1 /* Definitions of target machine for GNU compiler, for ARM.
2    Copyright (C) 1991-2021 Free Software Foundation, Inc.
3    Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
4    and Martin Simmons (@harleqn.co.uk).
5    More major hacks by Richard Earnshaw (rearnsha@arm.com)
6    Minor hacks by Nick Clifton (nickc@cygnus.com)
7 
8    This file is part of GCC.
9 
10    GCC is free software; you can redistribute it and/or modify it
11    under the terms of the GNU General Public License as published
12    by the Free Software Foundation; either version 3, or (at your
13    option) any later version.
14 
15    GCC is distributed in the hope that it will be useful, but WITHOUT
16    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
18    License for more details.
19 
20    Under Section 7 of GPL version 3, you are granted additional
21    permissions described in the GCC Runtime Library Exception, version
22    3.1, as published by the Free Software Foundation.
23 
24    You should have received a copy of the GNU General Public License and
25    a copy of the GCC Runtime Library Exception along with this program;
26    see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
27    <http://www.gnu.org/licenses/>.  */
28 
29 #ifndef GCC_ARM_H
30 #define GCC_ARM_H
31 
32 /* We can't use machine_mode inside a generator file because it
33    hasn't been created yet; we shouldn't be using any code that
34    needs the real definition though, so this ought to be safe.  */
35 #ifdef GENERATOR_FILE
36 #define MACHMODE int
37 #else
38 #include "insn-modes.h"
39 #define MACHMODE machine_mode
40 #endif
41 
42 #include "config/vxworks-dummy.h"
43 
44 /* The architecture define.  */
45 extern char arm_arch_name[];
46 
47 /* Target CPU builtins.  */
48 #define TARGET_CPU_CPP_BUILTINS() arm_cpu_cpp_builtins (pfile)
49 
50 /* Target hooks for D language.  */
51 #define TARGET_D_CPU_VERSIONS arm_d_target_versions
52 #define TARGET_D_REGISTER_CPU_TARGET_INFO arm_d_register_target_info
53 
54 #include "config/arm/arm-opts.h"
55 
56 /* The processor for which instructions should be scheduled.  */
57 extern enum processor_type arm_tune;
58 
59 typedef enum arm_cond_code
60 {
61   ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
62   ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
63 }
64 arm_cc;
65 
66 extern arm_cc arm_current_cc;
67 
68 #define ARM_INVERSE_CONDITION_CODE(X)  ((arm_cc) (((int)X) ^ 1))
69 
70 /* The maximum number of instructions that is beneficial to
71    conditionally execute. */
72 #undef MAX_CONDITIONAL_EXECUTE
73 #define MAX_CONDITIONAL_EXECUTE arm_max_conditional_execute ()
74 
75 extern int arm_target_label;
76 extern int arm_ccfsm_state;
77 extern GTY(()) rtx arm_target_insn;
78 /* Callback to output language specific object attributes.  */
79 extern void (*arm_lang_output_object_attributes_hook)(void);
80 
81 /* This type is the user-visible __fp16.  We need it in a few places in
82    the backend.  Defined in arm-builtins.c.  */
83 extern tree arm_fp16_type_node;
84 
85 /* This type is the user-visible __bf16.  We need it in a few places in
86    the backend.  Defined in arm-builtins.c.  */
87 extern tree arm_bf16_type_node;
88 extern tree arm_bf16_ptr_type_node;
89 
90 
91 #undef  CPP_SPEC
92 #define CPP_SPEC "%(subtarget_cpp_spec)					\
93 %{mfloat-abi=soft:%{mfloat-abi=hard:					\
94 	%e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
95 %{mbig-endian:%{mlittle-endian:						\
96 	%e-mbig-endian and -mlittle-endian may not be used together}}"
97 
98 #ifndef CC1_SPEC
99 #define CC1_SPEC ""
100 #endif
101 
102 /* This macro defines names of additional specifications to put in the specs
103    that can be used in various specifications like CC1_SPEC.  Its definition
104    is an initializer with a subgrouping for each command option.
105 
106    Each subgrouping contains a string constant, that defines the
107    specification name, and a string constant that used by the GCC driver
108    program.
109 
110    Do not define this macro if it does not need to do anything.  */
111 #define EXTRA_SPECS						\
112   { "subtarget_cpp_spec",	SUBTARGET_CPP_SPEC },           \
113   { "asm_cpu_spec",		ASM_CPU_SPEC },			\
114   SUBTARGET_EXTRA_SPECS
115 
116 #ifndef SUBTARGET_EXTRA_SPECS
117 #define SUBTARGET_EXTRA_SPECS
118 #endif
119 
120 #ifndef SUBTARGET_CPP_SPEC
121 #define SUBTARGET_CPP_SPEC      ""
122 #endif
123 
124 /* Tree Target Specification.  */
125 #define TARGET_ARM_P(flags)    (!TARGET_THUMB_P (flags))
126 #define TARGET_THUMB1_P(flags) (TARGET_THUMB_P (flags) && !arm_arch_thumb2)
127 #define TARGET_THUMB2_P(flags) (TARGET_THUMB_P (flags) && arm_arch_thumb2)
128 #define TARGET_32BIT_P(flags)  (TARGET_ARM_P (flags) || TARGET_THUMB2_P (flags))
129 
130 /* Run-time Target Specification.  */
131 /* Use hardware floating point instructions. -mgeneral-regs-only prevents
132 the use of floating point instructions and registers but does not prevent
133 emission of floating point pcs attributes.  */
134 #define TARGET_HARD_FLOAT_SUB	(arm_float_abi != ARM_FLOAT_ABI_SOFT	\
135 				 && bitmap_bit_p (arm_active_target.isa, \
136 						  isa_bit_vfpv2) \
137 				 && TARGET_32BIT)
138 
139 #define TARGET_HARD_FLOAT	(TARGET_HARD_FLOAT_SUB		\
140 				 && !TARGET_GENERAL_REGS_ONLY)
141 
142 #define TARGET_SOFT_FLOAT	(!TARGET_HARD_FLOAT_SUB)
143 /* User has permitted use of FP instructions, if they exist for this
144    target.  */
145 #define TARGET_MAYBE_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
146 /* Use hardware floating point calling convention.  */
147 #define TARGET_HARD_FLOAT_ABI		(arm_float_abi == ARM_FLOAT_ABI_HARD)
148 #define TARGET_IWMMXT			(arm_arch_iwmmxt)
149 #define TARGET_IWMMXT2			(arm_arch_iwmmxt2)
150 #define TARGET_REALLY_IWMMXT		(TARGET_IWMMXT && TARGET_32BIT \
151 					 && !TARGET_GENERAL_REGS_ONLY)
152 #define TARGET_REALLY_IWMMXT2		(TARGET_IWMMXT2 && TARGET_32BIT \
153 					 && !TARGET_GENERAL_REGS_ONLY)
154 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
155 #define TARGET_ARM                      (! TARGET_THUMB)
156 #define TARGET_EITHER			1 /* (TARGET_ARM | TARGET_THUMB) */
157 #define TARGET_BACKTRACE	        (crtl->is_leaf \
158 				         ? TARGET_TPCS_LEAF_FRAME \
159 				         : TARGET_TPCS_FRAME)
160 #define TARGET_AAPCS_BASED \
161     (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
162 
163 #define TARGET_HARD_TP			(target_thread_pointer == TP_CP15)
164 #define TARGET_SOFT_TP			(target_thread_pointer == TP_SOFT)
165 #define TARGET_GNU2_TLS			(target_tls_dialect == TLS_GNU2)
166 
167 /* Only 16-bit thumb code.  */
168 #define TARGET_THUMB1			(TARGET_THUMB && !arm_arch_thumb2)
169 /* Arm or Thumb-2 32-bit code.  */
170 #define TARGET_32BIT			(TARGET_ARM || arm_arch_thumb2)
171 /* 32-bit Thumb-2 code.  */
172 #define TARGET_THUMB2			(TARGET_THUMB && arm_arch_thumb2)
173 /* Thumb-1 only.  */
174 #define TARGET_THUMB1_ONLY		(TARGET_THUMB1 && !arm_arch_notm)
175 
176 #define TARGET_LDRD			(arm_arch5te && ARM_DOUBLEWORD_ALIGN \
177                                          && !TARGET_THUMB1)
178 
179 #define TARGET_CRC32			(arm_arch_crc)
180 
181 /* Thumb-2 but also has some conditional arithmetic instructions like csinc,
182    csinv, etc. */
183 #define TARGET_COND_ARITH		(arm_arch8_1m_main)
184 
185 /* The following two macros concern the ability to execute coprocessor
186    instructions for VFPv3 or NEON.  TARGET_VFP3/TARGET_VFPD32 are currently
187    only ever tested when we know we are generating for VFP hardware; we need
188    to be more careful with TARGET_NEON as noted below.  */
189 
190 /* FPU is has the full VFPv3/NEON register file of 32 D registers.  */
191 #define TARGET_VFPD32 (bitmap_bit_p (arm_active_target.isa, isa_bit_fp_d32))
192 
193 /* FPU supports VFPv3 instructions.  */
194 #define TARGET_VFP3 (bitmap_bit_p (arm_active_target.isa, isa_bit_vfpv3))
195 
196 /* FPU supports FPv5 instructions.  */
197 #define TARGET_VFP5 (bitmap_bit_p (arm_active_target.isa, isa_bit_fpv5))
198 
199 /* FPU only supports VFP single-precision instructions.  */
200 #define TARGET_VFP_SINGLE (!TARGET_VFP_DOUBLE)
201 
202 /* FPU supports VFP double-precision instructions.  */
203 #define TARGET_VFP_DOUBLE (bitmap_bit_p (arm_active_target.isa, isa_bit_fp_dbl))
204 
205 /* FPU supports half-precision floating-point with NEON element load/store.  */
206 #define TARGET_NEON_FP16					\
207   (bitmap_bit_p (arm_active_target.isa, isa_bit_neon)		\
208    && bitmap_bit_p (arm_active_target.isa, isa_bit_fp16conv))
209 
210 /* FPU supports VFP half-precision floating-point conversions.  */
211 #define TARGET_FP16 (bitmap_bit_p (arm_active_target.isa, isa_bit_fp16conv))
212 
213 /* FPU supports converting between HFmode and DFmode in a single hardware
214    step.  */
215 #define TARGET_FP16_TO_DOUBLE						\
216   (TARGET_HARD_FLOAT && TARGET_FP16 && TARGET_VFP5 && TARGET_VFP_DOUBLE)
217 
218 /* FPU supports fused-multiply-add operations.  */
219 #define TARGET_FMA (bitmap_bit_p (arm_active_target.isa, isa_bit_vfpv4))
220 
221 /* FPU supports Crypto extensions.  */
222 #define TARGET_CRYPTO (bitmap_bit_p (arm_active_target.isa, isa_bit_crypto))
223 
224 /* FPU supports Neon instructions.  The setting of this macro gets
225    revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
226    and TARGET_HARD_FLOAT to ensure that NEON instructions are
227    available.  */
228 #define TARGET_NEON							\
229   (TARGET_32BIT && TARGET_HARD_FLOAT					\
230    && bitmap_bit_p (arm_active_target.isa, isa_bit_neon))
231 
232 /* FPU supports ARMv8.1 Adv.SIMD extensions.  */
233 #define TARGET_NEON_RDMA (TARGET_NEON && arm_arch8_1)
234 
235 /* Supports the Dot Product AdvSIMD extensions.  */
236 #define TARGET_DOTPROD (TARGET_NEON && TARGET_VFP5			\
237 			&& bitmap_bit_p (arm_active_target.isa,		\
238 					isa_bit_dotprod)		\
239 			&& arm_arch8_2)
240 
241 /* Supports the Armv8.3-a Complex number AdvSIMD extensions.  */
242 #define TARGET_COMPLEX (TARGET_NEON && arm_arch8_3)
243 
244 /* FPU supports the floating point FP16 instructions for ARMv8.2-A
245    and later.  */
246 #define TARGET_VFP_FP16INST \
247   (TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP5 && arm_fp16_inst)
248 
249 /* Target supports the floating point FP16 instructions from ARMv8.2-A
250    and later.  */
251 #define TARGET_FP16FML (TARGET_NEON					\
252 			&& bitmap_bit_p (arm_active_target.isa,	\
253 					isa_bit_fp16fml)		\
254 			&& arm_arch8_2)
255 
256 /* FPU supports the AdvSIMD FP16 instructions for ARMv8.2 and later.  */
257 #define TARGET_NEON_FP16INST (TARGET_VFP_FP16INST && TARGET_NEON_RDMA)
258 
259 /* FPU supports 8-bit Integer Matrix Multiply (I8MM) AdvSIMD extensions.  */
260 #define TARGET_I8MM (TARGET_NEON && arm_arch8_2 && arm_arch_i8mm)
261 
262 /* FPU supports Brain half-precision floating-point (BFloat16) extension.  */
263 #define TARGET_BF16_FP (TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP5 \
264 			&& arm_arch8_2 && arm_arch_bf16)
265 #define TARGET_BF16_SIMD (TARGET_NEON && TARGET_VFP5 \
266 			  && arm_arch8_2 && arm_arch_bf16)
267 
268 /* Q-bit is present.  */
269 #define TARGET_ARM_QBIT \
270   (TARGET_32BIT && arm_arch5te && (arm_arch_notm || arm_arch7))
271 /* Saturation operation, e.g. SSAT.  */
272 #define TARGET_ARM_SAT \
273   (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7))
274 /* "DSP" multiply instructions, eg. SMULxy.  */
275 #define TARGET_DSP_MULTIPLY \
276   (TARGET_32BIT && arm_arch5te && (arm_arch_notm || arm_arch7em))
277 /* Integer SIMD instructions, and extend-accumulate instructions.  */
278 #define TARGET_INT_SIMD \
279   (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
280 
281 /* Should MOVW/MOVT be used in preference to a constant pool.  */
282 #define TARGET_USE_MOVT \
283   (TARGET_HAVE_MOVT \
284    && (arm_disable_literal_pool \
285        || (!optimize_size && !current_tune->prefer_constant_pool)))
286 
287 /* Nonzero if this chip provides the DMB instruction.  */
288 #define TARGET_HAVE_DMB		(arm_arch6m || arm_arch7)
289 
290 /* Nonzero if this chip implements a memory barrier via CP15.  */
291 #define TARGET_HAVE_DMB_MCR	(arm_arch6 && ! TARGET_HAVE_DMB \
292 				 && ! TARGET_THUMB1)
293 
294 /* Nonzero if this chip implements a memory barrier instruction.  */
295 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
296 
297 /* Nonzero if this chip supports ldrex and strex */
298 #define TARGET_HAVE_LDREX        ((arm_arch6 && TARGET_ARM)	\
299 				  || arm_arch7			\
300 				  || (arm_arch8 && !arm_arch_notm))
301 
302 /* Nonzero if this chip supports LPAE.  */
303 #define TARGET_HAVE_LPAE (arm_arch_lpae)
304 
305 /* Nonzero if this chip supports ldrex{bh} and strex{bh}.  */
306 #define TARGET_HAVE_LDREXBH ((arm_arch6k && TARGET_ARM)		\
307 			     || arm_arch7			\
