1------------------------------------------------------------------------------ 2-- -- 3-- GNAT LIBRARY COMPONENTS -- 4-- -- 5-- ADA.CONTAINERS.INDEFINITE_HASHED_SETS -- 6-- -- 7-- S p e c -- 8-- -- 9-- Copyright (C) 2004-2021, Free Software Foundation, Inc. -- 10-- -- 11-- This specification is derived from the Ada Reference Manual for use with -- 12-- GNAT. The copyright notice above, and the license provisions that follow -- 13-- apply solely to the contents of the part following the private keyword. -- 14-- -- 15-- GNAT is free software; you can redistribute it and/or modify it under -- 16-- terms of the GNU General Public License as published by the Free Soft- -- 17-- ware Foundation; either version 3, or (at your option) any later ver- -- 18-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- 19-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- 20-- or FITNESS FOR A PARTICULAR PURPOSE. -- 21-- -- 22-- As a special exception under Section 7 of GPL version 3, you are granted -- 23-- additional permissions described in the GCC Runtime Library Exception, -- 24-- version 3.1, as published by the Free Software Foundation. -- 25-- -- 26-- You should have received a copy of the GNU General Public License and -- 27-- a copy of the GCC Runtime Library Exception along with this program; -- 28-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- 29-- <http://www.gnu.org/licenses/>. -- 30-- -- 31-- This unit was originally developed by Matthew J Heaney. -- 32------------------------------------------------------------------------------ 33 34with Ada.Iterator_Interfaces; 35 36private with Ada.Containers.Hash_Tables; 37with Ada.Containers.Helpers; 38private with Ada.Streams; 39private with Ada.Finalization; 40private with Ada.Strings.Text_Buffers; 41 42generic 43 type Element_Type (<>) is private; 44 45 with function Hash (Element : Element_Type) return Hash_Type; 46 47 with function Equivalent_Elements (Left, Right : Element_Type) 48 return Boolean; 49 50 with function "=" (Left, Right : Element_Type) return Boolean is <>; 51 52package Ada.Containers.Indefinite_Hashed_Sets with 53 SPARK_Mode => Off 54is 55 pragma Annotate (CodePeer, Skip_Analysis); 56 pragma Preelaborate; 57 pragma Remote_Types; 58 59 type Set is tagged private 60 with Constant_Indexing => Constant_Reference, 61 Default_Iterator => Iterate, 62 Iterator_Element => Element_Type, 63 Aggregate => (Empty => Empty, 64 Add_Unnamed => Include); 65 66 pragma Preelaborable_Initialization (Set); 67 68 type Cursor is private; 69 pragma Preelaborable_Initialization (Cursor); 70 71 Empty_Set : constant Set; 72 -- Set objects declared without an initialization expression are 73 -- initialized to the value Empty_Set. 74 75 function Empty (Capacity : Count_Type := 1000) return Set; 76 77 No_Element : constant Cursor; 78 -- Cursor objects declared without an initialization expression are 79 -- initialized to the value No_Element. 80 81 function Has_Element (Position : Cursor) return Boolean; 82 -- Equivalent to Position /= No_Element 83 84 package Set_Iterator_Interfaces is new 85 Ada.Iterator_Interfaces (Cursor, Has_Element); 86 87 function "=" (Left, Right : Set) return Boolean; 88 -- For each element in Left, set equality attempts to find the equal 89 -- element in Right; if a search fails, then set equality immediately 90 -- returns False. The search works by calling Hash to find the bucket in 91 -- the Right set that corresponds to the Left element. If the bucket is 92 -- non-empty, the search calls the generic formal element equality operator 93 -- to compare the element (in Left) to the element of each node in the 94 -- bucket (in Right); the search terminates when a matching node in the 95 -- bucket is found, or the nodes in the bucket are exhausted. (Note that 96 -- element equality is called here, not Equivalent_Elements. Set equality 97 -- is the only operation in which element equality is used. Compare set 98 -- equality to Equivalent_Sets, which does call Equivalent_Elements.) 99 100 function Equivalent_Sets (Left, Right : Set) return Boolean; 101 -- Similar to set equality, with the difference that the element in Left is 102 -- compared to the elements in Right using the generic formal 103 -- Equivalent_Elements operation instead of element equality. 