1 /* Definitions of target machine for GNU compiler for Renesas / SuperH SH.
2    Copyright (C) 1993-2021 Free Software Foundation, Inc.
3    Contributed by Steve Chamberlain (sac@cygnus.com).
4    Improved by Jim Wilson (wilson@cygnus.com).
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12 
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #ifndef GCC_SH_H
23 #define GCC_SH_H
24 
25 #include "config/vxworks-dummy.h"
26 
27 /* Unfortunately, insn-attrtab.c doesn't include insn-codes.h.  We can't
28    include it here, because bconfig.h is also included by gencodes.c .  */
29 /* ??? No longer true.  */
30 extern int code_for_indirect_jump_scratch;
31 
32 #define TARGET_CPU_CPP_BUILTINS() sh_cpu_cpp_builtins (pfile)
33 
34 /* Value should be nonzero if functions must have frame pointers.
35    Zero means the frame pointer need not be set up (and parms may be accessed
36    via the stack pointer) in functions that seem suitable.  */
37 
38 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
39 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
40 #endif
41 
42 
43 /* Nonzero if this is an ELF target - compile time only */
44 #define TARGET_ELF 0
45 
46 /* Nonzero if we should generate code using type 2E insns.  */
47 #define TARGET_SH2E (TARGET_SH2 && TARGET_SH_E)
48 
49 /* Nonzero if we should generate code using type 2A insns.  */
50 #define TARGET_SH2A TARGET_HARD_SH2A
51 /* Nonzero if we should generate code using type 2A SF insns.  */
52 #define TARGET_SH2A_SINGLE (TARGET_SH2A && TARGET_SH2E)
53 /* Nonzero if we should generate code using type 2A DF insns.  */
54 #define TARGET_SH2A_DOUBLE (TARGET_HARD_SH2A_DOUBLE && TARGET_SH2A)
55 
56 /* Nonzero if we should generate code using type 3E insns.  */
57 #define TARGET_SH3E (TARGET_SH3 && TARGET_SH_E)
58 
59 /* Nonzero if we schedule for a superscalar implementation.  */
60 #define TARGET_SUPERSCALAR (TARGET_HARD_SH4 || TARGET_SH2A)
61 
62 /* Nonzero if a double-precision FPU is available.  */
63 #define TARGET_FPU_DOUBLE (TARGET_SH4 || TARGET_SH2A_DOUBLE)
64 
65 /* Nonzero if an FPU is available.  */
66 #define TARGET_FPU_ANY (TARGET_SH2E || TARGET_FPU_DOUBLE)
67 
68 /* Nonzero if we're generating code for SH4a, unless the use of the
69    FPU is disabled (which makes it compatible with SH4al-dsp).  */
70 #define TARGET_SH4A_FP (TARGET_SH4A && TARGET_FPU_ANY)
71 
72 /* True if the FPU is a SH4-300 variant.  */
73 #define TARGET_FPU_SH4_300 (TARGET_FPU_ANY && TARGET_SH4_300)
74 
75 /* This is not used by the SH2E calling convention  */
76 #define TARGET_VARARGS_PRETEND_ARGS(FUN_DECL) \
77   (! TARGET_SH2E \
78    && ! (TARGET_HITACHI || sh_attr_renesas_p (FUN_DECL)))
79 
80 #ifndef TARGET_CPU_DEFAULT
81 #define TARGET_CPU_DEFAULT SELECT_SH1
82 #define SUPPORT_SH1 1
83 #define SUPPORT_SH2E 1
84 #define SUPPORT_SH4 1
85 #define SUPPORT_SH4_SINGLE 1
86 #define SUPPORT_SH2A 1
87 #define SUPPORT_SH2A_SINGLE 1
88 #endif
89 
90 #define TARGET_DIVIDE_CALL_DIV1 (sh_div_strategy == SH_DIV_CALL_DIV1)
91 #define TARGET_DIVIDE_CALL_FP (sh_div_strategy == SH_DIV_CALL_FP)
92 #define TARGET_DIVIDE_CALL_TABLE (sh_div_strategy == SH_DIV_CALL_TABLE)
93 
94 #define SELECT_SH1		 (MASK_SH1)
95 #define SELECT_SH2		 (MASK_SH2 | SELECT_SH1)
96 #define SELECT_SH2E		 (MASK_SH_E | MASK_SH2 | MASK_SH1 \
97 				  | MASK_FPU_SINGLE)
98 #define SELECT_SH2A		 (MASK_SH_E | MASK_HARD_SH2A \
99 				  | MASK_HARD_SH2A_DOUBLE \
100 				  | MASK_SH2 | MASK_SH1)
101 #define SELECT_SH2A_NOFPU	 (MASK_HARD_SH2A | MASK_SH2 | MASK_SH1)
102 #define SELECT_SH2A_SINGLE_ONLY  (MASK_SH_E | MASK_HARD_SH2A | MASK_SH2 \
103 				  | MASK_SH1 | MASK_FPU_SINGLE \
104 				  | MASK_FPU_SINGLE_ONLY)
105 #define SELECT_SH2A_SINGLE	 (MASK_SH_E | MASK_HARD_SH2A \
106 				  | MASK_FPU_SINGLE | MASK_HARD_SH2A_DOUBLE \
107 				  | MASK_SH2 | MASK_SH1)
108 #define SELECT_SH3		 (MASK_SH3 | SELECT_SH2)
109 #define SELECT_SH3E		 (MASK_SH_E | MASK_FPU_SINGLE | SELECT_SH3)
110 #define SELECT_SH4_NOFPU	 (MASK_HARD_SH4 | SELECT_SH3)
111 #define SELECT_SH4_SINGLE_ONLY	 (MASK_HARD_SH4 | SELECT_SH3E \
112 				  | MASK_FPU_SINGLE_ONLY)
113 #define SELECT_SH4		 (MASK_SH4 | MASK_SH_E | MASK_HARD_SH4 \
114 				  | SELECT_SH3)
115 #define SELECT_SH4_SINGLE	 (MASK_FPU_SINGLE | SELECT_SH4)
116 #define SELECT_SH4A_NOFPU	 (MASK_SH4A | SELECT_SH4_NOFPU)
117 #define SELECT_SH4A_SINGLE_ONLY  (MASK_SH4A | SELECT_SH4_SINGLE_ONLY)
118 #define SELECT_SH4A		 (MASK_SH4A | SELECT_SH4)
119 #define SELECT_SH4A_SINGLE	 (MASK_SH4A | SELECT_SH4_SINGLE)
120 
121 #if SUPPORT_SH1
122 #define SUPPORT_SH2 1
123 #endif
124 #if SUPPORT_SH2
125 #define SUPPORT_SH3 1
126 #define SUPPORT_SH2A_NOFPU 1
127 #endif
128 #if SUPPORT_SH3
129 #define SUPPORT_SH4_NOFPU 1
130 #endif
131 #if SUPPORT_SH4_NOFPU
132 #define SUPPORT_SH4A_NOFPU 1
133 #define SUPPORT_SH4AL 1
134 #endif
135 
136 #if SUPPORT_SH2E
137 #define SUPPORT_SH3E 1
138 #define SUPPORT_SH2A_SINGLE_ONLY 1
139 #endif
140 #if SUPPORT_SH3E
141 #define SUPPORT_SH4_SINGLE_ONLY 1
142 #endif
143 #if SUPPORT_SH4_SINGLE_ONLY
144 #define SUPPORT_SH4A_SINGLE_ONLY 1
145 #endif
146 
147 #if SUPPORT_SH4
148 #define SUPPORT_SH4A 1
149 #endif
150 
151 #if SUPPORT_SH4_SINGLE
152 #define SUPPORT_SH4A_SINGLE 1
153 #endif
154 
155 /* Reset all target-selection flags.  */
156 #define MASK_ARCH (MASK_SH1 | MASK_SH2 | MASK_SH3 | MASK_SH_E | MASK_SH4 \
157 		   | MASK_HARD_SH2A | MASK_HARD_SH2A_DOUBLE | MASK_SH4A \
158 		   | MASK_HARD_SH4 | MASK_FPU_SINGLE \
159 		   | MASK_FPU_SINGLE_ONLY)
160 
161 /* This defaults us to big-endian.  */
162 #ifndef TARGET_ENDIAN_DEFAULT
163 #define TARGET_ENDIAN_DEFAULT 0
164 #endif
165 
166 #ifndef TARGET_OPT_DEFAULT
167 #define TARGET_OPT_DEFAULT  0
168 #endif
169 
170 #define TARGET_DEFAULT \
171   (TARGET_CPU_DEFAULT | TARGET_ENDIAN_DEFAULT | TARGET_OPT_DEFAULT)
172 
173 #ifndef SH_MULTILIB_CPU_DEFAULT
174 #define SH_MULTILIB_CPU_DEFAULT "m1"
175 #endif
176 
177 #if TARGET_ENDIAN_DEFAULT
178 #define MULTILIB_DEFAULTS { "ml", SH_MULTILIB_CPU_DEFAULT }
179 #else
180 #define MULTILIB_DEFAULTS { "mb", SH_MULTILIB_CPU_DEFAULT }
181 #endif
182 
183 #define CPP_SPEC " %(subtarget_cpp_spec) "
184 
185 #ifndef SUBTARGET_CPP_SPEC
186 #define SUBTARGET_CPP_SPEC ""
187 #endif
188 
189 #ifndef SUBTARGET_EXTRA_SPECS
190 #define SUBTARGET_EXTRA_SPECS
191 #endif
192 
193 #define EXTRA_SPECS						\
194   { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },			\
195   { "link_emul_prefix", LINK_EMUL_PREFIX },			\
196   { "link_default_cpu_emul", LINK_DEFAULT_CPU_EMUL },		\
197   { "subtarget_link_emul_suffix", SUBTARGET_LINK_EMUL_SUFFIX },	\
198   { "subtarget_link_spec", SUBTARGET_LINK_SPEC },		\
199   { "subtarget_asm_endian_spec", SUBTARGET_ASM_ENDIAN_SPEC },	\
200   { "subtarget_asm_relax_spec", SUBTARGET_ASM_RELAX_SPEC },	\
201   { "subtarget_asm_isa_spec", SUBTARGET_ASM_ISA_SPEC },		\
202   { "subtarget_asm_spec", SUBTARGET_ASM_SPEC },			\
203   SUBTARGET_EXTRA_SPECS
204 
205 #if TARGET_CPU_DEFAULT & MASK_HARD_SH4
206 #define SUBTARGET_ASM_RELAX_SPEC "%{!m1:%{!m2:%{!m3*:-isa=sh4-up}}}"
207 #else
208 #define SUBTARGET_ASM_RELAX_SPEC "%{m4*:-isa=sh4-up}"
209 #endif
210 
211 /* Define which ISA type to pass to the assembler.