308 			     || (arm_arch8 && !arm_arch_notm))
309 
310 /* Nonzero if this chip supports ldrexd and strexd.  */
311 #define TARGET_HAVE_LDREXD (((arm_arch6k && TARGET_ARM) \
312 			     || arm_arch7) && arm_arch_notm)
313 
314 /* Nonzero if this chip supports load-acquire and store-release.  */
315 #define TARGET_HAVE_LDACQ	(TARGET_ARM_ARCH >= 8)
316 
317 /* Nonzero if this chip supports LDAEXD and STLEXD.  */
318 #define TARGET_HAVE_LDACQEXD	(TARGET_ARM_ARCH >= 8	\
319 				 && TARGET_32BIT	\
320 				 && arm_arch_notm)
321 
322 /* Nonzero if this chip provides the MOVW and MOVT instructions.  */
323 #define TARGET_HAVE_MOVT	(arm_arch_thumb2 || arm_arch8)
324 
325 /* Nonzero if this chip provides the CBZ and CBNZ instructions.  */
326 #define TARGET_HAVE_CBZ		(arm_arch_thumb2 || arm_arch8)
327 
328 /* Nonzero if this chip provides Armv8.1-M Mainline Security extensions
329    instructions (most are floating-point related).  */
330 #define TARGET_HAVE_FPCXT_CMSE	(arm_arch8_1m_main)
331 
332 #define TARGET_HAVE_MVE (arm_float_abi != ARM_FLOAT_ABI_SOFT \
333 			 && bitmap_bit_p (arm_active_target.isa, \
334 					  isa_bit_mve) \
335 			 && !TARGET_GENERAL_REGS_ONLY)
336 
337 #define TARGET_HAVE_MVE_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT \
338 			       && bitmap_bit_p (arm_active_target.isa, \
339 						isa_bit_mve_float) \
340 			       && !TARGET_GENERAL_REGS_ONLY)
341 
342 /* MVE have few common instructions as VFP, like VLDM alias VPOP, VLDR, VSTM
343    alia VPUSH, VSTR and VMOV, VMSR and VMRS.  In the same manner it updates few
344    registers such as FPCAR, FPCCR, FPDSCR, FPSCR, MVFR0, MVFR1 and MVFR2.  All
345    the VFP instructions, RTL patterns and register are guarded by
346    TARGET_HARD_FLOAT.  But the common instructions, RTL pattern and registers
347    between MVE and VFP will be guarded by the following macro TARGET_VFP_BASE
348    hereafter.  */
349 
350 #define TARGET_VFP_BASE (arm_float_abi != ARM_FLOAT_ABI_SOFT \
351 			 && bitmap_bit_p (arm_active_target.isa, \
352 					  isa_bit_vfp_base) \
353 			 && !TARGET_GENERAL_REGS_ONLY)
354 
355 /* Nonzero if integer division instructions supported.  */
356 #define TARGET_IDIV	((TARGET_ARM && arm_arch_arm_hwdiv)	\
357 			 || (TARGET_THUMB && arm_arch_thumb_hwdiv))
358 
359 /* Nonzero if disallow volatile memory access in IT block.  */
360 #define TARGET_NO_VOLATILE_CE		(arm_arch_no_volatile_ce)
361 
362 /* Nonzero if chip supports the Custom Datapath Extension.  */
363 #define TARGET_CDE	(arm_arch_cde && arm_arch8 && !arm_arch_notm)
364 
365 /* Should constant I be slplit for OP.  */
366 #define DONT_EARLY_SPLIT_CONSTANT(i, op) \
367 				((optimize >= 2) \
368 				 && can_create_pseudo_p () \
369 				 && !const_ok_for_op (i, op))
370 
371 /* True iff the full BPABI is being used.  If TARGET_BPABI is true,
372    then TARGET_AAPCS_BASED must be true -- but the converse does not
373    hold.  TARGET_BPABI implies the use of the BPABI runtime library,
374    etc., in addition to just the AAPCS calling conventions.  */
375 #ifndef TARGET_BPABI
376 #define TARGET_BPABI false
377 #endif
378 
379 /* Transform lane numbers on big endian targets. This is used to allow for the
380    endianness difference between NEON architectural lane numbers and those
381    used in RTL */
382 #define NEON_ENDIAN_LANE_N(mode, n)  \
383   (BYTES_BIG_ENDIAN ? GET_MODE_NUNITS (mode) - 1 - n : n)
384 
385 /* Support for a compile-time default CPU, et cetera.  The rules are:
386    --with-arch is ignored if -march or -mcpu are specified.
387    --with-cpu is ignored if -march or -mcpu are specified, and is overridden
388     by --with-arch.
389    --with-tune is ignored if -mtune or -mcpu are specified (but not affected
390      by -march).
391    --with-float is ignored if -mfloat-abi is specified.
392    --with-fpu is ignored if -mfpu is specified.
393    --with-abi is ignored if -mabi is specified.
394    --with-tls is ignored if -mtls-dialect is specified.
395    Note: --with-mode is not handled here, that has a special rule
396    TARGET_MODE_CHECK that also takes into account the selected CPU and
397    architecture.  */
398 #define OPTION_DEFAULT_SPECS \
399   {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
400   {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
401   {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
402   {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
403   {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
404   {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
405   {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
406 
407 extern const struct arm_fpu_desc
408 {
409   const char *name;
410   enum isa_feature isa_bits[isa_num_bits];
411 } all_fpus[];
412 
413 /* Which floating point hardware to schedule for.  */
414 extern int arm_fpu_attr;
415 
416 #ifndef TARGET_DEFAULT_FLOAT_ABI
417 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
418 #endif
419 
420 #ifndef ARM_DEFAULT_ABI
421 #define ARM_DEFAULT_ABI ARM_ABI_APCS
422 #endif
423 
424 /* AAPCS based ABIs use short enums by default.  */
425 #ifndef ARM_DEFAULT_SHORT_ENUMS
426 #define ARM_DEFAULT_SHORT_ENUMS \
427   (TARGET_AAPCS_BASED && arm_abi != ARM_ABI_AAPCS_LINUX)
428 #endif
429 
430 /* Map each of the micro-architecture variants to their corresponding
431    major architecture revision.  */
432 
433 enum base_architecture
434 {
435   BASE_ARCH_0 = 0,
436   BASE_ARCH_2 = 2,
437   BASE_ARCH_3 = 3,
438   BASE_ARCH_3M = 3,
439   BASE_ARCH_4 = 4,
440   BASE_ARCH_4T = 4,
441   BASE_ARCH_5T = 5,
442   BASE_ARCH_5TE = 5,
443   BASE_ARCH_5TEJ = 5,
444   BASE_ARCH_6 = 6,
445   BASE_ARCH_6J = 6,
446   BASE_ARCH_6KZ = 6,
447   BASE_ARCH_6K = 6,
448   BASE_ARCH_6T2 = 6,
449   BASE_ARCH_6M = 6,
450   BASE_ARCH_6Z = 6,
451   BASE_ARCH_7 = 7,
452   BASE_ARCH_7A = 7,
453   BASE_ARCH_7R = 7,
454   BASE_ARCH_7M = 7,
455   BASE_ARCH_7EM = 7,
456   BASE_ARCH_8A = 8,
457   BASE_ARCH_8M_BASE = 8,
458   BASE_ARCH_8M_MAIN = 8,
459   BASE_ARCH_8R = 8
460 };
461 
462 /* The major revision number of the ARM Architecture implemented by the target.  */
463 extern enum base_architecture arm_base_arch;
464 
465 /* Nonzero if this chip supports the ARM Architecture 4 extensions.  */
466 extern int arm_arch4;
467 
468 /* Nonzero if this chip supports the ARM Architecture 4T extensions.  */
469 extern int arm_arch4t;
470 
471 /* Nonzero if this chip supports the ARM Architecture 5T extensions.  */
472 extern int arm_arch5t;
473 
474 /* Nonzero if this chip supports the ARM Architecture 5TE extensions.  */
475 extern int arm_arch5te;
476 
477 /* Nonzero if this chip supports the ARM Architecture 6 extensions.  */
478 extern int arm_arch6;
479 
480 /* Nonzero if this chip supports the ARM Architecture 6k extensions.  */
481 extern int arm_arch6k;
482 
483 /* Nonzero if instructions present in ARMv6-M can be used.  */
484 extern int arm_arch6m;
485 
486 /* Nonzero if this chip supports the ARM Architecture 7 extensions.  */
487 extern int arm_arch7;
488 
489 /* Nonzero if instructions not present in the 'M' profile can be used.  */
490 extern int arm_arch_notm;
491 
492 /* Nonzero if instructions present in ARMv7E-M can be used.  */
493 extern int arm_arch7em;
494 
495 /* Nonzero if this chip supports the ARM Architecture 8 extensions.  */
496 extern int arm_arch8;
497 
498 /* Nonzero if this chip supports the ARM Architecture 8.1 extensions.  */
499 extern int arm_arch8_1;
500 
501 /* Nonzero if this chip supports the ARM Architecture 8.2 extensions.  */
502 extern int arm_arch8_2;
503 
504 /* Nonzero if this chip supports the ARM Architecture 8.3 extensions.  */
505 extern int arm_arch8_3;
506 
507 /* Nonzero if this chip supports the ARM Architecture 8.4 extensions.  */
508 extern int arm_arch8_4;
509 
510 /* Nonzero if this chip supports the ARM Architecture 8.1-M Mainline
511    extensions.  */
512 extern int arm_arch8_1m_main;
513 
514 /* Nonzero if this chip supports the FP16 instructions extension of ARM
515    Architecture 8.2.  */
516 extern int arm_fp16_inst;
517 
518 /* Nonzero if this chip can benefit from load scheduling.  */
519 extern int arm_ld_sched;
520 
521 /* Nonzero if this chip is a StrongARM.  */
522 extern int arm_tune_strongarm;
523 
524 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology.  */
525 extern int arm_arch_iwmmxt;
526 
527 /* Nonzero if this chip supports Intel Wireless MMX2 technology.  */
528 extern int arm_arch_iwmmxt2;
529 
530 /* Nonzero if this chip is an XScale.  */
531 extern int arm_arch_xscale;
532 
533 /* Nonzero if tuning for XScale.  */
534 extern int arm_tune_xscale;
535 
536 /* Nonzero if tuning for stores via the write buffer.  */
537 extern int arm_tune_wbuf;
538 
539 /* Nonzero if tuning for Cortex-A9.  */
540 extern int arm_tune_cortex_a9;
541 
542 /* Nonzero if we should define __THUMB_INTERWORK__ in the
543    preprocessor.
544    XXX This is a bit of a hack, it's intended to help work around
545    problems in GLD which doesn't understand that armv5t code is
546    interworking clean.  */
547 extern int arm_cpp_interwork;
548 
549 /* Nonzero if chip supports Thumb 1.  */
550 extern int arm_arch_thumb1;
551 
552 /* Nonzero if chip supports Thumb 2.  */
553 extern int arm_arch_thumb2;
554 
555 /* Nonzero if chip supports integer division instruction in ARM mode.  */
556 extern int arm_arch_arm_hwdiv;
557 
558 /* Nonzero if chip supports integer division instruction in Thumb mode.  */
559 extern int arm_arch_thumb_hwdiv;
560 
561 /* Nonzero if chip disallows volatile memory access in IT block.  */
562 extern int arm_arch_no_volatile_ce;
563 
564 /* Nonzero if we shouldn't use literal pools.  */
565 #ifndef USED_FOR_TARGET
566 extern bool arm_disable_literal_pool;
567 #endif
568 
569 /* Nonzero if chip supports the ARMv8 CRC instructions.  */
570 extern int arm_arch_crc;
571 
572 /* Nonzero if chip supports the ARMv8-M Security Extensions.  */
573 extern int arm_arch_cmse;
574 
575 /* Nonzero if chip supports the I8MM instructions.  */
576 extern int arm_arch_i8mm;
577 
578 /* Nonzero if chip supports the BFloat16 instructions.  */
579 extern int arm_arch_bf16;
580 
581 /* Nonzero if chip supports the Custom Datapath Extension.  */
582 extern int arm_arch_cde;
583 extern int arm_arch_cde_coproc;
584 extern const int arm_arch_cde_coproc_bits[];
585 #define ARM_CDE_CONST_COPROC	7
586 #define ARM_CCDE_CONST_1	((1 << 13) - 1)
587 #define ARM_CCDE_CONST_2	((1 << 9 ) - 1)
588 #define ARM_CCDE_CONST_3	((1 << 6 ) - 1)
589 #define ARM_VCDE_CONST_1	((1 << 11) - 1)
590 #define ARM_VCDE_CONST_2	((1 << 6 ) - 1)
591 #define ARM_VCDE_CONST_3	((1 << 3 ) - 1)
592 #define ARM_MVE_CDE_CONST_1	((1 << 12) - 1)
593 #define ARM_MVE_CDE_CONST_2	((1 << 7 ) - 1)
594 #define ARM_MVE_CDE_CONST_3	((1 << 4 ) - 1)
595 
596 #ifndef TARGET_DEFAULT
597 #define TARGET_DEFAULT  (MASK_APCS_FRAME)
598 #endif
599 
600 /* Nonzero if PIC code requires explicit qualifiers to generate
601    PLT and GOT relocs rather than the assembler doing so implicitly.
602    Subtargets can override these if required.  */
603 #ifndef NEED_GOT_RELOC
604 #define NEED_GOT_RELOC	0
605 #endif
606 #ifndef NEED_PLT_RELOC
607 #define NEED_PLT_RELOC	0
608 #endif
609 
610 #ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
611 #define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
612 #endif
613 
614 /* Nonzero if we need to refer to the GOT with a PC-relative
615    offset.  In other words, generate
616 
617    .word	_GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
618 
619    rather than
620 
621    .word	_GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
622 
623    The default is true, which matches NetBSD.  Subtargets can
624    override this if required.  */
625 #ifndef GOT_PCREL
626 #define GOT_PCREL   1
627 #endif
628 
629 /* Target machine storage Layout.  */
630 
631 /* Nonzero if this chip provides Armv8.1-M Mainline
632    LOB (low overhead branch features) extension instructions.  */
633 #define TARGET_HAVE_LOB (arm_arch8_1m_main)
634 
635 /* Define this macro if it is advisable to hold scalars in registers
636    in a wider mode than that declared by the program.  In such cases,
637    the value is constrained to be within the bounds of the declared
638    type, but kept valid in the wider mode.  The signedness of the
639    extension may differ from that of the type.  */
640 
641 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
642   if (GET_MODE_CLASS (MODE) == MODE_INT		\
643       && GET_MODE_SIZE (MODE) < 4)      	\
644     {						\
645       (MODE) = SImode;				\
646     }
647 
648 /* Define this if most significant bit is lowest numbered
649    in instructions that operate on numbered bit-fields.  */
650 #define BITS_BIG_ENDIAN  0
651 
652 /* Define this if most significant byte of a word is the lowest numbered.
