1 /* Definitions of target machine for Visium.
2    Copyright (C) 2002-2021 Free Software Foundation, Inc.
3    Contributed by C.Nettleton, J.P.Parkes and P.Garbett.
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published
9    by the Free Software Foundation; either version 3, or (at your
10    option) any later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING3.  If not see
19    <http://www.gnu.org/licenses/>.  */
20 
21 
22 /* Controlling the Compilation Driver, `gcc'  */
23 
24 /* Pass -mtune=* options to the assembler */
25 #undef ASM_SPEC
26 #define ASM_SPEC "%{mcpu=gr6:-mtune=gr6; :-mtune=mcm}"
27 
28 /* Define symbols for the preprocessor.  */
29 #define CPP_SPEC "%{mcpu=gr6:-D__gr6__; :-D__gr5__}"
30 
31 /* Targets of a link */
32 #define LIB_SPEC \
33   "--start-group -lc %{msim:-lsim; mdebug:-ldebug; :-lserial} --end-group"
34 
35 #define ENDFILE_SPEC "crtend.o%s crtn.o%s"
36 #define STARTFILE_SPEC "crti.o%s crtbegin.o%s crt0.o%s"
37 
38 /* Run-time Target Specification */
39 
40 /* TARGET_CPU_CPP_BUILTINS() This function-like macro expands to a
41    block of code that defines built-in preprocessor macros and
42    assertions for the target cpu, using the functions builtin_define,
43    builtin_define_std and builtin_assert. When the front end calls
44    this macro it provides a trailing semicolon, and since it has
45    finished command line option processing your code can use those
46    results freely.  builtin_assert takes a string in the form you pass
47    to the command-line option -A, such as cpu=mips, and creates the
48    assertion. builtin_define takes a string in the form accepted by
49    option -D and unconditionally defines the macro.
50 
51    builtin_define_std takes a string representing the name of an
52    object-like macro. If it doesn't lie in the user's namespace,
53    builtin_define_std defines it unconditionally. Otherwise, it
54    defines a version with two leading underscores, and another version
55    with two leading and trailing underscores, and defines the original
56    only if an ISO standard was not requested on the command line. For
57    example, passing unix defines __unix, __unix__ and possibly unix;
58    passing _mips defines __mips, __mips__ and possibly _mips, and
59    passing _ABI64 defines only _ABI64.
60 
61    You can also test for the C dialect being compiled. The variable
62    c_language is set to one of clk_c, clk_cplusplus or
63    clk_objective_c. Note that if we are preprocessing assembler, this
64    variable will be clk_c but the function-like macro
65    preprocessing_asm_p() will return true, so you might want to check
66    for that first.  If you need to check for strict ANSI, the variable
67    flag_iso can be used. The function-like macro
68    preprocessing_trad_p() can be used to check for traditional
69    preprocessing.  */
70 #define TARGET_CPU_CPP_BUILTINS()			\
71   do							\
72     {							\
73       builtin_define ("__VISIUM__");			\
74       if (TARGET_MCM)					\
75 	builtin_define ("__VISIUM_ARCH_MCM__");		\
76       if (TARGET_BMI)					\
77 	builtin_define ("__VISIUM_ARCH_BMI__");		\
78       if (TARGET_FPU_IEEE)				\
79 	builtin_define ("__VISIUM_ARCH_FPU_IEEE__");	\
80     }							\
81   while (0)
82 
83 /* Recast the cpu class to be the cpu attribute.
84    Every file includes us, but not every file includes insn-attr.h.  */
85 #define visium_cpu_attr ((enum attr_cpu) visium_cpu)
86 
87 /* Defining data structures for per-function information.
88 
89    If the target needs to store information on a per-function basis,
90    GCC provides a macro and a couple of variables to allow this. Note,
91    just using statics to store the information is a bad idea, since
92    GCC supports nested functions, so you can be halfway through
93    encoding one function when another one comes along.
94 
95    GCC defines a data structure called struct function which contains
96    all of the data specific to an individual function. This structure
97    contains a field called machine whose type is struct
98    machine_function *, which can be used by targets to point to their
99    own specific data.
100 
101    If a target needs per-function specific data it should define the
102    type struct machine_function and also the macro
103    INIT_EXPANDERS. This macro should be used to initialize the
104    function pointer init_machine_status.  This pointer is explained
105    below.
106 
107    One typical use of per-function, target specific data is to create
108    an RTX to hold the register containing the function's return
109    address.  This RTX can then be used to implement the
110    __builtin_return_address function, for level 0.
111 
112    Note--earlier implementations of GCC used a single data area to
113    hold all of the per-function information. Thus when processing of a
114    nested function began the old per-function data had to be pushed
115    onto a stack, and when the processing was finished, it had to be
116    popped off the stack.  GCC used to provide function pointers called
117    save_machine_status and restore_machine_status to handle the saving
118    and restoring of the target specific information. Since the single
119    data area approach is no longer used, these pointers are no longer
120    supported.
121 
122    The macro and function pointers are described below.
123 
124    INIT_EXPANDERS:
125 
126    Macro called to initialize any target specific information. This
127    macro is called once per function, before generation of any RTL has
128    begun.  The intention of this macro is to allow the initialization
129    of the function pointers below.
130 
131    init_machine_status:
132    This is a void (*)(struct function *) function pointer. If this
133    pointer is non-NULL it will be called once per function, before
134    function compilation starts, in order to allow the target to
135    perform any target specific initialization of the struct function
136    structure. It is intended that this would be used to initialize the
137    machine of that structure.  struct machine_function structures are
138    expected to be freed by GC.  Generally, any memory that they
139    reference must be allocated by using ggc_alloc, including the
140    structure itself. */
141 
142 #define INIT_EXPANDERS visium_init_expanders ()
143 
144 /* Storage Layout
145 
146    Note that the definitions of the macros in this table which are
147    sizes or alignments measured in bits do not need to be constant.
148    They can be C expressions that refer to static variables, such as
149    the `target_flags'.
150 
151    `BITS_BIG_ENDIAN'
152 
153    Define this macro to have the value 1 if the most significant bit
154    in a byte has the lowest number; otherwise define it to have the
155    value zero.  This means that bit-field instructions count from the
156    most significant bit.  If the machine has no bit-field
157    instructions, then this must still be defined, but it doesn't
158    matter which value it is defined to.  This macro need not be a
159    constant.
160 
161    This macro does not affect the way structure fields are packed into
162    bytes or words; that is controlled by `BYTES_BIG_ENDIAN'. */
163 #define BITS_BIG_ENDIAN 1
164 
165 /* `BYTES_BIG_ENDIAN'
166 
167    Define this macro to have the value 1 if the most significant byte
168    in a word has the lowest number.  This macro need not be a
169    constant.*/
170 #define BYTES_BIG_ENDIAN 1
171 
172 /* `WORDS_BIG_ENDIAN'
173 
174    Define this macro to have the value 1 if, in a multiword object,
175    the most significant word has the lowest number.  This applies to
176    both memory locations and registers; GNU CC fundamentally assumes
177    that the order of words in memory is the same as the order in
178    registers.  This macro need not be a constant.  */
179 #define WORDS_BIG_ENDIAN 1
180 
181 /* `BITS_PER_WORD'
182 
183    Number of bits in a word; normally 32. */
184 #define BITS_PER_WORD 32
185 
186 /* `UNITS_PER_WORD'
187 
188    Number of storage units in a word; normally 4. */
189 #define UNITS_PER_WORD 4
190 
191 /* `POINTER_SIZE'
192 
193    Width of a pointer, in bits.  You must specify a value no wider
194    than the width of `Pmode'.  If it is not equal to the width of
195    `Pmode', you must define `POINTERS_EXTEND_UNSIGNED'.  */
196 #define POINTER_SIZE 32
197 
198 /* `PARM_BOUNDARY'
199 
200    Normal alignment required for function parameters on the stack, in
201    bits.  All stack parameters receive at least this much alignment
202    regardless of data type.  On most machines, this is the same as the
203    size of an integer. */
204 #define PARM_BOUNDARY 32
205 
206 /* `STACK_BOUNDARY'
207 
208    Define this macro if you wish to preserve a certain alignment for
209    the stack pointer.  The definition is a C expression for the
210    desired alignment (measured in bits).