212    For SH4 we pass SH4A to allow using some instructions that are available
213    on some SH4 variants, but officially are part of the SH4A ISA.  */
214 #define SH_ASM_SPEC \
215  "%(subtarget_asm_endian_spec) %{mrelax:-relax %(subtarget_asm_relax_spec)} \
216 %(subtarget_asm_isa_spec) %(subtarget_asm_spec) \
217 %{m1:--isa=sh} \
218 %{m2:--isa=sh2} \
219 %{m2e:--isa=sh2e} \
220 %{m3:--isa=sh3} \
221 %{m3e:--isa=sh3e} \
222 %{m4:--isa=sh4a} \
223 %{m4-single:--isa=sh4a} \
224 %{m4-single-only:--isa=sh4a} \
225 %{m4-nofpu:--isa=sh4a-nofpu} \
226 %{m4a:--isa=sh4a} \
227 %{m4a-single:--isa=sh4a} \
228 %{m4a-single-only:--isa=sh4a} \
229 %{m4a-nofpu:--isa=sh4a-nofpu} \
230 %{m2a:--isa=sh2a} \
231 %{m2a-single:--isa=sh2a} \
232 %{m2a-single-only:--isa=sh2a} \
233 %{m2a-nofpu:--isa=sh2a-nofpu} \
234 %{m4al:-dsp}"
235 
236 #define ASM_SPEC SH_ASM_SPEC
237 
238 #ifndef SUBTARGET_ASM_ENDIAN_SPEC
239 #if TARGET_ENDIAN_DEFAULT == MASK_LITTLE_ENDIAN
240 #define SUBTARGET_ASM_ENDIAN_SPEC "%{mb:-big} %{!mb:-little}"
241 #else
242 #define SUBTARGET_ASM_ENDIAN_SPEC "%{ml:-little} %{!ml:-big}"
243 #endif
244 #endif
245 
246 #if STRICT_NOFPU == 1
247 /* Strict nofpu means that the compiler should tell the assembler
248    to reject FPU instructions. E.g. from ASM inserts.  */
249 #if TARGET_CPU_DEFAULT & MASK_HARD_SH4 && !(TARGET_CPU_DEFAULT & MASK_SH_E)
250 #define SUBTARGET_ASM_ISA_SPEC "%{!m1:%{!m2:%{!m3*:%{m4-nofpu|!m4*:-isa=sh4-nofpu}}}}"
251 #else
252 
253 #define SUBTARGET_ASM_ISA_SPEC \
254  "%{m4-nofpu:-isa=sh4-nofpu} " ASM_ISA_DEFAULT_SPEC
255 #endif
256 #else /* ! STRICT_NOFPU */
257 #define SUBTARGET_ASM_ISA_SPEC ASM_ISA_DEFAULT_SPEC
258 #endif
259 
260 #ifndef SUBTARGET_ASM_SPEC
261 #define SUBTARGET_ASM_SPEC "%{mfdpic:--fdpic}"
262 #endif
263 
264 #if TARGET_ENDIAN_DEFAULT == MASK_LITTLE_ENDIAN
265 #define LINK_EMUL_PREFIX "sh%{!mb:l}"
266 #else
267 #define LINK_EMUL_PREFIX "sh%{ml:l}"
268 #endif
269 
270 #define LINK_DEFAULT_CPU_EMUL ""
271 #define ASM_ISA_DEFAULT_SPEC ""
272 
273 #define SUBTARGET_LINK_EMUL_SUFFIX "%{mfdpic:_fd}"
274 #define SUBTARGET_LINK_SPEC ""
275 
276 /* Go via SH_LINK_SPEC to avoid code replication.  */
277 #define LINK_SPEC SH_LINK_SPEC
278 
279 #define SH_LINK_SPEC "\
280 -m %(link_emul_prefix)\
281 %{!m1:%{!m2:%{!m3*:%{!m4*:%(link_default_cpu_emul)}}}}\
282 %(subtarget_link_emul_suffix) \
283 %{mrelax:-relax} %(subtarget_link_spec)"
284 
285 #ifndef SH_DIV_STR_FOR_SIZE
286 #define SH_DIV_STR_FOR_SIZE "call"
287 #endif
288 
289 /* SH2A does not support little-endian.  Catch such combinations
290    taking into account the default configuration.  */
291 #if TARGET_ENDIAN_DEFAULT == MASK_BIG_ENDIAN
292 #define IS_LITTLE_ENDIAN_OPTION "%{ml:"
293 #else
294 #define IS_LITTLE_ENDIAN_OPTION "%{!mb:"
295 #endif
296 
297 #if TARGET_CPU_DEFAULT & MASK_HARD_SH2A
298 #define UNSUPPORTED_SH2A IS_LITTLE_ENDIAN_OPTION \
299 "%{m2a*|!m1:%{!m2*:%{!m3*:%{!m4*:%eSH2a does not support little-endian}}}}}"
300 #else
301 #define UNSUPPORTED_SH2A IS_LITTLE_ENDIAN_OPTION \
302 "%{m2a*:%eSH2a does not support little-endian}}"
303 #endif
304 
305 #ifdef FDPIC_DEFAULT
306 #define FDPIC_SELF_SPECS "%{!mno-fdpic:-mfdpic}"
307 #else
308 #define FDPIC_SELF_SPECS
309 #endif
310 
311 #undef DRIVER_SELF_SPECS
312 #define DRIVER_SELF_SPECS UNSUPPORTED_SH2A SUBTARGET_DRIVER_SELF_SPECS \
313   FDPIC_SELF_SPECS
314 
315 #undef SUBTARGET_DRIVER_SELF_SPECS
316 #define SUBTARGET_DRIVER_SELF_SPECS
317 
318 #define ASSEMBLER_DIALECT assembler_dialect
319 
320 extern int assembler_dialect;
321 
322 enum sh_divide_strategy_e {
323   /* SH1 .. SH4 strategies.  Because of the small number of registers
324      available, the compiler uses knowledge of the actual set of registers
325      being clobbered by the different functions called.  */
326   SH_DIV_CALL_DIV1, /* No FPU, medium size, highest latency.  */
327   SH_DIV_CALL_FP,     /* FPU needed, small size, high latency.  */
328   SH_DIV_CALL_TABLE,  /* No FPU, large size, medium latency. */
329   SH_DIV_INTRINSIC
330 };
331 
332 extern enum sh_divide_strategy_e sh_div_strategy;
333 
334 #ifndef SH_DIV_STRATEGY_DEFAULT
335 #define SH_DIV_STRATEGY_DEFAULT SH_DIV_CALL_DIV1
336 #endif
337 
338 #ifdef __cplusplus
339 
340 /* Atomic model.  */
341 struct sh_atomic_model
342 {
343   enum enum_type
344   {
345     none = 0,
346     soft_gusa,
347     hard_llcs,
348     soft_tcb,
349     soft_imask,
350 
351     num_models
352   };
353 
354   /*  If strict is set, disallow mixing of different models, as it would
355       happen on SH4A.  */
356   bool strict;
357   enum_type type;
358 
359   /* Name string as it was specified on the command line.  */
360   const char* name;
361 
362   /* Name string as it is used in C/C++ defines.  */
363   const char* cdef_name;
364 
365   /* GBR offset variable for TCB model.  */
366   int tcb_gbr_offset;
367 };
368 
369 extern const sh_atomic_model& selected_atomic_model (void);
370 
371 /* Shortcuts to check the currently selected atomic model.  */
372 #define TARGET_ATOMIC_ANY \
373   (selected_atomic_model ().type != sh_atomic_model::none)
374 
375 #define TARGET_ATOMIC_STRICT \
376   (selected_atomic_model ().strict)
377 
378 #define TARGET_ATOMIC_SOFT_GUSA \
379   (selected_atomic_model ().type == sh_atomic_model::soft_gusa)
380 
381 #define TARGET_ATOMIC_HARD_LLCS \
382   (selected_atomic_model ().type == sh_atomic_model::hard_llcs)
383 
384 #define TARGET_ATOMIC_SOFT_TCB \
385   (selected_atomic_model ().type == sh_atomic_model::soft_tcb)
386 
387 #define TARGET_ATOMIC_SOFT_TCB_GBR_OFFSET_RTX \
388   GEN_INT (selected_atomic_model ().tcb_gbr_offset)
389 
390 #define TARGET_ATOMIC_SOFT_IMASK \
391   (selected_atomic_model ().type == sh_atomic_model::soft_imask)
392 
393 #endif // __cplusplus
394 
395 #define SUBTARGET_OVERRIDE_OPTIONS (void) 0
396 
397 
398 /* Target machine storage layout.  */
399 
400 #define TARGET_BIG_ENDIAN (!TARGET_LITTLE_ENDIAN)
401 
402 #define SH_REG_MSW_OFFSET (TARGET_LITTLE_ENDIAN ? 1 : 0)
403 #define SH_REG_LSW_OFFSET (TARGET_LITTLE_ENDIAN ? 0 : 1)
404 
405 /* Define this if most significant bit is lowest numbered
406    in instructions that operate on numbered bit-fields.  */
407 #define BITS_BIG_ENDIAN  0
408 
409 /* Define this if most significant byte of a word is the lowest numbered.  */
410 #define BYTES_BIG_ENDIAN TARGET_BIG_ENDIAN
411 
412 /* Define this if most significant word of a multiword number is the lowest
413    numbered.  */
414 #define WORDS_BIG_ENDIAN TARGET_BIG_ENDIAN
415 
416 #define MAX_BITS_PER_WORD 64
417 
418 /* Width in bits of an `int'.  We want just 32-bits, even if words are
419    longer.  */
420 #define INT_TYPE_SIZE 32
421 
422 /* Width in bits of a `long'.  */
423 #define LONG_TYPE_SIZE (32)
424 
425 /* Width in bits of a `long long'.  */
426 #define LONG_LONG_TYPE_SIZE 64
427 
428 /* Width in bits of a `long double'.  */
429 #define LONG_DOUBLE_TYPE_SIZE 64
430 
431 /* Width of a word, in units (bytes).  */
432 #define UNITS_PER_WORD	(4)
433 #define MIN_UNITS_PER_WORD 4
434 
435 /* Scaling factor for Dwarf data offsets for CFI information.
436    The dwarf2out.c default would use -UNITS_PER_WORD.  */
437 #define DWARF_CIE_DATA_ALIGNMENT -4
438 
439 /* Width in bits of a pointer.
