range.
5699
5700         when N_Op_Add =>
5701            if OK_Operands then
5702               Lor := Round_Machine (Lo_Left + Lo_Right);
5703               Hir := Round_Machine (Hi_Left + Hi_Right);
5704            end if;
5705
5706         --  For binary subtraction, get range of each operand and do the worst
5707         --  case subtraction to get the result range.
5708
5709         when N_Op_Subtract =>
5710            if OK_Operands then
5711               Lor := Round_Machine (Lo_Left - Hi_Right);
5712               Hir := Round_Machine (Hi_Left - Lo_Right);
5713            end if;
5714
5715         --  For multiplication, get range of each operand and do the
5716         --  four multiplications to get the result range.
5717
5718         when N_Op_Multiply =>
5719            if OK_Operands then
5720               declare
5721                  M1 : constant Ureal := Round_Machine (Lo_Left * Lo_Right);
5722                  M2 : constant Ureal := Round_Machine (Lo_Left * Hi_Right);
5723                  M3 : constant Ureal := Round_Machine (Hi_Left * Lo_Right);
5724                  M4 : constant Ureal := Round_Machine (Hi_Left * Hi_Right);
5725
5726               begin
5727                  Lor := UR_Min (UR_Min (M1, M2), UR_Min (M3, M4));
5728                  Hir := UR_Max (UR_Max (M1, M2), UR_Max (M3, M4));
5729               end;
5730            end if;
5731
5732         --  For division, consider separately the cases where the right
5733         --  operand is positive or negative. Otherwise, the right operand
5734         --  can be arbitrarily close to zero, so the result is likely to
5735         --  be unbounded in one direction, do not attempt to compute it.
5736
5737         when N_Op_Divide =>
5738            if OK_Operands then
5739
5740               --  Right operand is positive
5741
5742               if Lo_Right > Ureal_0 then
5743
5744                  --  If the low bound of the left operand is negative, obtain
5745                  --  the overall low bound by dividing it by the smallest
5746                  --  value of the right operand, and otherwise by the largest
5747                  --  value of the right operand.
5748
5749                  if Lo_Left < Ureal_0 then
5750                     Lor := Round_Machine (Lo_Left / Lo_Right);
5751                  else
5752                     Lor := Round_Machine (Lo_Left / Hi_Right);
5753                  end if;
5754
5755                  --  If the high bound of the left operand is negative, obtain
5756                  --  the overall high bound by dividing it by the largest
5757                  --  value of the right operand, and otherwise by the
5758                  --  smallest value of the right operand.
5759
5760                  if Hi_Left < Ureal_0 then
5761                     Hir := Round_Machine (Hi_Left / Hi_Right);
5762                  else
5763                     Hir := Round_Machine (Hi_Left / Lo_Right);
5764                  end if;
5765
5766               --  Right operand is negative
5767
5768               elsif Hi_Right < Ureal_0 then
5769
5770                  --  If the low bound of the left operand is negative, obtain
5771                  --  the overall low bound by dividing it by the largest
5772                  --  value of the right operand, and otherwise by the smallest
5773                  --  value of the right operand.
5774
5775                  if Lo_Left < Ureal_0 then
5776                     Lor := Round_Machine (Lo_Left / Hi_Right);
5777                  else
5778                     Lor := Round_Machine (Lo_Left / Lo_Right);
5779                  end if;
5780
5781                  --  If the high bound of the left operand is negative, obtain
5782                  --  the overall high bound by dividing it by the smallest
5783                  --  value of the right operand, and otherwise by the
5784                  --  largest value of the right operand.
5785
5786                  if Hi_Left < Ureal_0 then
5787                     Hir := Round_Machine (Hi_Left / Lo_Right);
5788                  else
5789                     Hir := Round_Machine (Hi_Left / Hi_Right);
5790                  end if;
5791
5792               else
5793                  OK1 := False;
5794               end if;
5795            end if;
5796
5797         when N_Type_Conversion =>
5798
5799            --  For type conversion from one floating-point type to another, we
5800            --  can refine the range using the converted value.
5801
5802            if Is_Floating_Point_Type (Etype (Expression (N))) then
5803               Determine_Range_R (Expression (N), OK1, Lor, Hir, Assume_Valid);
5804
5805            --  When converting an integer to a floating-point type, determine
5806            --  the range in integer first, and then convert the bounds.
5807
5808            elsif Is_Discrete_Type (Etype (Expression (N))) then
5809               declare
5810                  Hir_Int : Uint;
5811                  Lor_Int : Uint;
5812
5813               begin
5814                  Determine_Range
5815                    (Expression (N), OK1, Lor_Int, Hir_Int, Assume_Valid);
5816
5817                  if OK1 then
5818                     Lor := Round_Machine (UR_From_Uint (Lor_Int));
5819                     Hir := Round_Machine (UR_From_Uint (Hir_Int));
5820                  end if;
5821               end;
5822
5823            else
5824               OK1 := False;
5825            end if;
5826
5827         --  Nothing special to do for all other expression kinds
5828
5829         when others =>
5830            OK1 := False;
5831            Lor := No_Ureal;
5832            Hir := No_Ureal;
5833      end case;
5834
5835      --  At this stage, if OK1 is true, then we know that the actual result of
5836      --  the computed expression is in the range Lor .. Hir. We can use this
5837      --  to restrict the possible range of results.
5838
5839      if OK1 then
5840
5841         --  If the refined value of the low bound is greater than the type
5842         --  low bound, then reset it to the more restrictive value.
5843
5844         if Lor > Lo then
5845            Lo := Lor;
5846         end if;
5847
5848         --  Similarly, if the refined value of the high bound is less than the
5849         --  value so far, then reset it to the more restrictive value.
5850
5851         if Hir < Hi then
5852            Hi := Hir;
5853         end if;
5854      end if;
5855
5856      --  Set cache entry for future call and we are all done
5857
5858      Determine_Range_Cache_N    (Cindex) := N;
5859      Determine_Range_Cache_O    (Cindex) := Original_Node (N);
5860      Determine_Range_Cache_V    (Cindex) := Assume_Valid;
5861      Determine_Range_Cache_Lo_R (Cindex) := Lo;
5862      Determine_Range_Cache_Hi_R (Cindex) := Hi;
5863      return;
5864
5865   --  If any exception occurs, it means that we have some bug in the compiler,
5866   --  possibly triggered by a previous error, or by some unforeseen peculiar
5867   --  occurrence. However, this is only an optimization attempt, so there is
5868   --  really no point in crashing the compiler. Instead we just decide, too
5869   --  bad, we can't figure out a range in this case after all.
5870
5871   exception
5872      when others =>
5873
5874         --  Debug flag K disables this behavior (useful for debugging)
5875
5876         if Debug_Flag_K then
5877            raise;
5878         else
5879            OK := False;
5880            Lo := No_Ureal;
5881            Hi := No_Ureal;
5882            return;
5883         end if;
5884   end Determine_Range_R;
5885
5886   ---------------------------------
5887   -- Determine_Range_To_Discrete --
5888   ---------------------------------
5889
5890   procedure Determine_Range_To_Discrete
5891     (N            : Node_Id;
5892      OK           : out Boolean;
5893      Lo           : out Uint;
5894      Hi           : out Uint;
5895      Fixed_Int    : Boolean := False;
5896      Assume_Valid : Boolean := False)
5897   is
5898      Typ : constant Entity_Id := Etype (N);
5899
5900   begin
5901      --  For a discrete type, simply defer to Determine_Range
5902
5903      if Is_Discrete_Type (Typ) then
5904         Determine_Range (N, OK, Lo, Hi, Assume_Valid);
5905
5906      --  For a fixed point type treated as an integer, we can determine the
5907      --  range using the Corresponding_Integer_Value of the bounds of the
5908      --  type or base type. This is done by the calls to Expr_Value below.
5909
5910      elsif Is_Fixed_Point_Type (Typ) and then Fixed_Int then
5911         declare
5912            Btyp, Ftyp : Entity_Id;
5913            Bound      : Node_Id;
5914
5915         begin
5916            if Assume_Valid then
5917               Ftyp := Typ;
5918            else
5919               Ftyp := Underlying_Type (Base_Type (Typ));
5920            end if;
5921
5922            Btyp := Base_Type (Ftyp);
5923
5924            --  First the low bound
5925
5926            Bound := Type_Low_Bound (Ftyp);
5927
5928            if Compile_Time_Known_Value (Bound) then
5929               Lo := Expr_Value (Bound);
5930            else
5931               Lo := Expr_Value (Type_Low_Bound (Btyp));
5932            end if;
5933
5934            --  Then the high bound
5935
5936            Bound := Type_High_Bound (Ftyp);
5937
5938            if Compile_Time_Known_Value (Bound) then
5939               Hi := Expr_Value (Bound);
5940            else
5941               Hi := Expr_Value (Type_High_Bound (Btyp));
5942            end if;
5943
5944            OK := True;
5945         end;
5946
5947      --  For a floating-point type, we can determine the range in real first,
5948      --  and then convert the bounds using UR_To_Uint, which correctly rounds
5949      --  away from zero when half way between two integers, as required by
5950      --  normal Ada 95 rounding semantics. But this is only possible because
5951      --  GNATprove's analysis rules out the possibility of a NaN or infinite.
5952
5953      elsif GNATprove_Mode and then Is_Floating_Point_Type (Typ) then
5954         declare
5955            Lo_Real, Hi_Real : Ureal;
5956
5957         begin
5958            Determine_Range_R (N, OK, Lo_Real, Hi_Real, Assume_Valid);
5959
5960            if OK then
5961               Lo := UR_To_Uint (Lo_Real);
5962               Hi := UR_To_Uint (Hi_Real);
5963            else
5964               Lo := No_Uint;
5965               Hi := No_Uint;
5966            end if;
5967         end;
5968
5969      else
5970         Lo := No_Uint;
5971         Hi := No_Uint;
5972         OK := False;
5973      end if;
5974   end Determine_Range_To_Discrete;
5975
5976   ------------------------------------
5977   -- Discriminant_Checks_Suppressed --
5978   ------------------------------------
5979
5980   function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
5981   begin
5982      if Present (E) then
5983         if Is_Unchecked_Union (E) then
5984            return True;
5985         elsif Checks_May_Be_Suppressed (E) then
5986            return Is_Check_Suppressed (E, Discriminant_Check);
5987         end if;
5988      end if;
5989
5990      return Scope_Suppress.Suppress (Discriminant_Check);
5991   end Discriminant_Checks_Suppressed;
5992
5993   --------------------------------
5994   -- Division_Checks_Suppressed --
5995   --------------------------------
5996
5997   function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
5998   begin
5999      if Present (E) and then Checks_May_Be_Suppressed (E) then
6000         return Is_Check_Suppressed (E, Division_Check);
6001      else
6002         return Scope_Suppress.Suppress (Division_Check);
6003      end if;
6004   end Division_Checks_Suppressed;
6005
6006   --------------------------------------
6007   -- Duplicated_Tag_Checks_Suppressed --
6008   --------------------------------------
6009
6010   function Duplicated_Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
6011   begin
6012      if Present (E) and then Checks_May_Be_Suppressed (E) then
6013         return Is_Check_Suppressed (E, Duplicated_Tag_Check);
6014      else
6015         return Scope_Suppress.Suppress (Duplicated_Tag_Check);
6016      end if;
6017   end Duplicated_Tag_Checks_Suppressed;
6018
6019   -----------------------------------
6020   -- Elaboration_Checks_Suppressed --
6021   -----------------------------------
6022
6023   function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
6024   begin
6025      --  The complication in this routine is that if we are in the dynamic
6026      --  model of elaboration, we also check All_Checks, since All_Checks
6027      --  does not set Elaboration_Check explicitly.
6028
6029      if Present (E) then
6030         if Kill_Elaboration_Checks (E) then
6031            return True;
6032
6033         elsif Checks_May_Be_Suppressed (E) then
6034            if Is_Check_Suppressed (E, Elaboration_Check) then
6035               return True;
6036
6037            elsif Dynamic_Elaboration_Checks then
6038               return Is_Check_Suppressed (E, All_Checks);
6039
6040            else
6041               return False;
6042            end if;
6043         end if;
6044      end if;
6045
6046      if Scope_Suppress.Suppress (Elaboration_Check) then
6047         return True;
6048
6049      elsif Dynamic_Elaboration_Checks then
6050         return Scope_Suppress.Suppress (All_Checks);
6051
6052      else
6053         return False;
6054      end if;
6055   end Elaboration_Checks_Suppressed;
6056
6057   ---------------------------
6058   -- Enable_Overflow_Check --
6059   ---------------------------
6060
6061   procedure Enable_Overflow_Check (N : Node_Id) is
6062      Typ  : constant Entity_Id          := Base_Type (Etype (N));
6063      Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
6064      Chk  : Nat;
6065      OK   : Boolean;
6066      Ent  : Entity_Id;
6067      Ofs  : Uint;
6068      Lo   : Uint;
6069      Hi   : Uint;
6070
6071      Do_Ovflow_Check : Boolean;
6072
6073   begin
6074      if Debug_Flag_CC then
6075         w ("Enable_Overflow_Check for node ", Int (N));
6076         Write_Str ("  Source location = ");
6077         wl (Sloc (N));
6078         pg (Union_Id (N));
6079      end if;
6080
6081      --  No check if overflow checks suppressed for type of node
6082
6083      if Overflow_Checks_Suppressed (Etype (N)) then
6084         return;
6085
6086      --  Nothing to do for unsigned integer types, which do not overflow
6087
6088      elsif Is_Modular_Integer_Type (Typ) then
6089         return;
6090      end if;
6091
6092      --  This is the point at which processing for STRICT mode diverges
6093      --  from processing for MINIMIZED/ELIMINATED modes. This divergence is
6094      --  probably more extreme that it needs to be, but what is going on here
6095      --  is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
6096      --  to leave the processing for STRICT mode untouched. There were
6097      --  two reasons for this. First it avoided any incompatible change of
6098      --  behavior. Second, it guaranteed that STRICT mode continued to be
6099      --  legacy reliable.
6100
6101      --  The big difference is that in STRICT mode there is a fair amount of
6102      --  circuitry to try to avoid setting the Do_Overflow_Check flag if we
6103      --  know that no check is needed. We skip all that in the two new modes,
6104      --  since really overflow checking happens over a whole subtree, and we
6105      --  do the corresponding optimizations later on when applying the checks.
6106
6107      if Mode in Minimized_Or_Eliminated then
6108         if not (Overflow_Checks_Suppressed (Etype (N)))
6109           and then not (Is_Entity_Name (N)
6110                          and then Overflow_Checks_Suppressed (Entity (N)))
6111         then
6112            Activate_Overflow_Check (N);
6113         end if;
6114
6115         if Debug_Flag_CC then
6116            w ("Minimized/Eliminated mode");
6117         end if;
6118
6119         return;
6120      end if;
6121
6122      --  Remainder of processing is for STRICT case, and is unchanged from
6123      --  earlier versions preceding the addition of MINIMIZED/ELIMINATED.
6124
6125      --  Nothing to do if the range of the result is known OK. We skip this
6126      --  for conversions, since the caller already did the check, and in any
6127      --  case the condition for deleting the check for a type conversion is
6128      --  different.
6129
6130      if Nkind (N) /= N_Type_Conversion then
6131         Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
6132
6133         --  Note in the test below that we assume that the range is not OK
6134         --  if a bound of the range is equal to that of the type. That's not
6135         --  quite accurate but we do this for the following reasons:
6136
6137         --   a) The way that Determine_Range works, it will typically report
6138         --      the bounds of the value as being equal to the bounds of the
6139         --      type, because it either can't tell anything more precise, or
6140         --      does not think it is worth the effort to be more precise.
6141
6142         --   b) It is very unusual to have a situation in which this would
6143         --      generate an unnecessary overflow check (an example would be
6144         --      a subtype with a range 0 .. Integer'Last - 1 to which the
6145         --      literal value one is added).
6146
6147         --   c) The alternative is a lot of special casing in this routine
6148         --      which would partially duplicate Determine_Range processing.
6149
6150         if OK then
6151            Do_Ovflow_Check := True;
6152
6153            --  Note that the following checks are quite deliberately > and <
6154            --  rather than >= and <= as explained above.
6155
6156            if  Lo > Expr_Value (Type_Low_Bound  (Typ))
6157                  and then
6158                Hi < Expr_Value (Type_High_Bound (Typ))
6159            then
6160               Do_Ovflow_Check := False;
6161
6162            --  Despite the comments above, it is worth dealing specially with
6163            --  division. The only case where integer division can overflow is
6164            --  (largest negative number) / (-1). So we will do an extra range
6165            --  analysis to see if this is possible.
6166
6167            elsif Nkind (N) = N_Op_Divide then
6168               Determine_Range
6169                 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
6170
6171               if OK and then Lo > Expr_Value (Type_Low_Bound (Typ)) then
6172                  Do_Ovflow_Check := False;
6173
6174               else
6175                  Determine_Range
6176                    (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
6177
6178                  if OK and then (Lo > Uint_Minus_1
6179                                    or else
6180                                  Hi < Uint_Minus_1)
6181                  then
6182                     Do_Ovflow_Check := False;
6183                  end if;
6184               end if;
6185
6186            --  Likewise for Abs/Minus, the only case where the operation can
6187            --  overflow is when the operand is the largest negative number.
6188
6189            elsif Nkind (N) in N_Op_Abs | N_Op_Minus then
6190               Determine_Range
6191                 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
6192
6193               if OK and then Lo > Expr_Value (Type_Low_Bound (Typ)) then
6194                  Do_Ovflow_Check := False;
6195               end if;
6196            end if;
6197
6198            --  If no overflow check required, we are done
6199
6200            if not Do_Ovflow_Check then
6201               if Debug_Flag_CC then
6202                  w ("No overflow check required");
6203               end if;
6204
6205               return;
6206            end if;
6207         end if;
6208      end if;
6209
6210      --  If not in optimizing mode, set flag and we are done. We are also done
6211      --  (and just set the flag) if the type is not a discrete type, since it
6212      --  is not worth the effort to eliminate checks for other than discrete
6213      --  types. In addition, we take this same path if we have stored the
6214      --  maximum number of checks possible already (a very unlikely situation,
6215      --  but we do not want to blow up).
6216
6217      if Optimization_Level = 0
6218        or else not Is_Discrete_Type (Etype (N))
6219        or else Num_Saved_Checks = Saved_Checks'Last
6220      then
6221         Activate_Overflow_Check (N);
6222
6223         if Debug_Flag_CC then
6224            w ("Optimization off");
6225         end if;
6226
6227         return;
6228      end if;
6229
6230      --  Otherwise evaluate and check the expression
6231
6232      Find_Check
6233        (Expr        => N,
6234         Check_Type  => 'O',
6235         Target_Type => Empty,
6236         Entry_OK    => OK,
6237         Check_Num   => Chk,
6238         Ent         => Ent,
6239         Ofs         => Ofs);
6240
6241      if Debug_Flag_CC then
6242         w ("Called Find_Check");
6243         w ("  OK = ", OK);
6244
6245         if OK then
6246            w ("  Check_Num = ", Chk);
6247            w ("  Ent       = ", Int (Ent));
6248            Write_Str ("  Ofs       = ");
6249            pid (Ofs);
6250         end if;
6251      end if;
6252
6253      --  If check is not of form to optimize, then set flag and we are done
6254
6255      if not OK then
6256         Activate_Overflow_Check (N);
6257         return;
6258      end if;
6259
6260      --  If check is already performed, then return without setting flag
6261
6262      if Chk /= 0 then
6263         if Debug_Flag_CC then
6264            w ("Check suppressed!");
6265         end if;
6266
6267         return;
6268      end if;
6269
6270      --  Here we will make a new entry for the new check
6271
6272      Activate_Overflow_Check (N);
6273      Num_Saved_Checks := Num_Saved_Checks + 1;
6274      Saved_Checks (Num_Saved_Checks) :=
6275        (Killed      => False,
6276         Entity      => Ent,
6277         Offset      => Ofs,
6278         Check_Type  => 'O',
6279         Target_Type => Empty);
6280
6281      if Debug_Flag_CC then
6282         w ("Make new entry, check number = ", Num_Saved_Checks);
6283         w ("  Entity = ", Int (Ent));
6284         Write_Str ("  Offset = ");
6285         pid (Ofs);
6286         w ("  Check_Type = O");
6287         w ("  Target_Type = Empty");
6288      end if;
6289
6290   --  If we get an exception, then something went wrong, probably because of
6291   --  an error in the structure of the tree due to an incorrect program. Or
6292   --  it may be a bug in the optimization circuit. In either case the safest
6293   --  thing is simply to set the check flag unconditionally.
6294
6295   exception
6296      when others =>
6297         Activate_Overflow_Check (N);
6298
6299         if Debug_Flag_CC then
6300            w ("  exception occurred, overflow flag set");
6301         end if;
6302
6303         return;
6304   end Enable_Overflow_Check;
6305
6306   ------------------------
6307   -- Enable_Range_Check --
6308   ------------------------
6309
6310   procedure Enable_Range_Check (N : Node_Id) is
6311      Chk  : Nat;
6312      OK   : Boolean;
6313      Ent  : Entity_Id;
6314      Ofs  : Uint;
6315      Ttyp : Entity_Id;
6316      P    : Node_Id;
6317
6318   begin
6319      --  Return if unchecked type conversion with range check killed. In this
6320      --  case we never set the flag (that's what Kill_Range_Check is about).
6321
6322      if Nkind (N) = N_Unchecked_Type_Conversion
6323        and then Kill_Range_Check (N)
6324      then
6325         return;
6326      end if;
6327
6328      --  Do not set range check flag if parent is assignment statement or
6329      --  object declaration with Suppress_Assignment_Checks flag set
6330
6331      if Nkind (Parent (N)) in N_Assignment_Statement | N_Object_Declaration
6332        and then Suppress_Assignment_Checks (Parent (N))
6333      then
6334         return;
6335      end if;
6336
6337      --  Check for various cases where we should suppress the range check
6338
6339      --  No check if range checks suppressed for type of node
6340
6341      if Present (Etype (N)) and then Range_Checks_Suppressed (Etype (N)) then
6342         return;
6343
6344      --  No check if node is an entity name, and range checks are suppressed
6345      --  for this entity, or for the type of this entity.
6346
6347      elsif Is_Entity_Name (N)
6348        and then (Range_Checks_Suppressed (Entity (N))
6349                   or else Range_Checks_Suppressed (Etype (Entity (N))))
6350      then
6351         return;
6352
6353      --  No checks if index of array, and index checks are suppressed for
6354      --  the array object or the type of the array.
6355
6356      elsif Nkind (Parent (N)) = N_Indexed_Component then
6357         declare
6358            Pref : constant Node_Id := Prefix (Parent (N));
6359         begin
6360            if Is_Entity_Name (Pref)
6361              and then Index_Checks_Suppressed (Entity (Pref))
6362            then
6363               return;
6364            elsif Index_Checks_Suppressed (Etype (Pref)) then
6365               return;
6366            end if;
6367         end;
6368      end if;
6369
6370      --  Debug trace output
6371
6372      if Debug_Flag_CC then
6373         w ("Enable_Range_Check for node ", Int (N));
6374         Write_Str ("  Source location = ");
6375         wl (Sloc (N));
6376         pg (Union_Id (N));
6377      end if;
6378
6379      --  If not in optimizing mode, set flag and we are done. We are also done
6380      --  (and just set the flag) if the type is not a discrete type, since it
6381      --  is not worth the effort to eliminate checks for other than discrete
6382      --  types. In addition, we take this same path if we have stored the
6383      --  maximum number of checks possible already (a very unlikely situation,
6384      --  but we do not want to blow up).
