1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package jpeg implements a JPEG image decoder and encoder.
6//
7// JPEG is defined in ITU-T T.81: https://www.w3.org/Graphics/JPEG/itu-t81.pdf.
8package jpeg
9
10import (
11	"image"
12	"image/color"
13	"image/internal/imageutil"
14	"io"
15)
16
17// A FormatError reports that the input is not a valid JPEG.
18type FormatError string
19
20func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) }
21
22// An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature.
23type UnsupportedError string
24
25func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) }
26
27var errUnsupportedSubsamplingRatio = UnsupportedError("luma/chroma subsampling ratio")
28
29// Component specification, specified in section B.2.2.
30type component struct {
31	h  int   // Horizontal sampling factor.
32	v  int   // Vertical sampling factor.
33	c  uint8 // Component identifier.
34	tq uint8 // Quantization table destination selector.
35}
36
37const (
38	dcTable = 0
39	acTable = 1
40	maxTc   = 1
41	maxTh   = 3
42	maxTq   = 3
43
44	maxComponents = 4
45)
46
47const (
48	sof0Marker = 0xc0 // Start Of Frame (Baseline Sequential).
49	sof1Marker = 0xc1 // Start Of Frame (Extended Sequential).
50	sof2Marker = 0xc2 // Start Of Frame (Progressive).
51	dhtMarker  = 0xc4 // Define Huffman Table.
52	rst0Marker = 0xd0 // ReSTart (0).
53	rst7Marker = 0xd7 // ReSTart (7).
54	soiMarker  = 0xd8 // Start Of Image.
55	eoiMarker  = 0xd9 // End Of Image.
56	sosMarker  = 0xda // Start Of Scan.
57	dqtMarker  = 0xdb // Define Quantization Table.
58	driMarker  = 0xdd // Define Restart Interval.
59	comMarker  = 0xfe // COMment.
60	// "APPlication specific" markers aren't part of the JPEG spec per se,
61	// but in practice, their use is described at
62	// https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html
63	app0Marker  = 0xe0
64	app14Marker = 0xee
65	app15Marker = 0xef
66)
67
68// See https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
69const (
70	adobeTransformUnknown = 0
71	adobeTransformYCbCr   = 1
72	adobeTransformYCbCrK  = 2
73)
74
75// unzig maps from the zig-zag ordering to the natural ordering. For example,
76// unzig[3] is the column and row of the fourth element in zig-zag order. The
77// value is 16, which means first column (16%8 == 0) and third row (16/8 == 2).
78var unzig = [blockSize]int{
79	0, 1, 8, 16, 9, 2, 3, 10,
80	17, 24, 32, 25, 18, 11, 4, 5,
81	12, 19, 26, 33, 40, 48, 41, 34,
82	27, 20, 13, 6, 7, 14, 21, 28,
83	35, 42, 49, 56, 57, 50, 43, 36,
84	29, 22, 15, 23, 30, 37, 44, 51,
85	58, 59, 52, 45, 38, 31, 39, 46,
86	53, 60, 61, 54, 47, 55, 62, 63,
87}
88
89// Deprecated: Reader is not used by the image/jpeg package and should
90// not be used by others. It is kept for compatibility.
91type Reader interface {
92	io.ByteReader
93	io.Reader
94}
95
96// bits holds the unprocessed bits that have been taken from the byte-stream.
97// The n least significant bits of a form the unread bits, to be read in MSB to
98// LSB order.
99type bits struct {
100	a uint32 // accumulator.
101	m uint32 // mask. m==1<<(n-1) when n>0, with m==0 when n==0.
102	n int32  // the number of unread bits in a.
103}
104
105type decoder struct {
106	r    io.Reader
107	bits bits
108	// bytes is a byte buffer, similar to a bufio.Reader, except that it
109	// has to be able to unread more than 1 byte, due to byte stuffing.
110	// Byte stuffing is specified in section F.1.2.3.
111	bytes struct {
112		// buf[i:j] are the buffered bytes read from the underlying
113		// io.Reader that haven't yet been passed further on.
114		buf  [4096]byte
115		i, j int
116		// nUnreadable is the number of bytes to back up i after
117		// overshooting. It can be 0, 1 or 2.