653    Most ARM processors are run in little endian mode, so that is the default.
654    If you want to have it run-time selectable, change the definition in a
655    cover file to be TARGET_BIG_ENDIAN.  */
656 #define BYTES_BIG_ENDIAN  (TARGET_BIG_END != 0)
657 
658 /* Define this if most significant word of a multiword number is the lowest
659    numbered.  */
660 #define WORDS_BIG_ENDIAN  (BYTES_BIG_ENDIAN)
661 
662 #define UNITS_PER_WORD	4
663 
664 /* True if natural alignment is used for doubleword types.  */
665 #define ARM_DOUBLEWORD_ALIGN	TARGET_AAPCS_BASED
666 
667 #define DOUBLEWORD_ALIGNMENT 64
668 
669 #define PARM_BOUNDARY  	32
670 
671 #define STACK_BOUNDARY  (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
672 
673 #define PREFERRED_STACK_BOUNDARY \
674     (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
675 
676 #define FUNCTION_BOUNDARY_P(flags)  (TARGET_THUMB_P (flags) ? 16 : 32)
677 #define FUNCTION_BOUNDARY           (FUNCTION_BOUNDARY_P (target_flags))
678 
679 /* The lowest bit is used to indicate Thumb-mode functions, so the
680    vbit must go into the delta field of pointers to member
681    functions.  */
682 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
683 
684 #define EMPTY_FIELD_BOUNDARY  32
685 
686 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
687 
688 #define MALLOC_ABI_ALIGNMENT  BIGGEST_ALIGNMENT
689 
690 /* XXX Blah -- this macro is used directly by libobjc.  Since it
691    supports no vector modes, cut out the complexity and fall back
692    on BIGGEST_FIELD_ALIGNMENT.  */
693 #ifdef IN_TARGET_LIBS
694 #define BIGGEST_FIELD_ALIGNMENT 64
695 #endif
696 
697 /* Align definitions of arrays, unions and structures so that
698    initializations and copies can be made more efficient.  This is not
699    ABI-changing, so it only affects places where we can see the
700    definition. Increasing the alignment tends to introduce padding,
701    so don't do this when optimizing for size/conserving stack space. */
702 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN)				\
703   (((COND) && ((ALIGN) < BITS_PER_WORD)					\
704     && (TREE_CODE (EXP) == ARRAY_TYPE					\
705 	|| TREE_CODE (EXP) == UNION_TYPE				\
706 	|| TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
707 
708 /* Align global data. */
709 #define DATA_ALIGNMENT(EXP, ALIGN)			\
710   ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
711 
712 /* Similarly, make sure that objects on the stack are sensibly aligned.  */
713 #define LOCAL_ALIGNMENT(EXP, ALIGN)				\
714   ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
715 
716 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
717    value set in previous versions of this toolchain was 8, which produces more
718    compact structures.  The command line option -mstructure_size_boundary=<n>
719    can be used to change this value.  For compatibility with the ARM SDK
720    however the value should be left at 32.  ARM SDT Reference Manual (ARM DUI
721    0020D) page 2-20 says "Structures are aligned on word boundaries".
722    The AAPCS specifies a value of 8.  */
723 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
724 
725 /* This is the value used to initialize arm_structure_size_boundary.  If a
726    particular arm target wants to change the default value it should change
727    the definition of this macro, not STRUCTURE_SIZE_BOUNDARY.  See netbsd.h
728    for an example of this.  */
729 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
730 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
731 #endif
732 
733 /* Nonzero if move instructions will actually fail to work
734    when given unaligned data.  */
735 #define STRICT_ALIGNMENT 1
736 
737 /* wchar_t is unsigned under the AAPCS.  */
738 #ifndef WCHAR_TYPE
739 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
740 
741 #define WCHAR_TYPE_SIZE BITS_PER_WORD
742 #endif
743 
744 /* Sized for fixed-point types.  */
745 
746 #define SHORT_FRACT_TYPE_SIZE 8
747 #define FRACT_TYPE_SIZE 16
748 #define LONG_FRACT_TYPE_SIZE 32
749 #define LONG_LONG_FRACT_TYPE_SIZE 64
750 
751 #define SHORT_ACCUM_TYPE_SIZE 16
752 #define ACCUM_TYPE_SIZE 32
753 #define LONG_ACCUM_TYPE_SIZE 64
754 #define LONG_LONG_ACCUM_TYPE_SIZE 64
755 
756 #define MAX_FIXED_MODE_SIZE 64
757 
758 #ifndef SIZE_TYPE
759 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
760 #endif
761 
762 #ifndef PTRDIFF_TYPE
763 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
764 #endif
765 
766 /* AAPCS requires that structure alignment is affected by bitfields.  */
767 #ifndef PCC_BITFIELD_TYPE_MATTERS
768 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
769 #endif
770 
771 /* The maximum size of the sync library functions supported.  */
772 #ifndef MAX_SYNC_LIBFUNC_SIZE
773 #define MAX_SYNC_LIBFUNC_SIZE (2 * UNITS_PER_WORD)
774 #endif
775 
776 
777 /* Standard register usage.  */
778 
779 /* Register allocation in ARM Procedure Call Standard
780    (S - saved over call, F - Frame-related).
781 
782 	r0	   *	argument word/integer result
783 	r1-r3		argument word
784 
785 	r4-r8	     S	register variable
786 	r9	     S	(rfp) register variable (real frame pointer)
787 
788 	r10  	   F S	(sl) stack limit (used by -mapcs-stack-check)
789 	r11 	   F S	(fp) argument pointer
790 	r12		(ip) temp workspace
791 	r13  	   F S	(sp) lower end of current stack frame
792 	r14		(lr) link address/workspace
793 	r15	   F	(pc) program counter
794 
795 	cc		This is NOT a real register, but is used internally
796 	                to represent things that use or set the condition
797 			codes.
798 	sfp             This isn't either.  It is used during rtl generation
799 	                since the offset between the frame pointer and the
800 			auto's isn't known until after register allocation.
801 	afp		Nor this, we only need this because of non-local
802 	                goto.  Without it fp appears to be used and the
803 			elimination code won't get rid of sfp.  It tracks
804 			fp exactly at all times.
805 	apsrq		Nor this, it is used to track operations on the Q bit
806 			of APSR by ACLE saturating intrinsics.
807 	apsrge		Nor this, it is used to track operations on the GE bits
808 			of APSR by ACLE SIMD32 intrinsics
809 
810    *: See TARGET_CONDITIONAL_REGISTER_USAGE  */
811 
812 /*	s0-s15		VFP scratch (aka d0-d7).
813 	s16-s31	      S	VFP variable (aka d8-d15).
814 	vfpcc		Not a real register.  Represents the VFP condition
815 			code flags.
816 	vpr		Used to represent MVE VPR predication.  */
817 
818 /* The stack backtrace structure is as follows:
819   fp points to here:  |  save code pointer  |      [fp]
820                       |  return link value  |      [fp, #-4]
821                       |  return sp value    |      [fp, #-8]
822                       |  return fp value    |      [fp, #-12]
823                      [|  saved r10 value    |]
824                      [|  saved r9 value     |]
825                      [|  saved r8 value     |]
826                      [|  saved r7 value     |]
827                      [|  saved r6 value     |]
828                      [|  saved r5 value     |]
829                      [|  saved r4 value     |]
830                      [|  saved r3 value     |]
831                      [|  saved r2 value     |]
832                      [|  saved r1 value     |]
833                      [|  saved r0 value     |]
834   r0-r3 are not normally saved in a C function.  */
835 
836 /* 1 for registers that have pervasive standard uses
837    and are not available for the register allocator.  */
838 #define FIXED_REGISTERS 	\
839 {				\
840   /* Core regs.  */		\
841   0,0,0,0,0,0,0,0,		\
842   0,0,0,0,0,1,0,1,		\
843   /* VFP regs.  */		\
844   1,1,1,1,1,1,1,1,		\
845   1,1,1,1,1,1,1,1,		\
846   1,1,1,1,1,1,1,1,		\
847   1,1,1,1,1,1,1,1,		\
848   1,1,1,1,1,1,1,1,		\
849   1,1,1,1,1,1,1,1,		\
850   1,1,1,1,1,1,1,1,		\
851   1,1,1,1,1,1,1,1,		\
852   /* IWMMXT regs.  */		\
853   1,1,1,1,1,1,1,1,		\
854   1,1,1,1,1,1,1,1,		\
855   1,1,1,1,			\
856   /* Specials.  */		\
857   1,1,1,1,1,1,1			\
858 }
859 
860 /* 1 for registers not available across function calls.
861    These must include the FIXED_REGISTERS and also any
862    registers that can be used without being saved.
863    The latter must include the registers where values are returned
864    and the register where structure-value addresses are passed.
865    Aside from that, you can include as many other registers as you like.
866    The CC is not preserved over function calls on the ARM 6, so it is
867    easier to assume this for all.  SFP is preserved, since FP is.  */
868 #define CALL_USED_REGISTERS	\
869 {				\
870   /* Core regs.  */		\
871   1,1,1,1,0,0,0,0,		\
872   0,0,0,0,1,1,1,1,		\
873   /* VFP Regs.  */		\
874   1,1,1,1,1,1,1,1,		\
875   1,1,1,1,1,1,1,1,		\
876   1,1,1,1,1,1,1,1,		\
877   1,1,1,1,1,1,1,1,		\
878   1,1,1,1,1,1,1,1,		\
879   1,1,1,1,1,1,1,1,		\
880   1,1,1,1,1,1,1,1,		\
881   1,1,1,1,1,1,1,1,		\
882   /* IWMMXT regs.  */		\
883   1,1,1,1,1,1,1,1,		\
884   1,1,1,1,1,1,1,1,		\
885   1,1,1,1,			\
886   /* Specials.  */		\
887   1,1,1,1,1,1,1			\
888 }
889 
890 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
891 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
892 #endif
893 
894 /* These are a couple of extensions to the formats accepted
895    by asm_fprintf:
896      %@ prints out ASM_COMMENT_START
897      %r prints out REGISTER_PREFIX reg_names[arg]  */
898 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P)		\
899   case '@':						\
900     fputs (ASM_COMMENT_START, FILE);			\
901     break;						\
902 							\
903   case 'r':						\
904     fputs (REGISTER_PREFIX, FILE);			\
905     fputs (reg_names [va_arg (ARGS, int)], FILE);	\
906     break;
907 
908 /* Round X up to the nearest word.  */
909 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
910 
911 /* Convert fron bytes to ints.  */
912 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
913 
914 /* The number of (integer) registers required to hold a quantity of type MODE.
915    Also used for VFP registers.  */
916 #define ARM_NUM_REGS(MODE)				\
917   ARM_NUM_INTS (GET_MODE_SIZE (MODE))
918 
919 /* The number of (integer) registers required to hold a quantity of TYPE MODE.  */
920 #define ARM_NUM_REGS2(MODE, TYPE)                   \
921   ARM_NUM_INTS ((MODE) == BLKmode ? 		\
922   int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
923 
924 /* The number of (integer) argument register available.  */
925 #define NUM_ARG_REGS		4
926 
927 /* And similarly for the VFP.  */
928 #define NUM_VFP_ARG_REGS	16
929 
930 /* Return the register number of the N'th (integer) argument.  */
931 #define ARG_REGISTER(N) 	(N - 1)
932 
933 /* Specify the registers used for certain standard purposes.
934    The values of these macros are register numbers.  */
935 
936 /* The number of the last argument register.  */
937 #define LAST_ARG_REGNUM 	ARG_REGISTER (NUM_ARG_REGS)
938 
939 /* The numbers of the Thumb register ranges.  */
940 #define FIRST_LO_REGNUM  	0
941 #define LAST_LO_REGNUM  	7
942 #define FIRST_HI_REGNUM		8
943 #define LAST_HI_REGNUM		11
944 
945 /* Overridden by config/arm/bpabi.h.  */
946 #ifndef ARM_UNWIND_INFO
947 #define ARM_UNWIND_INFO  0
948 #endif
949 
950 /* Use r0 and r1 to pass exception handling information.  */
951 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
952 
953 /* The register that holds the return address in exception handlers.  */
954 #define ARM_EH_STACKADJ_REGNUM	2
955 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
956 
957 #ifndef ARM_TARGET2_DWARF_FORMAT
958 #define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel
959 #endif
960 
961 /* ttype entries (the only interesting data references used)
962    use TARGET2 relocations.  */
963 #define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
964   (((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \
965 			       : DW_EH_PE_absptr)
966 
967 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
968    as an invisible last argument (possible since varargs don't exist in
969    Pascal), so the following is not true.  */
970 #define STATIC_CHAIN_REGNUM	12
971 
972 /* r9 is the FDPIC register (base register for GOT and FUNCDESC accesses).  */
973 #define FDPIC_REGNUM		9
974 
975 /* Define this to be where the real frame pointer is if it is not possible to
976    work out the offset between the frame pointer and the automatic variables
977    until after register allocation has taken place.  FRAME_POINTER_REGNUM
978    should point to a special register that we will make sure is eliminated.
979 
980    For the Thumb we have another problem.  The TPCS defines the frame pointer
981    as r11, and GCC believes that it is always possible to use the frame pointer
982    as base register for addressing purposes.  (See comments in
983    find_reloads_address()).  But - the Thumb does not allow high registers,
984    including r11, to be used as base address registers.  Hence our problem.