211 
212    If `PUSH_ROUNDING' is not defined, the stack will always be aligned
213    to the specified boundary.  If `PUSH_ROUNDING' is defined and
214    specifies a less strict alignment than `STACK_BOUNDARY', the stack
215    may be momentarily unaligned while pushing arguments. */
216 #define STACK_BOUNDARY 32
217 
218 #define VISIUM_STACK_ALIGN(LOC) (((LOC) + 3) & ~3)
219 
220 /* `FUNCTION_BOUNDARY'
221 
222    Alignment required for a function entry point, in bits. */
223 #define FUNCTION_BOUNDARY 32
224 
225 /* `BIGGEST_ALIGNMENT'
226 
227    Biggest alignment that any data type can require on this machine,
228    in bits. */
229 #define BIGGEST_ALIGNMENT 32
230 
231 /* `DATA_ALIGNMENT (TYPE, BASIC-ALIGN)`
232 
233    If defined, a C expression to compute the alignment for a variable
234    in the static store.  TYPE is the data type, and BASIC-ALIGN is
235    the alignment that the object would ordinarily have.  The value of
236    this macro is used instead of that alignment to align the object. */
237 #define DATA_ALIGNMENT(TYPE,ALIGN) visium_data_alignment (TYPE, ALIGN)
238 
239 /* `LOCAL_ALIGNMENT (TYPE, BASIC-ALIGN)`
240 
241    If defined, a C expression to compute the alignment for a variable
242    in the local store.  TYPE is the data type, and BASIC-ALIGN is the
243    alignment that the object would ordinarily have.  The value of this
244    macro is used instead of that alignment to align the object. */
245 #define LOCAL_ALIGNMENT(TYPE,ALIGN) visium_data_alignment (TYPE, ALIGN)
246 
247 /* `EMPTY_FIELD_BOUNDARY'
248 
249    Alignment in bits to be given to a structure bit field that follows
250    an empty field such as `int : 0;'.
251 
252    Note that `PCC_BITFIELD_TYPE_MATTERS' also affects the alignment
253    that results from an empty field. */
254 #define EMPTY_FIELD_BOUNDARY 32
255 
256 /* `STRICT_ALIGNMENT'
257 
258    Define this macro to be the value 1 if instructions will fail to
259    work if given data not on the nominal alignment.  If instructions
260    will merely go slower in that case, define this macro as 0. */
261 #define STRICT_ALIGNMENT 1
262 
263 /* `TARGET_FLOAT_FORMAT'
264 
265    A code distinguishing the floating point format of the target
266    machine.  There are three defined values:
267 
268    `IEEE_FLOAT_FORMAT'
269           This code indicates IEEE floating point.  It is the default;
270           there is no need to define this macro when the format is IEEE.
271 
272     `VAX_FLOAT_FORMAT'
273           This code indicates the peculiar format used on the Vax.
274 
275     `UNKNOWN_FLOAT_FORMAT'
276           This code indicates any other format.
277 
278     The value of this macro is compared with `HOST_FLOAT_FORMAT' to
279     determine whether the target machine has the same format as the
280     host machine.  If any other formats are actually in use on
281     supported machines, new codes should be defined for them.
282 
283     The ordering of the component words of floating point values
284     stored in memory is controlled by `FLOAT_WORDS_BIG_ENDIAN' for the
285     target machine and `HOST_FLOAT_WORDS_BIG_ENDIAN' for the host. */
286 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
287 #define UNITS_PER_HWFPVALUE 4
288 
289 /* Layout of Source Language Data Types
290 
291    These macros define the sizes and other characteristics of the
292    standard basic data types used in programs being compiled.  Unlike
293    the macros in the previous section, these apply to specific
294    features of C and related languages, rather than to fundamental
295    aspects of storage layout. */
296 
297 /* `INT_TYPE_SIZE'
298 
299    A C expression for the size in bits of the type `int' on the target
300    machine.  If you don't define this, the default is one word. */
301 #define INT_TYPE_SIZE  32
302 
303 /* `SHORT_TYPE_SIZE'
304 
305    A C expression for the size in bits of the type `short' on the
306    target machine.  If you don't define this, the default is half a
307    word.  (If this would be less than one storage unit, it is rounded
308    up to one unit.) */
309 #define SHORT_TYPE_SIZE 16
310 
311 /* `LONG_TYPE_SIZE'
312 
313    A C expression for the size in bits of the type `long' on the
314    target machine.  If you don't define this, the default is one word. */
315 #define LONG_TYPE_SIZE  32
316 
317 /* `LONG_LONG_TYPE_SIZE'
318 
319    A C expression for the size in bits of the type `long long' on the
320    target machine.  If you don't define this, the default is two
321    words.  If you want to support GNU Ada on your machine, the value
322    of macro must be at least 64. */
323 #define LONG_LONG_TYPE_SIZE  64
324 
325 /* `CHAR_TYPE_SIZE'
326 
327    A C expression for the size in bits of the type `char' on the
328    target machine.  If you don't define this, the default is one
329    quarter of a word.  (If this would be less than one storage unit,
330    it is rounded up to one unit.) */
331 #define CHAR_TYPE_SIZE  8
332 
333 /* `FLOAT_TYPE_SIZE'
334 
335    A C expression for the size in bits of the type `float' on the
336    target machine.  If you don't define this, the default is one word. */
337 #define FLOAT_TYPE_SIZE  32
338 
339 /* `DOUBLE_TYPE_SIZE'
340 
341    A C expression for the size in bits of the type `double' on the
342    target machine.  If you don't define this, the default is two
343    words. */
344 #define DOUBLE_TYPE_SIZE  64
345 
346 /* `LONG_DOUBLE_TYPE_SIZE'
347 
348    A C expression for the size in bits of the type `long double' on
349    the target machine.  If you don't define this, the default is two
350    words. */
351 #define LONG_DOUBLE_TYPE_SIZE   DOUBLE_TYPE_SIZE
352 
353 /* `WIDEST_HARDWARE_FP_SIZE'
354 
355    A C expression for the size in bits of the widest floating-point
356    format supported by the hardware.  If you define this macro, you
357    must specify a value less than or equal to the value of
358    `LONG_DOUBLE_TYPE_SIZE'.  If you do not define this macro, the
359    value of `LONG_DOUBLE_TYPE_SIZE' is the default. */
360 
361 /* `DEFAULT_SIGNED_CHAR'
362 
363    An expression whose value is 1 or 0, according to whether the type
364    `char' should be signed or unsigned by default.  The user can
365    always override this default with the options `-fsigned-char' and
366    `-funsigned-char'. */
367 #define DEFAULT_SIGNED_CHAR 0
368 
369 /* `SIZE_TYPE'
370 
371    A C expression for a string describing the name of the data type to
372    use for size values.  The typedef name `size_t' is defined using
373    the contents of the string.
374 
375    The string can contain more than one keyword.  If so, separate them
376    with spaces, and write first any length keyword, then `unsigned' if
377    appropriate, and finally `int'.  The string must exactly match one
378    of the data type names defined in the function
379    `init_decl_processing' in the file `c-decl.c'.  You may not omit
380    `int' or change the order--that would cause the compiler to crash
381    on startup.
382 
383    If you don't define this macro, the default is `"long unsigned
384    int"'. */
385 #define SIZE_TYPE "unsigned int"
386 
387 /* `PTRDIFF_TYPE'
388 
389    A C expression for a string describing the name of the data type to
390    use for the result of subtracting two pointers.  The typedef name
391    `ptrdiff_t' is defined using the contents of the string.  See
392    `SIZE_TYPE' above for more information.
393 
394    If you don't define this macro, the default is `"long int"'. */
395 #define PTRDIFF_TYPE "long int"
396 
397 /* Newlib uses the unsigned type corresponding to ptrdiff_t for
398    uintptr_t; this is the same as size_t for most newlib-using
399    targets, but not for us.  */
400 #define UINTPTR_TYPE "long unsigned int"
401 
402 /* `WCHAR_TYPE'
403 
404    A C expression for a string describing the name of the data type to
405    use for wide characters.  The typedef name `wchar_t' is defined
406    using the contents of the string.  See `SIZE_TYPE' above for more
407    information.