6385
6386      if Optimization_Level = 0
6387        or else No (Etype (N))
6388        or else not Is_Discrete_Type (Etype (N))
6389        or else Num_Saved_Checks = Saved_Checks'Last
6390      then
6391         Activate_Range_Check (N);
6392
6393         if Debug_Flag_CC then
6394            w ("Optimization off");
6395         end if;
6396
6397         return;
6398      end if;
6399
6400      --  Otherwise find out the target type
6401
6402      P := Parent (N);
6403
6404      --  For assignment, use left side subtype
6405
6406      if Nkind (P) = N_Assignment_Statement
6407        and then Expression (P) = N
6408      then
6409         Ttyp := Etype (Name (P));
6410
6411      --  For indexed component, use subscript subtype
6412
6413      elsif Nkind (P) = N_Indexed_Component then
6414         declare
6415            Atyp : Entity_Id;
6416            Indx : Node_Id;
6417            Subs : Node_Id;
6418
6419         begin
6420            Atyp := Etype (Prefix (P));
6421
6422            if Is_Access_Type (Atyp) then
6423               Atyp := Designated_Type (Atyp);
6424
6425               --  If the prefix is an access to an unconstrained array,
6426               --  perform check unconditionally: it depends on the bounds of
6427               --  an object and we cannot currently recognize whether the test
6428               --  may be redundant.
6429
6430               if not Is_Constrained (Atyp) then
6431                  Activate_Range_Check (N);
6432                  return;
6433               end if;
6434
6435            --  Ditto if prefix is simply an unconstrained array. We used
6436            --  to think this case was OK, if the prefix was not an explicit
6437            --  dereference, but we have now seen a case where this is not
6438            --  true, so it is safer to just suppress the optimization in this
6439            --  case. The back end is getting better at eliminating redundant
6440            --  checks in any case, so the loss won't be important.
6441
6442            elsif Is_Array_Type (Atyp)
6443              and then not Is_Constrained (Atyp)
6444            then
6445               Activate_Range_Check (N);
6446               return;
6447            end if;
6448
6449            Indx := First_Index (Atyp);
6450            Subs := First (Expressions (P));
6451            loop
6452               if Subs = N then
6453                  Ttyp := Etype (Indx);
6454                  exit;
6455               end if;
6456
6457               Next_Index (Indx);
6458               Next (Subs);
6459            end loop;
6460         end;
6461
6462      --  For now, ignore all other cases, they are not so interesting
6463
6464      else
6465         if Debug_Flag_CC then
6466            w ("  target type not found, flag set");
6467         end if;
6468
6469         Activate_Range_Check (N);
6470         return;
6471      end if;
6472
6473      --  Evaluate and check the expression
6474
6475      Find_Check
6476        (Expr        => N,
6477         Check_Type  => 'R',
6478         Target_Type => Ttyp,
6479         Entry_OK    => OK,
6480         Check_Num   => Chk,
6481         Ent         => Ent,
6482         Ofs         => Ofs);
6483
6484      if Debug_Flag_CC then
6485         w ("Called Find_Check");
6486         w ("Target_Typ = ", Int (Ttyp));
6487         w ("  OK = ", OK);
6488
6489         if OK then
6490            w ("  Check_Num = ", Chk);
6491            w ("  Ent       = ", Int (Ent));
6492            Write_Str ("  Ofs       = ");
6493            pid (Ofs);
6494         end if;
6495      end if;
6496
6497      --  If check is not of form to optimize, then set flag and we are done
6498
6499      if not OK then
6500         if Debug_Flag_CC then
6501            w ("  expression not of optimizable type, flag set");
6502         end if;
6503
6504         Activate_Range_Check (N);
6505         return;
6506      end if;
6507
6508      --  If check is already performed, then return without setting flag
6509
6510      if Chk /= 0 then
6511         if Debug_Flag_CC then
6512            w ("Check suppressed!");
6513         end if;
6514
6515         return;
6516      end if;
6517
6518      --  Here we will make a new entry for the new check
6519
6520      Activate_Range_Check (N);
6521      Num_Saved_Checks := Num_Saved_Checks + 1;
6522      Saved_Checks (Num_Saved_Checks) :=
6523        (Killed      => False,
6524         Entity      => Ent,
6525         Offset      => Ofs,
6526         Check_Type  => 'R',
6527         Target_Type => Ttyp);
6528
6529      if Debug_Flag_CC then
6530         w ("Make new entry, check number = ", Num_Saved_Checks);
6531         w ("  Entity = ", Int (Ent));
6532         Write_Str ("  Offset = ");
6533         pid (Ofs);
6534         w ("  Check_Type = R");
6535         w ("  Target_Type = ", Int (Ttyp));
6536         pg (Union_Id (Ttyp));
6537      end if;
6538
6539   --  If we get an exception, then something went wrong, probably because of
6540   --  an error in the structure of the tree due to an incorrect program. Or
6541   --  it may be a bug in the optimization circuit. In either case the safest
6542   --  thing is simply to set the check flag unconditionally.
6543
6544   exception
6545      when others =>
6546         Activate_Range_Check (N);
6547
6548         if Debug_Flag_CC then
6549            w ("  exception occurred, range flag set");
6550         end if;
6551
6552         return;
6553   end Enable_Range_Check;
6554
6555   ------------------
6556   -- Ensure_Valid --
6557   ------------------
6558
6559   procedure Ensure_Valid
6560     (Expr          : Node_Id;
6561      Holes_OK      : Boolean   := False;
6562      Related_Id    : Entity_Id := Empty;
6563      Is_Low_Bound  : Boolean   := False;
6564      Is_High_Bound : Boolean   := False)
6565   is
6566      Typ : constant Entity_Id  := Etype (Expr);
6567
6568   begin
6569      --  Ignore call if we are not doing any validity checking
6570
6571      if not Validity_Checks_On then
6572         return;
6573
6574      --  Ignore call if range or validity checks suppressed on entity or type
6575
6576      elsif Range_Or_Validity_Checks_Suppressed (Expr) then
6577         return;
6578
6579      --  No check required if expression is from the expander, we assume the
6580      --  expander will generate whatever checks are needed. Note that this is
6581      --  not just an optimization, it avoids infinite recursions.
6582
6583      --  Unchecked conversions must be checked, unless they are initialized
6584      --  scalar values, as in a component assignment in an init proc.
6585
6586      --  In addition, we force a check if Force_Validity_Checks is set
6587
6588      elsif not Comes_From_Source (Expr)
6589        and then not
6590          (Nkind (Expr) = N_Identifier
6591            and then Present (Renamed_Object (Entity (Expr)))
6592            and then Comes_From_Source (Renamed_Object (Entity (Expr))))
6593        and then not Force_Validity_Checks
6594        and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
6595                    or else Kill_Range_Check (Expr))
6596      then
6597         return;
6598
6599      --  No check required if expression is known to have valid value
6600
6601      elsif Expr_Known_Valid (Expr) then
6602         return;
6603
6604      --  No check needed within a generated predicate function. Validity
6605      --  of input value will have been checked earlier.
6606
6607      elsif Ekind (Current_Scope) = E_Function
6608        and then Is_Predicate_Function (Current_Scope)
6609      then
6610         return;
6611
6612      --  Ignore case of enumeration with holes where the flag is set not to
6613      --  worry about holes, since no special validity check is needed
6614
6615      elsif Is_Enumeration_Type (Typ)
6616        and then Has_Non_Standard_Rep (Typ)
6617        and then Holes_OK
6618      then
6619         return;
6620
6621      --  No check required on the left-hand side of an assignment
6622
6623      elsif Nkind (Parent (Expr)) = N_Assignment_Statement
6624        and then Expr = Name (Parent (Expr))
6625      then
6626         return;
6627
6628      --  No check on a universal real constant. The context will eventually
6629      --  convert it to a machine number for some target type, or report an
6630      --  illegality.
6631
6632      elsif Nkind (Expr) = N_Real_Literal
6633        and then Etype (Expr) = Universal_Real
6634      then
6635         return;
6636
6637      --  If the expression denotes a component of a packed boolean array,
6638      --  no possible check applies. We ignore the old ACATS chestnuts that
6639      --  involve Boolean range True..True.
6640
6641      --  Note: validity checks are generated for expressions that yield a
6642      --  scalar type, when it is possible to create a value that is outside of
6643      --  the type. If this is a one-bit boolean no such value exists. This is
6644      --  an optimization, and it also prevents compiler blowing up during the
6645      --  elaboration of improperly expanded packed array references.
6646
6647      elsif Nkind (Expr) = N_Indexed_Component
6648        and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
6649        and then Root_Type (Etype (Expr)) = Standard_Boolean
6650      then
6651         return;
6652
6653      --  For an expression with actions, we want to insert the validity check
6654      --  on the final Expression.
6655
6656      elsif Nkind (Expr) = N_Expression_With_Actions then
6657         Ensure_Valid (Expression (Expr));
6658         return;
6659
6660      --  An annoying special case. If this is an out parameter of a scalar
6661      --  type, then the value is not going to be accessed, therefore it is
6662      --  inappropriate to do any validity check at the call site. Likewise
6663      --  if the parameter is passed by reference.
6664
6665      else
6666         --  Only need to worry about scalar types
6667
6668         if Is_Scalar_Type (Typ) then
6669            declare
6670               P : Node_Id;
6671               N : Node_Id;
6672               E : Entity_Id;
6673               F : Entity_Id;
6674               A : Node_Id;
6675               L : List_Id;
6676
6677            begin
6678               --  Find actual argument (which may be a parameter association)
6679               --  and the parent of the actual argument (the call statement)
6680
6681               N := Expr;
6682               P := Parent (Expr);
6683
6684               if Nkind (P) = N_Parameter_Association then
6685                  N := P;
6686                  P := Parent (N);
6687               end if;
6688
6689               --  If this is an indirect or dispatching call, get signature
6690               --  from the subprogram type.
6691
6692               if Nkind (P) in N_Entry_Call_Statement
6693                             | N_Function_Call
6694                             | N_Procedure_Call_Statement
6695               then
6696                  E := Get_Called_Entity (P);
6697                  L := Parameter_Associations (P);
6698
6699                  --  Only need to worry if there are indeed actuals, and if
6700                  --  this could be a subprogram call, otherwise we cannot get
6701                  --  a match (either we are not an argument, or the mode of
6702                  --  the formal is not OUT). This test also filters out the
6703                  --  generic case.
6704
6705                  if Is_Non_Empty_List (L) and then Is_Subprogram (E) then
6706
6707                     --  This is the loop through parameters, looking for an
6708                     --  OUT parameter for which we are the argument.
6709
6710                     F := First_Formal (E);
6711                     A := First (L);
6712                     while Present (F) loop
6713                        if A = N
6714                          and then (Ekind (F) = E_Out_Parameter
6715                                     or else Mechanism (F) = By_Reference)
6716                        then
6717                           return;
6718                        end if;
6719
6720                        Next_Formal (F);
6721                        Next (A);
6722                     end loop;
6723                  end if;
6724               end if;
6725            end;
6726         end if;
6727      end if;
6728
6729      --  If this is a boolean expression, only its elementary operands need
6730      --  checking: if they are valid, a boolean or short-circuit operation
6731      --  with them will be valid as well.
6732
6733      if Base_Type (Typ) = Standard_Boolean
6734        and then
6735         (Nkind (Expr) in N_Op or else Nkind (Expr) in N_Short_Circuit)
6736      then
6737         return;
6738      end if;
6739
6740      --  If we fall through, a validity check is required
6741
6742      Insert_Valid_Check (Expr, Related_Id, Is_Low_Bound, Is_High_Bound);
6743
6744      if Is_Entity_Name (Expr)
6745        and then Safe_To_Capture_Value (Expr, Entity (Expr))
6746      then
6747         Set_Is_Known_Valid (Entity (Expr));
6748      end if;
6749   end Ensure_Valid;
6750
6751   ----------------------
6752   -- Expr_Known_Valid --
6753   ----------------------
6754
6755   function Expr_Known_Valid (Expr : Node_Id) return Boolean is
6756      Typ : constant Entity_Id := Etype (Expr);
6757
6758   begin
6759      --  Non-scalar types are always considered valid, since they never give
6760      --  rise to the issues of erroneous or bounded error behavior that are
6761      --  the concern. In formal reference manual terms the notion of validity
6762      --  only applies to scalar types. Note that even when packed arrays are
6763      --  represented using modular types, they are still arrays semantically,
6764      --  so they are also always valid (in particular, the unused bits can be
6765      --  random rubbish without affecting the validity of the array value).
6766
6767      if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Impl_Type (Typ) then
6768         return True;
6769
6770      --  If no validity checking, then everything is considered valid
6771
6772      elsif not Validity_Checks_On then
6773         return True;
6774
6775      --  Floating-point types are considered valid unless floating-point
6776      --  validity checks have been specifically turned on.
6777
6778      elsif Is_Floating_Point_Type (Typ)
6779        and then not Validity_Check_Floating_Point
6780      then
6781         return True;
6782
6783      --  If the expression is the value of an object that is known to be
6784      --  valid, then clearly the expression value itself is valid.
6785
6786      elsif Is_Entity_Name (Expr)
6787        and then Is_Known_Valid (Entity (Expr))
6788
6789        --  Exclude volatile variables
6790
6791        and then not Treat_As_Volatile (Entity (Expr))
6792      then
6793         return True;
6794
6795      --  References to discriminants are always considered valid. The value
6796      --  of a discriminant gets checked when the object is built. Within the
6797      --  record, we consider it valid, and it is important to do so, since
6798      --  otherwise we can try to generate bogus validity checks which
6799      --  reference discriminants out of scope. Discriminants of concurrent
6800      --  types are excluded for the same reason.
6801
6802      elsif Is_Entity_Name (Expr)
6803        and then Denotes_Discriminant (Expr, Check_Concurrent => True)
6804      then
6805         return True;
6806
6807      --  If the type is one for which all values are known valid, then we are
6808      --  sure that the value is valid except in the slightly odd case where
6809      --  the expression is a reference to a variable whose size has been
6810      --  explicitly set to a value greater than the object size.
6811
6812      elsif Is_Known_Valid (Typ) then
6813         if Is_Entity_Name (Expr)
6814           and then Ekind (Entity (Expr)) = E_Variable
6815           and then Esize (Entity (Expr)) > Esize (Typ)
6816         then
6817            return False;
6818         else
6819            return True;
6820         end if;
6821
6822      --  Integer and character literals always have valid values, where
6823      --  appropriate these will be range checked in any case.
6824
6825      elsif Nkind (Expr) in N_Integer_Literal | N_Character_Literal then
6826         return True;
6827
6828      --  If we have a type conversion or a qualification of a known valid
6829      --  value, then the result will always be valid.
6830
6831      elsif Nkind (Expr) in N_Type_Conversion | N_Qualified_Expression then
6832         return Expr_Known_Valid (Expression (Expr));
6833
6834      --  Case of expression is a non-floating-point operator. In this case we
6835      --  can assume the result is valid the generated code for the operator
6836      --  will include whatever checks are needed (e.g. range checks) to ensure
6837      --  validity. This assumption does not hold for the floating-point case,
6838      --  since floating-point operators can generate Infinite or NaN results
6839      --  which are considered invalid.
6840
6841      --  Historical note: in older versions, the exemption of floating-point
6842      --  types from this assumption was done only in cases where the parent
6843      --  was an assignment, function call or parameter association. Presumably
6844      --  the idea was that in other contexts, the result would be checked
6845      --  elsewhere, but this list of cases was missing tests (at least the
6846      --  N_Object_Declaration case, as shown by a reported missing validity
6847      --  check), and it is not clear why function calls but not procedure
6848      --  calls were tested for. It really seems more accurate and much
6849      --  safer to recognize that expressions which are the result of a
6850      --  floating-point operator can never be assumed to be valid.
6851
6852      elsif Nkind (Expr) in N_Op and then not Is_Floating_Point_Type (Typ) then
6853         return True;
6854
6855      --  The result of a membership test is always valid, since it is true or
6856      --  false, there are no other possibilities.
6857
6858      elsif Nkind (Expr) in N_Membership_Test then
6859         return True;
6860
6861      --  For all other cases, we do not know the expression is valid
6862
6863      else
6864         return False;
6865      end if;
6866   end Expr_Known_Valid;
6867
6868   ----------------
6869   -- Find_Check --
6870   ----------------
6871
6872   procedure Find_Check
6873     (Expr        : Node_Id;
6874      Check_Type  : Character;
6875      Target_Type : Entity_Id;
6876      Entry_OK    : out Boolean;
6877      Check_Num   : out Nat;
6878      Ent         : out Entity_Id;
6879      Ofs         : out Uint)
6880   is
6881      function Within_Range_Of
6882        (Target_Type : Entity_Id;
6883         Check_Type  : Entity_Id) return Boolean;
6884      --  Given a requirement for checking a range against Target_Type, and
6885      --  and a range Check_Type against which a check has already been made,
6886      --  determines if the check against check type is sufficient to ensure
6887      --  that no check against Target_Type is required.
6888
6889      ---------------------
6890      -- Within_Range_Of --
6891      ---------------------
6892
6893      function Within_Range_Of
6894        (Target_Type : Entity_Id;
6895         Check_Type  : Entity_Id) return Boolean
6896      is
6897      begin
6898         if Target_Type = Check_Type then
6899            return True;
6900
6901         else
6902            declare
6903               Tlo : constant Node_Id := Type_Low_Bound  (Target_Type);
6904               Thi : constant Node_Id := Type_High_Bound (Target_Type);
6905               Clo : constant Node_Id := Type_Low_Bound  (Check_Type);
6906               Chi : constant Node_Id := Type_High_Bound (Check_Type);
6907
6908            begin
6909               if (Tlo = Clo
6910                     or else (Compile_Time_Known_Value (Tlo)
6911                                and then
6912                              Compile_Time_Known_Value (Clo)
6913                                and then
6914                              Expr_Value (Clo) >= Expr_Value (Tlo)))
6915                 and then
6916                  (Thi = Chi
6917                     or else (Compile_Time_Known_Value (Thi)
6918                                and then
6919                              Compile_Time_Known_Value (Chi)
6920                                and then
6921                              Expr_Value (Chi) <= Expr_Value (Clo)))
6922               then
6923                  return True;
6924               else
6925                  return False;
6926               end if;
6927            end;
6928         end if;
6929      end Within_Range_Of;
6930
6931   --  Start of processing for Find_Check
6932
6933   begin
6934      --  Establish default, in case no entry is found
6935
6936      Check_Num := 0;
6937
6938      --  Case of expression is simple entity reference
6939
6940      if Is_Entity_Name (Expr) then
6941         Ent := Entity (Expr);
6942         Ofs := Uint_0;
6943
6944      --  Case of expression is entity + known constant
6945
6946      elsif Nkind (Expr) = N_Op_Add
6947        and then Compile_Time_Known_Value (Right_Opnd (Expr))
6948        and then Is_Entity_Name (Left_Opnd (Expr))
6949      then
6950         Ent := Entity (Left_Opnd (Expr));
6951         Ofs := Expr_Value (Right_Opnd (Expr));
6952
6953      --  Case of expression is entity - known constant
6954
6955      elsif Nkind (Expr) = N_Op_Subtract
6956        and then Compile_Time_Known_Value (Right_Opnd (Expr))
6957        and then Is_Entity_Name (Left_Opnd (Expr))
6958      then
6959         Ent := Entity (Left_Opnd (Expr));
6960         Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
6961
6962      --  Any other expression is not of the right form
6963
6964      else
6965         Ent := Empty;
6966         Ofs := Uint_0;
6967         Entry_OK := False;
6968         return;
6969      end if;
6970
6971      --  Come here with expression of appropriate form, check if entity is an
6972      --  appropriate one for our purposes.
6973
6974      if (Ekind (Ent) = E_Variable
6975            or else Is_Constant_Object (Ent))
6976        and then not Is_Library_Level_Entity (Ent)
6977      then
6978         Entry_OK := True;
6979      else
6980         Entry_OK := False;
6981         return;
6982      end if;
6983
6984      --  See if there is matching check already
6985
6986      for J in reverse 1 .. Num_Saved_Checks loop
6987         declare
6988            SC : Saved_Check renames Saved_Checks (J);
6989         begin
6990            if SC.Killed = False
6991              and then SC.Entity = Ent
6992              and then SC.Offset = Ofs
6993              and then SC.Check_Type = Check_Type
6994              and then Within_Range_Of (Target_Type, SC.Target_Type)
6995            then
6996               Check_Num := J;
6997               return;
6998            end if;
6999         end;
7000      end loop;
7001
7002      --  If we fall through entry was not found
7003
7004      return;
7005   end Find_Check;
7006
7007   ---------------------------------
7008   -- Generate_Discriminant_Check --
7009   ---------------------------------
7010
7011   procedure Generate_Discriminant_Check (N : Node_Id) is
7012      Loc  : constant Source_Ptr := Sloc (N);
7013      Pref : constant Node_Id    := Prefix (N);
7014      Sel  : constant Node_Id    := Selector_Name (N);
7015
7016      Orig_Comp : constant Entity_Id :=
7017        Original_Record_Component (Entity (Sel));
7018      --  The original component to be checked
7019
7020      Discr_Fct : constant Entity_Id :=
7021        Discriminant_Checking_Func (Orig_Comp);
7022      --  The discriminant checking function
7023
7024      Discr : Entity_Id;
7025      --  One discriminant to be checked in the type
7026
7027      Real_Discr : Entity_Id;
7028      --  Actual discriminant in the call
7029
7030      Pref_Type : Entity_Id;
7031      --  Type of relevant prefix (ignoring private/access stuff)
7032
7033      Args : List_Id;
7034      --  List of arguments for function call
7035
7036      Formal : Entity_Id;
7037      --  Keep track of the formal corresponding to the actual we build for
7038      --  each discriminant, in order to be able to perform the necessary type
7039      --  conversions.
7040
7041      Scomp : Node_Id;
7042      --  Selected component reference for checking function argument
7043
7044   begin
7045      Pref_Type := Etype (Pref);
7046
7047      --  Force evaluation of the prefix, so that it does not get evaluated
7048      --  twice (once for the check, once for the actual reference). Such a
7049      --  double evaluation is always a potential source of inefficiency, and
7050      --  is functionally incorrect in the volatile case, or when the prefix
7051      --  may have side effects. A nonvolatile entity or a component of a
7052      --  nonvolatile entity requires no evaluation.
7053
7054      if Is_Entity_Name (Pref) then
7055         if Treat_As_Volatile (Entity (Pref)) then
7056            Force_Evaluation (Pref, Name_Req => True);
7057         end if;
7058
7059      elsif Treat_As_Volatile (Etype (Pref)) then
7060         Force_Evaluation (Pref, Name_Req => True);
7061
7062      elsif Nkind (Pref) = N_Selected_Component
7063        and then Is_Entity_Name (Prefix (Pref))
7064      then
7065         null;
7066
7067      else
7068         Force_Evaluation (Pref, Name_Req => True);
7069      end if;
7070
7071      --  For a tagged type, use the scope of the original component to
7072      --  obtain the type, because ???
7073
7074      if Is_Tagged_Type (Scope (Orig_Comp)) then
7075         Pref_Type := Scope (Orig_Comp);
7076
7077      --  For an untagged derived type, use the discriminants of the parent
7078      --  which have been renamed in the derivation, possibly by a one-to-many
7079      --  discriminant constraint. For untagged type, initially get the Etype
7080      --  of the prefix
7081
7082      else
7083         if Is_Derived_Type (Pref_Type)
7084           and then Number_Discriminants (Pref_Type) /=
7085                    Number_Discriminants (Etype (Base_Type (Pref_Type)))
7086         then
7087            Pref_Type := Etype (Base_Type (Pref_Type));
7088         end if;
7089      end if;
7090
7091      --  We definitely should have a checking function, This routine should
7092      --  not be called if no discriminant checking function is present.
7093
7094      pragma Assert (Present (Discr_Fct));
7095
7096      --  Create the list of the actual parameters for the call. This list
7097      --  is the list of the discriminant fields of the record expression to
7098      --  be discriminant checked.
7099
7100      Args   := New_List;
7101      Formal := First_Formal (Discr_Fct);
7102      Discr  := First_Discriminant (Pref_Type);
7103      while Present (Discr) loop
7104
7105         --  If we have a corresponding discriminant field, and a parent
7106         --  subtype is present, then we want to use the corresponding
7107         --  discriminant since this is the one with the useful value.