985 
986    The solution used here, and in the old thumb port is to use r7 instead of
987    r11 as the hard frame pointer and to have special code to generate
988    backtrace structures on the stack (if required to do so via a command line
989    option) using r11.  This is the only 'user visible' use of r11 as a frame
990    pointer.  */
991 #define ARM_HARD_FRAME_POINTER_REGNUM	11
992 #define THUMB_HARD_FRAME_POINTER_REGNUM	 7
993 
994 #define HARD_FRAME_POINTER_REGNUM		\
995   (TARGET_ARM					\
996    ? ARM_HARD_FRAME_POINTER_REGNUM		\
997    : THUMB_HARD_FRAME_POINTER_REGNUM)
998 
999 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1000 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1001 
1002 #define FP_REGNUM	                HARD_FRAME_POINTER_REGNUM
1003 
1004 /* Register to use for pushing function arguments.  */
1005 #define STACK_POINTER_REGNUM	SP_REGNUM
1006 
1007 #define FIRST_IWMMXT_REGNUM	(LAST_HI_VFP_REGNUM + 1)
1008 #define LAST_IWMMXT_REGNUM	(FIRST_IWMMXT_REGNUM + 15)
1009 
1010 /* Need to sync with WCGR in iwmmxt.md.  */
1011 #define FIRST_IWMMXT_GR_REGNUM	(LAST_IWMMXT_REGNUM + 1)
1012 #define LAST_IWMMXT_GR_REGNUM	(FIRST_IWMMXT_GR_REGNUM + 3)
1013 
1014 #define IS_IWMMXT_REGNUM(REGNUM) \
1015   (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
1016 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
1017   (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
1018 
1019 /* Base register for access to local variables of the function.  */
1020 #define FRAME_POINTER_REGNUM	102
1021 
1022 /* Base register for access to arguments of the function.  */
1023 #define ARG_POINTER_REGNUM	103
1024 
1025 #define FIRST_VFP_REGNUM	16
1026 #define D7_VFP_REGNUM		(FIRST_VFP_REGNUM + 15)
1027 #define LAST_VFP_REGNUM	\
1028   (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
1029 
1030 #define IS_VFP_REGNUM(REGNUM) \
1031   (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
1032 
1033 /* VFP registers are split into two types: those defined by VFP versions < 3
1034    have D registers overlaid on consecutive pairs of S registers. VFP version 3
1035    defines 16 new D registers (d16-d31) which, for simplicity and correctness
1036    in various parts of the backend, we implement as "fake" single-precision
1037    registers (which would be S32-S63, but cannot be used in that way).  The
1038    following macros define these ranges of registers.  */
1039 #define LAST_LO_VFP_REGNUM	(FIRST_VFP_REGNUM + 31)
1040 #define FIRST_HI_VFP_REGNUM	(LAST_LO_VFP_REGNUM + 1)
1041 #define LAST_HI_VFP_REGNUM	(FIRST_HI_VFP_REGNUM + 31)
1042 
1043 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
1044   ((REGNUM) <= LAST_LO_VFP_REGNUM)
1045 
1046 /* DFmode values are only valid in even register pairs.  */
1047 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
1048   ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
1049 
1050 /* Neon Quad values must start at a multiple of four registers.  */
1051 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
1052   ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
1053 
1054 /* Neon structures of vectors must be in even register pairs and there
1055    must be enough registers available.  Because of various patterns
1056    requiring quad registers, we require them to start at a multiple of
1057    four.  */
1058 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
1059   ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
1060    && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
1061 
1062 /* The number of hard registers is 16 ARM + 1 CC + 1 SFP + 1 AFP
1063    + 1 APSRQ + 1 APSRGE + 1 VPR.  */
1064 /* Intel Wireless MMX Technology registers add 16 + 4 more.  */
1065 /* VFP (VFP3) adds 32 (64) + 1 VFPCC.  */
1066 #define FIRST_PSEUDO_REGISTER   107
1067 
1068 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
1069 
1070 /* Value should be nonzero if functions must have frame pointers.
1071    Zero means the frame pointer need not be set up (and parms may be accessed
1072    via the stack pointer) in functions that seem suitable.
1073    If we have to have a frame pointer we might as well make use of it.
1074    APCS says that the frame pointer does not need to be pushed in leaf
1075    functions, or simple tail call functions.  */
1076 
1077 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1078 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1079 #endif
1080 
1081 #define VALID_IWMMXT_REG_MODE(MODE) \
1082  (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
1083 
1084 /* Modes valid for Neon D registers.  */
1085 #define VALID_NEON_DREG_MODE(MODE) \
1086   ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1087    || (MODE) == V4HFmode || (MODE) == V2SFmode || (MODE) == DImode \
1088    || (MODE) == V4BFmode)
1089 
1090 /* Modes valid for Neon Q registers.  */
1091 #define VALID_NEON_QREG_MODE(MODE) \
1092   ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1093    || (MODE) == V8HFmode || (MODE) == V4SFmode || (MODE) == V2DImode \
1094    || (MODE) == V8BFmode)
1095 
1096 #define VALID_MVE_MODE(MODE) \
1097   ((MODE) == V2DImode ||(MODE) == V4SImode || (MODE) == V8HImode \
1098    || (MODE) == V16QImode || (MODE) == V8HFmode || (MODE) == V4SFmode \
1099    || (MODE) == V2DFmode)
1100 
1101 #define VALID_MVE_SI_MODE(MODE) \
1102   ((MODE) == V2DImode ||(MODE) == V4SImode || (MODE) == V8HImode \
1103    || (MODE) == V16QImode)
1104 
1105 #define VALID_MVE_SF_MODE(MODE) \
1106   ((MODE) == V8HFmode || (MODE) == V4SFmode || (MODE) == V2DFmode)
1107 
1108 /* Structure modes valid for Neon registers.  */
1109 #define VALID_NEON_STRUCT_MODE(MODE) \
1110   ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1111    || (MODE) == CImode || (MODE) == XImode)
1112 
1113 #define VALID_MVE_STRUCT_MODE(MODE) \
1114   ((MODE) == TImode || (MODE) == OImode || (MODE) == XImode)
1115 
1116 /* The conditions under which vector modes are supported for general
1117    arithmetic using Neon.  */
1118 
1119 #define ARM_HAVE_NEON_V8QI_ARITH TARGET_NEON
1120 #define ARM_HAVE_NEON_V4HI_ARITH TARGET_NEON
1121 #define ARM_HAVE_NEON_V2SI_ARITH TARGET_NEON
1122 
1123 #define ARM_HAVE_NEON_V16QI_ARITH TARGET_NEON
1124 #define ARM_HAVE_NEON_V8HI_ARITH TARGET_NEON
1125 #define ARM_HAVE_NEON_V4SI_ARITH TARGET_NEON
1126 #define ARM_HAVE_NEON_V2DI_ARITH TARGET_NEON
1127 
1128 /* HF operations have their own flush-to-zero control (FPSCR.FZ16).  */
1129 #define ARM_HAVE_NEON_V4HF_ARITH TARGET_NEON_FP16INST
1130 #define ARM_HAVE_NEON_V8HF_ARITH TARGET_NEON_FP16INST
1131 
1132 /* SF operations always flush to zero, regardless of FPSCR.FZ, so we can
1133    only use them for general arithmetic when -funsafe-math-optimizations
1134    is in effect.  */
1135 #define ARM_HAVE_NEON_V2SF_ARITH \
1136   (TARGET_NEON && flag_unsafe_math_optimizations)
1137 #define ARM_HAVE_NEON_V4SF_ARITH ARM_HAVE_NEON_V2SF_ARITH
1138 
1139 /* The conditions under which vector modes are supported for general
1140    arithmetic by any vector extension.  */
1141 
1142 #define ARM_HAVE_V8QI_ARITH (ARM_HAVE_NEON_V8QI_ARITH || TARGET_REALLY_IWMMXT)
1143 #define ARM_HAVE_V4HI_ARITH (ARM_HAVE_NEON_V4HI_ARITH || TARGET_REALLY_IWMMXT)
1144 #define ARM_HAVE_V2SI_ARITH (ARM_HAVE_NEON_V2SI_ARITH || TARGET_REALLY_IWMMXT)
1145 
1146 #define ARM_HAVE_V16QI_ARITH (ARM_HAVE_NEON_V16QI_ARITH || TARGET_HAVE_MVE)
1147 #define ARM_HAVE_V8HI_ARITH (ARM_HAVE_NEON_V8HI_ARITH || TARGET_HAVE_MVE)
1148 #define ARM_HAVE_V4SI_ARITH (ARM_HAVE_NEON_V4SI_ARITH || TARGET_HAVE_MVE)
1149 #define ARM_HAVE_V2DI_ARITH ARM_HAVE_NEON_V2DI_ARITH
1150 
1151 #define ARM_HAVE_V4HF_ARITH ARM_HAVE_NEON_V4HF_ARITH
1152 #define ARM_HAVE_V2SF_ARITH ARM_HAVE_NEON_V2SF_ARITH
1153 
1154 #define ARM_HAVE_V8HF_ARITH (ARM_HAVE_NEON_V8HF_ARITH || TARGET_HAVE_MVE_FLOAT)
1155 #define ARM_HAVE_V4SF_ARITH (ARM_HAVE_NEON_V4SF_ARITH || TARGET_HAVE_MVE_FLOAT)
1156 
1157 /* The conditions under which vector modes are supported by load/store
1158    instructions using Neon.  */
1159 
1160 #define ARM_HAVE_NEON_V8QI_LDST TARGET_NEON
1161 #define ARM_HAVE_NEON_V16QI_LDST TARGET_NEON
1162 #define ARM_HAVE_NEON_V4HI_LDST TARGET_NEON
1163 #define ARM_HAVE_NEON_V8HI_LDST TARGET_NEON
1164 #define ARM_HAVE_NEON_V2SI_LDST TARGET_NEON
1165 #define ARM_HAVE_NEON_V4SI_LDST TARGET_NEON
1166 #define ARM_HAVE_NEON_V4HF_LDST TARGET_NEON_FP16INST
1167 #define ARM_HAVE_NEON_V8HF_LDST TARGET_NEON_FP16INST
1168 #define ARM_HAVE_NEON_V4BF_LDST TARGET_BF16_SIMD
1169 #define ARM_HAVE_NEON_V8BF_LDST TARGET_BF16_SIMD
1170 #define ARM_HAVE_NEON_V2SF_LDST TARGET_NEON
1171 #define ARM_HAVE_NEON_V4SF_LDST TARGET_NEON
1172 #define ARM_HAVE_NEON_DI_LDST TARGET_NEON
1173 #define ARM_HAVE_NEON_V2DI_LDST TARGET_NEON
1174 
1175 /* The conditions under which vector modes are supported by load/store
1176    instructions by any vector extension.  */
1177 
1178 #define ARM_HAVE_V8QI_LDST (ARM_HAVE_NEON_V8QI_LDST || TARGET_REALLY_IWMMXT)
1179 #define ARM_HAVE_V4HI_LDST (ARM_HAVE_NEON_V4HI_LDST || TARGET_REALLY_IWMMXT)
1180 #define ARM_HAVE_V2SI_LDST (ARM_HAVE_NEON_V2SI_LDST || TARGET_REALLY_IWMMXT)
1181 
1182 #define ARM_HAVE_V16QI_LDST (ARM_HAVE_NEON_V16QI_LDST || TARGET_HAVE_MVE)
1183 #define ARM_HAVE_V8HI_LDST (ARM_HAVE_NEON_V8HI_LDST || TARGET_HAVE_MVE)
1184 #define ARM_HAVE_V4SI_LDST (ARM_HAVE_NEON_V4SI_LDST || TARGET_HAVE_MVE)
1185 #define ARM_HAVE_DI_LDST ARM_HAVE_NEON_DI_LDST
1186 #define ARM_HAVE_V2DI_LDST ARM_HAVE_NEON_V2DI_LDST
1187 
1188 #define ARM_HAVE_V4HF_LDST ARM_HAVE_NEON_V4HF_LDST
1189 #define ARM_HAVE_V2SF_LDST ARM_HAVE_NEON_V2SF_LDST
1190 
1191 #define ARM_HAVE_V4BF_LDST ARM_HAVE_NEON_V4BF_LDST
1192 #define ARM_HAVE_V8BF_LDST ARM_HAVE_NEON_V8BF_LDST
1193 
1194 #define ARM_HAVE_V8HF_LDST (ARM_HAVE_NEON_V8HF_LDST || TARGET_HAVE_MVE_FLOAT)
1195 #define ARM_HAVE_V4SF_LDST (ARM_HAVE_NEON_V4SF_LDST || TARGET_HAVE_MVE_FLOAT)
1196 
1197 /* The register numbers in sequence, for passing to arm_gen_load_multiple.  */
1198 extern int arm_regs_in_sequence[];
1199 
1200 /* The order in which register should be allocated.  It is good to use ip
1201    since no saving is required (though calls clobber it) and it never contains
1202    function parameters.  It is quite good to use lr since other calls may
1203    clobber it anyway.  Allocate r0 through r3 in reverse order since r3 is
1204    least likely to contain a function parameter; in addition results are
1205    returned in r0.