408 
409    If you don't define this macro, the default is `"int"'. */
410 #define WCHAR_TYPE "short int"
411 
412 /* `WCHAR_TYPE_SIZE'
413 
414    A C expression for the size in bits of the data type for wide
415    characters.  This is used in `cpp', which cannot make use of
416    `WCHAR_TYPE'. */
417 #define WCHAR_TYPE_SIZE 16
418 
419 /* Register Usage
420 
421    This section explains how to describe what registers the target
422    machine has, and how (in general) they can be used.  */
423 
424 /* `FIRST_PSEUDO_REGISTER'
425 
426    Number of actual hardware registers.
427    The hardware registers are assigned numbers for the compiler
428    from 0 to just below FIRST_PSEUDO_REGISTER.
429    All registers that the compiler knows about must be given numbers,
430    even those that are not normally considered general registers.
431 
432    Register 51 is used as the argument pointer register.
433    Register 52 is used as the soft frame pointer register.  */
434 #define FIRST_PSEUDO_REGISTER 53
435 
436 #define RETURN_REGNUM        1
437 #define PROLOGUE_TMP_REGNUM  9
438 #define LINK_REGNUM         21
439 #define GP_LAST_REGNUM      31
440 #define GP_REGISTER_P(REGNO) \
441   (((unsigned) (REGNO)) <= GP_LAST_REGNUM)
442 
443 #define MDB_REGNUM          32
444 #define MDC_REGNUM          33
445 
446 #define FP_FIRST_REGNUM     34
447 #define FP_LAST_REGNUM      49
448 #define FP_RETURN_REGNUM    (FP_FIRST_REGNUM + 1)
449 #define FP_REGISTER_P(REGNO) \
450   (FP_FIRST_REGNUM <= (REGNO) && (REGNO) <= FP_LAST_REGNUM)
451 
452 #define FLAGS_REGNUM        50
453 
454 /* `FIXED_REGISTERS'
455 
456    An initializer that says which registers are used for fixed
457    purposes all throughout the compiled code and are therefore not
458    available for general allocation.  These would include the stack
459    pointer, the frame pointer (except on machines where that can be
460    used as a general register when no frame pointer is needed), the
461    program counter on machines where that is considered one of the
462    addressable registers, and any other numbered register with a
463    standard use.
464 
465    This information is expressed as a sequence of numbers, separated
466    by commas and surrounded by braces.  The Nth number is 1 if
467    register N is fixed, 0 otherwise.
468 
469    The table initialized from this macro, and the table initialized by
470    the following one, may be overridden at run time either
471    automatically, by the actions of the macro
472    `CONDITIONAL_REGISTER_USAGE', or by the user with the command
473    options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'.
474 
475    r0 and f0 are immutable registers hardwired to 0.
476    r21 is the link register used for procedure linkage.
477    r23 is the stack pointer register.
478    r29 and r30 hold the interrupt context.
479    mdc is a read-only register because the writemdc instruction
480    terminates all the operations of the EAM on the GR6.  */
481 #define FIXED_REGISTERS  \
482  { 1, 0, 0, 0, 0, 0, 0, 0, /* r0 .. r7 */      \
483    0, 0, 0, 0, 0, 0, 0, 0, /* r8 .. r15 */     \
484    0, 0, 0, 0, 0, 1, 0, 1, /* r16 .. r23 */    \
485    0, 0, 0, 0, 0, 1, 1, 0, /* r24 .. r31 */    \
486    0, 1,                   /* mdb, mdc */      \
487    1, 0, 0, 0, 0, 0, 0, 0, /* f0 .. f7 */      \
488    0, 0, 0, 0, 0, 0, 0, 0, /* f8 .. f15 */     \
489    1, 1, 1 }               /* flags, arg, frame */
490 
491 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
492    the entire set of `FIXED_REGISTERS' be included.
493    (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
494    This macro is optional.  If not specified, it defaults to the value
495    of `CALL_USED_REGISTERS'.  */
496 #define CALL_REALLY_USED_REGISTERS  \
497  { 0, 1, 1, 1, 1, 1, 1, 1, /* r0 .. r7 */      \
498    1, 1, 1, 0, 0, 0, 0, 0, /* r8 .. r15 */     \
499    0, 0, 0, 0, 1, 0, 0, 0, /* r16 .. r23 */    \
500    1, 1, 1, 1, 1, 0, 0, 1, /* r24 .. r31 */    \
501    1, 1,                   /* mdb, mdc */      \
502    1, 1, 1, 1, 1, 1, 1, 1, /* f0 .. f7 */      \
503    1, 0, 0, 0, 0, 0, 0, 0, /* f8 .. f15 */     \
504    1, 0, 0 }               /* flags, arg, frame */
505 
506 /* `REG_ALLOC_ORDER'
507 
508    If defined, an initializer for a vector of integers, containing the
509    numbers of hard registers in the order in which GCC should prefer
510    to use them (from most preferred to least).
511 
512    If this macro is not defined, registers are used lowest numbered
513    first (all else being equal).  */
514 #define REG_ALLOC_ORDER \
515  { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,          /* r10 .. r1 */   \
516    11, 12, 13, 14, 15, 16, 17, 18, 19, 20, /* r11 .. r20 */  \
517    22,                                     /* fp */          \
518    24, 25, 26, 27, 28,                     /* r24 .. r28 */  \
519    31,                                     /* r31 */         \
520    32, 33,                                 /* mdb, mdc */    \
521    42, 41, 40, 39, 38, 37, 36, 35,         /* f8 .. f1 */    \
522    43, 44, 45, 46, 47, 48, 49,             /* f9 .. f15 */   \
523    21, 23,                                 /* lr, sp */      \
524    29, 30,                                 /* r29, r30 */    \
525    50, 51, 52,                             /* flags, arg, frame */ \
526    0, 34 }                                 /* r0, f0 */
527 
528 /* `HARD_REGNO_RENAME_OK (OLD_REG, NEW_REG)'
529 
530    A C expression which is nonzero if hard register NEW_REG can be
531    considered for use as a rename register for hard register OLD_REG. */
532 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
533   visium_hard_regno_rename_ok (OLD_REG, NEW_REG)
534 
535 /* Register Classes
536 
537    On many machines, the numbered registers are not all equivalent.
538    For example, certain registers may not be allowed for indexed
539    addressing; certain registers may not be allowed in some
540    instructions.  These machine restrictions are described to the
541    compiler using "register classes".
542 
543    `enum reg_class'
544 
545    An enumeral type that must be defined with all the register class
546    names as enumeral values.  `NO_REGS' must be first.  `ALL_REGS'
547    must be the last register class, followed by one more enumeral
548    value, `LIM_REG_CLASSES', which is not a register class but rather
549    tells how many classes there are.
550 
551    Each register class has a number, which is the value of casting the
552    class name to type `int'.  The number serves as an index in many of
553    the tables described below. */
554 
555 enum reg_class
556 {
557   NO_REGS,
558   MDB,
559   MDC,
560   FP_REGS,
561   FLAGS,
562   R1,
563   R2,
564   R3,
565   SIBCALL_REGS,
566   LOW_REGS,
567   GENERAL_REGS,
568   ALL_REGS,
569   LIM_REG_CLASSES
570 };
571 
572 /* `N_REG_CLASSES'
573 
574    The number of distinct register classes, defined as follows.  */
575 #define N_REG_CLASSES (int) LIM_REG_CLASSES
576 
577 /* `REG_CLASS_NAMES'
578 
579    An initializer containing the names of the register classes as C
580    string constants.  These names are used in writing some of the
581    debugging dumps. */
582 #define REG_CLASS_NAMES \
583  {"NO_REGS", "MDB", "MDC", "FP_REGS", "FLAGS", "R1", "R2", "R3", \
584   "SIBCALL_REGS", "LOW_REGS", "GENERAL_REGS", "ALL_REGS"}
585 
586 /* `REG_CLASS_CONTENTS'
587 
588    An initializer containing the contents of the register classes, as
589    integers which are bit masks.  The Nth integer specifies the
590    contents of class N.  The way the integer MASK is interpreted is
591    that register R is in the class if `MASK & (1 << R)' is 1.