440    See also the macro `Pmode' defined below.  */
441 #define POINTER_SIZE  (32)
442 
443 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
444 #define PARM_BOUNDARY  	(32)
445 
446 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
447 #define STACK_BOUNDARY  BIGGEST_ALIGNMENT
448 
449 /* The log (base 2) of the cache line size, in bytes.  Processors prior to
450    SH2 have no actual cache, but they fetch code in chunks of 4 bytes.
451    The SH2/3 have 16 byte cache lines, and the SH4 has a 32 byte cache line */
452 #define CACHE_LOG (TARGET_HARD_SH4 ? 5 : TARGET_SH2 ? 4 : 2)
453 
454 /* ABI given & required minimum allocation boundary (in *bits*) for the
455    code of a function.  */
456 #define FUNCTION_BOUNDARY (16)
457 
458 /* Alignment of field after `int : 0' in a structure.  */
459 #define EMPTY_FIELD_BOUNDARY  32
460 
461 /* No data type wants to be aligned rounder than this.  */
462 #define BIGGEST_ALIGNMENT  (TARGET_ALIGN_DOUBLE ? 64 : 32)
463 
464 /* The best alignment to use in cases where we have a choice.  */
465 #define FASTEST_ALIGNMENT (32)
466 
467 /* get_mode_alignment assumes complex values are always held in multiple
468    registers, but that is not the case on the SH; CQImode and CHImode are
469    held in a single integer register.  */
470 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
471   ((GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_INT \
472     || GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_FLOAT) \
473    ? (unsigned) MIN (BIGGEST_ALIGNMENT, \
474 		     GET_MODE_BITSIZE (as_a <fixed_size_mode> \
475 				       (TYPE_MODE (TYPE)))) \
476    : (unsigned) DATA_ALIGNMENT(TYPE, ALIGN))
477 
478 /* Make arrays of chars word-aligned for the same reasons.  */
479 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
480   (TREE_CODE (TYPE) == ARRAY_TYPE		\
481    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
482    && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
483 
484 /* Number of bits which any structure or union's size must be a
485    multiple of.  Each structure or union's size is rounded up to a
486    multiple of this.  */
487 #define STRUCTURE_SIZE_BOUNDARY (TARGET_PADSTRUCT ? 32 : 8)
488 
489 /* Set this nonzero if move instructions will actually fail to work
490    when given unaligned data.  */
491 #define STRICT_ALIGNMENT 1
492 
493 /* If LABEL_AFTER_BARRIER demands an alignment, return its base 2 logarithm.  */
494 #define LABEL_ALIGN_AFTER_BARRIER(LABEL_AFTER_BARRIER) \
495   barrier_align (LABEL_AFTER_BARRIER)
496 
497 #define LOOP_ALIGN(A_LABEL) sh_loop_align (A_LABEL)
498 
499 #define LABEL_ALIGN(A_LABEL) \
500 (									\
501   (PREV_INSN (A_LABEL)							\
502    && NONJUMP_INSN_P (PREV_INSN (A_LABEL))				\
503    && GET_CODE (PATTERN (PREV_INSN (A_LABEL))) == UNSPEC_VOLATILE	\
504    && XINT (PATTERN (PREV_INSN (A_LABEL)), 1) == UNSPECV_ALIGN)		\
505    /* explicit alignment insn in constant tables.  */			\
506   ? INTVAL (XVECEXP (PATTERN (PREV_INSN (A_LABEL)), 0, 0))		\
507   : 0)
508 
509 /* Jump tables must be 32 bit aligned, no matter the size of the element.  */
510 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
511 
512 /* The base two logarithm of the known minimum alignment of an insn length.  */
513 #define INSN_LENGTH_ALIGNMENT(A_INSN)		\
514   (NONJUMP_INSN_P (A_INSN)			\
515    ? 1						\
516    : JUMP_P (A_INSN) || CALL_P (A_INSN)		\
517    ? 1						\
518    : CACHE_LOG)
519 
520 /* Standard register usage.  */
521 
522 /* Register allocation for the Renesas calling convention:
523 
524 	r0		arg return
525 	r1..r3		scratch
526 	r4..r7		args in
527 	r8..r13		call saved
528 	r14		frame pointer/call saved
529 	r15		stack pointer
530 	ap		arg pointer (doesn't really exist, always eliminated)
531 	pr		subroutine return address
532 	t		t bit
533 	mach		multiply/accumulate result, high part
534 	macl		multiply/accumulate result, low part.
535 	fpul		fp/int communication register
536 	rap		return address pointer register
537 	fr0		fp arg return
538 	fr1..fr3	scratch floating point registers
539 	fr4..fr11	fp args in
540 	fr12..fr15	call saved floating point registers  */
541 
542 #define MAX_REGISTER_NAME_LENGTH 6
543 extern char sh_register_names[][MAX_REGISTER_NAME_LENGTH + 1];
544 
545 #define SH_REGISTER_NAMES_INITIALIZER					\
546 {									\
547   "r0",   "r1",   "r2",   "r3",   "r4",   "r5",   "r6",   "r7", 	\
548   "r8",   "r9",   "r10",  "r11",  "r12",  "r13",  "r14",  "r15",	\
549   "r16",  "r17",  "r18",  "r19",  "r20",  "r21",  "r22",  "r23",	\
550   "r24",  "r25",  "r26",  "r27",  "r28",  "r29",  "r30",  "r31",	\
551   "r32",  "r33",  "r34",  "r35",  "r36",  "r37",  "r38",  "r39", 	\
552   "r40",  "r41",  "r42",  "r43",  "r44",  "r45",  "r46",  "r47",	\
553   "r48",  "r49",  "r50",  "r51",  "r52",  "r53",  "r54",  "r55",	\
554   "r56",  "r57",  "r58",  "r59",  "r60",  "r61",  "r62",  "r63",	\
555   "fr0",  "fr1",  "fr2",  "fr3",  "fr4",  "fr5",  "fr6",  "fr7", 	\
556   "fr8",  "fr9",  "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",	\
557   "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",	\
558   "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",	\
559   "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", 	\
560   "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",	\
561   "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",	\
562   "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",	\
563   "tr0",  "tr1",  "tr2",  "tr3",  "tr4",  "tr5",  "tr6",  "tr7", 	\
564   "xd0",  "xd2",  "xd4",  "xd6",  "xd8",  "xd10", "xd12", "xd14",	\
565   "gbr",  "ap",	  "pr",   "t",    "mach", "macl", "fpul", "fpscr",	\
566   "rap",  "sfp", "fpscr0", "fpscr1"					\
567 }
568 
569 #define REGNAMES_ARR_INDEX_1(index) \
570   (sh_register_names[index])
571 #define REGNAMES_ARR_INDEX_2(index) \
572   REGNAMES_ARR_INDEX_1 ((index)), REGNAMES_ARR_INDEX_1 ((index)+1)
573 #define REGNAMES_ARR_INDEX_4(index) \
574   REGNAMES_ARR_INDEX_2 ((index)), REGNAMES_ARR_INDEX_2 ((index)+2)
575 #define REGNAMES_ARR_INDEX_8(index) \
576   REGNAMES_ARR_INDEX_4 ((index)), REGNAMES_ARR_INDEX_4 ((index)+4)
577 #define REGNAMES_ARR_INDEX_16(index) \
578   REGNAMES_ARR_INDEX_8 ((index)), REGNAMES_ARR_INDEX_8 ((index)+8)
579 #define REGNAMES_ARR_INDEX_32(index) \
580   REGNAMES_ARR_INDEX_16 ((index)), REGNAMES_ARR_INDEX_16 ((index)+16)
581 #define REGNAMES_ARR_INDEX_64(index) \
582   REGNAMES_ARR_INDEX_32 ((index)), REGNAMES_ARR_INDEX_32 ((index)+32)
583 
584 #define REGISTER_NAMES \
585 { \
586   REGNAMES_ARR_INDEX_64 (0), \
587   REGNAMES_ARR_INDEX_64 (64), \
588   REGNAMES_ARR_INDEX_8 (128), \
589   REGNAMES_ARR_INDEX_8 (136), \
590   REGNAMES_ARR_INDEX_8 (144), \
591   REGNAMES_ARR_INDEX_4 (152) \
592 }
593 
594 #define ADDREGNAMES_SIZE 32
595 #define MAX_ADDITIONAL_REGISTER_NAME_LENGTH 4
596 extern char sh_additional_register_names[ADDREGNAMES_SIZE] \
597   [MAX_ADDITIONAL_REGISTER_NAME_LENGTH + 1];
598 
599 #define SH_ADDITIONAL_REGISTER_NAMES_INITIALIZER			\
600 {									\
601   "dr0",  "dr2",  "dr4",  "dr6",  "dr8",  "dr10", "dr12", "dr14",	\
602   "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",	\
603   "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",	\
604   "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62"	\
605 }
606 
607 #define ADDREGNAMES_REGNO(index) \
608   ((index < 32) ? (FIRST_FP_REG + (index) * 2) \
609    : (-1))
610 
611 #define ADDREGNAMES_ARR_INDEX_1(index) \
612   { (sh_additional_register_names[index]), ADDREGNAMES_REGNO (index) }
613 #define ADDREGNAMES_ARR_INDEX_2(index) \
614   ADDREGNAMES_ARR_INDEX_1 ((index)), ADDREGNAMES_ARR_INDEX_1 ((index)+1)
615 #define ADDREGNAMES_ARR_INDEX_4(index) \
616   ADDREGNAMES_ARR_INDEX_2 ((index)), ADDREGNAMES_ARR_INDEX_2 ((index)+2)
617 #define ADDREGNAMES_ARR_INDEX_8(index) \
618   ADDREGNAMES_ARR_INDEX_4 ((index)), ADDREGNAMES_ARR_INDEX_4 ((index)+4)
619 #define ADDREGNAMES_ARR_INDEX_16(index) \
620   ADDREGNAMES_ARR_INDEX_8 ((index)), ADDREGNAMES_ARR_INDEX_8 ((index)+8)
621 #define ADDREGNAMES_ARR_INDEX_32(index) \
622   ADDREGNAMES_ARR_INDEX_16 ((index)), ADDREGNAMES_ARR_INDEX_16 ((index)+16)
623 
624 #define ADDITIONAL_REGISTER_NAMES \
625 {					\
626   ADDREGNAMES_ARR_INDEX_32 (0)		\
627 }
628 
629 /* Number of actual hardware registers.
630    The hardware registers are assigned numbers for the compiler
631    from 0 to just below FIRST_PSEUDO_REGISTER.
632    All registers that the compiler knows about must be given numbers,
633    even those that are not normally considered general registers.  */
634 
635 /* There are many other relevant definitions in sh.md's md_constants.  */
636 
637 #define FIRST_GENERAL_REG R0_REG
638 #define LAST_GENERAL_REG (FIRST_GENERAL_REG + (15))
639 #define FIRST_FP_REG DR0_REG
640 #define LAST_FP_REG  (FIRST_FP_REG + (TARGET_SH2E ? 15 : -1))
641 #define FIRST_XD_REG XD0_REG
642 #define LAST_XD_REG  (FIRST_XD_REG + ((TARGET_SH4 && TARGET_FMOVD) ? 7 : -1))
643 
644 /* Registers that can be accessed through bank0 or bank1 depending on sr.md.  */
645 #define FIRST_BANKED_REG R0_REG
646 #define LAST_BANKED_REG R7_REG
647 
648 #define BANKED_REGISTER_P(REGNO) \
649   IN_RANGE ((REGNO), \
650 	    (unsigned HOST_WIDE_INT) FIRST_BANKED_REG, \
651 	    (unsigned HOST_WIDE_INT) LAST_BANKED_REG)
652 
653 #define GENERAL_REGISTER_P(REGNO) \
654   IN_RANGE ((REGNO), \
655 	    (unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \
656 	    (unsigned HOST_WIDE_INT) LAST_GENERAL_REG)
657 
658 #define GENERAL_OR_AP_REGISTER_P(REGNO) \
659   (GENERAL_REGISTER_P (REGNO) || ((REGNO) == AP_REG) \
660    || ((REGNO) == FRAME_POINTER_REGNUM))
661 
662 #define FP_REGISTER_P(REGNO) \
663   ((int) (REGNO) >= FIRST_FP_REG && (int) (REGNO) <= LAST_FP_REG)
664 
665 #define XD_REGISTER_P(REGNO) \
666   ((int) (REGNO) >= FIRST_XD_REG && (int) (REGNO) <= LAST_XD_REG)
667 
668 #define FP_OR_XD_REGISTER_P(REGNO) \
669   (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO))
670 
671 #define FP_ANY_REGISTER_P(REGNO) \
672   (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) || (REGNO) == FPUL_REG)
673 
674 #define SPECIAL_REGISTER_P(REGNO) \
675   ((REGNO) == GBR_REG || (REGNO) == T_REG \
676    || (REGNO) == MACH_REG || (REGNO) == MACL_REG \
677    || (REGNO) == FPSCR_MODES_REG || (REGNO) == FPSCR_STAT_REG)
678 
679 #define VALID_REGISTER_P(REGNO) \
680   (GENERAL_REGISTER_P (REGNO) || FP_REGISTER_P (REGNO) \
681    || XD_REGISTER_P (REGNO) \
682    || (REGNO) == AP_REG || (REGNO) == RAP_REG \
683    || (REGNO) == FRAME_POINTER_REGNUM \
684    || ((SPECIAL_REGISTER_P (REGNO) || (REGNO) == PR_REG)) \
685    || (TARGET_SH2E && (REGNO) == FPUL_REG))
686 
687 /* The mode that should be generally used to store a register by
688    itself in the stack, or to load it back.  */
689 #define REGISTER_NATURAL_MODE(REGNO) \
690   (FP_REGISTER_P (REGNO) ? E_SFmode \
691    : XD_REGISTER_P (REGNO) ? E_DFmode : E_SImode)
692 
693 
694 #define FIRST_PSEUDO_REGISTER 156
695 
696 /* Don't count soft frame pointer.  */
697 #define DWARF_FRAME_REGISTERS (153)
698 
699 /* 1 for registers that have pervasive standard uses
700    and are not available for the register allocator.