104 105 function To_Set (New_Item : Element_Type) return Set; 106 -- Constructs a singleton set comprising New_Element. To_Set calls Hash to 107 -- determine the bucket for New_Item. 108 109 function Capacity (Container : Set) return Count_Type; 110 -- Returns the current capacity of the set. Capacity is the maximum length 111 -- before which rehashing in guaranteed not to occur. 112 113 procedure Reserve_Capacity (Container : in out Set; Capacity : Count_Type); 114 -- Adjusts the current capacity, by allocating a new buckets array. If the 115 -- requested capacity is less than the current capacity, then the capacity 116 -- is contracted (to a value not less than the current length). If the 117 -- requested capacity is greater than the current capacity, then the 118 -- capacity is expanded (to a value not less than what is requested). In 119 -- either case, the nodes are rehashed from the old buckets array onto the 120 -- new buckets array (Hash is called once for each existing element in 121 -- order to compute the new index), and then the old buckets array is 122 -- deallocated. 123 124 function Length (Container : Set) return Count_Type; 125 -- Returns the number of items in the set 126 127 function Is_Empty (Container : Set) return Boolean; 128 -- Equivalent to Length (Container) = 0 129 130 procedure Clear (Container : in out Set); 131 -- Removes all of the items from the set 132 133 function Element (Position : Cursor) return Element_Type; 134 -- Returns the element of the node designated by the cursor 135 136 procedure Replace_Element 137 (Container : in out Set; 138 Position : Cursor; 139 New_Item : Element_Type); 140 -- If New_Item is equivalent (as determined by calling Equivalent_Elements) 141 -- to the element of the node designated by Position, then New_Element is 142 -- assigned to that element. Otherwise, it calls Hash to determine the 143 -- bucket for New_Item. If the bucket is not empty, then it calls 144 -- Equivalent_Elements for each node in that bucket to determine whether 145 -- New_Item is equivalent to an element in that bucket. If 146 -- Equivalent_Elements returns True then Program_Error is raised (because 147 -- an element may appear only once in the set); otherwise, New_Item is 148 -- assigned to the node designated by Position, and the node is moved to 149 -- its new bucket. 150 151 procedure Query_Element 152 (Position : Cursor; 153 Process : not null access procedure (Element : Element_Type)); 154 -- Calls Process with the element (having only a constant view) of the node 155 -- designated by the cursor. 156 157 type Constant_Reference_Type 158 (Element : not null access constant Element_Type) is private 159 with Implicit_Dereference => Element; 160 161 function Constant_Reference 162 (Container : aliased Set; 163 Position : Cursor) return Constant_Reference_Type; 164 pragma Inline (Constant_Reference); 165 166 procedure Assign (Target : in out Set; Source : Set); 167 168 function Copy (Source : Set; Capacity : Count_Type := 0) return Set; 169 170 procedure Move (Target : in out Set; Source : in out Set); 171 -- Clears Target (if it's not empty), and then moves (not copies) the 172 -- buckets array and nodes from Source to Target. 173 174 procedure Insert 175 (Container : in out Set; 176 New_Item : Element_Type; 177 Position : out Cursor; 178 Inserted : out Boolean); 179 -- Conditionally inserts New_Item into the set. If New_Item is already in 180 -- the set, then Inserted returns False and Position designates the node 181 -- containing the existing element (which is not modified). If New_Item is 182 -- not already in the set, then Inserted returns True and Position 183 -- designates the newly-inserted node containing New_Item. The search for 184 -- an existing element works as follows. Hash is called to determine 185 -- New_Item's bucket; if the bucket is non-empty, then Equivalent_Elements 186 -- is called to compare New_Item to the element of each node in that 187 -- bucket. If the bucket is empty, or there were no equivalent elements in 188 -- the bucket, the search "fails" and the New_Item is inserted in the set 189 -- (and Inserted returns True); otherwise, the search "succeeds" (and 190 -- Inserted returns False). 