592 
593    When the machine has more than 32 registers, an integer does not
594    suffice.  Then the integers are replaced by sub-initializers,
595    braced groupings containing several integers.  Each sub-initializer
596    must be suitable as an initializer for the type `HARD_REG_SET'
597    which is defined in `hard-reg-set.h'. */
598 #define REG_CLASS_CONTENTS {                     \
599     {0x00000000, 0x00000000}, /* NO_REGS */      \
600     {0x00000000, 0x00000001}, /* MDB */          \
601     {0x00000000, 0x00000002}, /* MDC */          \
602     {0x00000000, 0x0003fffc}, /* FP_REGS */      \
603     {0x00000000, 0x00040000}, /* FLAGS */        \
604     {0x00000002, 0x00000000}, /* R1 */           \
605     {0x00000004, 0x00000000}, /* R2 */           \
606     {0x00000008, 0x00000000}, /* R3 */           \
607     {0x000005ff, 0x00000000}, /* SIBCALL_REGS */ \
608     {0x1fffffff, 0x00000000}, /* LOW_REGS */     \
609     {0xffffffff, 0x00180000}, /* GENERAL_REGS */ \
610     {0xffffffff, 0x001fffff}} /* ALL_REGS */
611 
612 /* `REGNO_REG_CLASS (REGNO)'
613 
614    A C expression whose value is a register class containing hard
615    register REGNO.  In general there is more than one such class;
616    choose a class which is "minimal", meaning that no smaller class
617    also contains the register. */
618 #define REGNO_REG_CLASS(REGNO)                    \
619   ((REGNO) == MDB_REGNUM ? MDB :                  \
620    (REGNO) == MDC_REGNUM ? MDC :                  \
621    FP_REGISTER_P (REGNO) ? FP_REGS :              \
622    (REGNO) == FLAGS_REGNUM ? FLAGS :              \
623    (REGNO) == 1 ? R1 :                            \
624    (REGNO) == 2 ? R2 :                            \
625    (REGNO) == 3 ? R3 :                            \
626    (REGNO) <= 8 || (REGNO) == 10 ? SIBCALL_REGS : \
627    (REGNO) <= 28 ? LOW_REGS :                     \
628    GENERAL_REGS)
629 
630 /* `BASE_REG_CLASS'
631 
632    A macro whose definition is the name of the class to which a valid
633    base register must belong.  A base register is one used in an
634    address which is the register value plus a displacement. */
635 #define BASE_REG_CLASS GENERAL_REGS
636 
637 #define BASE_REGISTER_P(REGNO)        \
638   (GP_REGISTER_P (REGNO)              \
639    || (REGNO) == ARG_POINTER_REGNUM   \
640    || (REGNO) == FRAME_POINTER_REGNUM)
641 
642 /* `INDEX_REG_CLASS'
643 
644    A macro whose definition is the name of the class to which a valid
645    index register must belong.  An index register is one used in an
646    address where its value is either multiplied by a scale factor or
647    added to another register (as well as added to a displacement). */
648 #define INDEX_REG_CLASS NO_REGS
649 
650 /* `REGNO_OK_FOR_BASE_P (NUM)'
651 
652    A C expression which is nonzero if register number NUM is suitable
653    for use as a base register in operand addresses.  It may be either
654    a suitable hard register or a pseudo register that has been
655    allocated such a hard register. */
656 #define REGNO_OK_FOR_BASE_P(REGNO) \
657   (BASE_REGISTER_P (REGNO) || BASE_REGISTER_P ((unsigned)reg_renumber[REGNO]))
658 
659 /* `REGNO_OK_FOR_INDEX_P (NUM)'
660 
661    A C expression which is nonzero if register number NUM is suitable
662    for use as an index register in operand addresses.  It may be
663    either a suitable hard register or a pseudo register that has been
664    allocated such a hard register.
665 
666    The difference between an index register and a base register is
667    that the index register may be scaled.  If an address involves the
668    sum of two registers, neither one of them scaled, then either one
669    may be labeled the "base" and the other the "index"; but whichever
670    labeling is used must fit the machine's constraints of which
671    registers may serve in each capacity.  The compiler will try both
672    labelings, looking for one that is valid, and will reload one or
673    both registers only if neither labeling works. */
674 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
675 
676 /* `PREFERRED_RELOAD_CLASS (X, CLASS)'
677 
678    A C expression that places additional restrictions on the register
679    class to use when it is necessary to copy value X into a register
680    in class CLASS.  The value is a register class; perhaps CLASS, or
681    perhaps another, smaller class.
682 
683    Sometimes returning a more restrictive class makes better code.
684    For example, on the 68000, when X is an integer constant that is in
685    range for a `moveq' instruction, the value of this macro is always
686    `DATA_REGS' as long as CLASS includes the data registers.
687    Requiring a data register guarantees that a `moveq' will be used.
688 
689    If X is a `const_double', by returning `NO_REGS' you can force X
690    into a memory constant.  This is useful on certain machines where
691    immediate floating values cannot be loaded into certain kinds of
692    registers. */
693 #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
694 
695 #define CLASS_MAX_NREGS(CLASS, MODE)    \
696   ((CLASS) == MDB ?                     \
697   ((GET_MODE_SIZE (MODE) + 2 * UNITS_PER_WORD - 1) / (2 * UNITS_PER_WORD)) \
698   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
699 
700 /* Stack Layout and Calling Conventions
701 
702    Basic Stack Layout
703 
704    `STACK_GROWS_DOWNWARD'
705    Define this macro if pushing a word onto the stack moves the stack
706    pointer to a smaller address.  */
707 #define STACK_GROWS_DOWNWARD 1
708 
709 /* `FIRST_PARM_OFFSET (FUNDECL)'
710 
711    Offset from the argument pointer register to the first argument's
712    address.  On some machines it may depend on the data type of the
713    function.
714 
715    If `ARGS_GROW_DOWNWARD', this is the offset to the location above
716    the first argument's address. */
717 #define FIRST_PARM_OFFSET(FNDECL) 0
718 
719 /* `DYNAMIC_CHAIN_ADDRESS (FRAMEADDR)'
720 
721    A C expression whose value is RTL representing the address in a
722    stack frame where the pointer to the caller's frame is stored.
723    Assume that FRAMEADDR is an RTL expression for the address of the
724    stack frame itself.
725 
726    If you don't define this macro, the default is to return the value
727    of FRAMEADDR--that is, the stack frame address is also the address
728    of the stack word that points to the previous frame. */
729 #define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) \
730   visium_dynamic_chain_address (FRAMEADDR)
731 
732 /* `RETURN_ADDR_RTX (COUNT, FRAMEADDR)'
733 
734    A C expression whose value is RTL representing the value of the
735    return address for the frame COUNT steps up from the current frame,
736    after the prologue.  FRAMEADDR is the frame pointer of the COUNT
737    frame, or the frame pointer of the COUNT - 1 frame if
738    `RETURN_ADDR_IN_PREVIOUS_FRAME' is defined.
739 
740    The value of the expression must always be the correct address when
741    COUNT is zero, but may be `NULL_RTX' if there is not way to
742    determine the return address of other frames.  */
743 #define RETURN_ADDR_RTX(COUNT,FRAMEADDR) \
744   visium_return_addr_rtx (COUNT, FRAMEADDR)
745 
746 /* Exception Handling
747 
748    `EH_RETURN_DATA_REGNO'
749 
750    A C expression whose value is the Nth register number used for data
751    by exception handlers or INVALID_REGNUM if fewer than N registers
752    are available.
753 
754    The exception handling library routines communicate with the
755    exception handlers via a set of agreed upon registers. */
756 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 11 : INVALID_REGNUM)
757 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, 8)
758 #define EH_RETURN_HANDLER_RTX visium_eh_return_handler_rtx ()