7108
7109         if Present (Corresponding_Discriminant (Discr))
7110           and then Ekind (Pref_Type) = E_Record_Type
7111           and then Present (Parent_Subtype (Pref_Type))
7112         then
7113            Real_Discr := Corresponding_Discriminant (Discr);
7114         else
7115            Real_Discr := Discr;
7116         end if;
7117
7118         --  Construct the reference to the discriminant
7119
7120         Scomp :=
7121           Make_Selected_Component (Loc,
7122             Prefix =>
7123               Unchecked_Convert_To (Pref_Type,
7124                 Duplicate_Subexpr (Pref)),
7125             Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
7126
7127         --  Manually analyze and resolve this selected component. We really
7128         --  want it just as it appears above, and do not want the expander
7129         --  playing discriminal games etc with this reference. Then we append
7130         --  the argument to the list we are gathering.
7131
7132         Set_Etype (Scomp, Etype (Real_Discr));
7133         Set_Analyzed (Scomp, True);
7134         Append_To (Args, Convert_To (Etype (Formal), Scomp));
7135
7136         Next_Formal_With_Extras (Formal);
7137         Next_Discriminant (Discr);
7138      end loop;
7139
7140      --  Now build and insert the call
7141
7142      Insert_Action (N,
7143        Make_Raise_Constraint_Error (Loc,
7144          Condition =>
7145            Make_Function_Call (Loc,
7146              Name                   => New_Occurrence_Of (Discr_Fct, Loc),
7147              Parameter_Associations => Args),
7148          Reason => CE_Discriminant_Check_Failed));
7149   end Generate_Discriminant_Check;
7150
7151   ---------------------------
7152   -- Generate_Index_Checks --
7153   ---------------------------
7154
7155   procedure Generate_Index_Checks (N : Node_Id) is
7156
7157      function Entity_Of_Prefix return Entity_Id;
7158      --  Returns the entity of the prefix of N (or Empty if not found)
7159
7160      ----------------------
7161      -- Entity_Of_Prefix --
7162      ----------------------
7163
7164      function Entity_Of_Prefix return Entity_Id is
7165         P : Node_Id;
7166
7167      begin
7168         P := Prefix (N);
7169         while not Is_Entity_Name (P) loop
7170            if Nkind (P) not in N_Selected_Component | N_Indexed_Component then
7171               return Empty;
7172            end if;
7173
7174            P := Prefix (P);
7175         end loop;
7176
7177         return Entity (P);
7178      end Entity_Of_Prefix;
7179
7180      --  Local variables
7181
7182      Loc   : constant Source_Ptr := Sloc (N);
7183      A     : constant Node_Id    := Prefix (N);
7184      A_Ent : constant Entity_Id  := Entity_Of_Prefix;
7185      Sub   : Node_Id;
7186
7187   --  Start of processing for Generate_Index_Checks
7188
7189   begin
7190      --  Ignore call if the prefix is not an array since we have a serious
7191      --  error in the sources. Ignore it also if index checks are suppressed
7192      --  for array object or type.
7193
7194      if not Is_Array_Type (Etype (A))
7195        or else (Present (A_Ent) and then Index_Checks_Suppressed (A_Ent))
7196        or else Index_Checks_Suppressed (Etype (A))
7197      then
7198         return;
7199
7200      --  The indexed component we are dealing with contains 'Loop_Entry in its
7201      --  prefix. This case arises when analysis has determined that constructs
7202      --  such as
7203
7204      --     Prefix'Loop_Entry (Expr)
7205      --     Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)
7206
7207      --  require rewriting for error detection purposes. A side effect of this
7208      --  action is the generation of index checks that mention 'Loop_Entry.
7209      --  Delay the generation of the check until 'Loop_Entry has been properly
7210      --  expanded. This is done in Expand_Loop_Entry_Attributes.
7211
7212      elsif Nkind (Prefix (N)) = N_Attribute_Reference
7213        and then Attribute_Name (Prefix (N)) = Name_Loop_Entry
7214      then
7215         return;
7216      end if;
7217
7218      --  Generate a raise of constraint error with the appropriate reason and
7219      --  a condition of the form:
7220
7221      --    Base_Type (Sub) not in Array'Range (Subscript)
7222
7223      --  Note that the reason we generate the conversion to the base type here
7224      --  is that we definitely want the range check to take place, even if it
7225      --  looks like the subtype is OK. Optimization considerations that allow
7226      --  us to omit the check have already been taken into account in the
7227      --  setting of the Do_Range_Check flag earlier on.
7228
7229      Sub := First (Expressions (N));
7230
7231      --  Handle string literals
7232
7233      if Ekind (Etype (A)) = E_String_Literal_Subtype then
7234         if Do_Range_Check (Sub) then
7235            Set_Do_Range_Check (Sub, False);
7236
7237            --  For string literals we obtain the bounds of the string from the
7238            --  associated subtype.
7239
7240            Insert_Action (N,
7241              Make_Raise_Constraint_Error (Loc,
7242                Condition =>
7243                   Make_Not_In (Loc,
7244                     Left_Opnd  =>
7245                       Convert_To (Base_Type (Etype (Sub)),
7246                         Duplicate_Subexpr_Move_Checks (Sub)),
7247                     Right_Opnd =>
7248                       Make_Attribute_Reference (Loc,
7249                         Prefix         => New_Occurrence_Of (Etype (A), Loc),
7250                         Attribute_Name => Name_Range)),
7251                Reason => CE_Index_Check_Failed));
7252         end if;
7253
7254      --  General case
7255
7256      else
7257         declare
7258            A_Idx   : Node_Id;
7259            A_Range : Node_Id;
7260            Ind     : Pos;
7261            Num     : List_Id;
7262            Range_N : Node_Id;
7263
7264         begin
7265            A_Idx := First_Index (Etype (A));
7266            Ind   := 1;
7267            while Present (Sub) loop
7268               if Do_Range_Check (Sub) then
7269                  Set_Do_Range_Check (Sub, False);
7270
7271                  --  Force evaluation except for the case of a simple name of
7272                  --  a nonvolatile entity.
7273
7274                  if not Is_Entity_Name (Sub)
7275                    or else Treat_As_Volatile (Entity (Sub))
7276                  then
7277                     Force_Evaluation (Sub);
7278                  end if;
7279
7280                  if Nkind (A_Idx) = N_Range then
7281                     A_Range := A_Idx;
7282
7283                  elsif Nkind (A_Idx) in N_Identifier | N_Expanded_Name then
7284                     A_Range := Scalar_Range (Entity (A_Idx));
7285
7286                     if Nkind (A_Range) = N_Subtype_Indication then
7287                        A_Range := Range_Expression (Constraint (A_Range));
7288                     end if;
7289
7290                  else pragma Assert (Nkind (A_Idx) = N_Subtype_Indication);
7291                     A_Range := Range_Expression (Constraint (A_Idx));
7292                  end if;
7293
7294                  --  For array objects with constant bounds we can generate
7295                  --  the index check using the bounds of the type of the index
7296
7297                  if Present (A_Ent)
7298                    and then Ekind (A_Ent) = E_Variable
7299                    and then Is_Constant_Bound (Low_Bound (A_Range))
7300                    and then Is_Constant_Bound (High_Bound (A_Range))
7301                  then
7302                     Range_N :=
7303                       Make_Attribute_Reference (Loc,
7304                         Prefix         =>
7305                           New_Occurrence_Of (Etype (A_Idx), Loc),
7306                         Attribute_Name => Name_Range);
7307
7308                  --  For arrays with non-constant bounds we cannot generate
7309                  --  the index check using the bounds of the type of the index
7310                  --  since it may reference discriminants of some enclosing
7311                  --  type. We obtain the bounds directly from the prefix
7312                  --  object.
7313
7314                  else
7315                     if Ind = 1 then
7316                        Num := No_List;
7317                     else
7318                        Num := New_List (Make_Integer_Literal (Loc, Ind));
7319                     end if;
7320
7321                     Range_N :=
7322                       Make_Attribute_Reference (Loc,
7323                         Prefix =>
7324                           Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
7325                         Attribute_Name => Name_Range,
7326                         Expressions    => Num);
7327                  end if;
7328
7329                  Insert_Action (N,
7330                    Make_Raise_Constraint_Error (Loc,
7331                      Condition =>
7332                         Make_Not_In (Loc,
7333                           Left_Opnd  =>
7334                             Convert_To (Base_Type (Etype (Sub)),
7335                               Duplicate_Subexpr_Move_Checks (Sub)),
7336                           Right_Opnd => Range_N),
7337                      Reason => CE_Index_Check_Failed));
7338               end if;
7339
7340               Next_Index (A_Idx);
7341               Ind := Ind + 1;
7342               Next (Sub);
7343            end loop;
7344         end;
7345      end if;
7346   end Generate_Index_Checks;
7347
7348   --------------------------
7349   -- Generate_Range_Check --
7350   --------------------------
7351
7352   procedure Generate_Range_Check
7353     (N           : Node_Id;
7354      Target_Type : Entity_Id;
7355      Reason      : RT_Exception_Code)
7356   is
7357      Loc              : constant Source_Ptr := Sloc (N);
7358      Source_Type      : constant Entity_Id  := Etype (N);
7359      Source_Base_Type : constant Entity_Id  := Base_Type (Source_Type);
7360      Target_Base_Type : constant Entity_Id  := Base_Type (Target_Type);
7361
7362      procedure Convert_And_Check_Range (Suppress : Check_Id);
7363      --  Convert N to the target base type and save the result in a temporary.
7364      --  The action is analyzed using the default checks as modified by the
7365      --  given Suppress argument. Then check the converted value against the
7366      --  range of the target subtype.
7367
7368      function Is_Single_Attribute_Reference (N : Node_Id) return Boolean;
7369      --  Return True if N is an expression that contains a single attribute
7370      --  reference, possibly as operand among only integer literal operands.
7371
7372      -----------------------------
7373      -- Convert_And_Check_Range --
7374      -----------------------------
7375
7376      procedure Convert_And_Check_Range (Suppress : Check_Id) is
7377         Tnn    : constant Entity_Id := Make_Temporary (Loc, 'T', N);
7378         Conv_N : Node_Id;
7379
7380      begin
7381         --  For enumeration types with non-standard representation this is a
7382         --  direct conversion from the enumeration type to the target integer
7383         --  type, which is treated by the back end as a normal integer type
7384         --  conversion, treating the enumeration type as an integer, which is
7385         --  exactly what we want. We set Conversion_OK to make sure that the
7386         --  analyzer does not complain about what otherwise might be an
7387         --  illegal conversion.
7388
7389         if Is_Enumeration_Type (Source_Base_Type)
7390           and then Present (Enum_Pos_To_Rep (Source_Base_Type))
7391           and then Is_Integer_Type (Target_Base_Type)
7392         then
7393            Conv_N := OK_Convert_To (Target_Base_Type, Duplicate_Subexpr (N));
7394         else
7395            Conv_N := Convert_To (Target_Base_Type, Duplicate_Subexpr (N));
7396         end if;
7397
7398         --  We make a temporary to hold the value of the conversion to the
7399         --  target base type, and then do the test against this temporary.
7400         --  N itself is replaced by an occurrence of Tnn and followed by
7401         --  the explicit range check.
7402
7403         --     Tnn : constant Target_Base_Type := Target_Base_Type (N);
7404         --     [constraint_error when Tnn not in Target_Type]
7405         --     Tnn
7406
7407         Insert_Actions (N, New_List (
7408           Make_Object_Declaration (Loc,
7409             Defining_Identifier => Tnn,
7410             Object_Definition   => New_Occurrence_Of (Target_Base_Type, Loc),
7411             Constant_Present    => True,
7412             Expression          => Conv_N),
7413
7414           Make_Raise_Constraint_Error (Loc,
7415             Condition =>
7416               Make_Not_In (Loc,
7417                 Left_Opnd  => New_Occurrence_Of (Tnn, Loc),
7418                 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
7419             Reason => Reason)),
7420           Suppress => Suppress);
7421
7422         Rewrite (N, New_Occurrence_Of (Tnn, Loc));
7423
7424         --  Set the type of N, because the declaration for Tnn might not
7425         --  be analyzed yet, as is the case if N appears within a record
7426         --  declaration, as a discriminant constraint or expression.
7427
7428         Set_Etype (N, Target_Base_Type);
7429      end Convert_And_Check_Range;
7430
7431      -------------------------------------
7432      --  Is_Single_Attribute_Reference  --
7433      -------------------------------------
7434
7435      function Is_Single_Attribute_Reference (N : Node_Id) return Boolean is
7436      begin
7437         if Nkind (N) = N_Attribute_Reference then
7438            return True;
7439
7440         elsif Nkind (N) in N_Binary_Op then
7441            if Nkind (Right_Opnd (N)) = N_Integer_Literal then
7442               return Is_Single_Attribute_Reference (Left_Opnd (N));
7443
7444            elsif Nkind (Left_Opnd (N)) = N_Integer_Literal then
7445               return Is_Single_Attribute_Reference (Right_Opnd (N));
7446
7447            else
7448               return False;
7449            end if;
7450
7451         else
7452            return False;
7453         end if;
7454      end Is_Single_Attribute_Reference;
7455
7456   --  Start of processing for Generate_Range_Check
7457
7458   begin
7459      --  First special case, if the source type is already within the range
7460      --  of the target type, then no check is needed (probably we should have
7461      --  stopped Do_Range_Check from being set in the first place, but better
7462      --  late than never in preventing junk code and junk flag settings).
7463
7464      if In_Subrange_Of (Source_Type, Target_Type)
7465
7466        --  We do NOT apply this if the source node is a literal, since in this
7467        --  case the literal has already been labeled as having the subtype of
7468        --  the target.
7469
7470        and then not
7471          (Nkind (N) in
7472               N_Integer_Literal | N_Real_Literal | N_Character_Literal
7473             or else
7474               (Is_Entity_Name (N)
7475                 and then Ekind (Entity (N)) = E_Enumeration_Literal))
7476      then
7477         Set_Do_Range_Check (N, False);
7478         return;
7479      end if;
7480
7481      --  Here a check is needed. If the expander is not active (which is also
7482      --  the case in GNATprove mode), then simply set the Do_Range_Check flag
7483      --  and we are done. We just want to see the range check flag set, we do
7484      --  not want to generate the explicit range check code.
7485
7486      if not Expander_Active then
7487         Set_Do_Range_Check (N);
7488         return;
7489      end if;
7490
7491      --  Here we will generate an explicit range check, so we don't want to
7492      --  set the Do_Range check flag, since the range check is taken care of
7493      --  by the code we will generate.
7494
7495      Set_Do_Range_Check (N, False);
7496
7497      --  Force evaluation of the node, so that it does not get evaluated twice
7498      --  (once for the check, once for the actual reference). Such a double
7499      --  evaluation is always a potential source of inefficiency, and is
7500      --  functionally incorrect in the volatile case.
7501
7502      --  We skip the evaluation of attribute references because, after these
7503      --  runtime checks are generated, the expander may need to rewrite this
7504      --  node (for example, see Attribute_Max_Size_In_Storage_Elements in
7505      --  Expand_N_Attribute_Reference) and, in many cases, their return type
7506      --  is universal integer, which is a very large type for a temporary.
7507
7508      if not Is_Single_Attribute_Reference (N)
7509        and then (not Is_Entity_Name (N)
7510                   or else Treat_As_Volatile (Entity (N)))
7511      then
7512         Force_Evaluation (N, Mode => Strict);
7513      end if;
7514
7515      --  The easiest case is when Source_Base_Type and Target_Base_Type are
7516      --  the same since in this case we can simply do a direct check of the
7517      --  value of N against the bounds of Target_Type.
7518
7519      --    [constraint_error when N not in Target_Type]
7520
7521      --  Note: this is by far the most common case, for example all cases of
7522      --  checks on the RHS of assignments are in this category, but not all
7523      --  cases are like this. Notably conversions can involve two types.
7524
7525      if Source_Base_Type = Target_Base_Type then
7526
7527         --  Insert the explicit range check. Note that we suppress checks for
7528         --  this code, since we don't want a recursive range check popping up.
7529
7530         Insert_Action (N,
7531           Make_Raise_Constraint_Error (Loc,
7532             Condition =>
7533               Make_Not_In (Loc,
7534                 Left_Opnd  => Duplicate_Subexpr (N),
7535                 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
7536             Reason => Reason),
7537           Suppress => All_Checks);
7538
7539      --  Next test for the case where the target type is within the bounds
7540      --  of the base type of the source type, since in this case we can
7541      --  simply convert the bounds of the target type to this base type
7542      --  to do the test.
7543
7544      --    [constraint_error when N not in
7545      --       Source_Base_Type (Target_Type'First)
7546      --         ..
7547      --       Source_Base_Type(Target_Type'Last))]
7548
7549      --  The conversions will always work and need no check
7550
7551      --  Unchecked_Convert_To is used instead of Convert_To to handle the case
7552      --  of converting from an enumeration value to an integer type, such as
7553      --  occurs for the case of generating a range check on Enum'Val(Exp)
7554      --  (which used to be handled by gigi). This is OK, since the conversion
7555      --  itself does not require a check.
7556
7557      elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
7558
7559         --  Insert the explicit range check. Note that we suppress checks for
7560         --  this code, since we don't want a recursive range check popping up.
7561
7562         if Is_Discrete_Type (Source_Base_Type)
7563              and then
7564            Is_Discrete_Type (Target_Base_Type)
7565         then
7566            Insert_Action (N,
7567              Make_Raise_Constraint_Error (Loc,
7568                Condition =>
7569                  Make_Not_In (Loc,
7570                    Left_Opnd  => Duplicate_Subexpr (N),
7571
7572                    Right_Opnd =>
7573                      Make_Range (Loc,
7574                        Low_Bound  =>
7575                          Unchecked_Convert_To (Source_Base_Type,
7576                            Make_Attribute_Reference (Loc,
7577                              Prefix         =>
7578                                New_Occurrence_Of (Target_Type, Loc),
7579                              Attribute_Name => Name_First)),
7580
7581                        High_Bound =>
7582                          Unchecked_Convert_To (Source_Base_Type,
7583                            Make_Attribute_Reference (Loc,
7584                              Prefix         =>
7585                                New_Occurrence_Of (Target_Type, Loc),
7586                              Attribute_Name => Name_Last)))),
7587                Reason    => Reason),
7588              Suppress => All_Checks);
7589
7590         --  For conversions involving at least one type that is not discrete,
7591         --  first convert to the target base type and then generate the range
7592         --  check. This avoids problems with values that are close to a bound
7593         --  of the target type that would fail a range check when done in a
7594         --  larger source type before converting but pass if converted with
7595         --  rounding and then checked (such as in float-to-float conversions).
7596
7597         --  Note that overflow checks are not suppressed for this code because
7598         --  we do not know whether the source type is in range of the target
7599         --  base type (unlike in the next case below).
7600
7601         else
7602            Convert_And_Check_Range (Suppress => Range_Check);
7603         end if;
7604
7605      --  Note that at this stage we know that the Target_Base_Type is not in
7606      --  the range of the Source_Base_Type (since even the Target_Type itself
7607      --  is not in this range). It could still be the case that Source_Type is
7608      --  in range of the target base type since we have not checked that case.
7609
7610      --  If that is the case, we can freely convert the source to the target,
7611      --  and then test the target result against the bounds. Note that checks
7612      --  are suppressed for this code, since we don't want a recursive range
7613      --  check popping up.
7614
7615      elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
7616         Convert_And_Check_Range (Suppress => All_Checks);
7617
7618      --  At this stage, we know that we have two scalar types, which are
7619      --  directly convertible, and where neither scalar type has a base
7620      --  range that is in the range of the other scalar type.
7621
7622      --  The only way this can happen is with a signed and unsigned type.
7623      --  So test for these two cases:
7624
7625      else
7626         --  Case of the source is unsigned and the target is signed
7627
7628         if Is_Unsigned_Type (Source_Base_Type)
7629           and then not Is_Unsigned_Type (Target_Base_Type)
7630         then
7631            --  If the source is unsigned and the target is signed, then we
7632            --  know that the source is not shorter than the target (otherwise
7633            --  the source base type would be in the target base type range).
7634
7635            --  In other words, the unsigned type is either the same size as
7636            --  the target, or it is larger. It cannot be smaller.
7637
7638            pragma Assert
7639              (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
7640
7641            --  We only need to check the low bound if the low bound of the
7642            --  target type is non-negative. If the low bound of the target
7643            --  type is negative, then we know that we will fit fine.
7644
7645            --  If the high bound of the target type is negative, then we
7646            --  know we have a constraint error, since we can't possibly
7647            --  have a negative source.
7648
7649            --  With these two checks out of the way, we can do the check
7650            --  using the source type safely
7651
7652            --  This is definitely the most annoying case.
7653
7654            --    [constraint_error
7655            --       when (Target_Type'First >= 0
7656            --               and then
7657            --                 N < Source_Base_Type (Target_Type'First))
7658            --         or else Target_Type'Last < 0
7659            --         or else N > Source_Base_Type (Target_Type'Last)];
7660
7661            --  We turn off all checks since we know that the conversions
7662            --  will work fine, given the guards for negative values.
7663
7664            Insert_Action (N,
7665              Make_Raise_Constraint_Error (Loc,
7666                Condition =>
7667                  Make_Or_Else (Loc,
7668                    Make_Or_Else (Loc,
7669                      Left_Opnd =>
7670                        Make_And_Then (Loc,
7671                          Left_Opnd => Make_Op_Ge (Loc,
7672                            Left_Opnd =>
7673                              Make_Attribute_Reference (Loc,
7674                                Prefix =>
7675                                  New_Occurrence_Of (Target_Type, Loc),
7676                                Attribute_Name => Name_First),
7677                            Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
7678
7679                          Right_Opnd =>
7680                            Make_Op_Lt (Loc,
7681                              Left_Opnd => Duplicate_Subexpr (N),
7682                              Right_Opnd =>
7683                                Convert_To (Source_Base_Type,
7684                                  Make_Attribute_Reference (Loc,
7685                                    Prefix =>
7686                                      New_Occurrence_Of (Target_Type, Loc),
7687                                    Attribute_Name => Name_First)))),
7688
7689                      Right_Opnd =>
7690                        Make_Op_Lt (Loc,
7691                          Left_Opnd =>
7692                            Make_Attribute_Reference (Loc,
7693                              Prefix => New_Occurrence_Of (Target_Type, Loc),
7694                              Attribute_Name => Name_Last),
7695                            Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
7696
7697                    Right_Opnd =>
7698                      Make_Op_Gt (Loc,
7699                        Left_Opnd => Duplicate_Subexpr (N),
7700                        Right_Opnd =>
7701                          Convert_To (Source_Base_Type,
7702                            Make_Attribute_Reference (Loc,
7703                              Prefix => New_Occurrence_Of (Target_Type, Loc),
7704                              Attribute_Name => Name_Last)))),
7705
7706                Reason => Reason),
7707              Suppress  => All_Checks);
7708
7709         --  Only remaining possibility is that the source is signed and
7710         --  the target is unsigned.
7711
7712         else
7713            pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
7714                            and then Is_Unsigned_Type (Target_Base_Type));
7715
7716            --  If the source is signed and the target is unsigned, then we
7717            --  know that the target is not shorter than the source (otherwise
7718            --  the target base type would be in the source base type range).
7719
7720            --  In other words, the unsigned type is either the same size as
7721            --  the target, or it is larger. It cannot be smaller.
7722
7723            --  Clearly we have an error if the source value is negative since
7724            --  no unsigned type can have negative values. If the source type
7725            --  is non-negative, then the check can be done using the target
7726            --  type.