701 
702    Mach register is fixed 'cause it's only 10 bits wide for SH1.
703    It is 32 bits wide for SH2.  */
704 #define FIXED_REGISTERS							\
705 {									\
706 /* Regular registers.  */						\
707   0,      0,      0,      0,      0,      0,      0,      0,		\
708   0,      0,      0,      0,      0,      0,      0,      1,		\
709   /* r16 is reserved, r18 is the former pr.  */				\
710   1,      0,      0,      0,      0,      0,      0,      0,		\
711   /* r24 is reserved for the OS; r25, for the assembler or linker.  */	\
712   /* r26 is a global variable data pointer; r27 is for constants.  */	\
713   1,      1,      1,      1,      0,      0,      0,      0,		\
714   0,      0,      0,      0,      0,      0,      0,      0,		\
715   0,      0,      0,      0,      0,      0,      0,      0,		\
716   0,      0,      0,      0,      0,      0,      0,      0,		\
717   0,      0,      0,      0,      0,      0,      0,      1,		\
718 /* FP registers.  */							\
719   0,      0,      0,      0,      0,      0,      0,      0,		\
720   0,      0,      0,      0,      0,      0,      0,      0,		\
721   0,      0,      0,      0,      0,      0,      0,      0,		\
722   0,      0,      0,      0,      0,      0,      0,      0,		\
723   0,      0,      0,      0,      0,      0,      0,      0,		\
724   0,      0,      0,      0,      0,      0,      0,      0,		\
725   0,      0,      0,      0,      0,      0,      0,      0,		\
726   0,      0,      0,      0,      0,      0,      0,      0,		\
727 /* Branch target registers.  */						\
728   0,      0,      0,      0,      0,      0,      0,      0,		\
729 /* XD registers.  */							\
730   0,      0,      0,      0,      0,      0,      0,      0,		\
731 /*"gbr",  "ap",	  "pr",   "t",    "mach", "macl", "fpul", "fpscr", */	\
732   1,      1,      1,      1,      1,      1,      0,      1,		\
733 /*"rap",  "sfp","fpscr0","fpscr1"  */					\
734   1,      1,      1,      1,						\
735 }
736 
737 /* CALL_REALLY_USED_REGISTERS is used as a default setting, which is then
738    overridden by -fcall-saved-* and -fcall-used-* options and then by
739    TARGET_CONDITIONAL_REGISTER_USAGE.  There we might want to make a
740    register call-used, yet fixed, like PIC_OFFSET_TABLE_REGNUM.  */
741 #define CALL_REALLY_USED_REGISTERS 					\
742 {									\
743 /* Regular registers.  */						\
744   1,      1,      1,      1,      1,      1,      1,      1,		\
745   /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs.	\
746      Only the lower 32bits of R10-R14 are guaranteed to be preserved	\
747      across SH5 function calls.  */					\
748   0,      0,      0,      0,      0,      0,      0,      1,		\
749   1,      1,      1,      1,      1,      1,      1,      1,		\
750   1,      1,      1,      1,      0,      0,      0,      0,		\
751   0,      0,      0,      0,      1,      1,      1,      1,		\
752   1,      1,      1,      1,      0,      0,      0,      0,		\
753   0,      0,      0,      0,      0,      0,      0,      0,		\
754   0,      0,      0,      0,      1,      1,      1,      1,		\
755 /* FP registers.  */							\
756   1,      1,      1,      1,      1,      1,      1,      1,		\
757   1,      1,      1,      1,      0,      0,      0,      0,		\
758   1,      1,      1,      1,      1,      1,      1,      1,		\
759   1,      1,      1,      1,      1,      1,      1,      1,		\
760   1,      1,      1,      1,      0,      0,      0,      0,		\
761   0,      0,      0,      0,      0,      0,      0,      0,		\
762   0,      0,      0,      0,      0,      0,      0,      0,		\
763   0,      0,      0,      0,      0,      0,      0,      0,		\
764 /* Branch target registers.  */						\
765   1,      1,      1,      1,      1,      0,      0,      0,		\
766 /* XD registers.  */							\
767   1,      1,      1,      1,      1,      1,      0,      0,		\
768 /*"gbr",  "ap",	  "pr",   "t",    "mach", "macl", "fpul", "fpscr", */	\
769   0,      1,      1,      1,      1,      1,      1,      1,		\
770 /*"rap",  "sfp","fpscr0","fpscr1"  */					\
771   1,      1,      0,      0,						\
772 }
773 
774 /* Specify the modes required to caller save a given hard regno.  */
775 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)	\
776   sh_hard_regno_caller_save_mode ((REGNO), (NREGS), (MODE))
777 
778 /* A C expression that is nonzero if hard register NEW_REG can be
779    considered for use as a rename register for OLD_REG register */
780 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
781    sh_hard_regno_rename_ok (OLD_REG, NEW_REG)
782 
783 /* Specify the registers used for certain standard purposes.
784    The values of these macros are register numbers.  */
785 
786 /* Define this if the program counter is overloaded on a register.  */
787 /* #define PC_REGNUM		15*/
788 
789 /* Register to use for pushing function arguments.  */
790 #define STACK_POINTER_REGNUM	SP_REG
791 
792 /* Base register for access to local variables of the function.  */
793 #define HARD_FRAME_POINTER_REGNUM	FP_REG
794 
795 /* Base register for access to local variables of the function.  */
796 #define FRAME_POINTER_REGNUM	153
797 
798 /* Fake register that holds the address on the stack of the
799    current function's return address.  */
800 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG
801 
802 /* Register to hold the addressing base for position independent
803    code access to data items.  */
804 #define PIC_OFFSET_TABLE_REGNUM	(flag_pic ? PIC_REG : INVALID_REGNUM)
805 
806 /* For FDPIC, the FDPIC register is call-clobbered (otherwise PLT
807    entries would need to handle saving and restoring it).  */
808 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED TARGET_FDPIC
809 
810 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
811 
812 /* Definitions for register eliminations.
813 
814    We have three registers that can be eliminated on the SH.  First, the
815    frame pointer register can often be eliminated in favor of the stack
816    pointer register.  Secondly, the argument pointer register can always be
817    eliminated; it is replaced with either the stack or frame pointer.
818    Third, there is the return address pointer, which can also be replaced
819    with either the stack or the frame pointer.
820 
821    This is an array of structures.  Each structure initializes one pair
822    of eliminable registers.  The "from" register number is given first,
823    followed by "to".  Eliminations of the same "from" register are listed
824    in order of preference.
825 
826    If you add any registers here that are not actually hard registers,
827    and that have any alternative of elimination that doesn't always
828    apply, you need to amend calc_live_regs to exclude it, because
829    reload spills all eliminable registers where it sees an
830    can_eliminate == 0 entry, thus making them 'live' .
831    If you add any hard registers that can be eliminated in different
832    ways, you have to patch reload to spill them only when all alternatives
833    of elimination fail.  */
834 #define ELIMINABLE_REGS						\
835 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
836  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},			\
837  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},		\
838  { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
839  { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
840  { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},			\
841  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},}
842 
843 /* Define the offset between two registers, one to be eliminated, and the other
844    its replacement, at the start of a routine.  */
845 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
846   OFFSET = initial_elimination_offset ((FROM), (TO))
847 
848 /* Base register for access to arguments of the function.  */
849 #define ARG_POINTER_REGNUM	AP_REG
850 
851 /* Register in which the static-chain is passed to a function.  */
852 #define STATIC_CHAIN_REGNUM	(3)
853 
854 /* Don't default to pcc-struct-return, because we have already specified
855    exactly how to return structures in the TARGET_RETURN_IN_MEMORY
856    target hook.  */
857 #define DEFAULT_PCC_STRUCT_RETURN 0
858 
859 
860 /* Define the classes of registers for register constraints in the
861    machine description.  Also define ranges of constants.
862 
863    One of the classes must always be named ALL_REGS and include all hard regs.
864    If there is more than one class, another class must be named NO_REGS
865    and contain no registers.
866 
867    The name GENERAL_REGS must be the name of a class (or an alias for
868    another name such as ALL_REGS).  This is the class of registers
869    that is allowed by "g" or "r" in a register constraint.
870    Also, registers outside this class are allocated only when
871    instructions express preferences for them.
872 
873    The classes must be numbered in nondecreasing order; that is,
874    a larger-numbered class must never be contained completely
875    in a smaller-numbered class.
876 
877    For any two classes, it is very desirable that there be another
878    class that represents their union.
879 
880    The SH has two sorts of general registers, R0 and the rest.  R0 can
881    be used as the destination of some of the arithmetic ops. There are
882    also some special purpose registers; the T bit register, the
883    Procedure Return Register and the Multiply Accumulate Registers.
884 
885    Place GENERAL_REGS after FPUL_REGS so that it will be preferred by
886    reg_class_subunion.  We don't want to have an actual union class
887    of these, because it would only be used when both classes are calculated
888    to give the same cost, but there is only one FPUL register.
889    Besides, regclass fails to notice the different REGISTER_MOVE_COSTS
890    applying to the actual instruction alternative considered.  E.g., the
891    y/r alternative of movsi_ie is considered to have no more cost that
892    the r/r alternative, which is patently untrue.  */
893 enum reg_class
894 {
895   NO_REGS,
896   R0_REGS,
897   PR_REGS,
898   T_REGS,
899   MAC_REGS,
900   FPUL_REGS,
901   SIBCALL_REGS,
902   NON_SP_REGS,
903   GENERAL_REGS,
904   FP0_REGS,
905   FP_REGS,
906   DF_REGS,
907   FPSCR_REGS,
908   GENERAL_FP_REGS,
909   GENERAL_DF_REGS,
910   TARGET_REGS,
911   ALL_REGS,
912   LIM_REG_CLASSES
913 };
914 
915 #define N_REG_CLASSES  (int) LIM_REG_CLASSES
916 
917 /* Give names of register classes as strings for dump file.  */
918 #define REG_CLASS_NAMES	\
919 {			\
920   "NO_REGS",		\
921   "R0_REGS",		\
922   "PR_REGS",		\
923   "T_REGS",		\
924   "MAC_REGS",		\
925   "FPUL_REGS",		\
926   "SIBCALL_REGS",	\
927   "NON_SP_REGS",	\
928   "GENERAL_REGS",	\
929   "FP0_REGS",		\
930   "FP_REGS",		\
931   "DF_REGS",		\
932   "FPSCR_REGS",		\
933   "GENERAL_FP_REGS",	\
934   "GENERAL_DF_REGS",	\
935   "TARGET_REGS",	\
936   "ALL_REGS",		\
937 }
938 
939 /* Define which registers fit in which classes.