191 192 procedure Insert (Container : in out Set; New_Item : Element_Type); 193 -- Attempts to insert New_Item into the set, performing the usual insertion 194 -- search (which involves calling both Hash and Equivalent_Elements); if 195 -- the search succeeds (New_Item is equivalent to an element already in the 196 -- set, and so was not inserted), then this operation raises 197 -- Constraint_Error. (This version of Insert is similar to Replace, but 198 -- having the opposite exception behavior. It is intended for use when you 199 -- want to assert that the item is not already in the set.) 200 201 procedure Include (Container : in out Set; New_Item : Element_Type); 202 -- Attempts to insert New_Item into the set. If an element equivalent to 203 -- New_Item is already in the set (the insertion search succeeded, and 204 -- hence New_Item was not inserted), then the value of New_Item is assigned 205 -- to the existing element. (This insertion operation only raises an 206 -- exception if cursor tampering occurs. It is intended for use when you 207 -- want to insert the item in the set, and you don't care whether an 208 -- equivalent element is already present.) 209 210 procedure Replace (Container : in out Set; New_Item : Element_Type); 211 -- Searches for New_Item in the set; if the search fails (because an 212 -- equivalent element was not in the set), then it raises 213 -- Constraint_Error. Otherwise, the existing element is assigned the value 214 -- New_Item. (This is similar to Insert, but with the opposite exception 215 -- behavior. It is intended for use when you want to assert that the item 216 -- is already in the set.) 217 218 procedure Exclude (Container : in out Set; Item : Element_Type); 219 -- Searches for Item in the set, and if found, removes its node from the 220 -- set and then deallocates it. The search works as follows. The operation 221 -- calls Hash to determine the item's bucket; if the bucket is not empty, 222 -- it calls Equivalent_Elements to compare Item to the element of each node 223 -- in the bucket. (This is the deletion analog of Include. It is intended 224 -- for use when you want to remove the item from the set, but don't care 225 -- whether the item is already in the set.) 226 227 procedure Delete (Container : in out Set; Item : Element_Type); 228 -- Searches for Item in the set (which involves calling both Hash and 229 -- Equivalent_Elements). If the search fails, then the operation raises 230 -- Constraint_Error. Otherwise it removes the node from the set and then 231 -- deallocates it. (This is the deletion analog of non-conditional 232 -- Insert. It is intended for use when you want to assert that the item is 233 -- already in the set.) 234 235 procedure Delete (Container : in out Set; Position : in out Cursor); 236 -- Removes the node designated by Position from the set, and then 237 -- deallocates the node. The operation calls Hash to determine the bucket, 238 -- and then compares Position to each node in the bucket until there's a 239 -- match (it does not call Equivalent_Elements). 240 241 procedure Union (Target : in out Set; Source : Set); 242 -- The operation first calls Reserve_Capacity if the current capacity is 243 -- less than the sum of the lengths of Source and Target. It then iterates 244 -- over the Source set, and conditionally inserts each element into Target. 245 246 function Union (Left, Right : Set) return Set; 247 -- The operation first copies the Left set to the result, and then iterates 248 -- over the Right set to conditionally insert each element into the result. 249 250 function "or" (Left, Right : Set) return Set renames Union; 251 252 procedure Intersection (Target : in out Set; Source : Set); 253 -- Iterates over the Target set (calling First and Next), calling Find to 254 -- determine whether the element is in Source. If an equivalent element is 255 -- not found in Source, the element is deleted from Target. 256 257 function Intersection (Left, Right : Set) return Set; 258 -- Iterates over the Left set, calling Find to determine whether the 259 -- element is in Right. If an equivalent element is found, it is inserted 260 -- into the result set. 261 262 function "and" (Left, Right : Set) return Set renames Intersection; 263 264 procedure Difference (Target : in out Set; Source : Set); 265 -- Iterates over the Source (calling First and Next), calling Find to 266 -- determine whether the element is in Target. If an equivalent element is 267 -- found, it is deleted from Target. 