7727
7728            --    Tnn : constant Target_Base_Type (N) := Target_Type;
7729
7730            --    [constraint_error
7731            --       when N < 0 or else Tnn not in Target_Type];
7732
7733            --  We turn off all checks for the conversion of N to the target
7734            --  base type, since we generate the explicit check to ensure that
7735            --  the value is non-negative
7736
7737            declare
7738               Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
7739
7740            begin
7741               Insert_Actions (N, New_List (
7742                 Make_Object_Declaration (Loc,
7743                   Defining_Identifier => Tnn,
7744                   Object_Definition   =>
7745                     New_Occurrence_Of (Target_Base_Type, Loc),
7746                   Constant_Present    => True,
7747                   Expression          =>
7748                     Make_Unchecked_Type_Conversion (Loc,
7749                       Subtype_Mark =>
7750                         New_Occurrence_Of (Target_Base_Type, Loc),
7751                       Expression   => Duplicate_Subexpr (N))),
7752
7753                 Make_Raise_Constraint_Error (Loc,
7754                   Condition =>
7755                     Make_Or_Else (Loc,
7756                       Left_Opnd =>
7757                         Make_Op_Lt (Loc,
7758                           Left_Opnd  => Duplicate_Subexpr (N),
7759                           Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
7760
7761                       Right_Opnd =>
7762                         Make_Not_In (Loc,
7763                           Left_Opnd  => New_Occurrence_Of (Tnn, Loc),
7764                           Right_Opnd =>
7765                             New_Occurrence_Of (Target_Type, Loc))),
7766
7767                   Reason     => Reason)),
7768                 Suppress => All_Checks);
7769
7770               --  Set the Etype explicitly, because Insert_Actions may have
7771               --  placed the declaration in the freeze list for an enclosing
7772               --  construct, and thus it is not analyzed yet.
7773
7774               Set_Etype (Tnn, Target_Base_Type);
7775               Rewrite (N, New_Occurrence_Of (Tnn, Loc));
7776            end;
7777         end if;
7778      end if;
7779   end Generate_Range_Check;
7780
7781   ------------------
7782   -- Get_Check_Id --
7783   ------------------
7784
7785   function Get_Check_Id (N : Name_Id) return Check_Id is
7786   begin
7787      --  For standard check name, we can do a direct computation
7788
7789      if N in First_Check_Name .. Last_Check_Name then
7790         return Check_Id (N - (First_Check_Name - 1));
7791
7792      --  For non-standard names added by pragma Check_Name, search table
7793
7794      else
7795         for J in All_Checks + 1 .. Check_Names.Last loop
7796            if Check_Names.Table (J) = N then
7797               return J;
7798            end if;
7799         end loop;
7800      end if;
7801
7802      --  No matching name found
7803
7804      return No_Check_Id;
7805   end Get_Check_Id;
7806
7807   ---------------------
7808   -- Get_Discriminal --
7809   ---------------------
7810
7811   function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
7812      Loc : constant Source_Ptr := Sloc (E);
7813      D   : Entity_Id;
7814      Sc  : Entity_Id;
7815
7816   begin
7817      --  The bound can be a bona fide parameter of a protected operation,
7818      --  rather than a prival encoded as an in-parameter.
7819
7820      if No (Discriminal_Link (Entity (Bound))) then
7821         return Bound;
7822      end if;
7823
7824      --  Climb the scope stack looking for an enclosing protected type. If
7825      --  we run out of scopes, return the bound itself.
7826
7827      Sc := Scope (E);
7828      while Present (Sc) loop
7829         if Sc = Standard_Standard then
7830            return Bound;
7831         elsif Ekind (Sc) = E_Protected_Type then
7832            exit;
7833         end if;
7834
7835         Sc := Scope (Sc);
7836      end loop;
7837
7838      D := First_Discriminant (Sc);
7839      while Present (D) loop
7840         if Chars (D) = Chars (Bound) then
7841            return New_Occurrence_Of (Discriminal (D), Loc);
7842         end if;
7843
7844         Next_Discriminant (D);
7845      end loop;
7846
7847      return Bound;
7848   end Get_Discriminal;
7849
7850   ----------------------
7851   -- Get_Range_Checks --
7852   ----------------------
7853
7854   function Get_Range_Checks
7855     (Expr       : Node_Id;
7856      Target_Typ : Entity_Id;
7857      Source_Typ : Entity_Id := Empty;
7858      Warn_Node  : Node_Id   := Empty) return Check_Result
7859   is
7860   begin
7861      return
7862        Selected_Range_Checks (Expr, Target_Typ, Source_Typ, Warn_Node);
7863   end Get_Range_Checks;
7864
7865   ------------------
7866   -- Guard_Access --
7867   ------------------
7868
7869   function Guard_Access
7870     (Cond : Node_Id;
7871      Loc  : Source_Ptr;
7872      Expr : Node_Id) return Node_Id
7873   is
7874   begin
7875      if Nkind (Cond) = N_Or_Else then
7876         Set_Paren_Count (Cond, 1);
7877      end if;
7878
7879      if Nkind (Expr) = N_Allocator then
7880         return Cond;
7881
7882      else
7883         return
7884           Make_And_Then (Loc,
7885             Left_Opnd =>
7886               Make_Op_Ne (Loc,
7887                 Left_Opnd  => Duplicate_Subexpr_No_Checks (Expr),
7888                 Right_Opnd => Make_Null (Loc)),
7889             Right_Opnd => Cond);
7890      end if;
7891   end Guard_Access;
7892
7893   -----------------------------
7894   -- Index_Checks_Suppressed --
7895   -----------------------------
7896
7897   function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
7898   begin
7899      if Present (E) and then Checks_May_Be_Suppressed (E) then
7900         return Is_Check_Suppressed (E, Index_Check);
7901      else
7902         return Scope_Suppress.Suppress (Index_Check);
7903      end if;
7904   end Index_Checks_Suppressed;
7905
7906   ----------------
7907   -- Initialize --
7908   ----------------
7909
7910   procedure Initialize is
7911   begin
7912      for J in Determine_Range_Cache_N'Range loop
7913         Determine_Range_Cache_N (J) := Empty;
7914      end loop;
7915
7916      Check_Names.Init;
7917
7918      for J in Int range 1 .. All_Checks loop
7919         Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
7920      end loop;
7921   end Initialize;
7922
7923   -------------------------
7924   -- Insert_Range_Checks --
7925   -------------------------
7926
7927   procedure Insert_Range_Checks
7928     (Checks       : Check_Result;
7929      Node         : Node_Id;
7930      Suppress_Typ : Entity_Id;
7931      Static_Sloc  : Source_Ptr;
7932      Do_Before    : Boolean    := False)
7933   is
7934      Checks_On  : constant Boolean :=
7935                     not Index_Checks_Suppressed (Suppress_Typ)
7936                       or else
7937                     not Range_Checks_Suppressed (Suppress_Typ);
7938
7939      Check_Node : Node_Id;
7940
7941   begin
7942      --  For now we just return if Checks_On is false, however this should be
7943      --  enhanced to check for an always True value in the condition and to
7944      --  generate a compilation warning???
7945
7946      if not Expander_Active or not Checks_On then
7947         return;
7948      end if;
7949
7950      for J in 1 .. 2 loop
7951         exit when No (Checks (J));
7952
7953         if Nkind (Checks (J)) = N_Raise_Constraint_Error
7954           and then Present (Condition (Checks (J)))
7955         then
7956            Check_Node := Checks (J);
7957         else
7958            Check_Node :=
7959              Make_Raise_Constraint_Error (Static_Sloc,
7960                Reason => CE_Range_Check_Failed);
7961         end if;
7962
7963         Mark_Rewrite_Insertion (Check_Node);
7964
7965         if Do_Before then
7966            Insert_Before_And_Analyze (Node, Check_Node);
7967         else
7968            Insert_After_And_Analyze (Node, Check_Node);
7969         end if;
7970      end loop;
7971   end Insert_Range_Checks;
7972
7973   ------------------------
7974   -- Insert_Valid_Check --
7975   ------------------------
7976
7977   procedure Insert_Valid_Check
7978     (Expr          : Node_Id;
7979      Related_Id    : Entity_Id := Empty;
7980      Is_Low_Bound  : Boolean   := False;
7981      Is_High_Bound : Boolean   := False)
7982   is
7983      Loc : constant Source_Ptr := Sloc (Expr);
7984      Typ : constant Entity_Id  := Etype (Expr);
7985      Exp : Node_Id;
7986
7987   begin
7988      --  Do not insert if checks off, or if not checking validity or if
7989      --  expression is known to be valid.
7990
7991      if not Validity_Checks_On
7992        or else Range_Or_Validity_Checks_Suppressed (Expr)
7993        or else Expr_Known_Valid (Expr)
7994      then
7995         return;
7996
7997      --  Do not insert checks within a predicate function. This will arise
7998      --  if the current unit and the predicate function are being compiled
7999      --  with validity checks enabled.
8000
8001      elsif Present (Predicate_Function (Typ))
8002        and then Current_Scope = Predicate_Function (Typ)
8003      then
8004         return;
8005
8006      --  If the expression is a packed component of a modular type of the
8007      --  right size, the data is always valid.
8008
8009      elsif Nkind (Expr) = N_Selected_Component
8010        and then Present (Component_Clause (Entity (Selector_Name (Expr))))
8011        and then Is_Modular_Integer_Type (Typ)
8012        and then Modulus (Typ) = 2 ** Esize (Entity (Selector_Name (Expr)))
8013      then
8014         return;
8015
8016      --  Do not generate a validity check when inside a generic unit as this
8017      --  is an expansion activity.
8018
8019      elsif Inside_A_Generic then
8020         return;
8021      end if;
8022
8023      --  Entities declared in Lock_free protected types must be treated as
8024      --  volatile, and we must inhibit validity checks to prevent improper
8025      --  constant folding.
8026
8027      if Is_Entity_Name (Expr)
8028        and then Is_Subprogram (Scope (Entity (Expr)))
8029        and then Present (Protected_Subprogram (Scope (Entity (Expr))))
8030        and then Uses_Lock_Free
8031                   (Scope (Protected_Subprogram (Scope (Entity (Expr)))))
8032      then
8033         return;
8034      end if;
8035
8036      --  If we have a checked conversion, then validity check applies to
8037      --  the expression inside the conversion, not the result, since if
8038      --  the expression inside is valid, then so is the conversion result.
8039
8040      Exp := Expr;
8041      while Nkind (Exp) = N_Type_Conversion loop
8042         Exp := Expression (Exp);
8043      end loop;
8044
8045      --  Do not generate a check for a variable which already validates the
8046      --  value of an assignable object.
8047
8048      if Is_Validation_Variable_Reference (Exp) then
8049         return;
8050      end if;
8051
8052      declare
8053         CE     : Node_Id;
8054         PV     : Node_Id;
8055         Var_Id : Entity_Id;
8056
8057      begin
8058         --  If the expression denotes an assignable object, capture its value
8059         --  in a variable and replace the original expression by the variable.
8060         --  This approach has several effects:
8061
8062         --    1) The evaluation of the object results in only one read in the
8063         --       case where the object is atomic or volatile.
8064
8065         --         Var ... := Object;  --  read
8066
8067         --    2) The captured value is the one verified by attribute 'Valid.
8068         --       As a result the object is not evaluated again, which would
8069         --       result in an unwanted read in the case where the object is
8070         --       atomic or volatile.
8071
8072         --         if not Var'Valid then     --  OK, no read of Object
8073
8074         --         if not Object'Valid then  --  Wrong, extra read of Object
8075
8076         --    3) The captured value replaces the original object reference.
8077         --       As a result the object is not evaluated again, in the same
8078         --       vein as 2).
8079
8080         --         ... Var ...     --  OK, no read of Object
8081
8082         --         ... Object ...  --  Wrong, extra read of Object
8083
8084         --    4) The use of a variable to capture the value of the object
8085         --       allows the propagation of any changes back to the original
8086         --       object.
8087
8088         --         procedure Call (Val : in out ...);
8089
8090         --         Var : ... := Object;   --  read Object
8091         --         if not Var'Valid then  --  validity check
8092         --         Call (Var);            --  modify Var
8093         --         Object := Var;         --  update Object
8094
8095         if Is_Variable (Exp) then
8096            Var_Id := Make_Temporary (Loc, 'T', Exp);
8097
8098            --  Because we could be dealing with a transient scope which would
8099            --  cause our object declaration to remain unanalyzed we must do
8100            --  some manual decoration.
8101
8102            Set_Ekind (Var_Id, E_Variable);
8103            Set_Etype (Var_Id, Typ);
8104
8105            Insert_Action (Exp,
8106              Make_Object_Declaration (Loc,
8107                Defining_Identifier => Var_Id,
8108                Object_Definition   => New_Occurrence_Of (Typ, Loc),
8109                Expression          => New_Copy_Tree (Exp)),
8110              Suppress => Validity_Check);
8111
8112            Set_Validated_Object (Var_Id, New_Copy_Tree (Exp));
8113
8114            Rewrite (Exp, New_Occurrence_Of (Var_Id, Loc));
8115
8116            --  Move the Do_Range_Check flag over to the new Exp so it doesn't
8117            --  get lost and doesn't leak elsewhere.
8118
8119            if Do_Range_Check (Validated_Object (Var_Id)) then
8120               Set_Do_Range_Check (Exp);
8121               Set_Do_Range_Check (Validated_Object (Var_Id), False);
8122            end if;
8123
8124            PV := New_Occurrence_Of (Var_Id, Loc);
8125
8126         --  Otherwise the expression does not denote a variable. Force its
8127         --  evaluation by capturing its value in a constant. Generate:
8128
8129         --    Temp : constant ... := Exp;
8130
8131         else
8132            Force_Evaluation
8133              (Exp           => Exp,
8134               Related_Id    => Related_Id,
8135               Is_Low_Bound  => Is_Low_Bound,
8136               Is_High_Bound => Is_High_Bound);
8137
8138            PV := New_Copy_Tree (Exp);
8139         end if;
8140
8141         --  A rather specialized test. If PV is an analyzed expression which
8142         --  is an indexed component of a packed array that has not been
8143         --  properly expanded, turn off its Analyzed flag to make sure it
8144         --  gets properly reexpanded. If the prefix is an access value,
8145         --  the dereference will be added later.
8146
8147         --  The reason this arises is that Duplicate_Subexpr_No_Checks did
8148         --  an analyze with the old parent pointer. This may point e.g. to
8149         --  a subprogram call, which deactivates this expansion.
8150
8151         if Analyzed (PV)
8152           and then Nkind (PV) = N_Indexed_Component
8153           and then Is_Array_Type (Etype (Prefix (PV)))
8154           and then Present (Packed_Array_Impl_Type (Etype (Prefix (PV))))
8155         then
8156            Set_Analyzed (PV, False);
8157         end if;
8158
8159         --  Build the raise CE node to check for validity. We build a type
8160         --  qualification for the prefix, since it may not be of the form of
8161         --  a name, and we don't care in this context!
8162
8163         CE :=
8164           Make_Raise_Constraint_Error (Loc,
8165             Condition =>
8166               Make_Op_Not (Loc,
8167                 Right_Opnd =>
8168                   Make_Attribute_Reference (Loc,
8169                     Prefix         => PV,
8170                     Attribute_Name => Name_Valid)),
8171             Reason    => CE_Invalid_Data);
8172
8173         --  Insert the validity check. Note that we do this with validity
8174         --  checks turned off, to avoid recursion, we do not want validity
8175         --  checks on the validity checking code itself.
8176
8177         Insert_Action (Expr, CE, Suppress => Validity_Check);
8178
8179         --  If the expression is a reference to an element of a bit-packed
8180         --  array, then it is rewritten as a renaming declaration. If the
8181         --  expression is an actual in a call, it has not been expanded,
8182         --  waiting for the proper point at which to do it. The same happens
8183         --  with renamings, so that we have to force the expansion now. This
8184         --  non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
8185         --  and exp_ch6.adb.
8186
8187         if Is_Entity_Name (Exp)
8188           and then Nkind (Parent (Entity (Exp))) =
8189                                                 N_Object_Renaming_Declaration
8190         then
8191            declare
8192               Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
8193            begin
8194               if Nkind (Old_Exp) = N_Indexed_Component
8195                 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
8196               then
8197                  Expand_Packed_Element_Reference (Old_Exp);
8198               end if;
8199            end;
8200         end if;
8201      end;
8202   end Insert_Valid_Check;
8203
8204   -------------------------------------
8205   -- Is_Signed_Integer_Arithmetic_Op --
8206   -------------------------------------
8207
8208   function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean is
8209   begin
8210      case Nkind (N) is
8211         when N_Op_Abs
8212            | N_Op_Add
8213            | N_Op_Divide
8214            | N_Op_Expon
8215            | N_Op_Minus
8216            | N_Op_Mod
8217            | N_Op_Multiply
8218            | N_Op_Plus
8219            | N_Op_Rem
8220            | N_Op_Subtract
8221         =>
8222            return Is_Signed_Integer_Type (Etype (N));
8223
8224         when N_Case_Expression
8225            | N_If_Expression
8226         =>
8227            return Is_Signed_Integer_Type (Etype (N));
8228
8229         when others =>
8230            return False;
8231      end case;
8232   end Is_Signed_Integer_Arithmetic_Op;
8233
8234   ----------------------------------
8235   -- Install_Null_Excluding_Check --
8236   ----------------------------------
8237
8238   procedure Install_Null_Excluding_Check (N : Node_Id) is
8239      Loc : constant Source_Ptr := Sloc (Parent (N));
8240      Typ : constant Entity_Id  := Etype (N);
8241
8242      function Safe_To_Capture_In_Parameter_Value return Boolean;
8243      --  Determines if it is safe to capture Known_Non_Null status for an
8244      --  the entity referenced by node N. The caller ensures that N is indeed
8245      --  an entity name. It is safe to capture the non-null status for an IN
8246      --  parameter when the reference occurs within a declaration that is sure
8247      --  to be executed as part of the declarative region.
8248
8249      procedure Mark_Non_Null;
8250      --  After installation of check, if the node in question is an entity
8251      --  name, then mark this entity as non-null if possible.
8252
8253      function Safe_To_Capture_In_Parameter_Value return Boolean is
8254         E     : constant Entity_Id := Entity (N);
8255         S     : constant Entity_Id := Current_Scope;
8256         S_Par : Node_Id;
8257
8258      begin
8259         if Ekind (E) /= E_In_Parameter then
8260            return False;
8261         end if;
8262
8263         --  Two initial context checks. We must be inside a subprogram body
8264         --  with declarations and reference must not appear in nested scopes.
8265
8266         if (Ekind (S) /= E_Function and then Ekind (S) /= E_Procedure)
8267           or else Scope (E) /= S
8268         then
8269            return False;
8270         end if;
8271
8272         S_Par := Parent (Parent (S));
8273
8274         if Nkind (S_Par) /= N_Subprogram_Body
8275           or else No (Declarations (S_Par))
8276         then
8277            return False;
8278         end if;
8279
8280         declare
8281            N_Decl : Node_Id;
8282            P      : Node_Id;
8283
8284         begin
8285            --  Retrieve the declaration node of N (if any). Note that N
8286            --  may be a part of a complex initialization expression.
8287
8288            P := Parent (N);
8289            N_Decl := Empty;
8290            while Present (P) loop
8291
8292               --  If we have a short circuit form, and we are within the right
8293               --  hand expression, we return false, since the right hand side
8294               --  is not guaranteed to be elaborated.
8295
8296               if Nkind (P) in N_Short_Circuit
8297                 and then N = Right_Opnd (P)
8298               then
8299                  return False;
8300               end if;
8301
8302               --  Similarly, if we are in an if expression and not part of the
8303               --  condition, then we return False, since neither the THEN or
8304               --  ELSE dependent expressions will always be elaborated.
8305
8306               if Nkind (P) = N_If_Expression
8307                 and then N /= First (Expressions (P))
8308               then
8309                  return False;
8310               end if;
8311
8312               --  If within a case expression, and not part of the expression,
8313               --  then return False, since a particular dependent expression
8314               --  may not always be elaborated
8315
8316               if Nkind (P) = N_Case_Expression
8317                 and then N /= Expression (P)
8318               then
8319                  return False;
8320               end if;
8321
8322               --  While traversing the parent chain, if node N belongs to a
8323               --  statement, then it may never appear in a declarative region.
8324
8325               if Nkind (P) in N_Statement_Other_Than_Procedure_Call
8326                 or else Nkind (P) = N_Procedure_Call_Statement
8327               then
8328                  return False;
8329               end if;
8330
8331               --  If we are at a declaration, record it and exit
8332
8333               if Nkind (P) in N_Declaration
8334                 and then Nkind (P) not in N_Subprogram_Specification
8335               then
8336                  N_Decl := P;
8337                  exit;
8338               end if;
8339
8340               P := Parent (P);
8341            end loop;
8342
8343            if No (N_Decl) then
8344               return False;
8345            end if;
8346
8347            return List_Containing (N_Decl) = Declarations (S_Par);
8348         end;
8349      end Safe_To_Capture_In_Parameter_Value;
8350
8351      -------------------
8352      -- Mark_Non_Null --
8353      -------------------
8354
8355      procedure Mark_Non_Null is
8356      begin
8357         --  Only case of interest is if node N is an entity name
8358
8359         if Is_Entity_Name (N) then
8360
8361            --  For sure, we want to clear an indication that this is known to
8362            --  be null, since if we get past this check, it definitely is not.
8363
8364            Set_Is_Known_Null (Entity (N), False);
8365
8366            --  We can mark the entity as known to be non-null if either it is
8367            --  safe to capture the value, or in the case of an IN parameter,
8368            --  which is a constant, if the check we just installed is in the
8369            --  declarative region of the subprogram body. In this latter case,
8370            --  a check is decisive for the rest of the body if the expression
8371            --  is sure to be elaborated, since we know we have to elaborate
8372            --  all declarations before executing the body.
8373
8374            --  Couldn't this always be part of Safe_To_Capture_Value ???
8375
8376            if Safe_To_Capture_Value (N, Entity (N))
8377              or else Safe_To_Capture_In_Parameter_Value
8378            then
8379               Set_Is_Known_Non_Null (Entity (N));
8380            end if;
8381         end if;
8382      end Mark_Non_Null;
8383
8384   --  Start of processing for Install_Null_Excluding_Check
8385
8386   begin
8387      --  No need to add null-excluding checks when the tree may not be fully
8388      --  decorated.
8389
8390      if Serious_Errors_Detected > 0 then
8391         return;
8392      end if;
8393
8394      pragma Assert (Is_Access_Type (Typ));
8395
8396      --  No check inside a generic, check will be emitted in instance
8397
8398      if Inside_A_Generic then
8399         return;
8400      end if;
8401
8402      --  No check needed if known to be non-null
8403
8404      if Known_Non_Null (N) then
8405         return;
8406      end if;
8407
8408      --  If known to be null, here is where we generate a compile time check
8409
8410      if Known_Null (N) then
8411
8412         --  Avoid generating warning message inside init procs. In SPARK mode
8413         --  we can go ahead and call Apply_Compile_Time_Constraint_Error
8414         --  since it will be turned into an error in any case.
8415
8416         if (not Inside_Init_Proc or else SPARK_Mode = On)
8417
8418           --  Do not emit the warning within a conditional expression,
8419           --  where the expression might not be evaluated, and the warning
8420           --  appear as extraneous noise.
8421
8422           and then not Within_Case_Or_If_Expression (N)
8423         then
8424            Apply_Compile_Time_Constraint_Error
8425              (N, "null value not allowed here??", CE_Access_Check_Failed);
8426
8427         --  Remaining cases, where we silently insert the raise
8428
8429         else
8430            Insert_Action (N,
8431              Make_Raise_Constraint_Error (Loc,
8432                Reason => CE_Access_Check_Failed));
8433         end if;
8434
8435         Mark_Non_Null;
8436         return;
8437      end if;
8438
8439      --  If entity is never assigned, for sure a warning is appropriate
8440
8441      if Is_Entity_Name (N) then
8442         Check_Unset_Reference (N);
8443      end if;
8444
8445      --  No check needed if checks are suppressed on the range. Note that we
8446      --  don't set Is_Known_Non_Null in this case (we could legitimately do
8447      --  so, since the program is erroneous, but we don't like to casually
8448      --  propagate such conclusions from erroneosity).
8449
8450      if Access_Checks_Suppressed (Typ) then
8451         return;
8452      end if;
8453
8454      --  No check needed for access to concurrent record types generated by
8455      --  the expander. This is not just an optimization (though it does indeed
8456      --  remove junk checks). It also avoids generation of junk warnings.