940    This is an initializer for a vector of HARD_REG_SET
941    of length N_REG_CLASSES.  */
942 #define REG_CLASS_CONTENTS						\
943 {									\
944 /* NO_REGS:  */								\
945   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	\
946 /* R0_REGS:  */								\
947   { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	\
948 /* PR_REGS:  */								\
949   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00040000 },	\
950 /* T_REGS:  */								\
951   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00080000 },	\
952 /* MAC_REGS:  */							\
953   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00300000 },	\
954 /* FPUL_REGS:  */							\
955   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00400000 },	\
956 /* SIBCALL_REGS: Initialized in TARGET_CONDITIONAL_REGISTER_USAGE.  */	\
957   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	\
958 /* NON_SP_REGS:  */							\
959   { 0xffff7fff, 0xffffffff, 0x00000000, 0x00000000, 0x03020000 },	\
960 /* GENERAL_REGS:  */							\
961   { 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x03020000 },	\
962 /* FP0_REGS:  */							\
963   { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000 },	\
964 /* FP_REGS:  */								\
965   { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 },	\
966 /* DF_REGS:  */								\
967   { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 },	\
968 /* FPSCR_REGS:  */							\
969   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00800000 },	\
970 /* GENERAL_FP_REGS:  */							\
971   { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x03020000 },	\
972 /* GENERAL_DF_REGS:  */							\
973   { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0302ff00 },	\
974 /* TARGET_REGS:  */							\
975   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000ff },	\
976 /* ALL_REGS:  */							\
977   { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0fffffff },	\
978 }
979 
980 /* The same information, inverted:
981    Return the class number of the smallest class containing
982    reg number REGNO.  This could be a conditional expression
983    or could index an array.  */
984 extern enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER];
985 #define REGNO_REG_CLASS(REGNO) regno_reg_class[(REGNO)]
986 
987 /* When this hook returns true for MODE, the compiler allows
988    registers explicitly used in the rtl to be used as spill registers
989    but prevents the compiler from extending the lifetime of these
990    registers.  */
991 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
992   sh_small_register_classes_for_mode_p
993 
994 /* The order in which register should be allocated.  */
995 /* Sometimes FP0_REGS becomes the preferred class of a floating point pseudo,
996    and GENERAL_FP_REGS the alternate class.  Since FP0 is likely to be
997    spilled or used otherwise, we better have the FP_REGS allocated first.  */
998 #define REG_ALLOC_ORDER \
999   {/* Caller-saved FPRs */ \
1000     65, 66, 67, 68, 69, 70, 71, 64, \
1001     72, 73, 74, 75, 80, 81, 82, 83, \
1002     84, 85, 86, 87, 88, 89, 90, 91, \
1003     92, 93, 94, 95, 96, 97, 98, 99, \
1004    /* Callee-saved FPRs */ \
1005     76, 77, 78, 79,100,101,102,103, \
1006    104,105,106,107,108,109,110,111, \
1007    112,113,114,115,116,117,118,119, \
1008    120,121,122,123,124,125,126,127, \
1009    136,137,138,139,140,141,142,143, \
1010    /* FPSCR */ 151, \
1011    /* Caller-saved GPRs (except 8/9 on SH1-4) */ \
1012      1,  2,  3,  7,  6,  5,  4,  0, \
1013      8,  9, 17, 19, 20, 21, 22, 23, \
1014     36, 37, 38, 39, 40, 41, 42, 43, \
1015     60, 61, 62, \
1016    /* SH1-4 callee-saved saved GPRs / SH5 partially-saved GPRs */ \
1017     10, 11, 12, 13, 14, 18, \
1018     /* SH5 callee-saved GPRs */ \
1019     28, 29, 30, 31, 32, 33, 34, 35, \
1020     44, 45, 46, 47, 48, 49, 50, 51, \
1021     52, 53, 54, 55, 56, 57, 58, 59, \
1022    /* FPUL */ 150, \
1023    /* Fixed registers */ \
1024     15, 16, 24, 25, 26, 27, 63,144, \
1025    145,146,147,148,149,152,153,154,155  }
1026 
1027 /* The class value for index registers, and the one for base regs.  */
1028 #define INDEX_REG_CLASS R0_REGS
1029 #define BASE_REG_CLASS GENERAL_REGS
1030 
1031 /* Defines for sh.md and constraints.md.  */
1032 
1033 #define CONST_OK_FOR_I08(VALUE) (((HOST_WIDE_INT)(VALUE))>= -128 \
1034 				 && ((HOST_WIDE_INT)(VALUE)) <= 127)
1035 
1036 #define CONST_OK_FOR_K08(VALUE) (((HOST_WIDE_INT)(VALUE))>= 0 \
1037 				 && ((HOST_WIDE_INT)(VALUE)) <= 255)
1038 
1039 #define ZERO_EXTRACT_ANDMASK(EXTRACT_SZ_RTX, EXTRACT_POS_RTX)\
1040   (((1 << INTVAL (EXTRACT_SZ_RTX)) - 1) << INTVAL (EXTRACT_POS_RTX))
1041 
1042 /* Return the maximum number of consecutive registers
1043    needed to represent mode MODE in a register of class CLASS.
1044 
1045    If TARGET_SHMEDIA, we need two FP registers per word.
1046    Otherwise we will need at most one register per word.  */
1047 #define CLASS_MAX_NREGS(CLASS, MODE) \
1048   ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1049 
1050 /* Stack layout; function entry, exit and calling.  */
1051 
1052 /* Define the number of registers that can hold parameters.
1053    These macros are used only in other macro definitions below.  */
1054 #define NPARM_REGS(MODE) \
1055   (TARGET_FPU_ANY && (MODE) == SFmode \
1056    ? 8 \
1057    : TARGET_FPU_DOUBLE \
1058      && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1059 	 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1060    ? 8 \
1061    : 4)
1062 
1063 #define FIRST_PARM_REG (FIRST_GENERAL_REG + 4)
1064 #define FIRST_RET_REG  (FIRST_GENERAL_REG + 0)
1065 
1066 #define FIRST_FP_PARM_REG (FIRST_FP_REG + 4)
1067 #define FIRST_FP_RET_REG FIRST_FP_REG
1068 
1069 /* Define this if pushing a word on the stack
1070    makes the stack pointer a smaller address.  */
1071 #define STACK_GROWS_DOWNWARD 1
1072 
1073 /*  Define this macro to nonzero if the addresses of local variable slots
1074     are at negative offsets from the frame pointer.  */
1075 #define FRAME_GROWS_DOWNWARD 1
1076 
1077 /* If we generate an insn to push BYTES bytes,
1078    this says how many the stack pointer really advances by.  */
1079 /* Don't define PUSH_ROUNDING, since the hardware doesn't do this.
1080    When PUSH_ROUNDING is not defined, PARM_BOUNDARY will cause gcc to
1081    do correct alignment.  */
1082 #if 0
1083 #define PUSH_ROUNDING(NPUSHED)  (((NPUSHED) + 3) & ~3)
1084 #endif
1085 
1086 /* Offset of first parameter from the argument pointer register value.  */
1087 #define FIRST_PARM_OFFSET(FNDECL)  0
1088 
1089 /* Value is the number of bytes of arguments automatically popped when
1090    calling a subroutine.
1091    CUM is the accumulated argument list.  */
1092 #define CALL_POPS_ARGS(CUM) (0)
1093 
1094 /* Some subroutine macros specific to this machine.  */
1095 
1096 #define BASE_RETURN_VALUE_REG(MODE) \
1097   ((TARGET_FPU_ANY && ((MODE) == SFmode))		\
1098    ? FIRST_FP_RET_REG					\
1099    : TARGET_FPU_ANY && (MODE) == SCmode			\
1100    ? FIRST_FP_RET_REG					\
1101    : (TARGET_FPU_DOUBLE					\
1102       && ((MODE) == DFmode || (MODE) == SFmode		\
1103 	  || (MODE) == DCmode || (MODE) == SCmode ))	\
1104    ? FIRST_FP_RET_REG					\
1105    : FIRST_RET_REG)
1106 
1107 #define BASE_ARG_REG(MODE) \
1108   ((TARGET_SH2E && ((MODE) == SFmode))			\
1109    ? FIRST_FP_PARM_REG					\
1110    : TARGET_FPU_DOUBLE					\
1111      && (GET_MODE_CLASS (MODE) == MODE_FLOAT		\
1112 	 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)\
1113    ? FIRST_FP_PARM_REG					\
1114    : FIRST_PARM_REG)
1115 
1116 /* 1 if N is a possible register number for function argument passing.  */
1117 /* ??? There are some callers that pass REGNO as int, and others that pass
1118    it as unsigned.  We get warnings unless we do casts everywhere.  */
1119 #define FUNCTION_ARG_REGNO_P(REGNO) \
1120   (((unsigned) (REGNO) >= (unsigned) FIRST_PARM_REG			\
1121     && (unsigned) (REGNO) < (unsigned) (FIRST_PARM_REG + NPARM_REGS (SImode)))\
1122    || (TARGET_FPU_ANY							\
1123        && (unsigned) (REGNO) >= (unsigned) FIRST_FP_PARM_REG		\
1124        && (unsigned) (REGNO) < (unsigned) (FIRST_FP_PARM_REG		\
1125 					   + NPARM_REGS (SFmode))))
1126 
1127 #ifdef __cplusplus
1128 
1129 /* Define a data type for recording info about an argument list
1130    during the scan of that argument list.  This data type should
1131    hold all necessary information about the function itself
1132    and about the args processed so far, enough to enable macros
1133    such as FUNCTION_ARG to determine where the next arg should go.
1134 
1135    On SH, this is a single integer, which is a number of words
1136    of arguments scanned so far (including the invisible argument,
1137    if any, which holds the structure-value-address).
1138    Thus NARGREGS or more means all following args should go on the stack.  */
1139 
1140 enum sh_arg_class { SH_ARG_INT = 0, SH_ARG_FLOAT = 1 };
1141 
1142 struct sh_args
1143 {
1144   /* How many SH_ARG_INT and how many SH_ARG_FLOAT args there are.  */
1145   int arg_count[2];
1146 
1147   bool force_mem;
1148 
1149   /* Nonzero if a prototype is available for the function.  */
1150   bool prototype_p;
1151 
1152   /* The number of an odd floating-point register, that should be used
1153      for the next argument of type float.  */
1154   int free_single_fp_reg;
1155 
1156   /* Whether we're processing an outgoing function call.  */
1157   bool outgoing;
1158 
1159   /* This is set to nonzero when the call in question must use the Renesas ABI,
1160      even without the -mrenesas option.  */
1161   bool renesas_abi;
1162 };
1163 
1164 typedef sh_args CUMULATIVE_ARGS;
1165 
1166 /* Set when processing a function with interrupt attribute.  */
1167 extern bool current_function_interrupt;
1168 
1169 #endif // __cplusplus
1170 
1171 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1172    for a call to a function whose data type is FNTYPE.
1173    For a library call, FNTYPE is 0.
1174 
1175    On SH, the offset always starts at 0: the first parm reg is always
1176    the same reg for a given argument class.