268 269 function Difference (Left, Right : Set) return Set; 270 -- Iterates over the Left set, calling Find to determine whether the 271 -- element is in the Right set. If an equivalent element is not found, the 272 -- element is inserted into the result set. 273 274 function "-" (Left, Right : Set) return Set renames Difference; 275 276 procedure Symmetric_Difference (Target : in out Set; Source : Set); 277 -- The operation first calls Reserve_Capacity if the current capacity is 278 -- less than the sum of the lengths of Source and Target. It then iterates 279 -- over the Source set, searching for the element in Target (calling Hash 280 -- and Equivalent_Elements). If an equivalent element is found, it is 281 -- removed from Target; otherwise it is inserted into Target. 282 283 function Symmetric_Difference (Left, Right : Set) return Set; 284 -- The operation first iterates over the Left set. It calls Find to 285 -- determine whether the element is in the Right set. If no equivalent 286 -- element is found, the element from Left is inserted into the result. The 287 -- operation then iterates over the Right set, to determine whether the 288 -- element is in the Left set. If no equivalent element is found, the Right 289 -- element is inserted into the result. 290 291 function "xor" (Left, Right : Set) return Set 292 renames Symmetric_Difference; 293 294 function Overlap (Left, Right : Set) return Boolean; 295 -- Iterates over the Left set (calling First and Next), calling Find to 296 -- determine whether the element is in the Right set. If an equivalent 297 -- element is found, the operation immediately returns True. The operation 298 -- returns False if the iteration over Left terminates without finding any 299 -- equivalent element in Right. 300 301 function Is_Subset (Subset : Set; Of_Set : Set) return Boolean; 302 -- Iterates over Subset (calling First and Next), calling Find to determine 303 -- whether the element is in Of_Set. If no equivalent element is found in 304 -- Of_Set, the operation immediately returns False. The operation returns 305 -- True if the iteration over Subset terminates without finding an element 306 -- not in Of_Set (that is, every element in Subset is equivalent to an 307 -- element in Of_Set). 308 309 function First (Container : Set) return Cursor; 310 -- Returns a cursor that designates the first non-empty bucket, by 311 -- searching from the beginning of the buckets array. 312 313 function Next (Position : Cursor) return Cursor; 314 -- Returns a cursor that designates the node that follows the current one 315 -- designated by Position. If Position designates the last node in its 316 -- bucket, the operation calls Hash to compute the index of this bucket, 317 -- and searches the buckets array for the first non-empty bucket, starting 318 -- from that index; otherwise, it simply follows the link to the next node 319 -- in the same bucket. 320 321 procedure Next (Position : in out Cursor); 322 -- Equivalent to Position := Next (Position) 323 324 function Find (Container : Set; Item : Element_Type) return Cursor; 325 -- Searches for Item in the set. Find calls Hash to determine the item's 326 -- bucket; if the bucket is not empty, it calls Equivalent_Elements to 327 -- compare Item to each element in the bucket. If the search succeeds, Find 328 -- returns a cursor designating the node containing the equivalent element; 329 -- otherwise, it returns No_Element. 330 331 function Contains (Container : Set; Item : Element_Type) return Boolean; 332 -- Equivalent to Find (Container, Item) /= No_Element 333 334 function Equivalent_Elements (Left, Right : Cursor) return Boolean; 335 -- Returns the result of calling Equivalent_Elements with the elements of 336 -- the nodes designated by cursors Left and Right. 337 338 function Equivalent_Elements 339 (Left : Cursor; 340 Right : Element_Type) return Boolean; 341 -- Returns the result of calling Equivalent_Elements with element of the 342 -- node designated by Left and element Right. 343 344 function Equivalent_Elements 345 (Left : Element_Type; 346 Right : Cursor) return Boolean; 347 -- Returns the result of calling Equivalent_Elements with element Left and 348 -- the element of the node designated by Right. 