759 
760 /* Registers That Address the Stack Frame
761 
762    This discusses registers that address the stack frame.
763 
764    `STACK_POINTER_REGNUM'
765 
766    The register number of the stack pointer register, which must also
767    be a fixed register according to `FIXED_REGISTERS'.  On most
768    machines, the hardware determines which register this is. */
769 #define STACK_POINTER_REGNUM 23
770 
771 /* `FRAME_POINTER_REGNUM'
772 
773    The register number of the frame pointer register, which is used to
774    access automatic variables in the stack frame.  On some machines,
775    the hardware determines which register this is.  On other machines,
776    you can choose any register you wish for this purpose. */
777 #define FRAME_POINTER_REGNUM 52
778 
779 /* `HARD_FRAME_POINTER_REGNUM'
780 
781    On some machines the offset between the frame pointer and starting
782    offset of the automatic variables is not known until after register
783    allocation has been done (for example, because the saved registers
784    are between these two locations).  On those machines, define
785    `FRAME_POINTER_REGNUM' the number of a special, fixed register to
786    be used internally until the offset is known, and define
787    `HARD_FRAME_POINTER_REGNUM' to be the actual hard register number
788    used for the frame pointer.  */
789 #define HARD_FRAME_POINTER_REGNUM 22
790 
791 /* `ARG_POINTER_REGNUM'
792 
793    The register number of the arg pointer register, which is used to
794    access the function's argument list.  On some machines, this is the
795    same as the frame pointer register.  On some machines, the hardware
796    determines which register this is.  On other machines, you can
797    choose any register you wish for this purpose.  If this is not the
798    same register as the frame pointer register, then you must mark it
799    as a fixed register according to `FIXED_REGISTERS', or arrange to
800    be able to eliminate it (*note Elimination::.).  */
801 #define ARG_POINTER_REGNUM 51
802 
803 /* `STATIC_CHAIN_REGNUM'
804    `STATIC_CHAIN_INCOMING_REGNUM'
805 
806    Register numbers used for passing a function's static chain
807    pointer.  If register windows are used, the register number as seen
808    by the called function is `STATIC_CHAIN_INCOMING_REGNUM', while the
809    register number as seen by the calling function is
810    `STATIC_CHAIN_REGNUM'.  If these registers are the same,
811    `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
812 
813    The static chain register need not be a fixed register.
814 
815    If the static chain is passed in memory, these macros should not be
816    defined; instead, the next two macros should be defined. */
817 #define STATIC_CHAIN_REGNUM 20
818 
819 /* `ELIMINABLE_REGS'
820 
821    If defined, this macro specifies a table of register pairs used to
822    eliminate unneeded registers that point into the stack frame.  If
823    it is not defined, the only elimination attempted by the compiler
824    is to replace references to the frame pointer with references to
825    the stack pointer.
826 
827    The definition of this macro is a list of structure
828    initializations, each of which specifies an original and
829    replacement register.
830 
831    On some machines, the position of the argument pointer is not known
832    until the compilation is completed.  In such a case, a separate
833    hard register must be used for the argument pointer.  This register
834    can be eliminated by replacing it with either the frame pointer or
835    the argument pointer, depending on whether or not the frame pointer
836    has been eliminated.
837 
838    Note that the elimination of the argument pointer with the stack
839    pointer is specified first since that is the preferred elimination.  */
840 #define ELIMINABLE_REGS				     \
841 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	     \
842  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},   \
843  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	     \
844  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
845 
846 /* `INITIAL_ELIMINATION_OFFSET (FROM-REG, TO-REG, OFFSET-VAR)'
847 
848    This macro returns the initial difference between the specified pair
849    of registers.  */
850 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
851   (OFFSET = visium_initial_elimination_offset (FROM, TO))
852 
853 /* Passing Function Arguments on the Stack
854 
855    The macros in this section control how arguments are passed on the
856    stack.  See the following section for other macros that control
857    passing certain arguments in registers.
858 
859    Passing Arguments in Registers
860 
861    This section describes the macros which let you control how various
862    types of arguments are passed in registers or how they are arranged
863    in the stack.
864 
865    Define the general purpose, and floating point registers used for
866    passing arguments */
867 #define MAX_ARGS_IN_GP_REGISTERS 8
868 #define GP_ARG_FIRST 1
869 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_GP_REGISTERS - 1)
870 #define MAX_ARGS_IN_FP_REGISTERS 8
871 #define FP_ARG_FIRST (FP_FIRST_REGNUM + 1)
872 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_FP_REGISTERS - 1)
873 
874 /* Define a data type for recording info about an argument list during the
875 processing of that argument list. */
876 
877 struct visium_args
878 {
879   /* The count of general registers used */
880   int grcount;
881   /* The count of floating registers used */
882   int frcount;
883   /* The number of stack words used by named arguments */
884   int stack_words;
885 };
886 
887 /* `CUMULATIVE_ARGS'
888 
889    A C type for declaring a variable that is used as the first
890    argument of `FUNCTION_ARG' and other related values.  For some
891    target machines, the type `int' suffices and can hold the number of
892    bytes of argument so far.
893 
894    There is no need to record in `CUMULATIVE_ARGS' anything about the
895    arguments that have been passed on the stack.  The compiler has
896    other variables to keep track of that.  For target machines on
897    which all arguments are passed on the stack, there is no need to
898    store anything in `CUMULATIVE_ARGS'; however, the data structure
899    must exist and should not be empty, so use `int'. */
900 #define CUMULATIVE_ARGS struct visium_args
901 
902 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,FNDECL,N_NAMED_ARGS) \
903   do {                        \
904        (CUM).grcount = 0;     \
905        (CUM).frcount = 0;     \
906        (CUM).stack_words = 0; \
907      } while (0)
908 
909 /* `FUNCTION_ARG_REGNO_P (REGNO)'
910 
911    A C expression that is nonzero if REGNO is the number of a hard
912    register in which function arguments are sometimes passed.  This
913    does *not* include implicit arguments such as the static chain and
914    the structure-value address.  On many machines, no registers can be
915    used for this purpose since all function arguments are pushed on
916    the stack. */
917 #define FUNCTION_ARG_REGNO_P(N)               	\
918   ((GP_ARG_FIRST <= (N) && (N) <= GP_ARG_LAST)	\
919    || (TARGET_FPU && FP_ARG_FIRST <= (N) && (N) <= FP_ARG_LAST))
920 
921 /* `FUNCTION_VALUE_REGNO_P (REGNO)'
922 
923    A C expression that is nonzero if REGNO is the number of a hard
924    register in which the values of called function may come back.
925 
926    A register whose use for returning values is limited to serving as
927    the second of a pair (for a value of type `double', say) need not
928    be recognized by this macro. If the machine has register windows,
929    so that the caller and the called function use different registers
930    for the return value, this macro should recognize only the caller's
931    register numbers. */
932 #define FUNCTION_VALUE_REGNO_P(N) \
933   ((N) == RETURN_REGNUM || (TARGET_FPU && (N) == FP_RETURN_REGNUM))
934 
935 /* How Large Values Are Returned
936 
937    When a function value's mode is `BLKmode' (and in some other
938    cases), the value is not returned according to `FUNCTION_VALUE'.
939    Instead, the caller passes the address of a block of memory in
940    which the value should be stored.  This address is called the
941    "structure value address".
942 
943    This section describes how to control returning structure values in
944    memory.
945 
946    `DEFAULT_PCC_STRUCT_RETURN'
947 
948    Define this macro to be 1 if all structure and union return values
949    must be in memory.  Since this results in slower code, this should
950    be defined only if needed for compatibility with other compilers or
951    with an ABI.  If you define this macro to be 0, then the
952    conventions used for structure and union return values are decided
953    by the `RETURN_IN_MEMORY' macro.
954 
955    If not defined, this defaults to the value 1. */
956 #define DEFAULT_PCC_STRUCT_RETURN 0
957 
958 /* Caller-Saves Register Allocation
959 
960    If you enable it, GNU CC can save registers around function calls.
961    This makes it possible to use call-clobbered registers to hold
962    variables that must live across calls.
963 
964    Function Entry and Exit
965 
966    This section describes the macros that output function entry
967    ("prologue") and exit ("epilogue") code.
968 
969    `EXIT_IGNORE_STACK'
970 
971    Define this macro as a C expression that is nonzero if the return
972    instruction or the function epilogue ignores the value of the stack
973    pointer; in other words, if it is safe to delete an instruction to
974    adjust the stack pointer before a return from the function.
975 
976    Note that this macro's value is relevant only for functions for
977    which frame pointers are maintained.  It is never safe to delete a
978    final stack adjustment in a function that has no frame pointer, and
979    the compiler knows this regardless of `EXIT_IGNORE_STACK'. */
980 #define EXIT_IGNORE_STACK 1
981 
982 /* `EPILOGUE_USES (REGNO)'
983 
984    Define this macro as a C expression that is nonzero for registers
985    are used by the epilogue or the `return' pattern.  The stack and
986    frame pointer registers are already be assumed to be used as
987    needed. */
988 #define EPILOGUE_USES(REGNO) visium_epilogue_uses (REGNO)
989 
990 /* Generating Code for Profiling
991 
992    These macros will help you generate code for profiling. */
993 
994 #define PROFILE_HOOK(LABEL) visium_profile_hook ()
995 #define FUNCTION_PROFILER(FILE, LABELNO) do {} while (0)
996 #define NO_PROFILE_COUNTERS 1
997 
998 /* Trampolines for Nested Functions
999 
1000    A trampoline is a small piece of code that is created at run time
1001    when the address of a nested function is taken. It normally resides
1002    on the stack, in the stack frame of the containing function. These
1003    macros tell GCC how to generate code to allocate and initialize a
1004    trampoline.