1177 
1178    For TARGET_HITACHI, the structure value pointer is passed in memory.  */
1179 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1180   sh_init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL),\
1181 			   (N_NAMED_ARGS), VOIDmode)
1182 
1183 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1184   sh_init_cumulative_args (& (CUM), NULL_TREE, (LIBNAME), NULL_TREE, 0, (MODE))
1185 
1186 /* By accident we got stuck with passing SCmode on SH4 little endian
1187    in two registers that are nominally successive - which is different from
1188    two single SFmode values, where we take endianness translation into
1189    account.  That does not work at all if an odd number of registers is
1190    already in use, so that got fixed, but library functions are still more
1191    likely to use complex numbers without mixing them with SFmode arguments
1192    (which in C would have to be structures), so for the sake of ABI
1193    compatibility the way SCmode values are passed when an even number of
1194    FP registers is in use remains different from a pair of SFmode values for
1195    now.
1196    I.e.:
1197    foo (double); a: fr5,fr4
1198    foo (float a, float b); a: fr5 b: fr4
1199    foo (__complex float a); a.real fr4 a.imag: fr5 - for consistency,
1200 			    this should be the other way round...
1201    foo (float a, __complex float b); a: fr5 b.real: fr4 b.imag: fr7  */
1202 #define FUNCTION_ARG_SCmode_WART 1
1203 
1204 /* Minimum alignment for an argument to be passed by callee-copy
1205    reference.  We need such arguments to be aligned to 8 byte
1206    boundaries, because they'll be loaded using quad loads.  */
1207 #define SH_MIN_ALIGN_FOR_CALLEE_COPY (8 * BITS_PER_UNIT)
1208 
1209 /* Perform any needed actions needed for a function that is receiving a
1210    variable number of arguments.  */
1211 
1212 /* Call the function profiler with a given profile label.
1213    We use two .aligns, so as to make sure that both the .long is aligned
1214    on a 4 byte boundary, and that the .long is a fixed distance (2 bytes)
1215    from the trapa instruction.  */
1216 #define FUNCTION_PROFILER(STREAM,LABELNO)			\
1217 {								\
1218   fprintf((STREAM), "\t.align\t2\n");				\
1219   fprintf((STREAM), "\ttrapa\t#33\n");				\
1220   fprintf((STREAM), "\t.align\t2\n");				\
1221   asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO));	\
1222 }
1223 
1224 /* Define this macro if the code for function profiling should come
1225    before the function prologue.  Normally, the profiling code comes
1226    after.  */
1227 #define PROFILE_BEFORE_PROLOGUE
1228 
1229 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1230    the stack pointer does not matter.  The value is tested only in
1231    functions that have frame pointers.
1232    No definition is equivalent to always zero.  */
1233 #define EXIT_IGNORE_STACK 1
1234 
1235 /*
1236    On the SH, the trampoline looks like
1237    2 0002 D202			mov.l	l2,r2
1238    1 0000 D301			mov.l	l1,r3
1239    3 0004 422B			jmp	@r2
1240    4 0006 0009			nop
1241    5 0008 00000000 	l1:  	.long   area
1242    6 000c 00000000 	l2:	.long   function  */
1243 
1244 /* Length in units of the trampoline for entering a nested function.  */
1245 #define TRAMPOLINE_SIZE (TARGET_FDPIC ? 32 : 16)
1246 
1247 /* Alignment required for a trampoline in bits.  */
1248 #define TRAMPOLINE_ALIGNMENT \
1249   ((CACHE_LOG < 3 \
1250     || (optimize_size && ! (TARGET_HARD_SH4))) ? 32 \
1251    : 64)
1252 
1253 /* A C expression whose value is RTL representing the value of the return
1254    address for the frame COUNT steps up from the current frame.
1255    FRAMEADDR is already the frame pointer of the COUNT frame, so we
1256    can ignore COUNT.  */
1257 #define RETURN_ADDR_RTX(COUNT, FRAME)	\
1258   (((COUNT) == 0) ? sh_get_pr_initial_val () : NULL_RTX)
1259 
1260 /* A C expression whose value is RTL representing the location of the
1261    incoming return address at the beginning of any function, before the
1262    prologue.  This RTL is either a REG, indicating that the return
1263    value is saved in REG, or a MEM representing a location in
1264    the stack.  */
1265 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, PR_REG)
1266 
1267 /* Addressing modes, and classification of registers for them.  */
1268 #define HAVE_POST_INCREMENT  TARGET_SH1
1269 #define HAVE_PRE_DECREMENT   TARGET_SH1
1270 
1271 #define USE_LOAD_POST_INCREMENT(mode) TARGET_SH1
1272 #define USE_LOAD_PRE_DECREMENT(mode) TARGET_SH2A
1273 #define USE_STORE_POST_INCREMENT(mode) TARGET_SH2A
1274 #define USE_STORE_PRE_DECREMENT(mode) TARGET_SH1
1275 
1276 /* If a memory clear move would take CLEAR_RATIO or more simple
1277    move-instruction pairs, we will do a setmem instead.  */
1278 
1279 #define CLEAR_RATIO(speed) ((speed) ? 15 : 3)
1280 
1281 /* Macros to check register numbers against specific register classes.  */
1282 
1283 /* These assume that REGNO is a hard or pseudo reg number.
1284    They give nonzero only if REGNO is a hard reg of the suitable class
1285    or a pseudo reg currently allocated to a suitable hard reg.
1286    Since they use reg_renumber, they are safe only once reg_renumber
1287    has been allocated, which happens in reginfo.c during register
1288    allocation.  */
1289 #define REGNO_OK_FOR_BASE_P(REGNO) \
1290   (GENERAL_OR_AP_REGISTER_P (REGNO) \
1291    || GENERAL_OR_AP_REGISTER_P (reg_renumber[(REGNO)]))
1292 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1293   ((REGNO) == R0_REG || (unsigned) reg_renumber[(REGNO)] == R0_REG)
1294 
1295 /* True if SYMBOL + OFFSET constants must refer to something within
1296    SYMBOL's section.  */
1297 #define SH_OFFSETS_MUST_BE_WITHIN_SECTIONS_P TARGET_FDPIC
1298 
1299 /* Maximum number of registers that can appear in a valid memory
1300    address.  */
1301 #define MAX_REGS_PER_ADDRESS 2
1302 
1303 /* Recognize any constant value that is a valid address.  */
1304 #define CONSTANT_ADDRESS_P(X)	(GET_CODE (X) == LABEL_REF)
1305 
1306 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1307    and check its validity for a certain class.
1308    The suitable hard regs are always accepted and all pseudo regs
1309    are also accepted if STRICT is not set.  */
1310 
1311 /* Nonzero if X is a reg that can be used as a base reg.  */
1312 #define REG_OK_FOR_BASE_P(X, STRICT)			\
1313   (GENERAL_OR_AP_REGISTER_P (REGNO (X))			\
1314    || (!STRICT && REGNO (X) >= FIRST_PSEUDO_REGISTER))
1315 
1316 /* Nonzero if X is a reg that can be used as an index.  */
1317 #define REG_OK_FOR_INDEX_P(X, STRICT)			\
1318   ((REGNO (X) == R0_REG)				\
1319    || (!STRICT && REGNO (X) >= FIRST_PSEUDO_REGISTER))
1320 
1321 /* Nonzero if X/OFFSET is a reg that can be used as an index.  */
1322 #define SUBREG_OK_FOR_INDEX_P(X, OFFSET, STRICT)	\
1323   ((REGNO (X) == R0_REG && OFFSET == 0)			\
1324    || (!STRICT && REGNO (X) >= FIRST_PSEUDO_REGISTER))
1325 
1326 /* Macros for extra constraints.  */
1327 
1328 #define IS_PC_RELATIVE_LOAD_ADDR_P(OP)					\
1329   ((GET_CODE ((OP)) == LABEL_REF)					\
1330    || (GET_CODE ((OP)) == CONST						\
1331        && GET_CODE (XEXP ((OP), 0)) == PLUS				\
1332        && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == LABEL_REF		\
1333        && CONST_INT_P (XEXP (XEXP ((OP), 0), 1))))
1334 
1335 #define IS_NON_EXPLICIT_CONSTANT_P(OP)					\
1336   (CONSTANT_P (OP)							\
1337    && !CONST_INT_P (OP)							\
1338    && GET_CODE (OP) != CONST_DOUBLE					\
1339    && (!flag_pic							\
1340        || (LEGITIMATE_PIC_OPERAND_P (OP)				\
1341 	   && !PIC_ADDR_P (OP)						\
1342 	   && GET_CODE (OP) != LABEL_REF)))
1343 
1344 #define GOT_ENTRY_P(OP) \
1345   (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
1346    && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOT)
1347 
1348 #define GOTPLT_ENTRY_P(OP) \
1349   (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
1350    && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOTPLT)
1351 
1352 #define UNSPEC_GOTOFF_P(OP) \
1353   (GET_CODE (OP) == UNSPEC && XINT ((OP), 1) == UNSPEC_GOTOFF)
1354 
1355 #define GOTOFF_P(OP) \
1356   (GET_CODE (OP) == CONST \
1357    && (UNSPEC_GOTOFF_P (XEXP ((OP), 0)) \
1358        || (GET_CODE (XEXP ((OP), 0)) == PLUS \
1359 	   && UNSPEC_GOTOFF_P (XEXP (XEXP ((OP), 0), 0)) \
1360 	   && CONST_INT_P (XEXP (XEXP ((OP), 0), 1)))))
1361 
1362 #define PIC_ADDR_P(OP) \
1363   (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
1364    && XINT (XEXP ((OP), 0), 1) == UNSPEC_PIC)
1365 
1366 #define PCREL_SYMOFF_P(OP) \
1367   (GET_CODE (OP) == CONST \
1368    && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
1369    && XINT (XEXP ((OP), 0), 1) == UNSPEC_PCREL_SYMOFF)
1370 
1371 #define NON_PIC_REFERENCE_P(OP) \
1372   (GET_CODE (OP) == LABEL_REF || GET_CODE (OP) == SYMBOL_REF \
1373    || (GET_CODE (OP) == CONST \
1374        && (GET_CODE (XEXP ((OP), 0)) == LABEL_REF \
1375 	   || GET_CODE (XEXP ((OP), 0)) == SYMBOL_REF)) \
1376    || (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == PLUS \
1377        && (GET_CODE (XEXP (XEXP ((OP), 0), 0)) == SYMBOL_REF \
1378 	   || GET_CODE (XEXP (XEXP ((OP), 0), 0)) == LABEL_REF) \
1379        && CONST_INT_P (XEXP (XEXP ((OP), 0), 1))))
1380 
1381 #define PIC_REFERENCE_P(OP) \
1382   (GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP) \
1383    || GOTOFF_P (OP) || PIC_ADDR_P (OP))
1384 
1385 #define MAYBE_BASE_REGISTER_RTX_P(X, STRICT)			\
1386   ((REG_P (X) && REG_OK_FOR_BASE_P (X, STRICT))	\
1387    || (GET_CODE (X) == SUBREG					\
1388        && REG_P (SUBREG_REG (X))			\
1389        && REG_OK_FOR_BASE_P (SUBREG_REG (X), STRICT)))
1390 
1391 /* Since this must be r0, which is a single register class, we must check
1392    SUBREGs more carefully, to be sure that we don't accept one that extends
1393    outside the class.  */
1394 #define MAYBE_INDEX_REGISTER_RTX_P(X, STRICT)				\
1395   ((REG_P (X) && REG_OK_FOR_INDEX_P (X, STRICT))	\
1396    || (GET_CODE (X) == SUBREG					\
1397        && REG_P (SUBREG_REG (X))		\
1398        && SUBREG_OK_FOR_INDEX_P (SUBREG_REG (X), SUBREG_BYTE (X), STRICT)))
1399 
1400 #ifdef REG_OK_STRICT
1401 #define BASE_REGISTER_RTX_P(X) MAYBE_BASE_REGISTER_RTX_P(X, true)
1402 #define INDEX_REGISTER_RTX_P(X) MAYBE_INDEX_REGISTER_RTX_P(X, true)
1403 #else
1404 #define BASE_REGISTER_RTX_P(X) MAYBE_BASE_REGISTER_RTX_P(X, false)
1405 #define INDEX_REGISTER_RTX_P(X) MAYBE_INDEX_REGISTER_RTX_P(X, false)
1406 #endif
1407 
1408 
1409 /* A C compound statement that attempts to replace X, which is an address
1410    that needs reloading, with a valid memory address for an operand of
1411    mode MODE.  WIN is a C statement label elsewhere in the code.  */
1412 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	\
1413   do {									\
1414     if (sh_legitimize_reload_address (&(X), (MODE), (OPNUM), (TYPE)))	\
1415       goto WIN;								\
1416   } while (0)
1417 
1418 /* Specify the machine mode that this machine uses
1419    for the index in the tablejump instruction.  */
1420 #define CASE_VECTOR_MODE ((! optimize || TARGET_BIGTABLE) ? SImode : HImode)
1421 
1422 #define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \
1423 ((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 127 \
1424  ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \
1425  : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \
1426  ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \
1427  : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 ? HImode \
1428  : SImode)
1429 
1430 /* Define as C expression which evaluates to nonzero if the tablejump
1431    instruction expects the table to contain offsets from the address of the
1432    table.