1206    For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1207    then D8-D15.  The reason for doing this is to attempt to reduce register
1208    pressure when both single- and double-precision registers are used in a
1209    function.  */
1210 
1211 #define VREG(X)  (FIRST_VFP_REGNUM + (X))
1212 #define WREG(X)  (FIRST_IWMMXT_REGNUM + (X))
1213 #define WGREG(X) (FIRST_IWMMXT_GR_REGNUM + (X))
1214 
1215 #define REG_ALLOC_ORDER				\
1216 {						\
1217   /* General registers.  */			\
1218   3,  2,  1,  0,  12, 14,  4,  5,		\
1219   6,  7,  8,  9,  10, 11,			\
1220   /* High VFP registers.  */			\
1221   VREG(32), VREG(33), VREG(34), VREG(35),	\
1222   VREG(36), VREG(37), VREG(38), VREG(39),	\
1223   VREG(40), VREG(41), VREG(42), VREG(43),	\
1224   VREG(44), VREG(45), VREG(46), VREG(47),	\
1225   VREG(48), VREG(49), VREG(50), VREG(51),	\
1226   VREG(52), VREG(53), VREG(54), VREG(55),	\
1227   VREG(56), VREG(57), VREG(58), VREG(59),	\
1228   VREG(60), VREG(61), VREG(62), VREG(63),	\
1229   /* VFP argument registers.  */		\
1230   VREG(15), VREG(14), VREG(13), VREG(12),	\
1231   VREG(11), VREG(10), VREG(9),  VREG(8),	\
1232   VREG(7),  VREG(6),  VREG(5),  VREG(4),	\
1233   VREG(3),  VREG(2),  VREG(1),  VREG(0),	\
1234   /* VFP call-saved registers.  */		\
1235   VREG(16), VREG(17), VREG(18), VREG(19),	\
1236   VREG(20), VREG(21), VREG(22), VREG(23),	\
1237   VREG(24), VREG(25), VREG(26), VREG(27),	\
1238   VREG(28), VREG(29), VREG(30), VREG(31),	\
1239   /* IWMMX registers.  */			\
1240   WREG(0),  WREG(1),  WREG(2),  WREG(3),	\
1241   WREG(4),  WREG(5),  WREG(6),  WREG(7),	\
1242   WREG(8),  WREG(9),  WREG(10), WREG(11),	\
1243   WREG(12), WREG(13), WREG(14), WREG(15),	\
1244   WGREG(0), WGREG(1), WGREG(2), WGREG(3),	\
1245   /* Registers not for general use.  */		\
1246   CC_REGNUM, VFPCC_REGNUM,			\
1247   FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM,	\
1248   SP_REGNUM, PC_REGNUM, APSRQ_REGNUM,		\
1249   APSRGE_REGNUM, VPR_REGNUM			\
1250 }
1251 
1252 #define IS_VPR_REGNUM(REGNUM) \
1253   ((REGNUM) == VPR_REGNUM)
1254 
1255 /* Use different register alloc ordering for Thumb.  */
1256 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1257 
1258 /* Tell IRA to use the order we define when optimizing for size.  */
1259 #define HONOR_REG_ALLOC_ORDER optimize_function_for_size_p (cfun)
1260 
1261 /* Interrupt functions can only use registers that have already been
1262    saved by the prologue, even if they would normally be
1263    call-clobbered.  */
1264 #define HARD_REGNO_RENAME_OK(SRC, DST)					\
1265 	(! IS_INTERRUPT (cfun->machine->func_type) ||			\
1266 	 df_regs_ever_live_p (DST))
1267 
1268 /* Register and constant classes.  */
1269 
1270 /* Register classes.  */
1271 enum reg_class
1272 {
1273   NO_REGS,
1274   LO_REGS,
1275   STACK_REG,
1276   BASE_REGS,
1277   HI_REGS,
1278   CALLER_SAVE_REGS,
1279   EVEN_REG,
1280   GENERAL_REGS,
1281   CORE_REGS,
1282   VFP_D0_D7_REGS,
1283   VFP_LO_REGS,
1284   VFP_HI_REGS,
1285   VFP_REGS,
1286   IWMMXT_REGS,
1287   IWMMXT_GR_REGS,
1288   CC_REG,
1289   VFPCC_REG,
1290   SFP_REG,
1291   AFP_REG,
1292   VPR_REG,
1293   ALL_REGS,
1294   LIM_REG_CLASSES
1295 };
1296 
1297 #define N_REG_CLASSES  (int) LIM_REG_CLASSES
1298 
1299 /* Give names of register classes as strings for dump file.  */
1300 #define REG_CLASS_NAMES \
1301 {			\
1302   "NO_REGS",		\
1303   "LO_REGS",		\
1304   "STACK_REG",		\
1305   "BASE_REGS",		\
1306   "HI_REGS",		\
1307   "CALLER_SAVE_REGS",	\
1308   "EVEN_REG",		\
1309   "GENERAL_REGS",	\
1310   "CORE_REGS",		\
1311   "VFP_D0_D7_REGS",	\
1312   "VFP_LO_REGS",	\
1313   "VFP_HI_REGS",	\
1314   "VFP_REGS",		\
1315   "IWMMXT_REGS",	\
1316   "IWMMXT_GR_REGS",	\
1317   "CC_REG",		\
1318   "VFPCC_REG",		\
1319   "SFP_REG",		\
1320   "AFP_REG",		\
1321   "VPR_REG",		\
1322   "ALL_REGS"		\
1323 }
1324 
1325 /* Define which registers fit in which classes.
1326    This is an initializer for a vector of HARD_REG_SET
1327    of length N_REG_CLASSES.  */
1328 #define REG_CLASS_CONTENTS						\
1329 {									\
1330   { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS  */	\
1331   { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */	\
1332   { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */	\
1333   { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */	\
1334   { 0x00005F00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */	\
1335   { 0x0000100F, 0x00000000, 0x00000000, 0x00000000 }, /* CALLER_SAVE_REGS */ \
1336   { 0x00005555, 0x00000000, 0x00000000, 0x00000000 }, /* EVEN_REGS.  */ \
1337   { 0x00005FFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1338   { 0x00007FFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */	\
1339   { 0xFFFF0000, 0x00000000, 0x00000000, 0x00000000 }, /* VFP_D0_D7_REGS  */ \
1340   { 0xFFFF0000, 0x0000FFFF, 0x00000000, 0x00000000 }, /* VFP_LO_REGS  */ \
1341   { 0x00000000, 0xFFFF0000, 0x0000FFFF, 0x00000000 }, /* VFP_HI_REGS  */ \
1342   { 0xFFFF0000, 0xFFFFFFFF, 0x0000FFFF, 0x00000000 }, /* VFP_REGS  */	\
1343   { 0x00000000, 0x00000000, 0xFFFF0000, 0x00000000 }, /* IWMMXT_REGS */	\
1344   { 0x00000000, 0x00000000, 0x00000000, 0x0000000F }, /* IWMMXT_GR_REGS */ \
1345   { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, /* CC_REG */	\
1346   { 0x00000000, 0x00000000, 0x00000000, 0x00000020 }, /* VFPCC_REG */	\
1347   { 0x00000000, 0x00000000, 0x00000000, 0x00000040 }, /* SFP_REG */	\
1348   { 0x00000000, 0x00000000, 0x00000000, 0x00000080 }, /* AFP_REG */	\
1349   { 0x00000000, 0x00000000, 0x00000000, 0x00000400 }, /* VPR_REG.  */	\
1350   { 0xFFFF7FFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0000000F }  /* ALL_REGS.  */	\
1351 }
1352 
1353 #define FP_SYSREGS \
1354   DEF_FP_SYSREG (FPSCR) \
1355   DEF_FP_SYSREG (FPSCR_nzcvqc) \
1356   DEF_FP_SYSREG (VPR) \
1357   DEF_FP_SYSREG (P0) \
1358   DEF_FP_SYSREG (FPCXTNS) \
1359   DEF_FP_SYSREG (FPCXTS)
1360 
1361 #define DEF_FP_SYSREG(reg) reg ## _ENUM,
1362 enum vfp_sysregs_encoding {
1363   FP_SYSREGS
1364   NB_FP_SYSREGS
1365 };
1366 #undef DEF_FP_SYSREG
1367 extern const char *fp_sysreg_names[NB_FP_SYSREGS];
1368 
1369 /* Any of the VFP register classes.  */
1370 #define IS_VFP_CLASS(X) \
1371   ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1372    || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1373 
1374 /* The same information, inverted:
1375    Return the class number of the smallest class containing
1376    reg number REGNO.  This could be a conditional expression
1377    or could index an array.  */
1378 #define REGNO_REG_CLASS(REGNO)  arm_regno_class (REGNO)
1379 
1380 /* The class value for index registers, and the one for base regs.  */
1381 #define INDEX_REG_CLASS  (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1382 #define BASE_REG_CLASS   (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1383 
1384 /* For the Thumb the high registers cannot be used as base registers
1385    when addressing quantities in QI or HI mode; if we don't know the
1386    mode, then we must be conservative. For MVE we need to load from
1387    memory to low regs based on given modes i.e [Rn], Rn <= LO_REGS.  */
1388 #define MODE_BASE_REG_CLASS(MODE)				\
1389    (TARGET_HAVE_MVE ? arm_mode_base_reg_class (MODE)		\
1390    :(TARGET_32BIT ? CORE_REGS					\
1391    : GET_MODE_SIZE (MODE) >= 4 ? BASE_REGS			\
1392    : LO_REGS))
1393 
1394 /* For Thumb we cannot support SP+reg addressing, so we return LO_REGS
1395    instead of BASE_REGS.  */
1396 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1397 
1398 /* When this hook returns true for MODE, the compiler allows
1399    registers explicitly used in the rtl to be used as spill registers
1400    but prevents the compiler from extending the lifetime of these
1401    registers.  */
1402 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1403   arm_small_register_classes_for_mode_p
1404 
1405 /* Must leave BASE_REGS reloads alone */
1406 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1407   (lra_in_progress ? NO_REGS						\
1408    : ((CLASS) != LO_REGS && (CLASS) != BASE_REGS			\
1409       ? ((true_regnum (X) == -1 ? LO_REGS				\
1410          : (true_regnum (X) + hard_regno_nregs (0, MODE) > 8) ? LO_REGS	\
1411          : NO_REGS)) 							\
1412       : NO_REGS))
1413 
1414 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1415   (lra_in_progress ? NO_REGS						\
1416    : (CLASS) != LO_REGS && (CLASS) != BASE_REGS				\
1417       ? ((true_regnum (X) == -1 ? LO_REGS				\
1418          : (true_regnum (X) + hard_regno_nregs (0, MODE) > 8) ? LO_REGS	\
1419          : NO_REGS)) 							\
1420       : NO_REGS)
1421 
1422 /* Return the register class of a scratch register needed to copy IN into
1423    or out of a register in CLASS in MODE.  If it can be done directly,
1424    NO_REGS is returned.  */
1425 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1426   /* Restrict which direct reloads are allowed for VFP/iWMMXt regs.  */ \
1427   ((TARGET_HARD_FLOAT && IS_VFP_CLASS (CLASS))			\
1428    ? coproc_secondary_reload_class (MODE, X, FALSE)		\
1429    : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS)			\
1430    ? coproc_secondary_reload_class (MODE, X, TRUE)		\
1431    : TARGET_32BIT						\
1432    ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1433     ? GENERAL_REGS : NO_REGS)					\
1434    : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1435 
1436 /* If we need to load shorts byte-at-a-time, then we need a scratch.  */
1437 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1438   /* Restrict which direct reloads are allowed for VFP/iWMMXt regs.  */ \
1439   ((TARGET_HARD_FLOAT && IS_VFP_CLASS (CLASS))			\
1440     ? coproc_secondary_reload_class (MODE, X, FALSE) :		\
1441     (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ?			\
1442     coproc_secondary_reload_class (MODE, X, TRUE) :		\
1443    (TARGET_32BIT ?						\
1444     (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS)	\
1445      && CONSTANT_P (X))						\
1446     ? GENERAL_REGS :						\
1447     (((MODE) == HImode && ! arm_arch4				\
1448       && (MEM_P (X)					\
1449 	  || ((REG_P (X) || GET_CODE (X) == SUBREG)	\
1450 	      && true_regnum (X) == -1)))			\
1451      ? GENERAL_REGS : NO_REGS)					\
1452     : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1453 
1454 /* Return the maximum number of consecutive registers
1455    needed to represent mode MODE in a register of class CLASS.
1456    ARM regs are UNITS_PER_WORD bits.
1457    FIXME: Is this true for iWMMX?  */
1458 #define CLASS_MAX_NREGS(CLASS, MODE)  \
1459   (ARM_NUM_REGS (MODE))
1460 
1461 /* If defined, gives a class of registers that cannot be used as the
1462    operand of a SUBREG that changes the mode of the object illegally.  */
1463 
1464 /* Stack layout; function entry, exit and calling.  */
1465 
1466 /* Define this if pushing a word on the stack
1467    makes the stack pointer a smaller address.  */
1468 #define STACK_GROWS_DOWNWARD  1
1469 
1470 /* Define this to nonzero if the nominal address of the stack frame
1471    is at the high-address end of the local variables;
1472    that is, each additional local variable allocated
1473    goes at a more negative offset in the frame.  */
1474 #define FRAME_GROWS_DOWNWARD 1
1475 
1476 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1477    When present, it is one word in size, and sits at the top of the frame,
1478    between the soft frame pointer and either r7 or r11.
1479 
1480    We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1481    and only then if some outgoing arguments are passed on the stack.  It would
1482    be tempting to also check whether the stack arguments are passed by indirect
1483    calls, but there seems to be no reason in principle why a post-reload pass
1484    couldn't convert a direct call into an indirect one.  */
1485 #define CALLER_INTERWORKING_SLOT_SIZE			\
1486   (TARGET_CALLER_INTERWORKING				\
1487    && maybe_ne (crtl->outgoing_args_size, 0)		\
1488    ? UNITS_PER_WORD : 0)
1489 
1490 /* If we generate an insn to push BYTES bytes,
1491    this says how many the stack pointer really advances by.  */
1492 /* The push insns do not do this rounding implicitly.
1493    So don't define this.  */
1494 /* #define PUSH_ROUNDING(NPUSHED)  ROUND_UP_WORD (NPUSHED) */
1495 
1496 /* Define this if the maximum size of all the outgoing args is to be
1497    accumulated and pushed during the prologue.  The amount can be
1498    found in the variable crtl->outgoing_args_size.  */
1499 #define ACCUMULATE_OUTGOING_ARGS 1
1500 
1501 /* Offset of first parameter from the argument pointer register value.  */
1502 #define FIRST_PARM_OFFSET(FNDECL)  (TARGET_ARM ? 4 : 0)
1503 
1504 /* Amount of memory needed for an untyped call to save all possible return
1505    registers.  */
1506 #define APPLY_RESULT_SIZE arm_apply_result_size()
1507 
1508 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1509    values must be in memory.  On the ARM, they need only do so if larger
1510    than a word, or if they contain elements offset from zero in the struct.  */
1511 #define DEFAULT_PCC_STRUCT_RETURN 0
1512 
1513 /* These bits describe the different types of function supported
1514    by the ARM backend.  They are exclusive.  i.e. a function cannot be both a
1515    normal function and an interworked function, for example.  Knowing the
1516    type of a function is important for determining its prologue and
1517    epilogue sequences.
1518    Note value 7 is currently unassigned.  Also note that the interrupt
1519    function types all have bit 2 set, so that they can be tested for easily.
1520    Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1521    machine_function structure is initialized (to zero) func_type will
1522    default to unknown.  This will force the first use of arm_current_func_type
1523    to call arm_compute_func_type.  */
1524 #define ARM_FT_UNKNOWN		 0 /* Type has not yet been determined.  */
1525 #define ARM_FT_NORMAL		 1 /* Your normal, straightforward function.  */
1526 #define ARM_FT_INTERWORKED	 2 /* A function that supports interworking.  */
1527 #define ARM_FT_ISR		 4 /* An interrupt service routine.  */
1528 #define ARM_FT_FIQ		 5 /* A fast interrupt service routine.  */
1529 #define ARM_FT_EXCEPTION	 6 /* An ARM exception handler (subcase of ISR).  */
1530 
1531 #define ARM_FT_TYPE_MASK	((1 << 3) - 1)
1532 
1533 /* In addition functions can have several type modifiers,
1534    outlined by these bit masks:  */
1535 #define ARM_FT_INTERRUPT	(1 << 2) /* Note overlap with FT_ISR and above.  */
1536 #define ARM_FT_NAKED		(1 << 3) /* No prologue or epilogue.  */
1537 #define ARM_FT_VOLATILE		(1 << 4) /* Does not return.  */
1538 #define ARM_FT_NESTED		(1 << 5) /* Embedded inside another func.  */
1539 #define ARM_FT_STACKALIGN	(1 << 6) /* Called with misaligned stack.  */
1540 #define ARM_FT_CMSE_ENTRY	(1 << 7) /* ARMv8-M non-secure entry function.  */
1541 
1542 /* Some macros to test these flags.  */
1543 #define ARM_FUNC_TYPE(t)	(t & ARM_FT_TYPE_MASK)
1544 #define IS_INTERRUPT(t)		(t & ARM_FT_INTERRUPT)
1545 #define IS_VOLATILE(t)     	(t & ARM_FT_VOLATILE)
1546 #define IS_NAKED(t)        	(t & ARM_FT_NAKED)
1547 #define IS_NESTED(t)       	(t & ARM_FT_NESTED)
1548 #define IS_STACKALIGN(t)       	(t & ARM_FT_STACKALIGN)
1549 #define IS_CMSE_ENTRY(t)	(t & ARM_FT_CMSE_ENTRY)
1550 
1551 
1552 /* Structure used to hold the function stack frame layout.  Offsets are
1553    relative to the stack pointer on function entry.  Positive offsets are
1554    in the direction of stack growth.