1005 
1006    The instructions in the trampoline must do two things: load a
1007    constant address into the static chain register, and jump to the
1008    real address of the nested function. On CISC machines such as the
1009    m68k, this requires two instructions, a move immediate and a
1010    jump. Then the two addresses exist in the trampoline as word-long
1011    immediate operands. On RISC machines, it is often necessary to load
1012    each address into a register in two parts. Then pieces of each
1013    address form separate immediate operands.
1014 
1015    The code generated to initialize the trampoline must store the
1016    variable parts--the static chain value and the function
1017    address--into the immediate operands of the instructions. On a CISC
1018    machine, this is simply a matter of copying each address to a
1019    memory reference at the proper offset from the start of the
1020    trampoline. On a RISC machine, it may be necessary to take out
1021    pieces of the address and store them separately.
1022 
1023    On the Visium, the trampoline is
1024 
1025 	moviu	r9,%u FUNCTION
1026 	movil	r9,%l FUNCTION
1027 	[nop]
1028 	moviu	r20,%u STATIC
1029 	bra	tr,r9,r0
1030 	 movil	r20,%l STATIC
1031 
1032     A difficulty is setting the correct instruction parity at run time.
1033 
1034 
1035     TRAMPOLINE_SIZE
1036     A C expression for the size in bytes of the trampoline, as an integer. */
1037 #define TRAMPOLINE_SIZE (visium_cpu == PROCESSOR_GR6 ? 24 : 20)
1038 
1039 /* Alignment required for trampolines, in bits.  */
1040 #define TRAMPOLINE_ALIGNMENT (visium_cpu == PROCESSOR_GR6 ? 64 : 32)
1041 
1042 /* Implicit calls to library routines
1043 
1044    Avoid calling library routines (sqrtf) just to set `errno' to EDOM */
1045 #define TARGET_EDOM 33
1046 
1047 /* Addressing Modes
1048 
1049    `MAX_REGS_PER_ADDRESS'
1050 
1051    A number, the maximum number of registers that can appear in a
1052    valid memory address.  Note that it is up to you to specify a value
1053    equal to the maximum number that `TARGET_LEGITIMATE_ADDRESS_P' would
1054    ever accept.  */
1055 #define MAX_REGS_PER_ADDRESS 1
1056 
1057 /* `LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)'
1058 
1059    A C compound statement that attempts to replace X, which is an
1060    address that needs reloading, with a valid memory address for an
1061    operand of mode MODE.  WIN will be a C statement label elsewhere
1062    in the code.  It is not necessary to define this macro, but it
1063    might be useful for performance reasons.  */
1064 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) 	\
1065 do									\
1066 {									\
1067   rtx new_x = visium_legitimize_reload_address ((AD), (MODE), (OPNUM),	\
1068 					(int) (TYPE), (IND));		\
1069   if (new_x)								\
1070     {									\
1071       (AD) = new_x;							\
1072       goto WIN;								\
1073     }									\
1074 } while (0)
1075 
1076 /* Given a comparison code (EQ, NE, etc.) and the operands of a COMPARE,
1077    return the mode to be used for the comparison.  */
1078 #define SELECT_CC_MODE(OP,X,Y) visium_select_cc_mode ((OP), (X), (Y))
1079 
1080 /* Return nonzero if MODE implies a floating point inequality can be
1081    reversed.  For Visium this is always true because we have a full
1082    compliment of ordered and unordered comparisons, but until generic
1083    code knows how to reverse it correctly we keep the old definition.  */
1084 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
1085 
1086 /* `BRANCH_COST'
1087 
1088    A C expression for the cost of a branch instruction.  A value of 1
1089    is the default; other values are interpreted relative to that.  */
1090 #define BRANCH_COST(A,B)  10
1091 
1092 /* Override BRANCH_COST heuristics for complex logical ops.  */
1093 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1094 
1095 /* `SLOW_BYTE_ACCESS'
1096 
1097    Define this macro as a C expression which is nonzero if accessing
1098    less than a word of memory (i.e. a `char' or a `short') is no
1099    faster than accessing a word of memory, i.e., if such access
1100    require more than one instruction or if there is no difference in
1101    cost between byte and (aligned) word loads.
1102 
1103    When this macro is not defined, the compiler will access a field by
1104    finding the smallest containing object; when it is defined, a
1105    fullword load will be used if alignment permits.  Unless bytes
1106    accesses are faster than word accesses, using word accesses is
1107    preferable since it may eliminate subsequent memory access if
1108    subsequent accesses occur to other fields in the same word of the
1109    structure, but to different bytes. */
1110 #define SLOW_BYTE_ACCESS 0
1111 
1112 /* `MOVE_RATIO (SPEED)`
1113 
1114    The threshold of number of scalar memory-to-memory move insns,
1115    _below_ which a sequence of insns should be generated instead of a
1116    string move insn or a library call.  Increasing the value will
1117    always make code faster, but eventually incurs high cost in
1118    increased code size.
1119 
1120    Since we have a cpymemsi pattern, the default MOVE_RATIO is 2, which
1121    is too low given that cpymemsi will invoke a libcall.  */
1122 #define MOVE_RATIO(speed) ((speed) ? 9 : 3)
1123 
1124 /* `CLEAR_RATIO (SPEED)`
1125 
1126    The threshold of number of scalar move insns, _below_ which a
1127    sequence of insns should be generated to clear memory instead of a
1128    string clear insn or a library call.  Increasing the value will
1129    always make code faster, but eventually incurs high cost in
1130    increased code size.
1131 
1132    Since we have a setmemsi pattern, the default CLEAR_RATIO is 2, which
1133    is too low given that setmemsi will invoke a libcall.  */
1134 #define CLEAR_RATIO(speed) ((speed) ? 13 : 5)
1135 
1136 /* `MOVE_MAX'
1137 
1138    The maximum number of bytes that a single instruction can move
1139    quickly between memory and registers or between two memory
1140    locations. */
1141 #define MOVE_MAX 4
1142 
1143 /* `MAX_MOVE_MAX'
1144 
1145    The maximum number of bytes that a single instruction can move
1146    quickly between memory and registers or between two memory
1147    locations.  If this is undefined, the default is `MOVE_MAX'.
1148    Otherwise, it is the constant value that is the largest value that
1149    `MOVE_MAX' can have at run-time. */
1150 #define MAX_MOVE_MAX 4
1151 
1152 /* `SHIFT_COUNT_TRUNCATED'
1153 
1154    A C expression that is nonzero if on this machine the number of
1155    bits actually used for the count of a shift operation is equal to
1156    the number of bits needed to represent the size of the object being
1157    shifted.  When this macro is non-zero, the compiler will assume
1158    that it is safe to omit a sign-extend, zero-extend, and certain
1159    bitwise `and' instructions that truncates the count of a shift
1160    operation.  On machines that have instructions that act on
1161    bitfields at variable positions, which may include `bit test'
1162    instructions, a nonzero `SHIFT_COUNT_TRUNCATED' also enables
1163    deletion of truncations of the values that serve as arguments to
1164    bitfield instructions. */
1165 #define SHIFT_COUNT_TRUNCATED 0
1166 
1167 /* `STORE_FLAG_VALUE'
1168 
1169    A C expression describing the value returned by a comparison
1170    operator with an integral mode and stored by a store-flag
1171    instruction (`sCOND') when the condition is true.  This description
1172    must apply to *all* the `sCOND' patterns and all the comparison
1173    operators whose results have a `MODE_INT' mode. */
1174 #define STORE_FLAG_VALUE 1
1175 
1176 /* `Pmode'
1177 
1178    An alias for the machine mode for pointers.  On most machines,
1179    define this to be the integer mode corresponding to the width of a
1180    hardware pointer; `SImode' on 32-bit machine or `DImode' on 64-bit
1181    machines.  On some machines you must define this to be one of the
1182    partial integer modes, such as `PSImode'.
1183 
1184    The width of `Pmode' must be at least as large as the value of
1185    `POINTER_SIZE'.  If it is not equal, you must define the macro
1186    `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to
1187    `Pmode'. */
1188 #define Pmode SImode
1189 
1190 /* `FUNCTION_MODE'
1191 
1192    An alias for the machine mode used for memory references to
1193    functions being called, in `call' RTL expressions.  On most
1194    machines this should be `QImode'. */
1195 #define FUNCTION_MODE SImode
1196 
1197 /* Dividing the Output into Sections (Texts, Data, ...)