1433    Do not define this if the table should contain absolute addresses.  */
1434 #define CASE_VECTOR_PC_RELATIVE 1
1435 
1436 /* Define it here, so that it doesn't get bumped to 64-bits on SHmedia.  */
1437 #define FLOAT_TYPE_SIZE 32
1438 
1439 /* Since the SH2e has only `float' support, it is desirable to make all
1440    floating point types equivalent to `float'.  */
1441 #define DOUBLE_TYPE_SIZE (TARGET_FPU_SINGLE_ONLY ? 32 : 64)
1442 
1443 /* 'char' is signed by default.  */
1444 #define DEFAULT_SIGNED_CHAR  1
1445 
1446 /* The type of size_t unsigned int.  */
1447 #define SIZE_TYPE ("unsigned int")
1448 
1449 #undef  PTRDIFF_TYPE
1450 #define PTRDIFF_TYPE ("int")
1451 
1452 #define WCHAR_TYPE "short unsigned int"
1453 #define WCHAR_TYPE_SIZE 16
1454 
1455 #define SH_ELF_WCHAR_TYPE "long int"
1456 
1457 /* Max number of bytes we can move from memory to memory
1458    in one reasonably fast instruction.  */
1459 #define MOVE_MAX (4)
1460 
1461 /* Maximum value possibly taken by MOVE_MAX.  Must be defined whenever
1462    MOVE_MAX is not a compile-time constant.  */
1463 #define MAX_MOVE_MAX 8
1464 
1465 /* Max number of bytes we want move_by_pieces to be able to copy
1466    efficiently.  */
1467 #define MOVE_MAX_PIECES (TARGET_SH4 ? 8 : 4)
1468 
1469 /* Define if operations between registers always perform the operation
1470    on the full register even if a narrower mode is specified.  */
1471 #define WORD_REGISTER_OPERATIONS 1
1472 
1473 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1474    will either zero-extend or sign-extend.  The value of this macro should
1475    be the code that says which one of the two operations is implicitly
1476    done, UNKNOWN if none.  */
1477 #define LOAD_EXTEND_OP(MODE) ((MODE) != SImode ? SIGN_EXTEND : UNKNOWN)
1478 
1479 /* Define if loading short immediate values into registers sign extends.  */
1480 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1481 
1482 /* Nonzero if access to memory by bytes is no faster than for words.  */
1483 #define SLOW_BYTE_ACCESS 1
1484 
1485 /* Nonzero if the target supports dynamic shift instructions
1486    like shad and shld.  */
1487 #define TARGET_DYNSHIFT (TARGET_SH3 || TARGET_SH2A)
1488 
1489 /* The cost of using the dynamic shift insns (shad, shld) are the same
1490    if they are available.  If they are not available a library function will
1491    be emitted instead, which is more expensive.  */
1492 #define SH_DYNAMIC_SHIFT_COST (TARGET_DYNSHIFT ? 1 : 20)
1493 
1494 /* Defining SHIFT_COUNT_TRUNCATED tells the combine pass that code like
1495    (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
1496    This is not generally true when hardware dynamic shifts (shad, shld) are
1497    used, because they check the sign bit _before_ the modulo op.  The sign
1498    bit determines whether it is a left shift or a right shift:
1499      if (Y < 0)
1500        return X << (Y & 31);
1501      else
1502        return X >> (-Y) & 31);
1503 
1504    The dynamic shift library routines in lib1funcs.S do not use the sign bit
1505    like the hardware dynamic shifts and truncate the shift count to 31.
1506    We define SHIFT_COUNT_TRUNCATED to 0 and express the implied shift count
1507    truncation in the library function call patterns, as this gives slightly
1508    more compact code.  */
1509 #define SHIFT_COUNT_TRUNCATED (0)
1510 
1511 /* Define this if addresses of constant functions
1512    shouldn't be put through pseudo regs where they can be cse'd.
1513    Desirable on machines where ordinary constants are expensive
1514    but a CALL with constant address is cheap.  */
1515 /*#define NO_FUNCTION_CSE 1*/
1516 
1517 /* The machine modes of pointers and functions.  */
1518 #define Pmode  (SImode)
1519 #define FUNCTION_MODE  Pmode
1520 
1521 /* The multiply insn on the SH1 and the divide insns on the SH1 and SH2
1522    are actually function calls with some special constraints on arguments
1523    and register usage.
1524 
1525    These macros tell reorg that the references to arguments and
1526    register clobbers for insns of type sfunc do not appear to happen
1527    until after the millicode call.  This allows reorg to put insns
1528    which set the argument registers into the delay slot of the millicode
1529    call -- thus they act more like traditional CALL_INSNs.
1530 
1531    get_attr_is_sfunc will try to recognize the given insn, so make sure to
1532    filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1533    in particular.  */
1534 
1535 #define INSN_SETS_ARE_DELAYED(X) 		\
1536   ((NONJUMP_INSN_P (X)				\
1537     && GET_CODE (PATTERN (X)) != SEQUENCE	\
1538     && GET_CODE (PATTERN (X)) != USE		\
1539     && GET_CODE (PATTERN (X)) != CLOBBER	\
1540     && get_attr_is_sfunc (X)))
1541 
1542 #define INSN_REFERENCES_ARE_DELAYED(X) 		\
1543   ((NONJUMP_INSN_P (X)				\
1544     && GET_CODE (PATTERN (X)) != SEQUENCE	\
1545     && GET_CODE (PATTERN (X)) != USE		\
1546     && GET_CODE (PATTERN (X)) != CLOBBER	\
1547     && get_attr_is_sfunc (X)))
1548 
1549 
1550 /* Position Independent Code.  */
1551 
1552 /* We can't directly access anything that contains a symbol,
1553    nor can we indirect via the constant pool.  */
1554 #define LEGITIMATE_PIC_OPERAND_P(X)				\
1555 	((! nonpic_symbol_mentioned_p (X)			\
1556 	  && (GET_CODE (X) != SYMBOL_REF			\
1557 	      || ! CONSTANT_POOL_ADDRESS_P (X)			\
1558 	      || ! nonpic_symbol_mentioned_p (get_pool_constant (X)))))
1559 
1560 #define SYMBOLIC_CONST_P(X)	\
1561 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF)	\
1562   && nonpic_symbol_mentioned_p (X))
1563 
1564 /* Compute extra cost of moving data between one register class
1565    and another.  */
1566 
1567 /* If SECONDARY*_RELOAD_CLASS says something about the src/dst pair, regclass
1568    uses this information.  Hence, the general register <-> floating point
1569    register information here is not used for SFmode.  */
1570 #define REGCLASS_HAS_GENERAL_REG(CLASS) \
1571   ((CLASS) == GENERAL_REGS || (CLASS) == R0_REGS || (CLASS) == NON_SP_REGS \
1572     || ((CLASS) == SIBCALL_REGS))
1573 
1574 #define REGCLASS_HAS_FP_REG(CLASS) \
1575   ((CLASS) == FP0_REGS || (CLASS) == FP_REGS \
1576    || (CLASS) == DF_REGS)
1577 
1578 /* ??? Perhaps make MEMORY_MOVE_COST depend on compiler option?  This
1579    would be so that people with slow memory systems could generate
1580    different code that does fewer memory accesses.  */
1581 
1582 /* A C expression for the cost of a branch instruction.  A value of 1
1583    is the default; other values are interpreted relative to that.  */
1584 #define BRANCH_COST(speed_p, predictable_p) sh_branch_cost
1585 
1586 /* Assembler output control.  */
1587 
1588 /* A C string constant describing how to begin a comment in the target
1589    assembler language.  The compiler assumes that the comment will end at
1590    the end of the line.  */
1591 #define ASM_COMMENT_START "!"