349 350 procedure Iterate 351 (Container : Set; 352 Process : not null access procedure (Position : Cursor)); 353 -- Calls Process for each node in the set 354 355 function Iterate (Container : Set) 356 return Set_Iterator_Interfaces.Forward_Iterator'Class; 357 358 generic 359 type Key_Type (<>) is private; 360 361 with function Key (Element : Element_Type) return Key_Type; 362 363 with function Hash (Key : Key_Type) return Hash_Type; 364 365 with function Equivalent_Keys (Left, Right : Key_Type) return Boolean; 366 367 package Generic_Keys is 368 369 function Key (Position : Cursor) return Key_Type; 370 -- Applies generic formal operation Key to the element of the node 371 -- designated by Position. 372 373 function Element (Container : Set; Key : Key_Type) return Element_Type; 374 -- Searches (as per the key-based Find) for the node containing Key, and 375 -- returns the associated element. 376 377 procedure Replace 378 (Container : in out Set; 379 Key : Key_Type; 380 New_Item : Element_Type); 381 -- Searches (as per the key-based Find) for the node containing Key, and 382 -- then replaces the element of that node (as per the element-based 383 -- Replace_Element). 384 385 procedure Exclude (Container : in out Set; Key : Key_Type); 386 -- Searches for Key in the set, and if found, removes its node from the 387 -- set and then deallocates it. The search works by first calling Hash 388 -- (on Key) to determine the bucket; if the bucket is not empty, it 389 -- calls Equivalent_Keys to compare parameter Key to the value of 390 -- generic formal operation Key applied to element of each node in the 391 -- bucket. 392 393 procedure Delete (Container : in out Set; Key : Key_Type); 394 -- Deletes the node containing Key as per Exclude, with the difference 395 -- that Constraint_Error is raised if Key is not found. 396 397 function Find (Container : Set; Key : Key_Type) return Cursor; 398 -- Searches for the node containing Key, and returns a cursor 399 -- designating the node. The search works by first calling Hash (on Key) 400 -- to determine the bucket. If the bucket is not empty, the search 401 -- compares Key to the element of each node in the bucket, and returns 402 -- the matching node. The comparison itself works by applying the 403 -- generic formal Key operation to the element of the node, and then 404 -- calling generic formal operation Equivalent_Keys. 405 406 function Contains (Container : Set; Key : Key_Type) return Boolean; 407 -- Equivalent to Find (Container, Key) /= No_Element 408 409 procedure Update_Element_Preserving_Key 410 (Container : in out Set; 411 Position : Cursor; 412 Process : not null access 413 procedure (Element : in out Element_Type)); 414 -- Calls Process with the element of the node designated by Position, 415 -- but with the restriction that the key-value of the element is not 416 -- modified. The operation first makes a copy of the value returned by 417 -- applying generic formal operation Key on the element of the node, and 418 -- then calls Process with the element. The operation verifies that the 419 -- key-part has not been modified by calling generic formal operation 420 -- Equivalent_Keys to compare the saved key-value to the value returned 421 -- by applying generic formal operation Key to the post-Process value of 422 -- element. If the key values compare equal then the operation 423 -- completes. Otherwise, the node is removed from the map and 424 -- Program_Error is raised. 425 426 type Reference_Type (Element : not null access Element_Type) is private 427 with Implicit_Dereference => Element; 428 429 function Reference_Preserving_Key 430 (Container : aliased in out Set; 431 Position : Cursor) return Reference_Type; 432 433 function Constant_Reference 434 (Container : aliased Set; 435 Key : Key_Type) return Constant_Reference_Type; 436 437 function Reference_Preserving_Key 438 (Container : aliased in out Set; 439 Key : Key_Type) return Reference_Type; 440 441 private 442 type Set_Access is access all Set; 443 for Set_Access'Storage_Size use 0; 444 445 package Impl is new Helpers.Generic_Implementation; 446 447 type Reference_Control_Type is 448 new Impl.Reference_Control_Type with 449 record 450 Container : Set_Access; 451 Index : Hash_Type; 452 Old_Pos : Cursor; 453 Old_Hash : Hash_Type; 454 end record; 455 456 overriding procedure Finalize (Control : in out Reference_Control_Type); 457 pragma Inline (Finalize); 458 459 type Reference_Type (Element : not null access Element_Type) is record 460 Control : Reference_Control_Type := 461 raise Program_Error with "uninitialized reference"; 462 -- The RM says, "The default initialization of an object of 463 -- type Constant_Reference_Type or Reference_Type propagates 464 -- Program_Error." 