1555    Only soft_frame is used in thumb mode.  */
1556 
1557 typedef struct GTY(()) arm_stack_offsets
1558 {
1559   int saved_args;	/* ARG_POINTER_REGNUM.  */
1560   int frame;		/* ARM_HARD_FRAME_POINTER_REGNUM.  */
1561   int saved_regs;
1562   int soft_frame;	/* FRAME_POINTER_REGNUM.  */
1563   int locals_base;	/* THUMB_HARD_FRAME_POINTER_REGNUM.  */
1564   int outgoing_args;	/* STACK_POINTER_REGNUM.  */
1565   unsigned int saved_regs_mask;
1566 }
1567 arm_stack_offsets;
1568 
1569 #if !defined(GENERATOR_FILE) && !defined (USED_FOR_TARGET)
1570 /* A C structure for machine-specific, per-function data.
1571    This is added to the cfun structure.  */
1572 typedef struct GTY(()) machine_function
1573 {
1574   /* Additional stack adjustment in __builtin_eh_throw.  */
1575   rtx eh_epilogue_sp_ofs;
1576   /* Records if LR has to be saved for far jumps.  */
1577   int far_jump_used;
1578   /* Records if ARG_POINTER was ever live.  */
1579   int arg_pointer_live;
1580   /* Records if the save of LR has been eliminated.  */
1581   int lr_save_eliminated;
1582   /* The size of the stack frame.  Only valid after reload.  */
1583   arm_stack_offsets stack_offsets;
1584   /* Records the type of the current function.  */
1585   unsigned long func_type;
1586   /* Record if the function has a variable argument list.  */
1587   int uses_anonymous_args;
1588   /* Records if sibcalls are blocked because an argument
1589      register is needed to preserve stack alignment.  */
1590   int sibcall_blocked;
1591   /* The PIC register for this function.  This might be a pseudo.  */
1592   rtx pic_reg;
1593   /* Labels for per-function Thumb call-via stubs.  One per potential calling
1594      register.  We can never call via LR or PC.  We can call via SP if a
1595      trampoline happens to be on the top of the stack.  */
1596   rtx call_via[14];
1597   /* Set to 1 when a return insn is output, this means that the epilogue
1598      is not needed.  */
1599   int return_used_this_function;
1600   /* When outputting Thumb-1 code, record the last insn that provides
1601      information about condition codes, and the comparison operands.  */
1602   rtx thumb1_cc_insn;
1603   rtx thumb1_cc_op0;
1604   rtx thumb1_cc_op1;
1605   /* Also record the CC mode that is supported.  */
1606   machine_mode thumb1_cc_mode;
1607   /* Set to 1 after arm_reorg has started.  */
1608   int after_arm_reorg;
1609   /* The number of bytes used to store the static chain register on the
1610      stack, above the stack frame.  */
1611   int static_chain_stack_bytes;
1612 }
1613 machine_function;
1614 #endif
1615 
1616 #define ARM_Q_BIT_READ (arm_q_bit_access ())
1617 #define ARM_GE_BITS_READ (arm_ge_bits_access ())
1618 
1619 /* As in the machine_function, a global set of call-via labels, for code
1620    that is in text_section.  */
1621 extern GTY(()) rtx thumb_call_via_label[14];
1622 
1623 /* The number of potential ways of assigning to a co-processor.  */
1624 #define ARM_NUM_COPROC_SLOTS 1
1625 
1626 /* Enumeration of procedure calling standard variants.  We don't really
1627    support all of these yet.  */
1628 enum arm_pcs
1629 {
1630   ARM_PCS_AAPCS,	/* Base standard AAPCS.  */
1631   ARM_PCS_AAPCS_VFP,	/* Use VFP registers for floating point values.  */
1632   ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors.  */
1633   /* This must be the last AAPCS variant.  */
1634   ARM_PCS_AAPCS_LOCAL,	/* Private call within this compilation unit.  */
1635   ARM_PCS_ATPCS,	/* ATPCS.  */
1636   ARM_PCS_APCS,		/* APCS (legacy Linux etc).  */
1637   ARM_PCS_UNKNOWN
1638 };
1639 
1640 /* Default procedure calling standard of current compilation unit. */
1641 extern enum arm_pcs arm_pcs_default;
1642 
1643 #if !defined (USED_FOR_TARGET)
1644 /* A C type for declaring a variable that is used as the first argument of
1645    `FUNCTION_ARG' and other related values.  */
1646 typedef struct
1647 {
1648   /* This is the number of registers of arguments scanned so far.  */
1649   int nregs;
1650   /* This is the number of iWMMXt register arguments scanned so far.  */
1651   int iwmmxt_nregs;
1652   int named_count;
1653   int nargs;
1654   /* Which procedure call variant to use for this call.  */
1655   enum arm_pcs pcs_variant;
1656 
1657   /* AAPCS related state tracking.  */
1658   int aapcs_arg_processed;  /* No need to lay out this argument again.  */
1659   int aapcs_cprc_slot;      /* Index of co-processor rules to handle
1660 			       this argument, or -1 if using core
1661 			       registers.  */
1662   int aapcs_ncrn;
1663   int aapcs_next_ncrn;
1664   rtx aapcs_reg;	    /* Register assigned to this argument.  */
1665   int aapcs_partial;	    /* How many bytes are passed in regs (if
1666 			       split between core regs and stack.
1667 			       Zero otherwise.  */
1668   int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1669   int can_split;	    /* Argument can be split between core regs
1670 			       and the stack.  */
1671   /* Private data for tracking VFP register allocation */
1672   unsigned aapcs_vfp_regs_free;
1673   unsigned aapcs_vfp_reg_alloc;
1674   int aapcs_vfp_rcount;
1675   MACHMODE aapcs_vfp_rmode;
1676 } CUMULATIVE_ARGS;
1677 #endif
1678 
1679 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1680   (arm_pad_reg_upward (MODE, TYPE, FIRST) ? PAD_UPWARD : PAD_DOWNWARD)
1681 
1682 /* For AAPCS, padding should never be below the argument. For other ABIs,
1683  * mimic the default.  */
1684 #define PAD_VARARGS_DOWN \
1685   ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1686 
1687 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1688    for a call to a function whose data type is FNTYPE.
1689    For a library call, FNTYPE is 0.
1690    On the ARM, the offset starts at 0.  */
1691 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1692   arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1693 
1694 /* 1 if N is a possible register number for function argument passing.
1695    On the ARM, r0-r3 are used to pass args.  */
1696 #define FUNCTION_ARG_REGNO_P(REGNO)					\
1697    (IN_RANGE ((REGNO), 0, 3)						\
1698     || (TARGET_AAPCS_BASED && TARGET_HARD_FLOAT				\
1699 	&& IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15))	\
1700     || (TARGET_IWMMXT_ABI						\
1701 	&& IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1702 
1703 
1704 /* If your target environment doesn't prefix user functions with an
1705    underscore, you may wish to re-define this to prevent any conflicts.  */
1706 #ifndef ARM_MCOUNT_NAME
1707 #define ARM_MCOUNT_NAME "*mcount"
1708 #endif
1709 
1710 /* Call the function profiler with a given profile label.  The Acorn
1711    compiler puts this BEFORE the prolog but gcc puts it afterwards.
1712    On the ARM the full profile code will look like:
1713 	.data
1714 	LP1
1715 		.word	0
1716 	.text
1717 		mov	ip, lr
1718 		bl	mcount
1719 		.word	LP1
1720 
1721    profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1722    will output the .text section.
1723 
1724    The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1725    ``prof'' doesn't seem to mind about this!
1726 
1727    Note - this version of the code is designed to work in both ARM and
1728    Thumb modes.  */
1729 #ifndef ARM_FUNCTION_PROFILER
1730 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO)  	\
1731 {							\
1732   char temp[20];					\
1733   rtx sym;						\
1734 							\
1735   asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t",		\
1736 	   IP_REGNUM, LR_REGNUM);			\
1737   assemble_name (STREAM, ARM_MCOUNT_NAME);		\
1738   fputc ('\n', STREAM);					\
1739   ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO);	\
1740   sym = gen_rtx_SYMBOL_REF (Pmode, temp);		\
1741   assemble_aligned_integer (UNITS_PER_WORD, sym);	\
1742 }
1743 #endif
1744 
1745 #ifdef THUMB_FUNCTION_PROFILER
1746 #define FUNCTION_PROFILER(STREAM, LABELNO)		\
1747   if (TARGET_ARM)					\
1748     ARM_FUNCTION_PROFILER (STREAM, LABELNO)		\
1749   else							\
1750     THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1751 #else
1752 #define FUNCTION_PROFILER(STREAM, LABELNO)		\
1753     ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1754 #endif
1755 
1756 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1757    the stack pointer does not matter.  The value is tested only in
1758    functions that have frame pointers.
1759    No definition is equivalent to always zero.
1760 
1761    On the ARM, the function epilogue recovers the stack pointer from the
1762    frame.  */
1763 #define EXIT_IGNORE_STACK 1
1764 
1765 #define EPILOGUE_USES(REGNO) (epilogue_completed && (REGNO) == LR_REGNUM)
1766 
1767 /* Determine if the epilogue should be output as RTL.
1768    You should override this if you define FUNCTION_EXTRA_EPILOGUE.  */
1769 #define USE_RETURN_INSN(ISCOND)				\
1770   (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1771 
1772 /* Definitions for register eliminations.
1773 
1774    This is an array of structures.  Each structure initializes one pair
1775    of eliminable registers.  The "from" register number is given first,
1776    followed by "to".  Eliminations of the same "from" register are listed
1777    in order of preference.
1778 
1779    We have two registers that can be eliminated on the ARM.  First, the
1780    arg pointer register can often be eliminated in favor of the stack
1781    pointer register.  Secondly, the pseudo frame pointer register can always
1782    be eliminated; it is replaced with either the stack or the real frame
1783    pointer.  Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1784    because the definition of HARD_FRAME_POINTER_REGNUM is not a constant.  */
1785 
1786 #define ELIMINABLE_REGS						\
1787 {{ ARG_POINTER_REGNUM,        STACK_POINTER_REGNUM            },\
1788  { ARG_POINTER_REGNUM,        FRAME_POINTER_REGNUM            },\
1789  { ARG_POINTER_REGNUM,        ARM_HARD_FRAME_POINTER_REGNUM   },\
1790  { ARG_POINTER_REGNUM,        THUMB_HARD_FRAME_POINTER_REGNUM },\
1791  { FRAME_POINTER_REGNUM,      STACK_POINTER_REGNUM            },\
1792  { FRAME_POINTER_REGNUM,      ARM_HARD_FRAME_POINTER_REGNUM   },\
1793  { FRAME_POINTER_REGNUM,      THUMB_HARD_FRAME_POINTER_REGNUM }}
1794 
1795 /* Define the offset between two registers, one to be eliminated, and the
1796    other its replacement, at the start of a routine.  */
1797 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1798   if (TARGET_ARM)							\
1799     (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO);	\
1800   else									\
1801     (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1802 
1803 /* Special case handling of the location of arguments passed on the stack.  */
1804 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1805 
1806 /* Initialize data used by insn expanders.  This is called from insn_emit,
1807    once for every function before code is generated.  */
1808 #define INIT_EXPANDERS  arm_init_expanders ()
1809 
1810 /* Length in units of the trampoline for entering a nested function.  */
1811 #define TRAMPOLINE_SIZE  (TARGET_FDPIC ? 32 : (TARGET_32BIT ? 16 : 20))
1812 
1813 /* Alignment required for a trampoline in bits.  */
1814 #define TRAMPOLINE_ALIGNMENT  32
1815 
1816 /* Addressing modes, and classification of registers for them.  */
1817 #define HAVE_POST_INCREMENT   1
1818 #define HAVE_PRE_INCREMENT    TARGET_32BIT
1819 #define HAVE_POST_DECREMENT   TARGET_32BIT
1820 #define HAVE_PRE_DECREMENT    TARGET_32BIT
1821 #define HAVE_PRE_MODIFY_DISP  TARGET_32BIT
1822 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1823 #define HAVE_PRE_MODIFY_REG   TARGET_32BIT
1824 #define HAVE_POST_MODIFY_REG  TARGET_32BIT
1825 
1826 enum arm_auto_incmodes
1827   {
1828     ARM_POST_INC,
1829     ARM_PRE_INC,
1830     ARM_POST_DEC,
1831     ARM_PRE_DEC
1832   };
1833 
1834 #define ARM_AUTOINC_VALID_FOR_MODE_P(mode, code) \
1835   (TARGET_32BIT && arm_autoinc_modes_ok_p (mode, code))
1836 #define USE_LOAD_POST_INCREMENT(mode) \
1837   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_INC)
1838 #define USE_LOAD_PRE_INCREMENT(mode)  \
1839   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_INC)
1840 #define USE_LOAD_POST_DECREMENT(mode) \
1841   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_DEC)
1842 #define USE_LOAD_PRE_DECREMENT(mode)  \
1843   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_DEC)
1844 
1845 #define USE_STORE_PRE_DECREMENT(mode) USE_LOAD_PRE_DECREMENT(mode)
1846 #define USE_STORE_PRE_INCREMENT(mode) USE_LOAD_PRE_INCREMENT(mode)
1847 #define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
1848 #define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
1849 
1850 /* Macros to check register numbers against specific register classes.  */
1851 
1852 /* These assume that REGNO is a hard or pseudo reg number.