8457
8458      if Nkind (N) in N_Has_Chars
8459        and then Chars (N) = Name_uObject
8460        and then Is_Concurrent_Record_Type
8461                   (Directly_Designated_Type (Etype (N)))
8462      then
8463         return;
8464      end if;
8465
8466      --  No check needed in interface thunks since the runtime check is
8467      --  already performed at the caller side.
8468
8469      if Is_Thunk (Current_Scope) then
8470         return;
8471      end if;
8472
8473      --  No check needed for the Get_Current_Excep.all.all idiom generated by
8474      --  the expander within exception handlers, since we know that the value
8475      --  can never be null.
8476
8477      --  Is this really the right way to do this? Normally we generate such
8478      --  code in the expander with checks off, and that's how we suppress this
8479      --  kind of junk check ???
8480
8481      if Nkind (N) = N_Function_Call
8482        and then Nkind (Name (N)) = N_Explicit_Dereference
8483        and then Nkind (Prefix (Name (N))) = N_Identifier
8484        and then Is_RTE (Entity (Prefix (Name (N))), RE_Get_Current_Excep)
8485      then
8486         return;
8487      end if;
8488
8489      --  In GNATprove mode, we do not apply the check
8490
8491      if GNATprove_Mode then
8492         return;
8493      end if;
8494
8495      --  Otherwise install access check
8496
8497      Insert_Action (N,
8498        Make_Raise_Constraint_Error (Loc,
8499          Condition =>
8500            Make_Op_Eq (Loc,
8501              Left_Opnd  => Duplicate_Subexpr_Move_Checks (N),
8502              Right_Opnd => Make_Null (Loc)),
8503          Reason => CE_Access_Check_Failed));
8504
8505      Mark_Non_Null;
8506   end Install_Null_Excluding_Check;
8507
8508   -----------------------------------------
8509   -- Install_Primitive_Elaboration_Check --
8510   -----------------------------------------
8511
8512   procedure Install_Primitive_Elaboration_Check (Subp_Body : Node_Id) is
8513      function Within_Compilation_Unit_Instance
8514        (Subp_Id : Entity_Id) return Boolean;
8515      --  Determine whether subprogram Subp_Id appears within an instance which
8516      --  acts as a compilation unit.
8517
8518      --------------------------------------
8519      -- Within_Compilation_Unit_Instance --
8520      --------------------------------------
8521
8522      function Within_Compilation_Unit_Instance
8523        (Subp_Id : Entity_Id) return Boolean
8524      is
8525         Pack : Entity_Id;
8526
8527      begin
8528         --  Examine the scope chain looking for a compilation-unit-level
8529         --  instance.
8530
8531         Pack := Scope (Subp_Id);
8532         while Present (Pack) and then Pack /= Standard_Standard loop
8533            if Ekind (Pack) = E_Package
8534              and then Is_Generic_Instance (Pack)
8535              and then Nkind (Parent (Unit_Declaration_Node (Pack))) =
8536                         N_Compilation_Unit
8537            then
8538               return True;
8539            end if;
8540
8541            Pack := Scope (Pack);
8542         end loop;
8543
8544         return False;
8545      end Within_Compilation_Unit_Instance;
8546
8547      --  Local declarations
8548
8549      Context   : constant Node_Id    := Parent (Subp_Body);
8550      Loc       : constant Source_Ptr := Sloc (Subp_Body);
8551      Subp_Id   : constant Entity_Id  := Unique_Defining_Entity (Subp_Body);
8552      Subp_Decl : constant Node_Id    := Unit_Declaration_Node (Subp_Id);
8553
8554      Decls    : List_Id;
8555      Flag_Id  : Entity_Id;
8556      Set_Ins  : Node_Id;
8557      Set_Stmt : Node_Id;
8558      Tag_Typ  : Entity_Id;
8559
8560   --  Start of processing for Install_Primitive_Elaboration_Check
8561
8562   begin
8563      --  Do not generate an elaboration check in compilation modes where
8564      --  expansion is not desirable.
8565
8566      if GNATprove_Mode then
8567         return;
8568
8569      --  Do not generate an elaboration check if all checks have been
8570      --  suppressed.
8571
8572      elsif Suppress_Checks then
8573         return;
8574
8575      --  Do not generate an elaboration check if the related subprogram is
8576      --  not subjected to accessibility checks.
8577
8578      elsif Elaboration_Checks_Suppressed (Subp_Id) then
8579         return;
8580
8581      --  Do not generate an elaboration check if such code is not desirable
8582
8583      elsif Restriction_Active (No_Elaboration_Code) then
8584         return;
8585
8586      --  Do not generate an elaboration check if exceptions cannot be used,
8587      --  caught, or propagated.
8588
8589      elsif not Exceptions_OK then
8590         return;
8591
8592      --  Do not consider subprograms which act as compilation units, because
8593      --  they cannot be the target of a dispatching call.
8594
8595      elsif Nkind (Context) = N_Compilation_Unit then
8596         return;
8597
8598      --  Do not consider anything other than nonabstract library-level source
8599      --  primitives.
8600
8601      elsif not
8602        (Comes_From_Source (Subp_Id)
8603          and then Is_Library_Level_Entity (Subp_Id)
8604          and then Is_Primitive (Subp_Id)
8605          and then not Is_Abstract_Subprogram (Subp_Id))
8606      then
8607         return;
8608
8609      --  Do not consider inlined primitives, because once the body is inlined
8610      --  the reference to the elaboration flag will be out of place and will
8611      --  result in an undefined symbol.
8612
8613      elsif Is_Inlined (Subp_Id) or else Has_Pragma_Inline (Subp_Id) then
8614         return;
8615
8616      --  Do not generate a duplicate elaboration check. This happens only in
8617      --  the case of primitives completed by an expression function, as the
8618      --  corresponding body is apparently analyzed and expanded twice.
8619
8620      elsif Analyzed (Subp_Body) then
8621         return;
8622
8623      --  Do not consider primitives which occur within an instance that acts
8624      --  as a compilation unit. Such an instance defines its spec and body out
8625      --  of order (body is first) within the tree, which causes the reference
8626      --  to the elaboration flag to appear as an undefined symbol.
8627
8628      elsif Within_Compilation_Unit_Instance (Subp_Id) then
8629         return;
8630      end if;
8631
8632      Tag_Typ := Find_Dispatching_Type (Subp_Id);
8633
8634      --  Only tagged primitives may be the target of a dispatching call
8635
8636      if No (Tag_Typ) then
8637         return;
8638
8639      --  Do not consider finalization-related primitives, because they may
8640      --  need to be called while elaboration is taking place.
8641
8642      elsif Is_Controlled (Tag_Typ)
8643        and then
8644          Chars (Subp_Id) in Name_Adjust | Name_Finalize | Name_Initialize
8645      then
8646         return;
8647      end if;
8648
8649      --  Create the declaration of the elaboration flag. The name carries a
8650      --  unique counter in case of name overloading.
8651
8652      Flag_Id :=
8653        Make_Defining_Identifier (Loc,
8654          Chars => New_External_Name (Chars (Subp_Id), 'E', -1));
8655      Set_Is_Frozen (Flag_Id);
8656
8657      --  Insert the declaration of the elaboration flag in front of the
8658      --  primitive spec and analyze it in the proper context.
8659
8660      Push_Scope (Scope (Subp_Id));
8661
8662      --  Generate:
8663      --    E : Boolean := False;
8664
8665      Insert_Action (Subp_Decl,
8666        Make_Object_Declaration (Loc,
8667          Defining_Identifier => Flag_Id,
8668          Object_Definition   => New_Occurrence_Of (Standard_Boolean, Loc),
8669          Expression          => New_Occurrence_Of (Standard_False, Loc)));
8670      Pop_Scope;
8671
8672      --  Prevent the compiler from optimizing the elaboration check by killing
8673      --  the current value of the flag and the associated assignment.
8674
8675      Set_Current_Value   (Flag_Id, Empty);
8676      Set_Last_Assignment (Flag_Id, Empty);
8677
8678      --  Add a check at the top of the body declarations to ensure that the
8679      --  elaboration flag has been set.
8680
8681      Decls := Declarations (Subp_Body);
8682
8683      if No (Decls) then
8684         Decls := New_List;
8685         Set_Declarations (Subp_Body, Decls);
8686      end if;
8687
8688      --  Generate:
8689      --    if not F then
8690      --       raise Program_Error with "access before elaboration";
8691      --    end if;
8692
8693      Prepend_To (Decls,
8694        Make_Raise_Program_Error (Loc,
8695          Condition =>
8696            Make_Op_Not (Loc,
8697              Right_Opnd => New_Occurrence_Of (Flag_Id, Loc)),
8698          Reason    => PE_Access_Before_Elaboration));
8699
8700      Analyze (First (Decls));
8701
8702      --  Set the elaboration flag once the body has been elaborated. Insert
8703      --  the statement after the subprogram stub when the primitive body is
8704      --  a subunit.
8705
8706      if Nkind (Context) = N_Subunit then
8707         Set_Ins := Corresponding_Stub (Context);
8708      else
8709         Set_Ins := Subp_Body;
8710      end if;
8711
8712      --  Generate:
8713      --    E := True;
8714
8715      Set_Stmt :=
8716        Make_Assignment_Statement (Loc,
8717          Name       => New_Occurrence_Of (Flag_Id, Loc),
8718          Expression => New_Occurrence_Of (Standard_True, Loc));
8719
8720      --  Mark the assignment statement as elaboration code. This allows the
8721      --  early call region mechanism (see Sem_Elab) to properly ignore such
8722      --  assignments even though they are non-preelaborable code.
8723
8724      Set_Is_Elaboration_Code (Set_Stmt);
8725
8726      Insert_After_And_Analyze (Set_Ins, Set_Stmt);
8727   end Install_Primitive_Elaboration_Check;
8728
8729   --------------------------
8730   -- Install_Static_Check --
8731   --------------------------
8732
8733   procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
8734      Stat : constant Boolean   := Is_OK_Static_Expression (R_Cno);
8735      Typ  : constant Entity_Id := Etype (R_Cno);
8736
8737   begin
8738      Rewrite (R_Cno,
8739        Make_Raise_Constraint_Error (Loc,
8740          Reason => CE_Range_Check_Failed));
8741      Set_Analyzed (R_Cno);
8742      Set_Etype (R_Cno, Typ);
8743      Set_Raises_Constraint_Error (R_Cno);
8744      Set_Is_Static_Expression (R_Cno, Stat);
8745
8746      --  Now deal with possible local raise handling
8747
8748      Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
8749   end Install_Static_Check;
8750
8751   -------------------------
8752   -- Is_Check_Suppressed --
8753   -------------------------
8754
8755   function Is_Check_Suppressed (E : Entity_Id; C : Check_Id) return Boolean is
8756      Ptr : Suppress_Stack_Entry_Ptr;
8757
8758   begin
8759      --  First search the local entity suppress stack. We search this from the
8760      --  top of the stack down so that we get the innermost entry that applies
8761      --  to this case if there are nested entries.
8762
8763      Ptr := Local_Suppress_Stack_Top;
8764      while Ptr /= null loop
8765         if (Ptr.Entity = Empty or else Ptr.Entity = E)
8766           and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8767         then
8768            return Ptr.Suppress;
8769         end if;
8770
8771         Ptr := Ptr.Prev;
8772      end loop;
8773
8774      --  Now search the global entity suppress table for a matching entry.
8775      --  We also search this from the top down so that if there are multiple
8776      --  pragmas for the same entity, the last one applies (not clear what
8777      --  or whether the RM specifies this handling, but it seems reasonable).
8778
8779      Ptr := Global_Suppress_Stack_Top;
8780      while Ptr /= null loop
8781         if (Ptr.Entity = Empty or else Ptr.Entity = E)
8782           and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8783         then
8784            return Ptr.Suppress;
8785         end if;
8786
8787         Ptr := Ptr.Prev;
8788      end loop;
8789
8790      --  If we did not find a matching entry, then use the normal scope
8791      --  suppress value after all (actually this will be the global setting
8792      --  since it clearly was not overridden at any point). For a predefined
8793      --  check, we test the specific flag. For a user defined check, we check
8794      --  the All_Checks flag. The Overflow flag requires special handling to
8795      --  deal with the General vs Assertion case.
8796
8797      if C = Overflow_Check then
8798         return Overflow_Checks_Suppressed (Empty);
8799
8800      elsif C in Predefined_Check_Id then
8801         return Scope_Suppress.Suppress (C);
8802
8803      else
8804         return Scope_Suppress.Suppress (All_Checks);
8805      end if;
8806   end Is_Check_Suppressed;
8807
8808   ---------------------
8809   -- Kill_All_Checks --
8810   ---------------------
8811
8812   procedure Kill_All_Checks is
8813   begin
8814      if Debug_Flag_CC then
8815         w ("Kill_All_Checks");
8816      end if;
8817
8818      --  We reset the number of saved checks to zero, and also modify all
8819      --  stack entries for statement ranges to indicate that the number of
8820      --  checks at each level is now zero.
8821
8822      Num_Saved_Checks := 0;
8823
8824      --  Note: the Int'Min here avoids any possibility of J being out of
8825      --  range when called from e.g. Conditional_Statements_Begin.
8826
8827      for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
8828         Saved_Checks_Stack (J) := 0;
8829      end loop;
8830   end Kill_All_Checks;
8831
8832   -----------------
8833   -- Kill_Checks --
8834   -----------------
8835
8836   procedure Kill_Checks (V : Entity_Id) is
8837   begin
8838      if Debug_Flag_CC then
8839         w ("Kill_Checks for entity", Int (V));
8840      end if;
8841
8842      for J in 1 .. Num_Saved_Checks loop
8843         if Saved_Checks (J).Entity = V then
8844            if Debug_Flag_CC then
8845               w ("   Checks killed for saved check ", J);
8846            end if;
8847
8848            Saved_Checks (J).Killed := True;
8849         end if;
8850      end loop;
8851   end Kill_Checks;
8852
8853   ------------------------------
8854   -- Length_Checks_Suppressed --
8855   ------------------------------
8856
8857   function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
8858   begin
8859      if Present (E) and then Checks_May_Be_Suppressed (E) then
8860         return Is_Check_Suppressed (E, Length_Check);
8861      else
8862         return Scope_Suppress.Suppress (Length_Check);
8863      end if;
8864   end Length_Checks_Suppressed;
8865
8866   -----------------------
8867   -- Make_Bignum_Block --
8868   -----------------------
8869
8870   function Make_Bignum_Block (Loc : Source_Ptr) return Node_Id is
8871      M : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uM);
8872   begin
8873      return
8874        Make_Block_Statement (Loc,
8875          Declarations               =>
8876            New_List (Build_SS_Mark_Call (Loc, M)),
8877          Handled_Statement_Sequence =>
8878            Make_Handled_Sequence_Of_Statements (Loc,
8879              Statements => New_List (Build_SS_Release_Call (Loc, M))));
8880   end Make_Bignum_Block;
8881
8882   ----------------------------------
8883   -- Minimize_Eliminate_Overflows --
8884   ----------------------------------
8885
8886   --  This is a recursive routine that is called at the top of an expression
8887   --  tree to properly process overflow checking for a whole subtree by making
8888   --  recursive calls to process operands. This processing may involve the use
8889   --  of bignum or long long integer arithmetic, which will change the types
8890   --  of operands and results. That's why we can't do this bottom up (since
8891   --  it would interfere with semantic analysis).
8892
8893   --  What happens is that if MINIMIZED/ELIMINATED mode is in effect then
8894   --  the operator expansion routines, as well as the expansion routines for
8895   --  if/case expression, do nothing (for the moment) except call the routine
8896   --  to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
8897   --  routine does nothing for non top-level nodes, so at the point where the
8898   --  call is made for the top level node, the entire expression subtree has
8899   --  not been expanded, or processed for overflow. All that has to happen as
8900   --  a result of the top level call to this routine.
8901
8902   --  As noted above, the overflow processing works by making recursive calls
8903   --  for the operands, and figuring out what to do, based on the processing
8904   --  of these operands (e.g. if a bignum operand appears, the parent op has
8905   --  to be done in bignum mode), and the determined ranges of the operands.
8906
8907   --  After possible rewriting of a constituent subexpression node, a call is
8908   --  made to either reexpand the node (if nothing has changed) or reanalyze
8909   --  the node (if it has been modified by the overflow check processing). The
8910   --  Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
8911   --  a recursive call into the whole overflow apparatus, an important rule
8912   --  for this call is that the overflow handling mode must be temporarily set
8913   --  to STRICT.
8914
8915   procedure Minimize_Eliminate_Overflows
8916     (N         : Node_Id;
8917      Lo        : out Uint;
8918      Hi        : out Uint;
8919      Top_Level : Boolean)
8920   is
8921      Rtyp : constant Entity_Id := Etype (N);
8922      pragma Assert (Is_Signed_Integer_Type (Rtyp));
8923      --  Result type, must be a signed integer type
8924
8925      Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
8926      pragma Assert (Check_Mode in Minimized_Or_Eliminated);
8927
8928      Loc : constant Source_Ptr := Sloc (N);
8929
8930      Rlo, Rhi : Uint;
8931      --  Ranges of values for right operand (operator case)
8932
8933      Llo : Uint := No_Uint;  -- initialize to prevent warning
8934      Lhi : Uint := No_Uint;  -- initialize to prevent warning
8935      --  Ranges of values for left operand (operator case)
8936
8937      LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
8938      --  Operands and results are of this type when we convert
8939
8940      LLLo : constant Uint := Intval (Type_Low_Bound  (LLIB));
8941      LLHi : constant Uint := Intval (Type_High_Bound (LLIB));
8942      --  Bounds of Long_Long_Integer
8943
8944      Binary : constant Boolean := Nkind (N) in N_Binary_Op;
8945      --  Indicates binary operator case
8946
8947      OK : Boolean;
8948      --  Used in call to Determine_Range
8949
8950      Bignum_Operands : Boolean;
8951      --  Set True if one or more operands is already of type Bignum, meaning
8952      --  that for sure (regardless of Top_Level setting) we are committed to
8953      --  doing the operation in Bignum mode (or in the case of a case or if
8954      --  expression, converting all the dependent expressions to Bignum).
8955
8956      Long_Long_Integer_Operands : Boolean;
8957      --  Set True if one or more operands is already of type Long_Long_Integer
8958      --  which means that if the result is known to be in the result type
8959      --  range, then we must convert such operands back to the result type.
8960
8961      procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False);
8962      --  This is called when we have modified the node and we therefore need
8963      --  to reanalyze it. It is important that we reset the mode to STRICT for
8964      --  this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
8965      --  we would reenter this routine recursively which would not be good.
8966      --  The argument Suppress is set True if we also want to suppress
8967      --  overflow checking for the reexpansion (this is set when we know
8968      --  overflow is not possible). Typ is the type for the reanalysis.
8969
8970      procedure Reexpand (Suppress : Boolean := False);
8971      --  This is like Reanalyze, but does not do the Analyze step, it only
8972      --  does a reexpansion. We do this reexpansion in STRICT mode, so that
8973      --  instead of reentering the MINIMIZED/ELIMINATED mode processing, we
8974      --  follow the normal expansion path (e.g. converting A**4 to A**2**2).
8975      --  Note that skipping reanalysis is not just an optimization, testing
8976      --  has showed up several complex cases in which reanalyzing an already
8977      --  analyzed node causes incorrect behavior.
8978
8979      function In_Result_Range return Boolean;
8980      --  Returns True iff Lo .. Hi are within range of the result type
8981
8982      procedure Max (A : in out Uint; B : Uint);
8983      --  If A is No_Uint, sets A to B, else to UI_Max (A, B)
8984
8985      procedure Min (A : in out Uint; B : Uint);
8986      --  If A is No_Uint, sets A to B, else to UI_Min (A, B)
8987
8988      ---------------------
8989      -- In_Result_Range --
8990      ---------------------
8991
8992      function In_Result_Range return Boolean is
8993      begin
8994         if Lo = No_Uint or else Hi = No_Uint then
8995            return False;
8996
8997         elsif Is_OK_Static_Subtype (Etype (N)) then
8998            return Lo >= Expr_Value (Type_Low_Bound  (Rtyp))
8999                     and then
9000                   Hi <= Expr_Value (Type_High_Bound (Rtyp));
9001
9002         else
9003            return Lo >= Expr_Value (Type_Low_Bound  (Base_Type (Rtyp)))
9004                     and then
9005                   Hi <= Expr_Value (Type_High_Bound (Base_Type (Rtyp)));
9006         end if;
9007      end In_Result_Range;
9008
9009      ---------
9010      -- Max --
9011      ---------
9012
9013      procedure Max (A : in out Uint; B : Uint) is
9014      begin
9015         if A = No_Uint or else B > A then
9016            A := B;
9017         end if;
9018      end Max;
9019
9020      ---------
9021      -- Min --
9022      ---------
9023
9024      procedure Min (A : in out Uint; B : Uint) is
9025      begin
9026         if A = No_Uint or else B < A then
9027            A := B;
9028         end if;
9029      end Min;
9030
9031      ---------------
9032      -- Reanalyze --
9033      ---------------
9034
9035      procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False) is
9036         Svg : constant Overflow_Mode_Type :=
9037                 Scope_Suppress.Overflow_Mode_General;
9038         Sva : constant Overflow_Mode_Type :=
9039                 Scope_Suppress.Overflow_Mode_Assertions;
9040         Svo : constant Boolean             :=
9041                 Scope_Suppress.Suppress (Overflow_Check);
9042
9043      begin
9044         Scope_Suppress.Overflow_Mode_General    := Strict;
9045         Scope_Suppress.Overflow_Mode_Assertions := Strict;
9046
9047         if Suppress then
9048            Scope_Suppress.Suppress (Overflow_Check) := True;
9049         end if;
9050
9051         Analyze_And_Resolve (N, Typ);
9052
9053         Scope_Suppress.Suppress (Overflow_Check) := Svo;
9054         Scope_Suppress.Overflow_Mode_General     := Svg;
9055         Scope_Suppress.Overflow_Mode_Assertions  := Sva;
9056      end Reanalyze;
9057
9058      --------------
9059      -- Reexpand --
9060      --------------
9061
9062      procedure Reexpand (Suppress : Boolean := False) is
9063         Svg : constant Overflow_Mode_Type :=
9064                 Scope_Suppress.Overflow_Mode_General;
9065         Sva : constant Overflow_Mode_Type :=
9066                 Scope_Suppress.Overflow_Mode_Assertions;
9067         Svo : constant Boolean             :=
9068                 Scope_Suppress.Suppress (Overflow_Check);
9069
9070      begin
9071         Scope_Suppress.Overflow_Mode_General    := Strict;
9072         Scope_Suppress.Overflow_Mode_Assertions := Strict;
9073         Set_Analyzed (N, False);
9074
9075         if Suppress then
9076            Scope_Suppress.Suppress (Overflow_Check) := True;
9077         end if;
9078
9079         Expand (N);
9080
9081         Scope_Suppress.Suppress (Overflow_Check) := Svo;
9082         Scope_Suppress.Overflow_Mode_General     := Svg;
9083         Scope_Suppress.Overflow_Mode_Assertions  := Sva;
9084      end Reexpand;
9085
9086   --  Start of processing for Minimize_Eliminate_Overflows
9087
9088   begin
9089      --  Default initialize Lo and Hi since these are not guaranteed to be
9090      --  set otherwise.
9091
9092      Lo := No_Uint;
9093      Hi := No_Uint;
9094
9095      --  Case where we do not have a signed integer arithmetic operation
9096
9097      if not Is_Signed_Integer_Arithmetic_Op (N) then
9098
9099         --  Use the normal Determine_Range routine to get the range. We
9100         --  don't require operands to be valid, invalid values may result in
9101         --  rubbish results where the result has not been properly checked for
9102         --  overflow, that's fine.
9103
9104         Determine_Range (N, OK, Lo, Hi, Assume_Valid => False);
9105
9106         --  If Determine_Range did not work (can this in fact happen? Not
9107         --  clear but might as well protect), use type bounds.