1592 
1593 #define ASM_APP_ON  		""
1594 #define ASM_APP_OFF  		""
1595 #define FILE_ASM_OP 		"\t.file\n"
1596 #define SET_ASM_OP		"\t.set\t"
1597 
1598 /* How to change between sections.  */
1599 #define TEXT_SECTION_ASM_OP	"\t.text"
1600 #define DATA_SECTION_ASM_OP	"\t.data"
1601 
1602 #if defined CRT_BEGIN || defined CRT_END
1603 /* Arrange for TEXT_SECTION_ASM_OP to be a compile-time constant.  */
1604 #undef TEXT_SECTION_ASM_OP
1605 #define TEXT_SECTION_ASM_OP "\t.text"
1606 #endif
1607 
1608 #ifndef BSS_SECTION_ASM_OP
1609 #define BSS_SECTION_ASM_OP	"\t.section\t.bss"
1610 #endif
1611 
1612 #ifndef ASM_OUTPUT_ALIGNED_BSS
1613 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1614   asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
1615 #endif
1616 
1617 /* Define this so that jump tables go in same section as the current function,
1618    which could be text or it could be a user defined section.  */
1619 #define JUMP_TABLES_IN_TEXT_SECTION 1
1620 
1621 #undef DO_GLOBAL_CTORS_BODY
1622 #define DO_GLOBAL_CTORS_BODY			\
1623 {						\
1624   typedef void (*pfunc) (void);			\
1625   extern pfunc __ctors[];			\
1626   extern pfunc __ctors_end[];			\
1627   pfunc *p;					\
1628   for (p = __ctors_end; p > __ctors; )		\
1629     {						\
1630       (*--p)();					\
1631     }						\
1632 }
1633 
1634 #undef DO_GLOBAL_DTORS_BODY
1635 #define DO_GLOBAL_DTORS_BODY			\
1636 {						\
1637   typedef void (*pfunc) (void);			\
1638   extern pfunc __dtors[];			\
1639   extern pfunc __dtors_end[];			\
1640   pfunc *p;					\
1641   for (p = __dtors; p < __dtors_end; p++)	\
1642     {						\
1643       (*p)();					\
1644     }						\
1645 }
1646 
1647 #define ASM_OUTPUT_REG_PUSH(file, v) \
1648 {							\
1649   fprintf ((file), "\tmov.l\tr%d,@-r15\n", (v));	\
1650 }
1651 
1652 #define ASM_OUTPUT_REG_POP(file, v) \
1653 {							\
1654   fprintf ((file), "\tmov.l\t@r15+,r%d\n", (v));	\
1655 }
1656 
1657 /* DBX register number for a given compiler register number.  */
1658 /* GDB has FPUL at 23 and FP0 at 25, so we must add one to all FP registers
1659    to match gdb.  */
1660 /* expand_builtin_init_dwarf_reg_sizes uses this to test if a
1661    register exists, so we should return -1 for invalid register numbers.  */
1662 #define DBX_REGISTER_NUMBER(REGNO) SH_DBX_REGISTER_NUMBER (REGNO)
1663 
1664 #define SH_DBX_REGISTER_NUMBER(REGNO) \
1665   (IN_RANGE ((REGNO), \
1666 	     (unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \
1667 	     FIRST_GENERAL_REG + 15U) \
1668    ? ((unsigned) (REGNO) - FIRST_GENERAL_REG) \
1669    : ((int) (REGNO) >= FIRST_FP_REG \
1670      && ((int) (REGNO) \
1671 	 <= (FIRST_FP_REG + (TARGET_SH2E ? 15 : -1)))) \
1672    ? ((unsigned) (REGNO) - FIRST_FP_REG + 25) \
1673    : XD_REGISTER_P (REGNO) \
1674    ? ((unsigned) (REGNO) - FIRST_XD_REG + 87) \
1675    : (REGNO) == PR_REG \
1676    ? (17) \
1677    : (REGNO) == GBR_REG \
1678    ? (18) \
1679    : (REGNO) == MACH_REG \
1680    ? (20) \
1681    : (REGNO) == MACL_REG \
1682    ? (21) \
1683    : (REGNO) == T_REG \
1684    ? (22) \
1685    : (REGNO) == FPUL_REG \
1686    ? (23) \
1687    : (REGNO) == FPSCR_REG \
1688    ? (24) \
1689    : (unsigned) -1)
1690 
1691 /* This is how to output an assembler line
1692    that says to advance the location counter
1693    to a multiple of 2**LOG bytes.  */
1694 
1695 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1696   if ((LOG) != 0)			\
1697     fprintf ((FILE), "\t.align %d\n", (LOG))
1698 
1699 /* Globalizing directive for a label.  */
1700 #define GLOBAL_ASM_OP "\t.global\t"
1701 
1702 /* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE)  */
1703 
1704 /* Output a relative address table.  */
1705 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL)			\
1706   switch (GET_MODE (BODY))						\
1707     {									\
1708     case E_SImode:							\
1709       asm_fprintf ((STREAM), "\t.long\t%LL%d-%LL%d\n", (VALUE),(REL));	\
1710       break;								\
1711     case E_HImode:							\
1712       asm_fprintf ((STREAM), "\t.word\t%LL%d-%LL%d\n", (VALUE),(REL));	\
1713       break;								\
1714     case E_QImode:							\
1715       asm_fprintf ((STREAM), "\t.byte\t%LL%d-%LL%d\n", (VALUE),(REL));	\
1716       break;								\
1717     default:								\
1718       break;								\
1719     }
1720 
1721 /* Output an absolute table element.  */
1722 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
1723   do {									\
1724     if (! optimize || TARGET_BIGTABLE)					\
1725       asm_fprintf ((STREAM), "\t.long\t%LL%d\n", (VALUE)); 		\
1726     else								\
1727       asm_fprintf ((STREAM), "\t.word\t%LL%d\n", (VALUE));		\
1728   } while (0)
1729 
1730 /* A C statement to be executed just prior to the output of
1731    assembler code for INSN, to modify the extracted operands so
1732    they will be output differently.
1733 
1734    Here the argument OPVEC is the vector containing the operands
1735    extracted from INSN, and NOPERANDS is the number of elements of
1736    the vector which contain meaningful data for this insn.
1737    The contents of this vector are what will be used to convert the insn
1738    template into assembler code, so you can change the assembler output
1739    by changing the contents of the vector.  */
1740 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
1741   final_prescan_insn ((INSN), (OPVEC), (NOPERANDS))
1742 
1743 /* Which processor to schedule for.  The elements of the enumeration must
1744    match exactly the cpu attribute in the sh.md file.  */
1745 enum processor_type {
1746   PROCESSOR_SH1,
1747   PROCESSOR_SH2,
1748   PROCESSOR_SH2E,
1749   PROCESSOR_SH2A,
1750   PROCESSOR_SH3,
1751   PROCESSOR_SH3E,
1752   PROCESSOR_SH4,
1753   PROCESSOR_SH4A
1754 };
1755 
1756 #define sh_cpu_attr ((enum attr_cpu)sh_cpu)
1757 extern enum processor_type sh_cpu;
1758 
1759 enum mdep_reorg_phase_e
1760 {
1761   SH_BEFORE_MDEP_REORG,
1762   SH_INSERT_USES_LABELS,
1763   SH_SHORTEN_BRANCHES0,
1764   SH_FIXUP_PCLOAD,
1765   SH_SHORTEN_BRANCHES1,
1766   SH_AFTER_MDEP_REORG
1767 };
1768 
1769 extern enum mdep_reorg_phase_e mdep_reorg_phase;
1770 
1771 /* Handle Renesas compiler's pragmas.  */
1772 #define REGISTER_TARGET_PRAGMAS() do {					\
1773   c_register_pragma (0, "interrupt", sh_pr_interrupt);			\
1774   c_register_pragma (0, "trapa", sh_pr_trapa);				\
1775   c_register_pragma (0, "nosave_low_regs", sh_pr_nosave_low_regs);	\
1776 } while (0)
1777 
1778 extern tree sh_deferred_function_attributes;
1779 extern tree *sh_deferred_function_attributes_tail;
1780 
1781 
1782 
1783 /* Instructions with unfilled delay slots take up an
1784    extra two bytes for the nop in the delay slot.
1785    sh-dsp parallel processing insns are four bytes long.  */
1786 #define ADJUST_INSN_LENGTH(X, LENGTH)				\
1787   (LENGTH) += sh_insn_length_adjustment (X);
1788 
1789 /* Define this macro if it is advisable to hold scalars in registers
1790    in a wider mode than that declared by the program.  In such cases,
1791    the value is constrained to be within the bounds of the declared
1792    type, but kept valid in the wider mode.  The signedness of the
1793    extension may differ from that of the type.
1794 
1795    Leaving the unsignedp unchanged gives better code than always setting it
1796    to 0.  This is despite the fact that we have only signed char and short
1797    load instructions.  */
1798 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1799   if (GET_MODE_CLASS (MODE) == MODE_INT			\
1800       && GET_MODE_SIZE (MODE) < 4/* ! UNITS_PER_WORD */)\
1801     (UNSIGNEDP) = ((MODE) == SImode ? 0 : (UNSIGNEDP)),	(MODE) = SImode;
1802 
1803 #define MAX_FIXED_MODE_SIZE (64)
1804 
1805 /* Better to allocate once the maximum space for outgoing args in the
1806    prologue rather than duplicate around each call.  */
1807 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1808 
1809 #define NUM_MODES_FOR_MODE_SWITCHING { FP_MODE_NONE }
1810 
1811 #define OPTIMIZE_MODE_SWITCHING(ENTITY) (TARGET_FPU_DOUBLE)
1812 
1813 #define ACTUAL_NORMAL_MODE(ENTITY) \
1814   (TARGET_FPU_SINGLE ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
1815 
1816 #define NORMAL_MODE(ENTITY) \
1817   (sh_cfun_interrupt_handler_p () \
1818    ? (TARGET_FMOVD ? FP_MODE_DOUBLE : FP_MODE_NONE) \
1819    : ACTUAL_NORMAL_MODE (ENTITY))
1820 
1821 #define EPILOGUE_USES(REGNO) (TARGET_FPU_ANY && REGNO == FPSCR_REG)
1822 
1823 #define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (PR_REG))
1824 
1825 #define EH_RETURN_DATA_REGNO(N)	((N) < 4 ? (N) + 4U : INVALID_REGNUM)
1826 
1827 #define EH_RETURN_STACKADJ_REGNO STATIC_CHAIN_REGNUM
1828 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
1829 
1830 /* We have to distinguish between code and data, so that we apply
1831    datalabel where and only where appropriate.  Use sdataN for data.  */
1832 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1833   ((TARGET_FDPIC \
1834     ? ((GLOBAL) ? DW_EH_PE_indirect | DW_EH_PE_datarel : DW_EH_PE_pcrel) \
1835     : ((flag_pic && (GLOBAL) ? DW_EH_PE_indirect : 0) \
1836        | (flag_pic ? DW_EH_PE_pcrel : DW_EH_PE_absptr))) \
1837    | ((CODE) ? 0 : DW_EH_PE_sdata4))
1838 
1839 /* Handle special EH pointer encodings.  Absolute, pc-relative, and
1840    indirect are handled automatically.  */
1841 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
1842   do { \
1843     if (((ENCODING) & 0xf) != DW_EH_PE_sdata4 \
1844 	&& ((ENCODING) & 0xf) != DW_EH_PE_sdata8) \
1845       { \
1846 	gcc_assert (GET_CODE (ADDR) == SYMBOL_REF); \
1847 	SYMBOL_REF_FLAGS (ADDR) |= SYMBOL_FLAG_FUNCTION; \
1848 	if (0) goto DONE; \
1849       } \
1850     if (TARGET_FDPIC \
1851 	&& ((ENCODING) & 0xf0) == (DW_EH_PE_indirect | DW_EH_PE_datarel)) \
1852       { \
1853 	fputs ("\t.ualong ", FILE); \
1854 	output_addr_const (FILE, ADDR); \
1855 	if (GET_CODE (ADDR) == SYMBOL_REF && SYMBOL_REF_FUNCTION_P (ADDR)) \
1856 	  fputs ("@GOTFUNCDESC", FILE); \
1857 	else \
1858 	  fputs ("@GOT", FILE); \
1859 	goto DONE; \
1860       } \
1861   } while (0)
1862 
1863 #if (defined CRT_BEGIN || defined CRT_END)
1864 /* SH constant pool breaks the devices in crtstuff.c to control section
1865    in where code resides.  We have to write it as asm code.  */
1866 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
1867    asm (SECTION_OP "\n\
1868 	mov.l	1f,r1\n\
1869 	mova	2f,r0\n\
1870 	braf	r1\n\
1871 	lds	r0,pr\n\
1872 0:	.p2align 2\n\
1873 1:	.long	" USER_LABEL_PREFIX #FUNC " - 0b\n\
1874 2:\n" TEXT_SECTION_ASM_OP);
1875 #endif /* (defined CRT_BEGIN || defined CRT_END) */
1876 
1877 #endif /* ! GCC_SH_H */
1878