1853    They give nonzero only if REGNO is a hard reg of the suitable class
1854    or a pseudo reg currently allocated to a suitable hard reg.  */
1855 #define TEST_REGNO(R, TEST, VALUE) \
1856   ((R TEST VALUE)	\
1857     || (reg_renumber && ((unsigned) reg_renumber[R] TEST VALUE)))
1858 
1859 /* Don't allow the pc to be used.  */
1860 #define ARM_REGNO_OK_FOR_BASE_P(REGNO)			\
1861   (TEST_REGNO (REGNO, <, PC_REGNUM)			\
1862    || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM)	\
1863    || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1864 
1865 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE)		\
1866   (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM)			\
1867    || (GET_MODE_SIZE (MODE) >= 4				\
1868        && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1869 
1870 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE)		\
1871   (TARGET_THUMB1					\
1872    ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE)	\
1873    : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1874 
1875 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1876    For Thumb, we cannot use SP + reg, so reject SP.  */
1877 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE)	\
1878   REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1879 
1880 /* For ARM code, we don't care about the mode, but for Thumb, the index
1881    must be suitable for use in a QImode load.  */
1882 #define REGNO_OK_FOR_INDEX_P(REGNO)	\
1883   (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1884    && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1885 
1886 /* Maximum number of registers that can appear in a valid memory address.
1887    Shifts in addresses can't be by a register.  */
1888 #define MAX_REGS_PER_ADDRESS 2
1889 
1890 /* Recognize any constant value that is a valid address.  */
1891 /* XXX We can address any constant, eventually...  */
1892 /* ??? Should the TARGET_ARM here also apply to thumb2?  */
1893 #define CONSTANT_ADDRESS_P(X)  			\
1894   (GET_CODE (X) == SYMBOL_REF 			\
1895    && (CONSTANT_POOL_ADDRESS_P (X)		\
1896        || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1897 
1898 /* True if SYMBOL + OFFSET constants must refer to something within
1899    SYMBOL's section.  */
1900 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1901 
1902 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32.  */
1903 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1904 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1905 #endif
1906 
1907 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1908 #define SUBTARGET_NAME_ENCODING_LENGTHS
1909 #endif
1910 
1911 /* This is a C fragment for the inside of a switch statement.
1912    Each case label should return the number of characters to
1913    be stripped from the start of a function's name, if that
1914    name starts with the indicated character.  */
1915 #define ARM_NAME_ENCODING_LENGTHS		\
1916   case '*':  return 1;				\
1917   SUBTARGET_NAME_ENCODING_LENGTHS
1918 
1919 /* This is how to output a reference to a user-level label named NAME.
1920    `assemble_name' uses this.  */
1921 #undef  ASM_OUTPUT_LABELREF
1922 #define ASM_OUTPUT_LABELREF(FILE, NAME)		\
1923    arm_asm_output_labelref (FILE, NAME)
1924 
1925 /* Output IT instructions for conditionally executed Thumb-2 instructions.  */
1926 #define ASM_OUTPUT_OPCODE(STREAM, PTR)	\
1927   if (TARGET_THUMB2)			\
1928     thumb2_asm_output_opcode (STREAM);
1929 
1930 /* The EABI specifies that constructors should go in .init_array.
1931    Other targets use .ctors for compatibility.  */
1932 #ifndef ARM_EABI_CTORS_SECTION_OP
1933 #define ARM_EABI_CTORS_SECTION_OP \
1934   "\t.section\t.init_array,\"aw\",%init_array"
1935 #endif
1936 #ifndef ARM_EABI_DTORS_SECTION_OP
1937 #define ARM_EABI_DTORS_SECTION_OP \
1938   "\t.section\t.fini_array,\"aw\",%fini_array"
1939 #endif
1940 #define ARM_CTORS_SECTION_OP \
1941   "\t.section\t.ctors,\"aw\",%progbits"
1942 #define ARM_DTORS_SECTION_OP \
1943   "\t.section\t.dtors,\"aw\",%progbits"
1944 
1945 /* Define CTORS_SECTION_ASM_OP.  */
1946 #undef CTORS_SECTION_ASM_OP
1947 #undef DTORS_SECTION_ASM_OP
1948 #ifndef IN_LIBGCC2
1949 # define CTORS_SECTION_ASM_OP \
1950    (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1951 # define DTORS_SECTION_ASM_OP \
1952    (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1953 #else /* !defined (IN_LIBGCC2) */
1954 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1955    so we cannot use the definition above.  */
1956 # ifdef __ARM_EABI__
1957 /* The .ctors section is not part of the EABI, so we do not define
1958    CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1959    from trying to use it.  We do define it when doing normal
1960    compilation, as .init_array can be used instead of .ctors.  */
1961 /* There is no need to emit begin or end markers when using
1962    init_array; the dynamic linker will compute the size of the
1963    array itself based on special symbols created by the static
1964    linker.  However, we do need to arrange to set up
1965    exception-handling here.  */
1966 #   define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1967 #   define CTOR_LIST_END /* empty */
1968 #   define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1969 #   define DTOR_LIST_END /* empty */
1970 # else /* !defined (__ARM_EABI__) */
1971 #   define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1972 #   define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1973 # endif /* !defined (__ARM_EABI__) */
1974 #endif /* !defined (IN_LIBCC2) */
1975 
1976 /* True if the operating system can merge entities with vague linkage
1977    (e.g., symbols in COMDAT group) during dynamic linking.  */
1978 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1979 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1980 #endif
1981 
1982 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1983 
1984 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1985    and check its validity for a certain class.
1986    We have two alternate definitions for each of them.
1987    The usual definition accepts all pseudo regs; the other rejects
1988    them unless they have been allocated suitable hard regs.
1989    The symbol REG_OK_STRICT causes the latter definition to be used.
1990    Thumb-2 has the same restrictions as arm.  */
1991 #ifndef REG_OK_STRICT
1992 
1993 #define ARM_REG_OK_FOR_BASE_P(X)		\
1994   (REGNO (X) <= LAST_ARM_REGNUM			\
1995    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1996    || REGNO (X) == FRAME_POINTER_REGNUM		\
1997    || REGNO (X) == ARG_POINTER_REGNUM)
1998 
1999 #define ARM_REG_OK_FOR_INDEX_P(X)		\
2000   ((REGNO (X) <= LAST_ARM_REGNUM		\
2001     && REGNO (X) != STACK_POINTER_REGNUM)	\
2002    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
2003    || REGNO (X) == FRAME_POINTER_REGNUM		\
2004    || REGNO (X) == ARG_POINTER_REGNUM)
2005 
2006 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE)	\
2007   (REGNO (X) <= LAST_LO_REGNUM			\
2008    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
2009    || (GET_MODE_SIZE (MODE) >= 4		\
2010        && (REGNO (X) == STACK_POINTER_REGNUM	\
2011 	   || (X) == hard_frame_pointer_rtx	\
2012 	   || (X) == arg_pointer_rtx)))
2013 
2014 #define REG_STRICT_P 0
2015 
2016 #else /* REG_OK_STRICT */
2017 
2018 #define ARM_REG_OK_FOR_BASE_P(X) 		\
2019   ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
2020 
2021 #define ARM_REG_OK_FOR_INDEX_P(X) 		\
2022   ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
2023 
2024 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE)	\
2025   THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
2026 
2027 #define REG_STRICT_P 1
2028 
2029 #endif /* REG_OK_STRICT */
2030 
2031 /* Now define some helpers in terms of the above.  */
2032 
2033 #define REG_MODE_OK_FOR_BASE_P(X, MODE)		\
2034   (TARGET_THUMB1				\
2035    ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE)	\
2036    : ARM_REG_OK_FOR_BASE_P (X))
2037 
2038 /* For 16-bit Thumb, a valid index register is anything that can be used in
2039    a byte load instruction.  */
2040 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
2041   THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
2042 
2043 /* Nonzero if X is a hard reg that can be used as an index
2044    or if it is a pseudo reg.  On the Thumb, the stack pointer
2045    is not suitable.  */
2046 #define REG_OK_FOR_INDEX_P(X)			\
2047   (TARGET_THUMB1				\
2048    ? THUMB1_REG_OK_FOR_INDEX_P (X)		\
2049    : ARM_REG_OK_FOR_INDEX_P (X))
2050 
2051 /* Nonzero if X can be the base register in a reg+reg addressing mode.
2052    For Thumb, we cannot use SP + reg, so reject SP.  */
2053 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE)	\
2054   REG_OK_FOR_INDEX_P (X)
2055 
2056 #define ARM_BASE_REGISTER_RTX_P(X)  \
2057   (REG_P (X) && ARM_REG_OK_FOR_BASE_P (X))
2058 
2059 #define ARM_INDEX_REGISTER_RTX_P(X)  \
2060   (REG_P (X) && ARM_REG_OK_FOR_INDEX_P (X))
2061 
2062 /* Specify the machine mode that this machine uses
2063    for the index in the tablejump instruction.  */
2064 #define CASE_VECTOR_MODE Pmode
2065 
2066 #define CASE_VECTOR_PC_RELATIVE ((TARGET_THUMB2				\
2067 				  || (TARGET_THUMB1			\
2068 				      && (optimize_size || flag_pic)))	\
2069 				 && (!target_pure_code))
2070 
2071 
2072 #define CASE_VECTOR_SHORTEN_MODE(min, max, body)			\
2073   (TARGET_THUMB1							\
2074    ? (min >= 0 && max < 512						\
2075       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode)	\
2076       : min >= -256 && max < 256					\
2077       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode)	\
2078       : min >= 0 && max < 8192						\
2079       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode)	\
2080       : min >= -4096 && max < 4096					\
2081       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode)	\
2082       : SImode)								\
2083    : ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode		\
2084       : (max >= 0x200) ? HImode						\
2085       : QImode))
2086 
2087 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
2088    unsigned is probably best, but may break some code.  */
2089 #ifndef DEFAULT_SIGNED_CHAR
2090 #define DEFAULT_SIGNED_CHAR  0
2091 #endif
2092 
2093 /* Max number of bytes we can move from memory to memory
2094    in one reasonably fast instruction.  */
2095 #define MOVE_MAX 4
2096 
2097 #undef  MOVE_RATIO
2098 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
2099 
2100 /* Define if operations between registers always perform the operation
2101    on the full register even if a narrower mode is specified.  */
2102 #define WORD_REGISTER_OPERATIONS 1
2103 
2104 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2105    will either zero-extend or sign-extend.  The value of this macro should
2106    be the code that says which one of the two operations is implicitly
2107    done, UNKNOWN if none.  */
2108 #define LOAD_EXTEND_OP(MODE)						\
2109   (TARGET_THUMB ? ZERO_EXTEND :						\
2110    ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND			\
2111     : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
2112 
2113 /* Nonzero if access to memory by bytes is slow and undesirable.  */
2114 #define SLOW_BYTE_ACCESS 0
2115 
2116 /* Immediate shift counts are truncated by the output routines (or was it
2117    the assembler?).  Shift counts in a register are truncated by ARM.  Note
2118    that the native compiler puts too large (> 32) immediate shift counts
2119    into a register and shifts by the register, letting the ARM decide what
2120    to do instead of doing that itself.  */
2121 /* This is all wrong.  Defining SHIFT_COUNT_TRUNCATED tells combine that
2122    code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
2123    On the arm, Y in a register is used modulo 256 for the shift. Only for
2124    rotates is modulo 32 used.  */
2125 /* #define SHIFT_COUNT_TRUNCATED 1 */
2126 
2127 /* Calling from registers is a massive pain.  */
2128 #define NO_FUNCTION_CSE 1
2129 
2130 /* The machine modes of pointers and functions */
2131 #define Pmode  SImode
2132 #define FUNCTION_MODE  Pmode
2133 
2134 #define ARM_FRAME_RTX(X)					\
2135   (   (X) == frame_pointer_rtx || (X) == stack_pointer_rtx	\
2136    || (X) == arg_pointer_rtx)
2137 
2138 /* Try to generate sequences that don't involve branches, we can then use
2139    conditional instructions.  */
2140 #define BRANCH_COST(speed_p, predictable_p)			\
2141   ((arm_branch_cost != -1) ? arm_branch_cost :			\
2142    (current_tune->branch_cost (speed_p, predictable_p)))
2143 
2144 /* False if short circuit operation is preferred.  */
2145 #define LOGICAL_OP_NON_SHORT_CIRCUIT					\
2146   ((optimize_size)							\
2147    ? (TARGET_THUMB ? false : true)					\
2148    : TARGET_THUMB ? static_cast<bool> (current_tune->logical_op_non_short_circuit_thumb) \
2149    : static_cast<bool> (current_tune->logical_op_non_short_circuit_arm))
2150 
2151 
2152 /* Position Independent Code.  */
2153 /* We decide which register to use based on the compilation options and
2154    the assembler in use; this is more general than the APCS restriction of
2155    using sb (r9) all the time.  */
2156 extern unsigned arm_pic_register;
2157 
2158 /* The register number of the register used to address a table of static
2159    data addresses in memory.  */
2160 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
2161 
2162 /* For FDPIC, the FDPIC register is call-clobbered (otherwise PLT
2163    entries would need to handle saving and restoring it).  */
2164 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED TARGET_FDPIC
2165 
2166 /* We can't directly access anything that contains a symbol,
2167    nor can we indirect via the constant pool.  One exception is
2168    UNSPEC_TLS, which is always PIC.  */
2169 #define LEGITIMATE_PIC_OPERAND_P(X)					\
2170 	(!(symbol_mentioned_p (X)					\
2171 	   || label_mentioned_p (X)					\
2172 	   || (GET_CODE (X) == SYMBOL_REF				\
2173 	       && CONSTANT_POOL_ADDRESS_P (X)				\
2174 	       && (symbol_mentioned_p (get_pool_constant (X))		\
2175 		   || label_mentioned_p (get_pool_constant (X)))))	\
2176 	 || tls_mentioned_p (X))
2177 
2178 /* We may want to save the PIC register if it is a dedicated one.  */
2179 #define PIC_REGISTER_MAY_NEED_SAVING			\
2180   (flag_pic						\
2181    && !TARGET_SINGLE_PIC_BASE				\
2182    && !TARGET_FDPIC					\
2183    && arm_pic_register != INVALID_REGNUM)
2184 
2185 /* We need to know when we are making a constant pool; this determines
2186    whether data needs to be in the GOT or can be referenced via a GOT
2187    offset.  */
2188 extern int making_const_table;
2189 
2190 /* Handle pragmas for compatibility with Intel's compilers.  */
2191 /* Also abuse this to register additional C specific EABI attributes.  */
2192 #define REGISTER_TARGET_PRAGMAS() do {					\
2193   c_register_pragma (0, "long_calls", arm_pr_long_calls);		\
2194   c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls);		\
2195   c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off);	\
2196   arm_lang_object_attributes_init();					\
2197   arm_register_target_pragmas();                                       \
2198 } while (0)
2199 
2200 /* Condition code information.  */
2201 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2202    return the mode to be used for the comparison.  */
2203 
2204 #define SELECT_CC_MODE(OP, X, Y)  arm_select_cc_mode (OP, X, Y)
2205 
2206 #define REVERSIBLE_CC_MODE(MODE) 1
2207 
2208 #define REVERSE_CONDITION(CODE,MODE) \
2209   (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2210    ? reverse_condition_maybe_unordered (code) \
2211    : reverse_condition (code))
2212 
2213 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2214   ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2215 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2216   ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2217 
2218 #define CC_STATUS_INIT \
2219   do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2220 
2221 #undef ASM_APP_ON
2222 #define ASM_APP_ON (inline_asm_unified ? "\t.syntax unified\n" : \
2223 		    "\t.syntax divided\n")
2224 
2225 #undef  ASM_APP_OFF
2226 #define ASM_APP_OFF (TARGET_ARM ? "\t.arm\n\t.syntax unified\n" : \
2227 		     "\t.thumb\n\t.syntax unified\n")
2228 
2229 /* Output a push or a pop instruction (only used when profiling).