9108
9109         if not OK then
9110            Lo := Intval (Type_Low_Bound  (Base_Type (Etype (N))));
9111            Hi := Intval (Type_High_Bound (Base_Type (Etype (N))));
9112         end if;
9113
9114         --  If we don't have a binary operator, all we have to do is to set
9115         --  the Hi/Lo range, so we are done.
9116
9117         return;
9118
9119      --  Processing for if expression
9120
9121      elsif Nkind (N) = N_If_Expression then
9122         declare
9123            Then_DE : constant Node_Id := Next (First (Expressions (N)));
9124            Else_DE : constant Node_Id := Next (Then_DE);
9125
9126         begin
9127            Bignum_Operands := False;
9128
9129            Minimize_Eliminate_Overflows
9130              (Then_DE, Lo, Hi, Top_Level => False);
9131
9132            if Lo = No_Uint then
9133               Bignum_Operands := True;
9134            end if;
9135
9136            Minimize_Eliminate_Overflows
9137              (Else_DE, Rlo, Rhi, Top_Level => False);
9138
9139            if Rlo = No_Uint then
9140               Bignum_Operands := True;
9141            else
9142               Long_Long_Integer_Operands :=
9143                 Etype (Then_DE) = LLIB or else Etype (Else_DE) = LLIB;
9144
9145               Min (Lo, Rlo);
9146               Max (Hi, Rhi);
9147            end if;
9148
9149            --  If at least one of our operands is now Bignum, we must rebuild
9150            --  the if expression to use Bignum operands. We will analyze the
9151            --  rebuilt if expression with overflow checks off, since once we
9152            --  are in bignum mode, we are all done with overflow checks.
9153
9154            if Bignum_Operands then
9155               Rewrite (N,
9156                 Make_If_Expression (Loc,
9157                   Expressions => New_List (
9158                     Remove_Head (Expressions (N)),
9159                     Convert_To_Bignum (Then_DE),
9160                     Convert_To_Bignum (Else_DE)),
9161                   Is_Elsif    => Is_Elsif (N)));
9162
9163               Reanalyze (RTE (RE_Bignum), Suppress => True);
9164
9165            --  If we have no Long_Long_Integer operands, then we are in result
9166            --  range, since it means that none of our operands felt the need
9167            --  to worry about overflow (otherwise it would have already been
9168            --  converted to long long integer or bignum). We reexpand to
9169            --  complete the expansion of the if expression (but we do not
9170            --  need to reanalyze).
9171
9172            elsif not Long_Long_Integer_Operands then
9173               Set_Do_Overflow_Check (N, False);
9174               Reexpand;
9175
9176            --  Otherwise convert us to long long integer mode. Note that we
9177            --  don't need any further overflow checking at this level.
9178
9179            else
9180               Convert_To_And_Rewrite (LLIB, Then_DE);
9181               Convert_To_And_Rewrite (LLIB, Else_DE);
9182               Set_Etype (N, LLIB);
9183
9184               --  Now reanalyze with overflow checks off
9185
9186               Set_Do_Overflow_Check (N, False);
9187               Reanalyze (LLIB, Suppress => True);
9188            end if;
9189         end;
9190
9191         return;
9192
9193      --  Here for case expression
9194
9195      elsif Nkind (N) = N_Case_Expression then
9196         Bignum_Operands := False;
9197         Long_Long_Integer_Operands := False;
9198
9199         declare
9200            Alt : Node_Id;
9201
9202         begin
9203            --  Loop through expressions applying recursive call
9204
9205            Alt := First (Alternatives (N));
9206            while Present (Alt) loop
9207               declare
9208                  Aexp : constant Node_Id := Expression (Alt);
9209
9210               begin
9211                  Minimize_Eliminate_Overflows
9212                    (Aexp, Lo, Hi, Top_Level => False);
9213
9214                  if Lo = No_Uint then
9215                     Bignum_Operands := True;
9216                  elsif Etype (Aexp) = LLIB then
9217                     Long_Long_Integer_Operands := True;
9218                  end if;
9219               end;
9220
9221               Next (Alt);
9222            end loop;
9223
9224            --  If we have no bignum or long long integer operands, it means
9225            --  that none of our dependent expressions could raise overflow.
9226            --  In this case, we simply return with no changes except for
9227            --  resetting the overflow flag, since we are done with overflow
9228            --  checks for this node. We will reexpand to get the needed
9229            --  expansion for the case expression, but we do not need to
9230            --  reanalyze, since nothing has changed.
9231
9232            if not (Bignum_Operands or Long_Long_Integer_Operands) then
9233               Set_Do_Overflow_Check (N, False);
9234               Reexpand (Suppress => True);
9235
9236            --  Otherwise we are going to rebuild the case expression using
9237            --  either bignum or long long integer operands throughout.
9238
9239            else
9240               declare
9241                  Rtype    : Entity_Id := Empty;
9242                  New_Alts : List_Id;
9243                  New_Exp  : Node_Id;
9244
9245               begin
9246                  New_Alts := New_List;
9247                  Alt := First (Alternatives (N));
9248                  while Present (Alt) loop
9249                     if Bignum_Operands then
9250                        New_Exp := Convert_To_Bignum (Expression (Alt));
9251                        Rtype   := RTE (RE_Bignum);
9252                     else
9253                        New_Exp := Convert_To (LLIB, Expression (Alt));
9254                        Rtype   := LLIB;
9255                     end if;
9256
9257                     Append_To (New_Alts,
9258                       Make_Case_Expression_Alternative (Sloc (Alt),
9259                         Actions          => No_List,
9260                         Discrete_Choices => Discrete_Choices (Alt),
9261                         Expression       => New_Exp));
9262
9263                     Next (Alt);
9264                  end loop;
9265
9266                  Rewrite (N,
9267                    Make_Case_Expression (Loc,
9268                      Expression   => Expression (N),
9269                      Alternatives => New_Alts));
9270
9271                  pragma Assert (Present (Rtype));
9272                  Reanalyze (Rtype, Suppress => True);
9273               end;
9274            end if;
9275         end;
9276
9277         return;
9278      end if;
9279
9280      --  If we have an arithmetic operator we make recursive calls on the
9281      --  operands to get the ranges (and to properly process the subtree
9282      --  that lies below us).
9283
9284      Minimize_Eliminate_Overflows
9285        (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
9286
9287      if Binary then
9288         Minimize_Eliminate_Overflows
9289           (Left_Opnd (N), Llo, Lhi, Top_Level => False);
9290      end if;
9291
9292      --  Record if we have Long_Long_Integer operands
9293
9294      Long_Long_Integer_Operands :=
9295        Etype (Right_Opnd (N)) = LLIB
9296          or else (Binary and then Etype (Left_Opnd (N)) = LLIB);
9297
9298      --  If either operand is a bignum, then result will be a bignum and we
9299      --  don't need to do any range analysis. As previously discussed we could
9300      --  do range analysis in such cases, but it could mean working with giant
9301      --  numbers at compile time for very little gain (the number of cases
9302      --  in which we could slip back from bignum mode is small).
9303
9304      if Rlo = No_Uint or else (Binary and then Llo = No_Uint) then
9305         Lo := No_Uint;
9306         Hi := No_Uint;
9307         Bignum_Operands := True;
9308
9309      --  Otherwise compute result range
9310
9311      else
9312         Compute_Range_For_Arithmetic_Op
9313           (Nkind (N), Llo, Lhi, Rlo, Rhi, OK, Lo, Hi);
9314         Bignum_Operands := False;
9315      end if;
9316
9317      --  Here for the case where we have not rewritten anything (no bignum
9318      --  operands or long long integer operands), and we know the result.
9319      --  If we know we are in the result range, and we do not have Bignum
9320      --  operands or Long_Long_Integer operands, we can just reexpand with
9321      --  overflow checks turned off (since we know we cannot have overflow).
9322      --  As always the reexpansion is required to complete expansion of the
9323      --  operator, but we do not need to reanalyze, and we prevent recursion
9324      --  by suppressing the check.
9325
9326      if not (Bignum_Operands or Long_Long_Integer_Operands)
9327        and then In_Result_Range
9328      then
9329         Set_Do_Overflow_Check (N, False);
9330         Reexpand (Suppress => True);
9331         return;
9332
9333      --  Here we know that we are not in the result range, and in the general
9334      --  case we will move into either the Bignum or Long_Long_Integer domain
9335      --  to compute the result. However, there is one exception. If we are
9336      --  at the top level, and we do not have Bignum or Long_Long_Integer
9337      --  operands, we will have to immediately convert the result back to
9338      --  the result type, so there is no point in Bignum/Long_Long_Integer
9339      --  fiddling.
9340
9341      elsif Top_Level
9342        and then not (Bignum_Operands or Long_Long_Integer_Operands)
9343
9344        --  One further refinement. If we are at the top level, but our parent
9345        --  is a type conversion, then go into bignum or long long integer node
9346        --  since the result will be converted to that type directly without
9347        --  going through the result type, and we may avoid an overflow. This
9348        --  is the case for example of Long_Long_Integer (A ** 4), where A is
9349        --  of type Integer, and the result A ** 4 fits in Long_Long_Integer
9350        --  but does not fit in Integer.
9351
9352        and then Nkind (Parent (N)) /= N_Type_Conversion
9353      then
9354         --  Here keep original types, but we need to complete analysis
9355
9356         --  One subtlety. We can't just go ahead and do an analyze operation
9357         --  here because it will cause recursion into the whole MINIMIZED/
9358         --  ELIMINATED overflow processing which is not what we want. Here
9359         --  we are at the top level, and we need a check against the result
9360         --  mode (i.e. we want to use STRICT mode). So do exactly that.
9361         --  Also, we have not modified the node, so this is a case where
9362         --  we need to reexpand, but not reanalyze.
9363
9364         Reexpand;
9365         return;
9366
9367      --  Cases where we do the operation in Bignum mode. This happens either
9368      --  because one of our operands is in Bignum mode already, or because
9369      --  the computed bounds are outside the bounds of Long_Long_Integer,
9370      --  which in some cases can be indicated by Hi and Lo being No_Uint.
9371
9372      --  Note: we could do better here and in some cases switch back from
9373      --  Bignum mode to normal mode, e.g. big mod 2 must be in the range
9374      --  0 .. 1, but the cases are rare and it is not worth the effort.
9375      --  Failing to do this switching back is only an efficiency issue.
9376
9377      elsif Lo = No_Uint or else Lo < LLLo or else Hi > LLHi then
9378
9379         --  OK, we are definitely outside the range of Long_Long_Integer. The
9380         --  question is whether to move to Bignum mode, or stay in the domain
9381         --  of Long_Long_Integer, signalling that an overflow check is needed.
9382
9383         --  Obviously in MINIMIZED mode we stay with LLI, since we are not in
9384         --  the Bignum business. In ELIMINATED mode, we will normally move
9385         --  into Bignum mode, but there is an exception if neither of our
9386         --  operands is Bignum now, and we are at the top level (Top_Level
9387         --  set True). In this case, there is no point in moving into Bignum
9388         --  mode to prevent overflow if the caller will immediately convert
9389         --  the Bignum value back to LLI with an overflow check. It's more
9390         --  efficient to stay in LLI mode with an overflow check (if needed)
9391
9392         if Check_Mode = Minimized
9393           or else (Top_Level and not Bignum_Operands)
9394         then
9395            if Do_Overflow_Check (N) then
9396               Enable_Overflow_Check (N);
9397            end if;
9398
9399            --  The result now has to be in Long_Long_Integer mode, so adjust
9400            --  the possible range to reflect this. Note these calls also
9401            --  change No_Uint values from the top level case to LLI bounds.
9402
9403            Max (Lo, LLLo);
9404            Min (Hi, LLHi);
9405
9406         --  Otherwise we are in ELIMINATED mode and we switch to Bignum mode
9407
9408         else
9409            pragma Assert (Check_Mode = Eliminated);
9410
9411            declare
9412               Fent : Entity_Id;
9413               Args : List_Id;
9414
9415            begin
9416               case Nkind (N) is
9417                  when N_Op_Abs =>
9418                     Fent := RTE (RE_Big_Abs);
9419
9420                  when N_Op_Add =>
9421                     Fent := RTE (RE_Big_Add);
9422
9423                  when N_Op_Divide =>
9424                     Fent := RTE (RE_Big_Div);
9425
9426                  when N_Op_Expon =>
9427                     Fent := RTE (RE_Big_Exp);
9428
9429                  when N_Op_Minus =>
9430                     Fent := RTE (RE_Big_Neg);
9431
9432                  when N_Op_Mod =>
9433                     Fent := RTE (RE_Big_Mod);
9434
9435                  when N_Op_Multiply =>
9436                     Fent := RTE (RE_Big_Mul);
9437
9438                  when N_Op_Rem =>
9439                     Fent := RTE (RE_Big_Rem);
9440
9441                  when N_Op_Subtract =>
9442                     Fent := RTE (RE_Big_Sub);
9443
9444                  --  Anything else is an internal error, this includes the
9445                  --  N_Op_Plus case, since how can plus cause the result
9446                  --  to be out of range if the operand is in range?
9447
9448                  when others =>
9449                     raise Program_Error;
9450               end case;
9451
9452               --  Construct argument list for Bignum call, converting our
9453               --  operands to Bignum form if they are not already there.
9454
9455               Args := New_List;
9456
9457               if Binary then
9458                  Append_To (Args, Convert_To_Bignum (Left_Opnd (N)));
9459               end if;
9460
9461               Append_To (Args, Convert_To_Bignum (Right_Opnd (N)));
9462
9463               --  Now rewrite the arithmetic operator with a call to the
9464               --  corresponding bignum function.
9465
9466               Rewrite (N,
9467                 Make_Function_Call (Loc,
9468                   Name                   => New_Occurrence_Of (Fent, Loc),
9469                   Parameter_Associations => Args));
9470               Reanalyze (RTE (RE_Bignum), Suppress => True);
9471
9472               --  Indicate result is Bignum mode
9473
9474               Lo := No_Uint;
9475               Hi := No_Uint;
9476               return;
9477            end;
9478         end if;
9479
9480      --  Otherwise we are in range of Long_Long_Integer, so no overflow
9481      --  check is required, at least not yet.
9482
9483      else
9484         Set_Do_Overflow_Check (N, False);
9485      end if;
9486
9487      --  Here we are not in Bignum territory, but we may have long long
9488      --  integer operands that need special handling. First a special check:
9489      --  If an exponentiation operator exponent is of type Long_Long_Integer,
9490      --  it means we converted it to prevent overflow, but exponentiation
9491      --  requires a Natural right operand, so convert it back to Natural.
9492      --  This conversion may raise an exception which is fine.
9493
9494      if Nkind (N) = N_Op_Expon and then Etype (Right_Opnd (N)) = LLIB then
9495         Convert_To_And_Rewrite (Standard_Natural, Right_Opnd (N));
9496      end if;
9497
9498      --  Here we will do the operation in Long_Long_Integer. We do this even
9499      --  if we know an overflow check is required, better to do this in long
9500      --  long integer mode, since we are less likely to overflow.
9501
9502      --  Convert right or only operand to Long_Long_Integer, except that
9503      --  we do not touch the exponentiation right operand.
9504
9505      if Nkind (N) /= N_Op_Expon then
9506         Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
9507      end if;
9508
9509      --  Convert left operand to Long_Long_Integer for binary case
9510
9511      if Binary then
9512         Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
9513      end if;
9514
9515      --  Reset node to unanalyzed
9516
9517      Set_Analyzed (N, False);
9518      Set_Etype (N, Empty);
9519      Set_Entity (N, Empty);
9520
9521      --  Now analyze this new node. This reanalysis will complete processing
9522      --  for the node. In particular we will complete the expansion of an
9523      --  exponentiation operator (e.g. changing A ** 2 to A * A), and also
9524      --  we will complete any division checks (since we have not changed the
9525      --  setting of the Do_Division_Check flag).
9526
9527      --  We do this reanalysis in STRICT mode to avoid recursion into the
9528      --  MINIMIZED/ELIMINATED handling, since we are now done with that.
9529
9530      declare
9531         SG : constant Overflow_Mode_Type :=
9532                Scope_Suppress.Overflow_Mode_General;
9533         SA : constant Overflow_Mode_Type :=
9534                Scope_Suppress.Overflow_Mode_Assertions;
9535
9536      begin
9537         Scope_Suppress.Overflow_Mode_General    := Strict;
9538         Scope_Suppress.Overflow_Mode_Assertions := Strict;
9539
9540         if not Do_Overflow_Check (N) then
9541            Reanalyze (LLIB, Suppress => True);
9542         else
9543            Reanalyze (LLIB);
9544         end if;
9545
9546         Scope_Suppress.Overflow_Mode_General    := SG;
9547         Scope_Suppress.Overflow_Mode_Assertions := SA;
9548      end;
9549   end Minimize_Eliminate_Overflows;
9550
9551   -------------------------
9552   -- Overflow_Check_Mode --
9553   -------------------------
9554
9555   function Overflow_Check_Mode return Overflow_Mode_Type is
9556   begin
9557      if In_Assertion_Expr = 0 then
9558         return Scope_Suppress.Overflow_Mode_General;
9559      else
9560         return Scope_Suppress.Overflow_Mode_Assertions;
9561      end if;
9562   end Overflow_Check_Mode;
9563
9564   --------------------------------
9565   -- Overflow_Checks_Suppressed --
9566   --------------------------------
9567
9568   function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
9569   begin
9570      if Present (E) and then Checks_May_Be_Suppressed (E) then
9571         return Is_Check_Suppressed (E, Overflow_Check);
9572      else
9573         return Scope_Suppress.Suppress (Overflow_Check);
9574      end if;
9575   end Overflow_Checks_Suppressed;
9576
9577   ---------------------------------
9578   -- Predicate_Checks_Suppressed --
9579   ---------------------------------
9580
9581   function Predicate_Checks_Suppressed (E : Entity_Id) return Boolean is
9582   begin
9583      if Present (E) and then Checks_May_Be_Suppressed (E) then
9584         return Is_Check_Suppressed (E, Predicate_Check);
9585      else
9586         return Scope_Suppress.Suppress (Predicate_Check);
9587      end if;
9588   end Predicate_Checks_Suppressed;
9589
9590   -----------------------------
9591   -- Range_Checks_Suppressed --
9592   -----------------------------
9593
9594   function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
9595   begin
9596      if Present (E) then
9597         if Kill_Range_Checks (E) then
9598            return True;
9599
9600         elsif Checks_May_Be_Suppressed (E) then
9601            return Is_Check_Suppressed (E, Range_Check);
9602         end if;
9603      end if;
9604
9605      return Scope_Suppress.Suppress (Range_Check);
9606   end Range_Checks_Suppressed;
9607
9608   -----------------------------------------
9609   -- Range_Or_Validity_Checks_Suppressed --
9610   -----------------------------------------
9611
9612   --  Note: the coding would be simpler here if we simply made appropriate
9613   --  calls to Range/Validity_Checks_Suppressed, but that would result in
9614   --  duplicated checks which we prefer to avoid.
9615
9616   function Range_Or_Validity_Checks_Suppressed
9617     (Expr : Node_Id) return Boolean
9618   is
9619   begin
9620      --  Immediate return if scope checks suppressed for either check
9621
9622      if Scope_Suppress.Suppress (Range_Check)
9623           or
9624         Scope_Suppress.Suppress (Validity_Check)
9625      then
9626         return True;
9627      end if;
9628
9629      --  If no expression, that's odd, decide that checks are suppressed,
9630      --  since we don't want anyone trying to do checks in this case, which
9631      --  is most likely the result of some other error.
9632
9633      if No (Expr) then
9634         return True;
9635      end if;
9636
9637      --  Expression is present, so perform suppress checks on type
9638
9639      declare
9640         Typ : constant Entity_Id := Etype (Expr);
9641      begin
9642         if Checks_May_Be_Suppressed (Typ)
9643           and then (Is_Check_Suppressed (Typ, Range_Check)
9644                       or else
9645                     Is_Check_Suppressed (Typ, Validity_Check))
9646         then
9647            return True;
9648         end if;
9649      end;
9650
9651      --  If expression is an entity name, perform checks on this entity
9652
9653      if Is_Entity_Name (Expr) then
9654         declare
9655            Ent : constant Entity_Id := Entity (Expr);
9656         begin
9657            if Checks_May_Be_Suppressed (Ent) then
9658               return Is_Check_Suppressed (Ent, Range_Check)
9659                 or else Is_Check_Suppressed (Ent, Validity_Check);
9660            end if;
9661         end;
9662      end if;
9663
9664      --  If we fall through, no checks suppressed
9665
9666      return False;
9667   end Range_Or_Validity_Checks_Suppressed;
9668
9669   -------------------
9670   -- Remove_Checks --
9671   -------------------
9672
9673   procedure Remove_Checks (Expr : Node_Id) is
9674      function Process (N : Node_Id) return Traverse_Result;
9675      --  Process a single node during the traversal
9676
9677      procedure Traverse is new Traverse_Proc (Process);
9678      --  The traversal procedure itself
9679
9680      -------------
9681      -- Process --
9682      -------------
9683
9684      function Process (N : Node_Id) return Traverse_Result is
9685      begin
9686         if Nkind (N) not in N_Subexpr then
9687            return Skip;
9688         end if;
9689
9690         Set_Do_Range_Check (N, False);
9691
9692         case Nkind (N) is
9693            when N_And_Then =>
9694               Traverse (Left_Opnd (N));
9695               return Skip;
9696
9697            when N_Attribute_Reference =>
9698               Set_Do_Overflow_Check (N, False);
9699
9700            when N_Function_Call =>
9701               Set_Do_Tag_Check (N, False);
9702
9703            when N_Op =>
9704               Set_Do_Overflow_Check (N, False);
9705
9706               case Nkind (N) is
9707                  when N_Op_Divide =>
9708                     Set_Do_Division_Check (N, False);
9709
9710                  when N_Op_And =>
9711                     Set_Do_Length_Check (N, False);
9712
9713                  when N_Op_Mod =>
9714                     Set_Do_Division_Check (N, False);
9715
9716                  when N_Op_Or =>
9717                     Set_Do_Length_Check (N, False);
9718
9719                  when N_Op_Rem =>
9720                     Set_Do_Division_Check (N, False);
9721
9722                  when N_Op_Xor =>
9723                     Set_Do_Length_Check (N, False);
9724
9725                  when others =>
9726                     null;
9727               end case;
9728
9729            when N_Or_Else =>
9730               Traverse (Left_Opnd (N));
9731               return Skip;
9732
9733            when N_Selected_Component =>
9734               Set_Do_Discriminant_Check (N, False);
9735
9736            when N_Type_Conversion =>
9737               Set_Do_Length_Check   (N, False);
9738               Set_Do_Tag_Check      (N, False);
9739               Set_Do_Overflow_Check (N, False);
9740
9741            when others =>
9742               null;
9743         end case;
9744
9745         return OK;
9746      end Process;
9747
9748   --  Start of processing for Remove_Checks
9749
9750   begin
9751      Traverse (Expr);
9752   end Remove_Checks;
9753
9754   ----------------------------
9755   -- Selected_Length_Checks --
9756   ----------------------------
9757
9758   function Selected_Length_Checks
9759     (Expr       : Node_Id;
9760      Target_Typ : Entity_Id;
9761      Source_Typ : Entity_Id;
9762      Warn_Node  : Node_Id) return Check_Result
9763   is
9764      Loc         : constant Source_Ptr := Sloc (Expr);
9765      S_Typ       : Entity_Id;
9766      T_Typ       : Entity_Id;
9767      Expr_Actual : Node_Id;
9768      Exptyp      : Entity_Id;
9769      Cond        : Node_Id := Empty;
9770      Do_Access   : Boolean := False;
9771      Wnode       : Node_Id := Warn_Node;
9772      Ret_Result  : Check_Result := (Empty, Empty);
9773      Num_Checks  : Natural := 0;
9774
9775      procedure Add_Check (N : Node_Id);
9776      --  Adds the action given to Ret_Result if N is non-Empty
9777
9778      function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
9779      function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
9780      --  Comments required ???