1198 
1199    An object file is divided into sections containing different types
1200    of data.  In the most common case, there are three sections: the
1201    "text section", which holds instructions and read-only data; the
1202    "data section", which holds initialized writable data; and the "bss
1203    section", which holds uninitialized data.  Some systems have other
1204    kinds of sections.
1205 
1206    `TEXT_SECTION_ASM_OP'
1207 
1208    A C expression whose value is a string containing the assembler
1209    operation that should precede instructions and read-only data.
1210    Normally `".text"' is right. */
1211 #define TEXT_SECTION_ASM_OP "\t.text"
1212 
1213 /* `DATA_SECTION_ASM_OP'
1214 
1215    A C expression whose value is a string containing the assembler
1216    operation to identify the following data as writable initialized
1217    data.  Normally `".data"' is right. */
1218 #define DATA_SECTION_ASM_OP "\t.data"
1219 
1220 /* `BSS_SECTION_ASM_OP'
1221 
1222    If defined, a C expression whose value is a string containing the
1223    assembler operation to identify the following data as uninitialized
1224    global data.  If not defined, and neither `ASM_OUTPUT_BSS' nor
1225    `ASM_OUTPUT_ALIGNED_BSS' are defined, uninitialized global data
1226    will be output in the data section if `-fno-common' is passed,
1227    otherwise `ASM_OUTPUT_COMMON' will be used.
1228 
1229    `EXTRA_SECTIONS'
1230 
1231    A list of names for sections other than the standard two, which are
1232    `in_text' and `in_data'.  You need not define this macro on a
1233    system with no other sections (that GCC needs to use).
1234 
1235    `EXTRA_SECTION_FUNCTIONS'
1236 
1237    One or more functions to be defined in `varasm.c'.  These functions
1238    should do jobs analogous to those of `text_section' and
1239    `data_section', for your additional sections.  Do not define this
1240    macro if you do not define `EXTRA_SECTIONS'.
1241 
1242    `JUMP_TABLES_IN_TEXT_SECTION' Define this macro if jump tables (for
1243    `tablejump' insns) should be output in the text section, along with
1244    the assembler instructions.  Otherwise, the readonly data section
1245    is used.
1246 
1247    This macro is irrelevant if there is no separate readonly data
1248    section. */
1249 #undef JUMP_TABLES_IN_TEXT_SECTION
1250 
1251 
1252 /* The Overall Framework of an Assembler File
1253 
1254    This describes the overall framework of an assembler file.
1255 
1256    `ASM_COMMENT_START'
1257 
1258    A C string constant describing how to begin a comment in the target
1259    assembler language.  The compiler assumes that the comment will end
1260    at the end of the line. */
1261 #define ASM_COMMENT_START ";"
1262 
1263 /* `ASM_APP_ON'
1264 
1265    A C string constant for text to be output before each `asm'
1266    statement or group of consecutive ones.  Normally this is `"#APP"',
1267    which is a comment that has no effect on most assemblers but tells
1268    the GNU assembler that it must check the lines that follow for all
1269    valid assembler constructs. */
1270 #define ASM_APP_ON "#APP\n"
1271 
1272 /* `ASM_APP_OFF'
1273 
1274    A C string constant for text to be output after each `asm'
1275    statement or group of consecutive ones.  Normally this is
1276    `"#NO_APP"', which tells the GNU assembler to resume making the
1277    time-saving assumptions that are valid for ordinary compiler
1278    output. */
1279 #define ASM_APP_OFF "#NO_APP\n"
1280 
1281 /* Output of Data
1282 
1283    This describes data output.
1284 
1285    Output and Generation of Labels
1286 
1287    This is about outputting labels.
1288 
1289    `ASM_OUTPUT_LABEL (STREAM, NAME)'
1290 
1291    A C statement (sans semicolon) to output to the stdio stream STREAM
1292    the assembler definition of a label named NAME.  Use the expression
1293    `assemble_name (STREAM, NAME)' to output the name itself; before
1294    and after that, output the additional assembler syntax for defining
1295    the name, and a newline. */
1296 #define ASM_OUTPUT_LABEL(STREAM,NAME)     \
1297   do { assemble_name (STREAM, NAME); fputs (":\n", STREAM); } while (0)
1298 
1299 /* Globalizing directive for a label */
1300 #define GLOBAL_ASM_OP "\t.global "
1301 
1302 /* `ASM_OUTPUT_LABELREF (STREAM, NAME)'
1303 
1304    A C statement (sans semicolon) to output to the stdio stream STREAM
1305    a reference in assembler syntax to a label named NAME.  This should
1306    add `_' to the front of the name, if that is customary on your
1307    operating system, as it is in most Berkeley Unix systems.  This
1308    macro is used in `assemble_name'. */
1309 #define ASM_OUTPUT_LABELREF(STREAM,NAME)  \
1310   asm_fprintf (STREAM, "%U%s", NAME)
1311 
1312 /* Output of Assembler Instructions
1313 
1314    This describes assembler instruction output.
1315 
1316    `REGISTER_NAMES'
1317 
1318    A C initializer containing the assembler's names for the machine
1319    registers, each one as a C string constant.  This is what
1320    translates register numbers in the compiler into assembler
1321    language. */
1322 #define REGISTER_NAMES \
1323  {"r0",  "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",  \
1324   "r8",  "r9",  "r10", "r11", "r12", "r13", "r14", "r15", \
1325   "r16", "r17", "r18", "r19", "r20", "r21", "fp",  "sp",  \
1326   "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
1327   "mdb", "mdc",                                           \
1328   "f0",  "f1",  "f2",  "f3",  "f4",  "f5",  "f6",  "f7",  \
1329   "f8",  "f9",  "f10", "f11", "f12", "f13", "f14", "f15", \
1330   "flags","argp","sfp" }
1331 
1332 /* `ADDITIONAL_REGISTER_NAMES`
1333 
1334    If defined, a C initializer for an array of structures containing
1335    a name and a register number.  This macro defines additional names
1336    for hard registers, thus allowing the `asm' option in declarations
1337    to refer to registers using alternate names.  */
1338 #define ADDITIONAL_REGISTER_NAMES \
1339   {{"r22", HARD_FRAME_POINTER_REGNUM}, {"r23", STACK_POINTER_REGNUM}}
1340 
1341 /* `REGISTER_PREFIX'
1342    `LOCAL_LABEL_PREFIX'
1343    `USER_LABEL_PREFIX'
1344    `IMMEDIATE_PREFIX'
1345 
1346    If defined, C string expressions to be used for the `%R', `%L',
1347    `%U', and `%I' options of `asm_fprintf' (see `final.c').  These are
1348    useful when a single `md' file must support multiple assembler
1349    formats.  In that case, the various `tm.h' files can define these
1350    macros differently. */
1351 #define REGISTER_PREFIX ""
1352 #define LOCAL_LABEL_PREFIX "."
1353 #define IMMEDIATE_PREFIX "#"
1354 
1355 /* `ASM_OUTPUT_REG_PUSH (STREAM, REGNO)'
1356 
1357    A C expression to output to STREAM some assembler code which will
1358    push hard register number REGNO onto the stack.  The code need not
1359    be optimal, since this macro is used only when profiling. */
1360 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO)  \
1361   asm_fprintf (STREAM, "\tsubi    sp,4\n\twrite.l (sp),%s\n", \
1362                reg_names[REGNO])
1363 
1364 /* `ASM_OUTPUT_REG_POP (STREAM, REGNO)'
1365 
1366    A C expression to output to STREAM some assembler code which will
1367    pop hard register number REGNO off of the stack.  The code need not
1368    be optimal, since this macro is used only when profiling. */
1369 #define ASM_OUTPUT_REG_POP(STREAM,REGNO)  \
1370   asm_fprintf (STREAM, "\tread.l  %s,(sp)\n\taddi    sp,4\n", \
1371                reg_names[REGNO])
1372 
1373 
1374 /* Output of Dispatch Tables
1375 
1376    This concerns dispatch tables.
1377 
1378    `ASM_OUTPUT_ADDR_DIFF_ELT (STREAM, VALUE, REL)'
1379 
1380    A C statement to output to the stdio stream STREAM an assembler
1381    pseudo-instruction to generate a difference between two labels.