465 end record; 466 467 use Ada.Streams; 468 469 procedure Read 470 (Stream : not null access Root_Stream_Type'Class; 471 Item : out Reference_Type); 472 473 for Reference_Type'Read use Read; 474 475 procedure Write 476 (Stream : not null access Root_Stream_Type'Class; 477 Item : Reference_Type); 478 479 for Reference_Type'Write use Write; 480 end Generic_Keys; 481 482private 483 pragma Inline (Next); 484 485 type Node_Type; 486 type Node_Access is access Node_Type; 487 488 type Element_Access is access all Element_Type; 489 490 type Node_Type is limited record 491 Element : Element_Access; 492 Next : Node_Access; 493 end record; 494 495 package HT_Types is 496 new Hash_Tables.Generic_Hash_Table_Types (Node_Type, Node_Access); 497 498 type Set is new Ada.Finalization.Controlled with record 499 HT : HT_Types.Hash_Table_Type; 500 end record with Put_Image => Put_Image; 501 502 procedure Put_Image 503 (S : in out Ada.Strings.Text_Buffers.Root_Buffer_Type'Class; V : Set); 504 505 overriding procedure Adjust (Container : in out Set); 506 507 overriding procedure Finalize (Container : in out Set); 508 509 use HT_Types, HT_Types.Implementation; 510 use Ada.Finalization; 511 use Ada.Streams; 512 513 procedure Write 514 (Stream : not null access Root_Stream_Type'Class; 515 Container : Set); 516 517 for Set'Write use Write; 518 519 procedure Read 520 (Stream : not null access Root_Stream_Type'Class; 521 Container : out Set); 522 523 for Set'Read use Read; 524 525 type Set_Access is access all Set; 526 for Set_Access'Storage_Size use 0; 527 528 type Cursor is record 529 Container : Set_Access; 530 Node : Node_Access; 531 end record; 532 533 procedure Write 534 (Stream : not null access Root_Stream_Type'Class; 535 Item : Cursor); 536 537 for Cursor'Write use Write; 538 539 procedure Read 540 (Stream : not null access Root_Stream_Type'Class; 541 Item : out Cursor); 542 543 for Cursor'Read use Read; 544 545 subtype Reference_Control_Type is Implementation.Reference_Control_Type; 546 -- It is necessary to rename this here, so that the compiler can find it 547 548 type Constant_Reference_Type 549 (Element : not null access constant Element_Type) is 550 record 551 Control : Reference_Control_Type := 552 raise Program_Error with "uninitialized reference"; 553 -- The RM says, "The default initialization of an object of 554 -- type Constant_Reference_Type or Reference_Type propagates 555 -- Program_Error." 556 end record; 557 558 procedure Read 559 (Stream : not null access Root_Stream_Type'Class; 560 Item : out Constant_Reference_Type); 561 562 for Constant_Reference_Type'Read use Read; 563 564 procedure Write 565 (Stream : not null access Root_Stream_Type'Class; 566 Item : Constant_Reference_Type); 567 568 for Constant_Reference_Type'Write use Write; 569 570 -- Three operations are used to optimize in the expansion of "for ... of" 571 -- loops: the Next(Cursor) procedure in the visible part, and the following 572 -- Pseudo_Reference and Get_Element_Access functions. See Sem_Ch5 for 573 -- details. 574 575 function Pseudo_Reference 576 (Container : aliased Set'Class) return Reference_Control_Type; 577 pragma Inline (Pseudo_Reference); 578 -- Creates an object of type Reference_Control_Type pointing to the 579 -- container, and increments the Lock. Finalization of this object will 580 -- decrement the Lock. 581 582 function Get_Element_Access 583 (Position : Cursor) return not null Element_Access; 584 -- Returns a pointer to the element designated by Position. 585 586 Empty_Set : constant Set := (Controlled with others => <>); 587 588 No_Element : constant Cursor := (Container => null, Node => null); 589 590 type Iterator is new Limited_Controlled and 591 Set_Iterator_Interfaces.Forward_Iterator with 592 record 593 Container : Set_Access; 594 end record 595 with Disable_Controlled => not T_Check; 596 597 overriding procedure Finalize (Object : in out Iterator); 598 599 overriding function First (Object : Iterator) return Cursor; 600 601 overriding function Next 602 (Object : Iterator; 603 Position : Cursor) return Cursor; 604 605end Ada.Containers.Indefinite_Hashed_Sets; 606