9781
9782      function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
9783      --  True for equal literals and for nodes that denote the same constant
9784      --  entity, even if its value is not a static constant. This includes the
9785      --  case of a discriminal reference within an init proc. Removes some
9786      --  obviously superfluous checks.
9787
9788      function Length_E_Cond
9789        (Exptyp : Entity_Id;
9790         Typ    : Entity_Id;
9791         Indx   : Nat) return Node_Id;
9792      --  Returns expression to compute:
9793      --    Typ'Length /= Exptyp'Length
9794
9795      function Length_N_Cond
9796        (Exp  : Node_Id;
9797         Typ  : Entity_Id;
9798         Indx : Nat) return Node_Id;
9799      --  Returns expression to compute:
9800      --    Typ'Length /= Exp'Length
9801
9802      function Length_Mismatch_Info_Message
9803        (Left_Element_Count  : Uint;
9804         Right_Element_Count : Uint) return String;
9805      --  Returns a message indicating how many elements were expected
9806      --  (Left_Element_Count) and how many were found (Right_Element_Count).
9807
9808      ---------------
9809      -- Add_Check --
9810      ---------------
9811
9812      procedure Add_Check (N : Node_Id) is
9813      begin
9814         if Present (N) then
9815
9816            --  For now, ignore attempt to place more than two checks ???
9817            --  This is really worrisome, are we really discarding checks ???
9818
9819            if Num_Checks = 2 then
9820               return;
9821            end if;
9822
9823            pragma Assert (Num_Checks <= 1);
9824            Num_Checks := Num_Checks + 1;
9825            Ret_Result (Num_Checks) := N;
9826         end if;
9827      end Add_Check;
9828
9829      ------------------
9830      -- Get_E_Length --
9831      ------------------
9832
9833      function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
9834         SE : constant Entity_Id := Scope (E);
9835         N  : Node_Id;
9836         E1 : Entity_Id := E;
9837
9838      begin
9839         if Ekind (Scope (E)) = E_Record_Type
9840           and then Has_Discriminants (Scope (E))
9841         then
9842            N := Build_Discriminal_Subtype_Of_Component (E);
9843
9844            if Present (N) then
9845               Insert_Action (Expr, N);
9846               E1 := Defining_Identifier (N);
9847            end if;
9848         end if;
9849
9850         if Ekind (E1) = E_String_Literal_Subtype then
9851            return
9852              Make_Integer_Literal (Loc,
9853                Intval => String_Literal_Length (E1));
9854
9855         elsif SE /= Standard_Standard
9856           and then Ekind (Scope (SE)) = E_Protected_Type
9857           and then Has_Discriminants (Scope (SE))
9858           and then Has_Completion (Scope (SE))
9859           and then not Inside_Init_Proc
9860         then
9861            --  If the type whose length is needed is a private component
9862            --  constrained by a discriminant, we must expand the 'Length
9863            --  attribute into an explicit computation, using the discriminal
9864            --  of the current protected operation. This is because the actual
9865            --  type of the prival is constructed after the protected opera-
9866            --  tion has been fully expanded.
9867
9868            declare
9869               Indx_Type : Node_Id;
9870               Lo        : Node_Id;
9871               Hi        : Node_Id;
9872               Do_Expand : Boolean := False;
9873
9874            begin
9875               Indx_Type := First_Index (E);
9876
9877               for J in 1 .. Indx - 1 loop
9878                  Next_Index (Indx_Type);
9879               end loop;
9880
9881               Get_Index_Bounds (Indx_Type, Lo, Hi);
9882
9883               if Nkind (Lo) = N_Identifier
9884                 and then Ekind (Entity (Lo)) = E_In_Parameter
9885               then
9886                  Lo := Get_Discriminal (E, Lo);
9887                  Do_Expand := True;
9888               end if;
9889
9890               if Nkind (Hi) = N_Identifier
9891                 and then Ekind (Entity (Hi)) = E_In_Parameter
9892               then
9893                  Hi := Get_Discriminal (E, Hi);
9894                  Do_Expand := True;
9895               end if;
9896
9897               if Do_Expand then
9898                  if not Is_Entity_Name (Lo) then
9899                     Lo := Duplicate_Subexpr_No_Checks (Lo);
9900                  end if;
9901
9902                  if not Is_Entity_Name (Hi) then
9903                     Lo := Duplicate_Subexpr_No_Checks (Hi);
9904                  end if;
9905
9906                  N :=
9907                    Make_Op_Add (Loc,
9908                      Left_Opnd =>
9909                        Make_Op_Subtract (Loc,
9910                          Left_Opnd  => Hi,
9911                          Right_Opnd => Lo),
9912
9913                      Right_Opnd => Make_Integer_Literal (Loc, 1));
9914                  return N;
9915
9916               else
9917                  N :=
9918                    Make_Attribute_Reference (Loc,
9919                      Attribute_Name => Name_Length,
9920                      Prefix =>
9921                        New_Occurrence_Of (E1, Loc));
9922
9923                  if Indx > 1 then
9924                     Set_Expressions (N, New_List (
9925                       Make_Integer_Literal (Loc, Indx)));
9926                  end if;
9927
9928                  return N;
9929               end if;
9930            end;
9931
9932         else
9933            N :=
9934              Make_Attribute_Reference (Loc,
9935                Attribute_Name => Name_Length,
9936                Prefix =>
9937                  New_Occurrence_Of (E1, Loc));
9938
9939            if Indx > 1 then
9940               Set_Expressions (N, New_List (
9941                 Make_Integer_Literal (Loc, Indx)));
9942            end if;
9943
9944            return N;
9945         end if;
9946      end Get_E_Length;
9947
9948      ------------------
9949      -- Get_N_Length --
9950      ------------------
9951
9952      function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
9953      begin
9954         return
9955           Make_Attribute_Reference (Loc,
9956             Attribute_Name => Name_Length,
9957             Prefix =>
9958               Duplicate_Subexpr_No_Checks (N, Name_Req => True),
9959             Expressions => New_List (
9960               Make_Integer_Literal (Loc, Indx)));
9961      end Get_N_Length;
9962
9963      -------------------
9964      -- Length_E_Cond --
9965      -------------------
9966
9967      function Length_E_Cond
9968        (Exptyp : Entity_Id;
9969         Typ    : Entity_Id;
9970         Indx   : Nat) return Node_Id
9971      is
9972      begin
9973         return
9974           Make_Op_Ne (Loc,
9975             Left_Opnd  => Get_E_Length (Typ, Indx),
9976             Right_Opnd => Get_E_Length (Exptyp, Indx));
9977      end Length_E_Cond;
9978
9979      -------------------
9980      -- Length_N_Cond --
9981      -------------------
9982
9983      function Length_N_Cond
9984        (Exp  : Node_Id;
9985         Typ  : Entity_Id;
9986         Indx : Nat) return Node_Id
9987      is
9988      begin
9989         return
9990           Make_Op_Ne (Loc,
9991             Left_Opnd  => Get_E_Length (Typ, Indx),
9992             Right_Opnd => Get_N_Length (Exp, Indx));
9993      end Length_N_Cond;
9994
9995      ----------------------------------
9996      -- Length_Mismatch_Info_Message --
9997      ----------------------------------
9998
9999      function Length_Mismatch_Info_Message
10000        (Left_Element_Count  : Uint;
10001         Right_Element_Count : Uint) return String
10002      is
10003
10004         function Plural_Vs_Singular_Ending (Count : Uint) return String;
10005         --  Returns an empty string if Count is 1; otherwise returns "s"
10006
10007         function Plural_Vs_Singular_Ending (Count : Uint) return String is
10008         begin
10009            if Count = 1 then
10010               return "";
10011            else
10012               return "s";
10013            end if;
10014         end Plural_Vs_Singular_Ending;
10015
10016      begin
10017         return "expected " & UI_Image (Left_Element_Count)
10018                  & " element"
10019                  & Plural_Vs_Singular_Ending (Left_Element_Count)
10020                  & "; found " & UI_Image (Right_Element_Count)
10021                  & " element"
10022                  & Plural_Vs_Singular_Ending (Right_Element_Count);
10023      end Length_Mismatch_Info_Message;
10024
10025      -----------------
10026      -- Same_Bounds --
10027      -----------------
10028
10029      function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
10030      begin
10031         return
10032           (Nkind (L) = N_Integer_Literal
10033             and then Nkind (R) = N_Integer_Literal
10034             and then Intval (L) = Intval (R))
10035
10036          or else
10037            (Is_Entity_Name (L)
10038              and then Ekind (Entity (L)) = E_Constant
10039              and then ((Is_Entity_Name (R)
10040                         and then Entity (L) = Entity (R))
10041                        or else
10042                       (Nkind (R) = N_Type_Conversion
10043                         and then Is_Entity_Name (Expression (R))
10044                         and then Entity (L) = Entity (Expression (R)))))
10045
10046          or else
10047            (Is_Entity_Name (R)
10048              and then Ekind (Entity (R)) = E_Constant
10049              and then Nkind (L) = N_Type_Conversion
10050              and then Is_Entity_Name (Expression (L))
10051              and then Entity (R) = Entity (Expression (L)))
10052
10053         or else
10054            (Is_Entity_Name (L)
10055              and then Is_Entity_Name (R)
10056              and then Entity (L) = Entity (R)
10057              and then Ekind (Entity (L)) = E_In_Parameter
10058              and then Inside_Init_Proc);
10059      end Same_Bounds;
10060
10061   --  Start of processing for Selected_Length_Checks
10062
10063   begin
10064      --  Checks will be applied only when generating code
10065
10066      if not Expander_Active then
10067         return Ret_Result;
10068      end if;
10069
10070      if Target_Typ = Any_Type
10071        or else Target_Typ = Any_Composite
10072        or else Raises_Constraint_Error (Expr)
10073      then
10074         return Ret_Result;
10075      end if;
10076
10077      if No (Wnode) then
10078         Wnode := Expr;
10079      end if;
10080
10081      T_Typ := Target_Typ;
10082
10083      if No (Source_Typ) then
10084         S_Typ := Etype (Expr);
10085      else
10086         S_Typ := Source_Typ;
10087      end if;
10088
10089      if S_Typ = Any_Type or else S_Typ = Any_Composite then
10090         return Ret_Result;
10091      end if;
10092
10093      if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
10094         S_Typ := Designated_Type (S_Typ);
10095         T_Typ := Designated_Type (T_Typ);
10096         Do_Access := True;
10097
10098         --  A simple optimization for the null case
10099
10100         if Known_Null (Expr) then
10101            return Ret_Result;
10102         end if;
10103      end if;
10104
10105      if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
10106         if Is_Constrained (T_Typ) then
10107
10108            --  The checking code to be generated will freeze the corresponding
10109            --  array type. However, we must freeze the type now, so that the
10110            --  freeze node does not appear within the generated if expression,
10111            --  but ahead of it.
10112
10113            Freeze_Before (Expr, T_Typ);
10114
10115            Expr_Actual := Get_Referenced_Object (Expr);
10116            Exptyp      := Get_Actual_Subtype (Expr);
10117
10118            if Is_Access_Type (Exptyp) then
10119               Exptyp := Designated_Type (Exptyp);
10120            end if;
10121
10122            --  String_Literal case. This needs to be handled specially be-
10123            --  cause no index types are available for string literals. The
10124            --  condition is simply:
10125
10126            --    T_Typ'Length = string-literal-length
10127
10128            if Nkind (Expr_Actual) = N_String_Literal
10129              and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
10130            then
10131               Cond :=
10132                 Make_Op_Ne (Loc,
10133                   Left_Opnd  => Get_E_Length (T_Typ, 1),
10134                   Right_Opnd =>
10135                     Make_Integer_Literal (Loc,
10136                       Intval =>
10137                         String_Literal_Length (Etype (Expr_Actual))));
10138
10139            --  General array case. Here we have a usable actual subtype for
10140            --  the expression, and the condition is built from the two types
10141            --  (Do_Length):
10142
10143            --     T_Typ'Length     /= Exptyp'Length     or else
10144            --     T_Typ'Length (2) /= Exptyp'Length (2) or else
10145            --     T_Typ'Length (3) /= Exptyp'Length (3) or else
10146            --     ...
10147
10148            elsif Is_Constrained (Exptyp) then
10149               declare
10150                  Ndims : constant Nat := Number_Dimensions (T_Typ);
10151
10152                  L_Index  : Node_Id;
10153                  R_Index  : Node_Id;
10154                  L_Low    : Node_Id;
10155                  L_High   : Node_Id;
10156                  R_Low    : Node_Id;
10157                  R_High   : Node_Id;
10158                  L_Length : Uint;
10159                  R_Length : Uint;
10160                  Ref_Node : Node_Id;
10161
10162               begin
10163                  --  At the library level, we need to ensure that the type of
10164                  --  the object is elaborated before the check itself is
10165                  --  emitted. This is only done if the object is in the
10166                  --  current compilation unit, otherwise the type is frozen
10167                  --  and elaborated in its unit.
10168
10169                  if Is_Itype (Exptyp)
10170                    and then
10171                      Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
10172                    and then
10173                      not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
10174                    and then In_Open_Scopes (Scope (Exptyp))
10175                  then
10176                     Ref_Node := Make_Itype_Reference (Sloc (Expr));
10177                     Set_Itype (Ref_Node, Exptyp);
10178                     Insert_Action (Expr, Ref_Node);
10179                  end if;
10180
10181                  L_Index := First_Index (T_Typ);
10182                  R_Index := First_Index (Exptyp);
10183
10184                  for Indx in 1 .. Ndims loop
10185                     if not (Nkind (L_Index) = N_Raise_Constraint_Error
10186                               or else
10187                             Nkind (R_Index) = N_Raise_Constraint_Error)
10188                     then
10189                        Get_Index_Bounds (L_Index, L_Low, L_High);
10190                        Get_Index_Bounds (R_Index, R_Low, R_High);
10191
10192                        --  Deal with compile time length check. Note that we
10193                        --  skip this in the access case, because the access
10194                        --  value may be null, so we cannot know statically.
10195
10196                        if not Do_Access
10197                          and then Compile_Time_Known_Value (L_Low)
10198                          and then Compile_Time_Known_Value (L_High)
10199                          and then Compile_Time_Known_Value (R_Low)
10200                          and then Compile_Time_Known_Value (R_High)
10201                        then
10202                           if Expr_Value (L_High) >= Expr_Value (L_Low) then
10203                              L_Length := Expr_Value (L_High) -
10204                                          Expr_Value (L_Low) + 1;
10205                           else
10206                              L_Length := UI_From_Int (0);
10207                           end if;
10208
10209                           if Expr_Value (R_High) >= Expr_Value (R_Low) then
10210                              R_Length := Expr_Value (R_High) -
10211                                          Expr_Value (R_Low) + 1;
10212                           else
10213                              R_Length := UI_From_Int (0);
10214                           end if;
10215
10216                           if L_Length > R_Length then
10217                              Add_Check
10218                                (Compile_Time_Constraint_Error
10219                                  (Wnode, "too few elements for}??", T_Typ,
10220                                   Extra_Msg => Length_Mismatch_Info_Message
10221                                                  (L_Length, R_Length)));
10222
10223                           elsif L_Length < R_Length then
10224                              Add_Check
10225                                (Compile_Time_Constraint_Error
10226                                  (Wnode, "too many elements for}??", T_Typ,
10227                                   Extra_Msg => Length_Mismatch_Info_Message
10228                                                  (L_Length, R_Length)));
10229                           end if;
10230
10231                        --  The comparison for an individual index subtype
10232                        --  is omitted if the corresponding index subtypes
10233                        --  statically match, since the result is known to
10234                        --  be true. Note that this test is worth while even
10235                        --  though we do static evaluation, because non-static
10236                        --  subtypes can statically match.
10237
10238                        elsif not
10239                          Subtypes_Statically_Match
10240                            (Etype (L_Index), Etype (R_Index))
10241
10242                          and then not
10243                            (Same_Bounds (L_Low, R_Low)
10244                              and then Same_Bounds (L_High, R_High))
10245                        then
10246                           Evolve_Or_Else
10247                             (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
10248                        end if;
10249
10250                        Next (L_Index);
10251                        Next (R_Index);
10252                     end if;
10253                  end loop;
10254               end;
10255
10256            --  Handle cases where we do not get a usable actual subtype that
10257            --  is constrained. This happens for example in the function call
10258            --  and explicit dereference cases. In these cases, we have to get
10259            --  the length or range from the expression itself, making sure we
10260            --  do not evaluate it more than once.
10261
10262            --  Here Expr is the original expression, or more properly the
10263            --  result of applying Duplicate_Expr to the original tree, forcing
10264            --  the result to be a name.
10265
10266            else
10267               declare
10268                  Ndims : constant Pos := Number_Dimensions (T_Typ);
10269
10270               begin
10271                  --  Build the condition for the explicit dereference case
10272
10273                  for Indx in 1 .. Ndims loop
10274                     Evolve_Or_Else
10275                       (Cond, Length_N_Cond (Expr, T_Typ, Indx));
10276                  end loop;
10277               end;
10278            end if;
10279         end if;
10280      end if;
10281
10282      --  Construct the test and insert into the tree
10283
10284      if Present (Cond) then
10285         if Do_Access then
10286            Cond := Guard_Access (Cond, Loc, Expr);
10287         end if;
10288
10289         Add_Check
10290           (Make_Raise_Constraint_Error (Loc,
10291              Condition => Cond,
10292              Reason => CE_Length_Check_Failed));
10293      end if;
10294
10295      return Ret_Result;
10296   end Selected_Length_Checks;
10297
10298   ---------------------------
10299   -- Selected_Range_Checks --
10300   ---------------------------
10301
10302   function Selected_Range_Checks
10303     (Expr       : Node_Id;
10304      Target_Typ : Entity_Id;
10305      Source_Typ : Entity_Id;
10306      Warn_Node  : Node_Id) return Check_Result
10307   is
10308      Loc         : constant Source_Ptr := Sloc (Expr);
10309      S_Typ       : Entity_Id;
10310      T_Typ       : Entity_Id;
10311      Expr_Actual : Node_Id;
10312      Exptyp      : Entity_Id;
10313      Cond        : Node_Id := Empty;
10314      Do_Access   : Boolean := False;
10315      Wnode       : Node_Id  := Warn_Node;
10316      Ret_Result  : Check_Result := (Empty, Empty);
10317      Num_Checks  : Natural := 0;
10318
10319      procedure Add_Check (N : Node_Id);
10320      --  Adds the action given to Ret_Result if N is non-Empty
10321
10322      function Discrete_Range_Cond
10323        (Exp : Node_Id;
10324         Typ : Entity_Id) return Node_Id;
10325      --  Returns expression to compute:
10326      --    Low_Bound (Exp) < Typ'First
10327      --      or else
10328      --    High_Bound (Exp) > Typ'Last
10329
10330      function Discrete_Expr_Cond
10331        (Exp : Node_Id;
10332         Typ : Entity_Id) return Node_Id;
10333      --  Returns expression to compute:
10334      --    Exp < Typ'First
10335      --      or else
10336      --    Exp > Typ'Last
10337
10338      function Get_E_First_Or_Last
10339        (Loc  : Source_Ptr;
10340         E    : Entity_Id;
10341         Indx : Nat;
10342         Nam  : Name_Id) return Node_Id;
10343      --  Returns an attribute reference
10344      --    E'First or E'Last
10345      --  with a source location of Loc.
10346      --
10347      --  Nam is Name_First or Name_Last, according to which attribute is
10348      --  desired. If Indx is non-zero, it is passed as a literal in the
10349      --  Expressions of the attribute reference (identifying the desired
10350      --  array dimension).
10351
10352      function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
10353      function Get_N_Last  (N : Node_Id; Indx : Nat) return Node_Id;
10354      --  Returns expression to compute:
10355      --    N'First or N'Last using Duplicate_Subexpr_No_Checks
10356
10357      function Range_E_Cond
10358        (Exptyp : Entity_Id;
10359         Typ    : Entity_Id;
10360         Indx   : Nat)
10361         return   Node_Id;
10362      --  Returns expression to compute:
10363      --    Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
10364
10365      function Range_Equal_E_Cond
10366        (Exptyp : Entity_Id;
10367         Typ    : Entity_Id;
10368         Indx   : Nat) return Node_Id;
10369      --  Returns expression to compute:
10370      --    Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
10371
10372      function Range_N_Cond
10373        (Exp  : Node_Id;
10374         Typ  : Entity_Id;
10375         Indx : Nat) return Node_Id;
10376      --  Return expression to compute:
10377      --    Exp'First < Typ'First or else Exp'Last > Typ'Last
10378
10379      ---------------
10380      -- Add_Check --
10381      ---------------
10382
10383      procedure Add_Check (N : Node_Id) is
10384      begin
10385         if Present (N) then
10386
10387            --  For now, ignore attempt to place more than 2 checks ???