2230    We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1.  We know
2231    that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2232    that r7 isn't used by the function profiler, so we can use it as a
2233    scratch reg.  WARNING: This isn't safe in the general case!  It may be
2234    sensitive to future changes in final.c:profile_function.  */
2235 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO)		\
2236   do							\
2237     {							\
2238       if (TARGET_THUMB1					\
2239 	       && (REGNO) == STATIC_CHAIN_REGNUM)	\
2240 	{						\
2241 	  asm_fprintf (STREAM, "\tpush\t{r7}\n");	\
2242 	  asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2243 	  asm_fprintf (STREAM, "\tpush\t{r7}\n");	\
2244 	}						\
2245       else						\
2246 	asm_fprintf (STREAM, "\tpush {%r}\n", REGNO);	\
2247     } while (0)
2248 
2249 
2250 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue.  */
2251 #define ASM_OUTPUT_REG_POP(STREAM, REGNO)		\
2252   do							\
2253     {							\
2254       if (TARGET_THUMB1					\
2255 	  && (REGNO) == STATIC_CHAIN_REGNUM)		\
2256 	{						\
2257 	  asm_fprintf (STREAM, "\tpop\t{r7}\n");	\
2258 	  asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2259 	  asm_fprintf (STREAM, "\tpop\t{r7}\n");	\
2260 	}						\
2261       else						\
2262 	asm_fprintf (STREAM, "\tpop {%r}\n", REGNO);	\
2263     } while (0)
2264 
2265 #define ADDR_VEC_ALIGN(JUMPTABLE)	\
2266   ((TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) ? 2 : 0)
2267 
2268 /* Alignment for case labels comes from ADDR_VEC_ALIGN; avoid the
2269    default alignment from elfos.h.  */
2270 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
2271 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) /* Empty.  */
2272 
2273 #define LABEL_ALIGN_AFTER_BARRIER(LABEL)                \
2274    (GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
2275    ? 1 : 0)
2276 
2277 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) 	\
2278   arm_declare_function_name ((STREAM), (NAME), (DECL));
2279 
2280 /* For aliases of functions we use .thumb_set instead.  */
2281 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2)		\
2282   do						   		\
2283     {								\
2284       const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2285       const char *const LABEL2 = IDENTIFIER_POINTER (DECL2);	\
2286 								\
2287       if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL)	\
2288 	{							\
2289 	  fprintf (FILE, "\t.thumb_set ");			\
2290 	  assemble_name (FILE, LABEL1);			   	\
2291 	  fprintf (FILE, ",");			   		\
2292 	  assemble_name (FILE, LABEL2);		   		\
2293 	  fprintf (FILE, "\n");					\
2294 	}							\
2295       else							\
2296 	ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2);			\
2297     }								\
2298   while (0)
2299 
2300 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2301 /* To support -falign-* switches we need to use .p2align so
2302    that alignment directives in code sections will be padded
2303    with no-op instructions, rather than zeroes.  */
2304 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP)		\
2305   if ((LOG) != 0)						\
2306     {								\
2307       if ((MAX_SKIP) == 0)					\
2308         fprintf ((FILE), "\t.p2align %d\n", (int) (LOG));	\
2309       else							\
2310         fprintf ((FILE), "\t.p2align %d,,%d\n",			\
2311                  (int) (LOG), (int) (MAX_SKIP));		\
2312     }
2313 #endif
2314 
2315 /* Add two bytes to the length of conditionally executed Thumb-2
2316    instructions for the IT instruction.  */
2317 #define ADJUST_INSN_LENGTH(insn, length) \
2318   if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2319     length += 2;
2320 
2321 /* Only perform branch elimination (by making instructions conditional) if
2322    we're optimizing.  For Thumb-2 check if any IT instructions need
2323    outputting.  */
2324 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)	\
2325   if (TARGET_ARM && optimize)				\
2326     arm_final_prescan_insn (INSN);			\
2327   else if (TARGET_THUMB2)				\
2328     thumb2_final_prescan_insn (INSN);			\
2329   else if (TARGET_THUMB1)				\
2330     thumb1_final_prescan_insn (INSN)
2331 
2332 #define ARM_SIGN_EXTEND(x)  ((HOST_WIDE_INT)			\
2333   (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x)	\
2334    : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2335       ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2336        ? ((~ (unsigned HOST_WIDE_INT) 0)			\
2337 	  & ~ (unsigned HOST_WIDE_INT) 0xffffffff)		\
2338        : 0))))
2339 
2340 /* A C expression whose value is RTL representing the value of the return
2341    address for the frame COUNT steps up from the current frame.  */
2342 
2343 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2344   arm_return_addr (COUNT, FRAME)
2345 
2346 /* Mask of the bits in the PC that contain the real return address
2347    when running in 26-bit mode.  */
2348 #define RETURN_ADDR_MASK26 (0x03fffffc)
2349 
2350 /* Pick up the return address upon entry to a procedure. Used for
2351    dwarf2 unwind information.  This also enables the table driven
2352    mechanism.  */
2353 #define INCOMING_RETURN_ADDR_RTX	gen_rtx_REG (Pmode, LR_REGNUM)
2354 #define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGNUM (LR_REGNUM)
2355 
2356 /* Used to mask out junk bits from the return address, such as
2357    processor state, interrupt status, condition codes and the like.  */
2358 #define MASK_RETURN_ADDR \
2359   /* If we are generating code for an ARM2/ARM3 machine or for an ARM6	\
2360      in 26 bit mode, the condition codes must be masked out of the	\
2361      return address.  This does not apply to ARM6 and later processors	\
2362      when running in 32 bit mode.  */					\
2363   ((arm_arch4 || TARGET_THUMB)						\
2364    ? (gen_int_mode ((unsigned long)0xffffffff, Pmode))			\
2365    : arm_gen_return_addr_mask ())
2366 
2367 
2368 /* Do not emit .note.GNU-stack by default.  */
2369 #ifndef NEED_INDICATE_EXEC_STACK
2370 #define NEED_INDICATE_EXEC_STACK	0
2371 #endif
2372 
2373 #define TARGET_ARM_ARCH	\
2374   (arm_base_arch)	\
2375 
2376 /* The highest Thumb instruction set version supported by the chip.  */
2377 #define TARGET_ARM_ARCH_ISA_THUMB		\
2378   (arm_arch_thumb2 ? 2 : (arm_arch_thumb1 ? 1 : 0))
2379 
2380 /* Expands to an upper-case char of the target's architectural
2381    profile.  */
2382 #define TARGET_ARM_ARCH_PROFILE				\
2383   (arm_active_target.profile)
2384 
2385 /* Bit-field indicating what size LDREX/STREX loads/stores are available.
2386    Bit 0 for bytes, up to bit 3 for double-words.  */
2387 #define TARGET_ARM_FEATURE_LDREX				\
2388   ((TARGET_HAVE_LDREX ? 4 : 0)					\
2389    | (TARGET_HAVE_LDREXBH ? 3 : 0)				\
2390    | (TARGET_HAVE_LDREXD ? 8 : 0))
2391 
2392 /* Set as a bit mask indicating the available widths of hardware floating
2393    point types.  Where bit 1 indicates 16-bit support, bit 2 indicates
2394    32-bit support, bit 3 indicates 64-bit support.  */
2395 #define TARGET_ARM_FP			\
2396   (!TARGET_SOFT_FLOAT ? (TARGET_VFP_SINGLE ? 4		\
2397 			: (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0)) \
2398 		      : 0)
2399 
2400 
2401 /* Set as a bit mask indicating the available widths of floating point
2402    types for hardware NEON floating point.  This is the same as
2403    TARGET_ARM_FP without the 64-bit bit set.  */
2404 #define TARGET_NEON_FP				 \
2405   (TARGET_NEON ? (TARGET_ARM_FP & (0xff ^ 0x08)) \
2406 	       : 0)
2407 
2408 /* Name of the automatic fpu-selection option.  */
2409 #define FPUTYPE_AUTO "auto"
2410 
2411 /* The maximum number of parallel loads or stores we support in an ldm/stm
2412    instruction.  */
2413 #define MAX_LDM_STM_OPS 4
2414 
2415 extern const char *arm_rewrite_mcpu (int argc, const char **argv);
2416 extern const char *arm_rewrite_march (int argc, const char **argv);
2417 extern const char *arm_asm_auto_mfpu (int argc, const char **argv);
2418 #define ASM_CPU_SPEC_FUNCTIONS			\
2419   { "rewrite_mcpu", arm_rewrite_mcpu },	\
2420   { "rewrite_march", arm_rewrite_march },	\
2421   { "asm_auto_mfpu", arm_asm_auto_mfpu },
2422 
2423 #define ASM_CPU_SPEC							\
2424   " %{mfpu=auto:%<mfpu=auto %:asm_auto_mfpu(%{march=*: arch %*})}"	\
2425   " %{mcpu=generic-*:-march=%:rewrite_march(%{mcpu=generic-*:%*});"	\
2426   "   march=*:-march=%:rewrite_march(%{march=*:%*});"			\
2427   "   mcpu=*:-mcpu=%:rewrite_mcpu(%{mcpu=*:%*})"			\
2428   " }"
2429 
2430 extern const char *arm_target_mode (int argc, const char **argv);
2431 #define TARGET_MODE_SPEC_FUNCTIONS			\
2432   { "target_mode_check", arm_target_mode },
2433 
2434 /* -mcpu=native handling only makes sense with compiler running on
2435    an ARM chip.  */
2436 #if defined(__arm__)
2437 extern const char *host_detect_local_cpu (int argc, const char **argv);
2438 #define HAVE_LOCAL_CPU_DETECT
2439 # define MCPU_MTUNE_NATIVE_FUNCTIONS			\
2440   { "local_cpu_detect", host_detect_local_cpu },
2441 # define MCPU_MTUNE_NATIVE_SPECS				\
2442    " %{march=native:%<march=native %:local_cpu_detect(arch)}"	\
2443    " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}"	\
2444    " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
2445 #else
2446 # define MCPU_MTUNE_NATIVE_FUNCTIONS
2447 # define MCPU_MTUNE_NATIVE_SPECS ""
2448 #endif
2449 
2450 const char *arm_canon_arch_option (int argc, const char **argv);
2451 const char *arm_canon_arch_multilib_option (int argc, const char **argv);
2452 
2453 #define CANON_ARCH_SPEC_FUNCTION		\
2454   { "canon_arch", arm_canon_arch_option },
2455 
2456 #define CANON_ARCH_MULTILIB_SPEC_FUNCTION		\
2457   { "canon_arch_multilib", arm_canon_arch_multilib_option },
2458 
2459 const char *arm_be8_option (int argc, const char **argv);
2460 #define BE8_SPEC_FUNCTION			\
2461   { "be8_linkopt", arm_be8_option },
2462 
2463 # define EXTRA_SPEC_FUNCTIONS			\
2464   MCPU_MTUNE_NATIVE_FUNCTIONS			\
2465   ASM_CPU_SPEC_FUNCTIONS			\
2466   CANON_ARCH_SPEC_FUNCTION			\
2467   CANON_ARCH_MULTILIB_SPEC_FUNCTION		\
2468   TARGET_MODE_SPEC_FUNCTIONS			\
2469   BE8_SPEC_FUNCTION
2470 
2471 /* Automatically add -mthumb for Thumb-only targets if mode isn't specified
2472    via the configuration option --with-mode or via the command line. The
2473    function target_mode_check is called to do the check with either:
2474    - an array of -march values if any is given;
2475    - an array of -mcpu values if any is given;
2476    - an empty array.  */
2477 #define TARGET_MODE_SPECS						\
2478   " %{!marm:%{!mthumb:%:target_mode_check(%{march=*:arch %*;mcpu=*:cpu %*;:})}}"
2479 
2480 /* Generate a canonical string to represent the architecture selected.  */
2481 #define ARCH_CANONICAL_SPECS				\
2482   " -march=%:canon_arch(%{mcpu=*: cpu %*} "		\
2483   "                     %{march=*: arch %*} "		\
2484   "                     %{mfpu=*: fpu %*} "		\
2485   "                     %{mfloat-abi=*: abi %*}"	\
2486   "                     %<march=*) "
2487 
2488 /* Generate a canonical string to represent the architecture selected ignoring
2489    the options not required for multilib linking.  */
2490 #define MULTILIB_ARCH_CANONICAL_SPECS				\
2491   "-mlibarch=%:canon_arch_multilib(%{mcpu=*: cpu %*} "		\
2492   "				   %{march=*: arch %*} "	\
2493   "				   %{mfpu=*: fpu %*} "		\
2494   "				   %{mfloat-abi=*: abi %*}"	\
2495   "				   %<mlibarch=*) "
2496 
2497 /* Complete set of specs for the driver.  Commas separate the
2498    individual rules so that any option suppression (%<opt...)is
2499    completed before starting subsequent rules.  */
2500 #define DRIVER_SELF_SPECS			\
2501   MCPU_MTUNE_NATIVE_SPECS,			\
2502   TARGET_MODE_SPECS,				\
2503   MULTILIB_ARCH_CANONICAL_SPECS,		\
2504   ARCH_CANONICAL_SPECS
2505 
2506 #define TARGET_SUPPORTS_WIDE_INT 1
2507 
2508 /* For switching between functions with different target attributes.  */
2509 #define SWITCHABLE_TARGET 1
2510 
2511 /* Define SECTION_ARM_PURECODE as the ARM specific section attribute
2512    representation for SHF_ARM_PURECODE in GCC.  */
2513 #define SECTION_ARM_PURECODE SECTION_MACH_DEP
2514 
2515 #endif /* ! GCC_ARM_H */
2516