1382    VALUE and REL are the numbers of two internal labels.  The
1383    definitions of these labels are output using
1384    `ASM_OUTPUT_INTERNAL_LABEL', and they must be printed in the same
1385    way here.
1386 
1387    You must provide this macro on machines where the addresses in a
1388    dispatch table are relative to the table's own address.  If
1389    defined, GNU CC will also use this macro on all machines when
1390    producing PIC. */
1391 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL)  		\
1392   switch (GET_MODE (BODY))						\
1393     {									\
1394     case E_SImode:							\
1395       asm_fprintf ((STREAM), "\t.long\t%LL%d-%LL%d\n", (VALUE),(REL));	\
1396       break;								\
1397     case E_HImode:							\
1398       asm_fprintf ((STREAM), "\t.word\t%LL%d-%LL%d\n", (VALUE),(REL));	\
1399       break;								\
1400     case E_QImode:							\
1401       asm_fprintf ((STREAM), "\t.byte\t%LL%d-%LL%d\n", (VALUE),(REL));	\
1402       break;								\
1403     default:								\
1404       break;								\
1405     }
1406 
1407 /* `ASM_OUTPUT_ADDR_VEC_ELT (STREAM, VALUE)'
1408 
1409    This macro should be provided on machines where the addresses in a
1410    dispatch table are absolute.
1411 
1412    The definition should be a C statement to output to the stdio
1413    stream STREAM an assembler pseudo-instruction to generate a
1414    reference to a label.  VALUE is the number of an internal label
1415    whose definition is output using `ASM_OUTPUT_INTERNAL_LABEL'. */
1416 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)  \
1417   asm_fprintf (STREAM, "\t.long   %LL%d\n", VALUE)
1418 
1419 /* `ASM_OUTPUT_CASE_END (STREAM, NUM, TABLE)'
1420 
1421    Define this if something special must be output at the end of a
1422    jump-table. The definition should be a C statement to be executed
1423    after the assembler code for the table is written. It should write
1424    the appropriate code to stdio stream STREAM. The argument TABLE is
1425    the jump-table insn, and NUM is the label-number of the preceding
1426    label.
1427 
1428    If this macro is not defined, nothing special is output at the end
1429    of a jump table.
1430 
1431    Here we output a word of zero so that jump-tables can be seperated
1432    in reverse assembly. */
1433 #define ASM_OUTPUT_CASE_END(STREAM, NUM, TABLE) \
1434   asm_fprintf (STREAM, "\t.long   0\n")
1435 
1436 /* Support subalignment values.  */
1437 
1438 #define SUBALIGN_LOG 3
1439 
1440 /* Assembler Commands for Alignment
1441 
1442    This describes commands for alignment.
1443 
1444    `ASM_OUTPUT_ALIGN_CODE (STREAM)'
1445 
1446    A C expression to output text to align the location counter in the
1447    way that is desirable at a point in the code that is reached only
1448    by jumping.
1449 
1450    This macro need not be defined if you don't want any special
1451    alignment to be done at such a time.  Most machine descriptions do
1452    not currently define the macro. */
1453 #undef ASM_OUTPUT_ALIGN_CODE
1454 
1455 /* `ASM_OUTPUT_LOOP_ALIGN (STREAM)'
1456 
1457    A C expression to output text to align the location counter in the
1458    way that is desirable at the beginning of a loop.
1459 
1460    This macro need not be defined if you don't want any special
1461    alignment to be done at such a time.  Most machine descriptions do
1462    not currently define the macro. */
1463 #undef ASM_OUTPUT_LOOP_ALIGN
1464 
1465 /* `ASM_OUTPUT_ALIGN (STREAM, POWER)'
1466 
1467    A C statement to output to the stdio stream STREAM an assembler
1468    command to advance the location counter to a multiple of 2 to the
1469    POWER bytes.  POWER will be a C expression of type `int'. */
1470 #define ASM_OUTPUT_ALIGN(STREAM,LOG)      \
1471   if ((LOG) != 0)                       \
1472     fprintf (STREAM, "\t.align  %d\n", (1 << (LOG)))
1473 
1474 /* `ASM_OUTPUT_MAX_SKIP_ALIGN (STREAM, POWER, MAX_SKIP)`
1475 
1476    A C statement to output to the stdio stream STREAM an assembler
1477    command to advance the location counter to a multiple of 2 to the
1478    POWER bytes, but only if MAX_SKIP or fewer bytes are needed to
1479    satisfy the alignment request.  POWER and MAX_SKIP will be a C
1480    expression of type `int'. */
1481 #define ASM_OUTPUT_MAX_SKIP_ALIGN(STREAM,LOG,MAX_SKIP)			\
1482   if ((LOG) != 0) {							\
1483     if ((MAX_SKIP) == 0 || (MAX_SKIP) >= (1 << (LOG)) - 1)		\
1484       fprintf ((STREAM), "\t.p2align %d\n", (LOG));			\
1485     else								\
1486       fprintf ((STREAM), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP));	\
1487   }
1488 
1489 /* Controlling Debugging Information Format
1490 
1491    This describes how to specify debugging information.
1492 
1493     mda is known to GDB, but not to GCC. */
1494 #define DBX_REGISTER_NUMBER(REGNO) \
1495   ((REGNO) > MDB_REGNUM ? (REGNO) + 1 : (REGNO))
1496 
1497 /* `DEBUGGER_AUTO_OFFSET (X)'
1498 
1499    A C expression that returns the integer offset value for an
1500    automatic variable having address X (an RTL expression).  The
1501    default computation assumes that X is based on the frame-pointer
1502    and gives the offset from the frame-pointer.  This is required for
1503    targets that produce debugging output for DBX and allow the frame-pointer
1504    to be eliminated when the `-g' options is used. */
1505 #define DEBUGGER_AUTO_OFFSET(X) \
1506   (GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0)
1507 
1508 /* Miscellaneous Parameters
1509 
1510    `CASE_VECTOR_MODE'
1511 
1512    An alias for a machine mode name.  This is the machine mode that
1513    elements of a jump-table should have. */
1514 #define CASE_VECTOR_MODE SImode
1515 
1516 /* `CASE_VECTOR_PC_RELATIVE'
1517    Define this macro if jump-tables should contain relative addresses. */
1518 #undef CASE_VECTOR_PC_RELATIVE
1519 
1520 /* This says how to output assembler code to declare an
1521    unitialised external linkage data object. */
1522 #define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED)      \
1523 ( fputs ("\n\t.comm  ", (STREAM)),                        \
1524   assemble_name ((STREAM), (NAME)),                         \
1525   fprintf ((STREAM), "," HOST_WIDE_INT_PRINT_UNSIGNED"\n", ROUNDED))
1526 
1527 /* This says how to output assembler code to declare an
1528    unitialised internal linkage data object. */
1529 #define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED)     \
1530 ( fputs ("\n\t.lcomm ", (STREAM)),                      \
1531   assemble_name ((STREAM), (NAME)),                     \
1532   fprintf ((STREAM), "," HOST_WIDE_INT_PRINT_UNSIGNED"\n", ROUNDED))
1533 
1534 /* Prettify the assembly.  */
1535 extern int visium_indent_opcode;
1536 
1537 #define ASM_OUTPUT_OPCODE(FILE, PTR)	\
1538   do {					\
1539     if (visium_indent_opcode)		\
1540       {					\
1541 	putc (' ', FILE);		\
1542 	visium_indent_opcode = 0;	\
1543       }					\
1544   } while (0)
1545 
1546 /* Configure-time default values for common options.  */
1547 #define OPTION_DEFAULT_SPECS { "cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }
1548 
1549 /* Values of TARGET_CPU_DEFAULT specified via --with-cpu.  */
1550 #define TARGET_CPU_gr5	0
1551 #define TARGET_CPU_gr6	1
1552 
1553 /* Default -mcpu multilib for above values.  */
1554 #if TARGET_CPU_DEFAULT == TARGET_CPU_gr5
1555 #define MULTILIB_DEFAULTS { "mcpu=gr5" }
1556 #elif TARGET_CPU_DEFAULT == TARGET_CPU_gr6
1557 #define MULTILIB_DEFAULTS { "mcpu=gr6" }
1558 #else
1559 #error Unrecognized value in TARGET_CPU_DEFAULT
1560 #endif
1561