10388
10389            if Num_Checks = 2 then
10390               return;
10391            end if;
10392
10393            pragma Assert (Num_Checks <= 1);
10394            Num_Checks := Num_Checks + 1;
10395            Ret_Result (Num_Checks) := N;
10396         end if;
10397      end Add_Check;
10398
10399      -------------------------
10400      -- Discrete_Expr_Cond --
10401      -------------------------
10402
10403      function Discrete_Expr_Cond
10404        (Exp : Node_Id;
10405         Typ : Entity_Id) return Node_Id
10406      is
10407      begin
10408         return
10409           Make_Or_Else (Loc,
10410             Left_Opnd =>
10411               Make_Op_Lt (Loc,
10412                 Left_Opnd =>
10413                   Convert_To (Base_Type (Typ),
10414                     Duplicate_Subexpr_No_Checks (Exp)),
10415                 Right_Opnd =>
10416                   Convert_To (Base_Type (Typ),
10417                               Get_E_First_Or_Last (Loc, Typ, 0, Name_First))),
10418
10419             Right_Opnd =>
10420               Make_Op_Gt (Loc,
10421                 Left_Opnd =>
10422                   Convert_To (Base_Type (Typ),
10423                     Duplicate_Subexpr_No_Checks (Exp)),
10424                 Right_Opnd =>
10425                   Convert_To
10426                     (Base_Type (Typ),
10427                      Get_E_First_Or_Last (Loc, Typ, 0, Name_Last))));
10428      end Discrete_Expr_Cond;
10429
10430      -------------------------
10431      -- Discrete_Range_Cond --
10432      -------------------------
10433
10434      function Discrete_Range_Cond
10435        (Exp : Node_Id;
10436         Typ : Entity_Id) return Node_Id
10437      is
10438         LB : Node_Id := Low_Bound (Exp);
10439         HB : Node_Id := High_Bound (Exp);
10440
10441         Left_Opnd  : Node_Id;
10442         Right_Opnd : Node_Id;
10443
10444      begin
10445         if Nkind (LB) = N_Identifier
10446           and then Ekind (Entity (LB)) = E_Discriminant
10447         then
10448            LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
10449         end if;
10450
10451         Left_Opnd :=
10452           Make_Op_Lt (Loc,
10453             Left_Opnd  =>
10454               Convert_To
10455                 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
10456
10457             Right_Opnd =>
10458               Convert_To
10459                 (Base_Type (Typ),
10460                  Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
10461
10462         if Nkind (HB) = N_Identifier
10463           and then Ekind (Entity (HB)) = E_Discriminant
10464         then
10465            HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
10466         end if;
10467
10468         Right_Opnd :=
10469           Make_Op_Gt (Loc,
10470             Left_Opnd  =>
10471               Convert_To
10472                 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
10473
10474             Right_Opnd =>
10475               Convert_To
10476                 (Base_Type (Typ),
10477                  Get_E_First_Or_Last (Loc, Typ, 0, Name_Last)));
10478
10479         return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
10480      end Discrete_Range_Cond;
10481
10482      -------------------------
10483      -- Get_E_First_Or_Last --
10484      -------------------------
10485
10486      function Get_E_First_Or_Last
10487        (Loc  : Source_Ptr;
10488         E    : Entity_Id;
10489         Indx : Nat;
10490         Nam  : Name_Id) return Node_Id
10491      is
10492         Exprs : List_Id;
10493      begin
10494         if Indx > 0 then
10495            Exprs := New_List (Make_Integer_Literal (Loc, UI_From_Int (Indx)));
10496         else
10497            Exprs := No_List;
10498         end if;
10499
10500         return Make_Attribute_Reference (Loc,
10501                  Prefix         => New_Occurrence_Of (E, Loc),
10502                  Attribute_Name => Nam,
10503                  Expressions    => Exprs);
10504      end Get_E_First_Or_Last;
10505
10506      -----------------
10507      -- Get_N_First --
10508      -----------------
10509
10510      function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
10511      begin
10512         return
10513           Make_Attribute_Reference (Loc,
10514             Attribute_Name => Name_First,
10515             Prefix =>
10516               Duplicate_Subexpr_No_Checks (N, Name_Req => True),
10517             Expressions => New_List (
10518               Make_Integer_Literal (Loc, Indx)));
10519      end Get_N_First;
10520
10521      ----------------
10522      -- Get_N_Last --
10523      ----------------
10524
10525      function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
10526      begin
10527         return
10528           Make_Attribute_Reference (Loc,
10529             Attribute_Name => Name_Last,
10530             Prefix =>
10531               Duplicate_Subexpr_No_Checks (N, Name_Req => True),
10532             Expressions => New_List (
10533              Make_Integer_Literal (Loc, Indx)));
10534      end Get_N_Last;
10535
10536      ------------------
10537      -- Range_E_Cond --
10538      ------------------
10539
10540      function Range_E_Cond
10541        (Exptyp : Entity_Id;
10542         Typ    : Entity_Id;
10543         Indx   : Nat) return Node_Id
10544      is
10545      begin
10546         return
10547           Make_Or_Else (Loc,
10548             Left_Opnd =>
10549               Make_Op_Lt (Loc,
10550                 Left_Opnd   =>
10551                   Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10552                 Right_Opnd  =>
10553                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10554
10555             Right_Opnd =>
10556               Make_Op_Gt (Loc,
10557                 Left_Opnd   =>
10558                   Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10559                 Right_Opnd  =>
10560                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10561      end Range_E_Cond;
10562
10563      ------------------------
10564      -- Range_Equal_E_Cond --
10565      ------------------------
10566
10567      function Range_Equal_E_Cond
10568        (Exptyp : Entity_Id;
10569         Typ    : Entity_Id;
10570         Indx   : Nat) return Node_Id
10571      is
10572      begin
10573         return
10574           Make_Or_Else (Loc,
10575             Left_Opnd =>
10576               Make_Op_Ne (Loc,
10577                 Left_Opnd   =>
10578                   Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10579                 Right_Opnd  =>
10580                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10581
10582             Right_Opnd =>
10583               Make_Op_Ne (Loc,
10584                 Left_Opnd   =>
10585                   Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10586                 Right_Opnd  =>
10587                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10588      end Range_Equal_E_Cond;
10589
10590      ------------------
10591      -- Range_N_Cond --
10592      ------------------
10593
10594      function Range_N_Cond
10595        (Exp  : Node_Id;
10596         Typ  : Entity_Id;
10597         Indx : Nat) return Node_Id
10598      is
10599      begin
10600         return
10601           Make_Or_Else (Loc,
10602             Left_Opnd =>
10603               Make_Op_Lt (Loc,
10604                 Left_Opnd  =>
10605                   Get_N_First (Exp, Indx),
10606                 Right_Opnd =>
10607                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10608
10609             Right_Opnd =>
10610               Make_Op_Gt (Loc,
10611                 Left_Opnd  =>
10612                   Get_N_Last (Exp, Indx),
10613                 Right_Opnd =>
10614                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10615      end Range_N_Cond;
10616
10617   --  Start of processing for Selected_Range_Checks
10618
10619   begin
10620      --  Checks will be applied only when generating code. In GNATprove mode,
10621      --  we do not apply the checks, but we still call Selected_Range_Checks
10622      --  outside of generics to possibly issue errors on SPARK code when a
10623      --  run-time error can be detected at compile time.
10624
10625      if Inside_A_Generic or (not GNATprove_Mode and not Expander_Active) then
10626         return Ret_Result;
10627      end if;
10628
10629      if Target_Typ = Any_Type
10630        or else Target_Typ = Any_Composite
10631        or else Raises_Constraint_Error (Expr)
10632      then
10633         return Ret_Result;
10634      end if;
10635
10636      if No (Wnode) then
10637         Wnode := Expr;
10638      end if;
10639
10640      T_Typ := Target_Typ;
10641
10642      if No (Source_Typ) then
10643         S_Typ := Etype (Expr);
10644      else
10645         S_Typ := Source_Typ;
10646      end if;
10647
10648      if S_Typ = Any_Type or else S_Typ = Any_Composite then
10649         return Ret_Result;
10650      end if;
10651
10652      --  The order of evaluating T_Typ before S_Typ seems to be critical
10653      --  because S_Typ can be derived from Etype (Expr), if it's not passed
10654      --  in, and since Node can be an N_Range node, it might be invalid.
10655      --  Should there be an assert check somewhere for taking the Etype of
10656      --  an N_Range node ???
10657
10658      if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
10659         S_Typ := Designated_Type (S_Typ);
10660         T_Typ := Designated_Type (T_Typ);
10661         Do_Access := True;
10662
10663         --  A simple optimization for the null case
10664
10665         if Known_Null (Expr) then
10666            return Ret_Result;
10667         end if;
10668      end if;
10669
10670      --  For an N_Range Node, check for a null range and then if not
10671      --  null generate a range check action.
10672
10673      if Nkind (Expr) = N_Range then
10674
10675         --  There's no point in checking a range against itself
10676
10677         if Expr = Scalar_Range (T_Typ) then
10678            return Ret_Result;
10679         end if;
10680
10681         declare
10682            T_LB       : constant Node_Id := Type_Low_Bound  (T_Typ);
10683            T_HB       : constant Node_Id := Type_High_Bound (T_Typ);
10684            Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
10685            Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);
10686
10687            LB         : Node_Id := Low_Bound (Expr);
10688            HB         : Node_Id := High_Bound (Expr);
10689            Known_LB   : Boolean := False;
10690            Known_HB   : Boolean := False;
10691
10692            Null_Range     : Boolean;
10693            Out_Of_Range_L : Boolean;
10694            Out_Of_Range_H : Boolean;
10695
10696         begin
10697            --  Compute what is known at compile time
10698
10699            if Known_T_LB and Known_T_HB then
10700               if Compile_Time_Known_Value (LB) then
10701                  Known_LB := True;
10702
10703               --  There's no point in checking that a bound is within its
10704               --  own range so pretend that it is known in this case. First
10705               --  deal with low bound.
10706
10707               elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
10708                 and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
10709               then
10710                  LB := T_LB;
10711                  Known_LB := True;
10712               end if;
10713
10714               --  Likewise for the high bound
10715
10716               if Compile_Time_Known_Value (HB) then
10717                  Known_HB := True;
10718
10719               elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
10720                 and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
10721               then
10722                  HB := T_HB;
10723                  Known_HB := True;
10724               end if;
10725            end if;
10726
10727            --  Check for case where everything is static and we can do the
10728            --  check at compile time. This is skipped if we have an access
10729            --  type, since the access value may be null.
10730
10731            --  ??? This code can be improved since you only need to know that
10732            --  the two respective bounds (LB & T_LB or HB & T_HB) are known at
10733            --  compile time to emit pertinent messages.
10734
10735            if Known_T_LB and Known_T_HB and Known_LB and Known_HB
10736              and not Do_Access
10737            then
10738               --  Floating-point case
10739
10740               if Is_Floating_Point_Type (S_Typ) then
10741                  Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
10742                  Out_Of_Range_L :=
10743                    (Expr_Value_R (LB) < Expr_Value_R (T_LB))
10744                      or else
10745                    (Expr_Value_R (LB) > Expr_Value_R (T_HB));
10746
10747                  Out_Of_Range_H :=
10748                    (Expr_Value_R (HB) > Expr_Value_R (T_HB))
10749                      or else
10750                    (Expr_Value_R (HB) < Expr_Value_R (T_LB));
10751
10752               --  Fixed or discrete type case
10753
10754               else
10755                  Null_Range := Expr_Value (HB) < Expr_Value (LB);
10756                  Out_Of_Range_L :=
10757                    (Expr_Value (LB) < Expr_Value (T_LB))
10758                      or else
10759                    (Expr_Value (LB) > Expr_Value (T_HB));
10760
10761                  Out_Of_Range_H :=
10762                    (Expr_Value (HB) > Expr_Value (T_HB))
10763                      or else
10764                    (Expr_Value (HB) < Expr_Value (T_LB));
10765               end if;
10766
10767               if not Null_Range then
10768                  if Out_Of_Range_L then
10769                     if No (Warn_Node) then
10770                        Add_Check
10771                          (Compile_Time_Constraint_Error
10772                             (Low_Bound (Expr),
10773                              "static value out of range of}??", T_Typ));
10774
10775                     else
10776                        Add_Check
10777                          (Compile_Time_Constraint_Error
10778                            (Wnode,
10779                             "static range out of bounds of}??", T_Typ));
10780                     end if;
10781                  end if;
10782
10783                  if Out_Of_Range_H then
10784                     if No (Warn_Node) then
10785                        Add_Check
10786                          (Compile_Time_Constraint_Error
10787                             (High_Bound (Expr),
10788                              "static value out of range of}??", T_Typ));
10789
10790                     else
10791                        Add_Check
10792                          (Compile_Time_Constraint_Error
10793                             (Wnode,
10794                              "static range out of bounds of}??", T_Typ));
10795                     end if;
10796                  end if;
10797               end if;
10798
10799            else
10800               declare
10801                  LB : Node_Id := Low_Bound (Expr);
10802                  HB : Node_Id := High_Bound (Expr);
10803
10804               begin
10805                  --  If either bound is a discriminant and we are within the
10806                  --  record declaration, it is a use of the discriminant in a
10807                  --  constraint of a component, and nothing can be checked
10808                  --  here. The check will be emitted within the init proc.
10809                  --  Before then, the discriminal has no real meaning.
10810                  --  Similarly, if the entity is a discriminal, there is no
10811                  --  check to perform yet.
10812
10813                  --  The same holds within a discriminated synchronized type,
10814                  --  where the discriminant may constrain a component or an
10815                  --  entry family.
10816
10817                  if Nkind (LB) = N_Identifier
10818                    and then Denotes_Discriminant (LB, True)
10819                  then
10820                     if Current_Scope = Scope (Entity (LB))
10821                       or else Is_Concurrent_Type (Current_Scope)
10822                       or else Ekind (Entity (LB)) /= E_Discriminant
10823                     then
10824                        return Ret_Result;
10825                     else
10826                        LB :=
10827                          New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
10828                     end if;
10829                  end if;
10830
10831                  if Nkind (HB) = N_Identifier
10832                    and then Denotes_Discriminant (HB, True)
10833                  then
10834                     if Current_Scope = Scope (Entity (HB))
10835                       or else Is_Concurrent_Type (Current_Scope)
10836                       or else Ekind (Entity (HB)) /= E_Discriminant
10837                     then
10838                        return Ret_Result;
10839                     else
10840                        HB :=
10841                          New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
10842                     end if;
10843                  end if;
10844
10845                  Cond := Discrete_Range_Cond (Expr, T_Typ);
10846                  Set_Paren_Count (Cond, 1);
10847
10848                  Cond :=
10849                    Make_And_Then (Loc,
10850                      Left_Opnd =>
10851                        Make_Op_Ge (Loc,
10852                          Left_Opnd  =>
10853                            Convert_To (Base_Type (Etype (HB)),
10854                              Duplicate_Subexpr_No_Checks (HB)),
10855                          Right_Opnd =>
10856                            Convert_To (Base_Type (Etype (LB)),
10857                              Duplicate_Subexpr_No_Checks (LB))),
10858                      Right_Opnd => Cond);
10859               end;
10860            end if;
10861         end;
10862
10863      elsif Is_Scalar_Type (S_Typ) then
10864
10865         --  This somewhat duplicates what Apply_Scalar_Range_Check does,
10866         --  except the above simply sets a flag in the node and lets
10867         --  gigi generate the check base on the Etype of the expression.
10868         --  Sometimes, however we want to do a dynamic check against an
10869         --  arbitrary target type, so we do that here.
10870
10871         if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
10872            Cond := Discrete_Expr_Cond (Expr, T_Typ);
10873
10874         --  For literals, we can tell if the constraint error will be
10875         --  raised at compile time, so we never need a dynamic check, but
10876         --  if the exception will be raised, then post the usual warning,
10877         --  and replace the literal with a raise constraint error
10878         --  expression. As usual, skip this for access types
10879
10880         elsif Compile_Time_Known_Value (Expr) and then not Do_Access then
10881            declare
10882               LB : constant Node_Id := Type_Low_Bound (T_Typ);
10883               UB : constant Node_Id := Type_High_Bound (T_Typ);
10884
10885               Out_Of_Range  : Boolean;
10886               Static_Bounds : constant Boolean :=
10887                 Compile_Time_Known_Value (LB)
10888                 and Compile_Time_Known_Value (UB);
10889
10890            begin
10891               --  Following range tests should use Sem_Eval routine ???
10892
10893               if Static_Bounds then
10894                  if Is_Floating_Point_Type (S_Typ) then
10895                     Out_Of_Range :=
10896                       (Expr_Value_R (Expr) < Expr_Value_R (LB))
10897                         or else
10898                       (Expr_Value_R (Expr) > Expr_Value_R (UB));
10899
10900                  --  Fixed or discrete type
10901
10902                  else
10903                     Out_Of_Range :=
10904                       Expr_Value (Expr) < Expr_Value (LB)
10905                         or else
10906                       Expr_Value (Expr) > Expr_Value (UB);
10907                  end if;
10908
10909                  --  Bounds of the type are static and the literal is out of
10910                  --  range so output a warning message.
10911
10912                  if Out_Of_Range then
10913                     if No (Warn_Node) then
10914                        Add_Check
10915                          (Compile_Time_Constraint_Error
10916                             (Expr,
10917                              "static value out of range of}??", T_Typ));
10918
10919                     else
10920                        Add_Check
10921                          (Compile_Time_Constraint_Error
10922                             (Wnode,
10923                              "static value out of range of}??", T_Typ));
10924                     end if;
10925                  end if;
10926
10927               else
10928                  Cond := Discrete_Expr_Cond (Expr, T_Typ);
10929               end if;
10930            end;
10931
10932         --  Here for the case of a non-static expression, we need a runtime
10933         --  check unless the source type range is guaranteed to be in the
10934         --  range of the target type.
10935
10936         else
10937            if not In_Subrange_Of (S_Typ, T_Typ) then
10938               Cond := Discrete_Expr_Cond (Expr, T_Typ);
10939            end if;
10940         end if;
10941      end if;
10942
10943      if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
10944         if Is_Constrained (T_Typ) then
10945
10946            Expr_Actual := Get_Referenced_Object (Expr);
10947            Exptyp      := Get_Actual_Subtype (Expr_Actual);
10948
10949            if Is_Access_Type (Exptyp) then
10950               Exptyp := Designated_Type (Exptyp);
10951            end if;
10952
10953            --  String_Literal case. This needs to be handled specially be-
10954            --  cause no index types are available for string literals. The
10955            --  condition is simply:
10956
10957            --    T_Typ'Length = string-literal-length
10958
10959            if Nkind (Expr_Actual) = N_String_Literal then
10960               null;
10961
10962            --  General array case. Here we have a usable actual subtype for
10963            --  the expression, and the condition is built from the two types
10964
10965            --     T_Typ'First     < Exptyp'First     or else
10966            --     T_Typ'Last      > Exptyp'Last      or else
10967            --     T_Typ'First(1)  < Exptyp'First(1)  or else
10968            --     T_Typ'Last(1)   > Exptyp'Last(1)   or else
10969            --     ...
10970
10971            elsif Is_Constrained (Exptyp) then
10972               declare
10973                  Ndims : constant Pos := Number_Dimensions (T_Typ);
10974
10975                  L_Index : Node_Id;
10976                  R_Index : Node_Id;
10977
10978               begin
10979                  L_Index := First_Index (T_Typ);
10980                  R_Index := First_Index (Exptyp);
10981
10982                  for Indx in 1 .. Ndims loop
10983                     if not (Nkind (L_Index) = N_Raise_Constraint_Error
10984                               or else
10985                             Nkind (R_Index) = N_Raise_Constraint_Error)
10986                     then
10987                        --  Deal with compile time length check. Note that we
10988                        --  skip this in the access case, because the access
10989                        --  value may be null, so we cannot know statically.
10990
10991                        if not
10992                          Subtypes_Statically_Match
10993                            (Etype (L_Index), Etype (R_Index))
10994                        then
10995                           --  If the target type is constrained then we
10996                           --  have to check for exact equality of bounds
10997                           --  (required for qualified expressions).
10998
10999                           if Is_Constrained (T_Typ) then
11000                              Evolve_Or_Else
11001                                (Cond,
11002                                 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
11003                           else
11004                              Evolve_Or_Else
11005                                (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
11006                           end if;
11007                        end if;
11008
11009                        Next (L_Index);
11010                        Next (R_Index);
11011                     end if;
11012                  end loop;
11013               end;
11014
11015            --  Handle cases where we do not get a usable actual subtype that
11016            --  is constrained. This happens for example in the function call
11017            --  and explicit dereference cases. In these cases, we have to get
11018            --  the length or range from the expression itself, making sure we
11019            --  do not evaluate it more than once.
11020
11021            --  Here Expr is the original expression, or more properly the
11022            --  result of applying Duplicate_Expr to the original tree,
11023            --  forcing the result to be a name.
11024
11025            else
11026               declare
11027                  Ndims : constant Pos := Number_Dimensions (T_Typ);
11028
11029               begin
11030                  --  Build the condition for the explicit dereference case
11031
11032                  for Indx in 1 .. Ndims loop
11033                     Evolve_Or_Else
11034                       (Cond, Range_N_Cond (Expr, T_Typ, Indx));
11035                  end loop;
11036               end;
11037            end if;
11038
11039         else
11040            --  For a conversion to an unconstrained array type, generate an
11041            --  Action to check that the bounds of the source value are within
11042            --  the constraints imposed by the target type (RM 4.6(38)). No
11043            --  check is needed for a conversion to an access to unconstrained
11044            --  array type, as 4.6(24.15/2) requires the designated subtypes
11045            --  of the two access types to statically match.
11046
11047            if Nkind (Parent (Expr)) = N_Type_Conversion
11048              and then not Do_Access
11049            then
11050               declare
11051                  Opnd_Index : Node_Id;
11052                  Targ_Index : Node_Id;
11053                  Opnd_Range : Node_Id;
11054
11055               begin
11056                  Opnd_Index := First_Index (Get_Actual_Subtype (Expr));
11057                  Targ_Index := First_Index (T_Typ);
11058                  while Present (Opnd_Index) loop
11059
11060                     --  If the index is a range, use its bounds. If it is an
11061                     --  entity (as will be the case if it is a named subtype
11062                     --  or an itype created for a slice) retrieve its range.
11063
11064                     if Is_Entity_Name (Opnd_Index)
11065                       and then Is_Type (Entity (Opnd_Index))
11066                     then
11067                        Opnd_Range := Scalar_Range (Entity (Opnd_Index));
11068                     else
11069                        Opnd_Range := Opnd_Index;
11070                     end if;
11071
11072                     if Nkind (Opnd_Range) = N_Range then
11073                        if  Is_In_Range
11074                             (Low_Bound (Opnd_Range), Etype (Targ_Index),
11075                              Assume_Valid => True)
11076                          and then
11077                            Is_In_Range
11078                             (High_Bound (Opnd_Range), Etype (Targ_Index),
11079                              Assume_Valid => True)
11080                        then
11081                           null;
11082
11083                        --  If null range, no check needed
11084
11085                        elsif
11086                          Compile_Time_Known_Value (High_Bound (Opnd_Range))
11087                            and then
11088                          Compile_Time_Known_Value (Low_Bound (Opnd_Range))
11089                            and then
11090                              Expr_Value (High_Bound (Opnd_Range)) <
11091                                  Expr_Value (Low_Bound (Opnd_Range))
11092                        then
11093                           null;
11094
11095                        elsif Is_Out_Of_Range
11096                                (Low_Bound (Opnd_Range), Etype (Targ_Index),
11097                                 Assume_Valid => True)
11098                          or else
11099                              Is_Out_Of_Range
11100                                (High_Bound (Opnd_Range), Etype (Targ_Index),
11101                                 Assume_Valid => True)
11102                        then
11103                           Add_Check
11104                             (Compile_Time_Constraint_Error
11105                               (Wnode, "value out of range of}??", T_Typ));
11106
11107                        else
11108                           Evolve_Or_Else
11109                             (Cond,
11110                              Discrete_Range_Cond
11111                                (Opnd_Range, Etype (Targ_Index)));
11112                        end if;
11113                     end if;
11114
11115                     Next_Index (Opnd_Index);
11116                     Next_Index (Targ_Index);
11117                  end loop;
11118               end;
11119            end if;
11120         end if;
11121      end if;
11122
11123      --  Construct the test and insert into the tree
11124
11125      if Present (Cond) then
11126         if Do_Access then
11127            Cond := Guard_Access (Cond, Loc, Expr);
11128         end if;
11129
11130         Add_Check
11131           (Make_Raise_Constraint_Error (Loc,
11132             Condition => Cond,
11133             Reason    => CE_Range_Check_Failed));
11134      end if;
11135
11136      return Ret_Result;
11137   end Selected_Range_Checks;
11138
11139   -------------------------------
11140   -- Storage_Checks_Suppressed --
11141   -------------------------------
11142
11143   function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
11144   begin
11145      if Present (E) and then Checks_May_Be_Suppressed (E) then
11146         return Is_Check_Suppressed (E, Storage_Check);
11147      else
11148         return Scope_Suppress.Suppress (Storage_Check);
11149      end if;
11150   end Storage_Checks_Suppressed;
11151
11152   ---------------------------
11153   -- Tag_Checks_Suppressed --
11154   ---------------------------
11155
11156   function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
11157   begin
11158      if Present (E)
11159        and then Checks_May_Be_Suppressed (E)
11160      then
11161         return Is_Check_Suppressed (E, Tag_Check);
11162      else
11163         return Scope_Suppress.Suppress (Tag_Check);
11164      end if;
11165   end Tag_Checks_Suppressed;
11166
11167   ---------------------------------------
11168   -- Validate_Alignment_Check_Warnings --
11169   ---------------------------------------
11170
11171   procedure Validate_Alignment_Check_Warnings is
11172   begin
11173      for J in Alignment_Warnings.First .. Alignment_Warnings.Last loop
11174         declare
11175            AWR : Alignment_Warnings_Record
11176                    renames Alignment_Warnings.Table (J);
11177         begin
11178            if Known_Alignment (AWR.E)
11179              and then ((AWR.A /= No_Uint
11180                          and then AWR.A mod Alignment (AWR.E) = 0)
11181                        or else (Present (AWR.P)
11182                                  and then Has_Compatible_Alignment
11183                                             (AWR.E, AWR.P, True) =
11184                                               Known_Compatible))
11185            then
11186               Delete_Warning_And_Continuations (AWR.W);
11187            end if;
11188         end;
11189      end loop;
11190   end Validate_Alignment_Check_Warnings;
11191
11192   --------------------------
11193   -- Validity_Check_Range --
11194   --------------------------
11195
11196   procedure Validity_Check_Range
11197     (N          : Node_Id;
11198      Related_Id : Entity_Id := Empty) is
11199   begin
11200      if Validity_Checks_On and Validity_Check_Operands then
11201         if Nkind (N) = N_Range then
11202            Ensure_Valid
11203              (Expr          => Low_Bound (N),
11204               Related_Id    => Related_Id,
11205               Is_Low_Bound  => True);
11206
11207            Ensure_Valid
11208              (Expr          => High_Bound (N),
11209               Related_Id    => Related_Id,
11210               Is_High_Bound => True);
11211         end if;
11212      end if;
11213   end Validity_Check_Range;
11214
11215end Checks;
11216