118		nUnreadable int
119	}
120	width, height int
121
122	img1        *image.Gray
123	img3        *image.YCbCr
124	blackPix    []byte
125	blackStride int
126
127	ri    int // Restart Interval.
128	nComp int
129
130	// As per section 4.5, there are four modes of operation (selected by the
131	// SOF? markers): sequential DCT, progressive DCT, lossless and
132	// hierarchical, although this implementation does not support the latter
133	// two non-DCT modes. Sequential DCT is further split into baseline and
134	// extended, as per section 4.11.
135	baseline    bool
136	progressive bool
137
138	jfif                bool
139	adobeTransformValid bool
140	adobeTransform      uint8
141	eobRun              uint16 // End-of-Band run, specified in section G.1.2.2.
142
143	comp       [maxComponents]component
144	progCoeffs [maxComponents][]block // Saved state between progressive-mode scans.
145	huff       [maxTc + 1][maxTh + 1]huffman
146	quant      [maxTq + 1]block // Quantization tables, in zig-zag order.
147	tmp        [2 * blockSize]byte
148}
149
150// fill fills up the d.bytes.buf buffer from the underlying io.Reader. It
151// should only be called when there are no unread bytes in d.bytes.
152func (d *decoder) fill() error {
153	if d.bytes.i != d.bytes.j {
154		panic("jpeg: fill called when unread bytes exist")
155	}
156	// Move the last 2 bytes to the start of the buffer, in case we need
157	// to call unreadByteStuffedByte.
158	if d.bytes.j > 2 {
159		d.bytes.buf[0] = d.bytes.buf[d.bytes.j-2]
160		d.bytes.buf[1] = d.bytes.buf[d.bytes.j-1]
161		d.bytes.i, d.bytes.j = 2, 2
162	}
163	// Fill in the rest of the buffer.
164	n, err := d.r.Read(d.bytes.buf[d.bytes.j:])
165	d.bytes.j += n
166	if n > 0 {
167		err = nil
168	}
169	return err
170}
171
172// unreadByteStuffedByte undoes the most recent readByteStuffedByte call,
173// giving a byte of data back from d.bits to d.bytes. The Huffman look-up table
174// requires at least 8 bits for look-up, which means that Huffman decoding can
175// sometimes overshoot and read one or two too many bytes. Two-byte overshoot
176// can happen when expecting to read a 0xff 0x00 byte-stuffed byte.
177func (d *decoder) unreadByteStuffedByte() {
178	d.bytes.i -= d.bytes.nUnreadable
179	d.bytes.nUnreadable = 0
180	if d.bits.n >= 8 {
181		d.bits.a >>= 8
182		d.bits.n -= 8
183		d.bits.m >>= 8
184	}
185}
186
187// readByte returns the next byte, whether buffered or not buffered. It does
188// not care about byte stuffing.
189func (d *decoder) readByte() (x byte, err error) {
190	for d.bytes.i == d.bytes.j {
191		if err = d.fill(); err != nil {
192			return 0, err
193		}
194	}
195	x = d.bytes.buf[d.bytes.i]
196	d.bytes.i++
197	d.bytes.nUnreadable = 0
198	return x, nil
199}
200
201// errMissingFF00 means that readByteStuffedByte encountered an 0xff byte (a
202// marker byte) that wasn't the expected byte-stuffed sequence 0xff, 0x00.
203var errMissingFF00 = FormatError("missing 0xff00 sequence")
204
205// readByteStuffedByte is like readByte but is for byte-stuffed Huffman data.
206func (d *decoder) readByteStuffedByte() (x byte, err error) {
207	// Take the fast path if d.bytes.buf contains at least two bytes.
208	if d.bytes.i+2 <= d.bytes.j {
209		x = d.bytes.buf[d.bytes.i]
210		d.bytes.i++
211		d.bytes.nUnreadable = 1
212		if x != 0xff {
213			return x, err
214		}
215		if d.bytes.buf[d.bytes.i] != 0x00 {
216			return 0, errMissingFF00
217		}
218		d.bytes.i++
219		d.bytes.nUnreadable = 2
220		return 0xff, nil
221	}
222
223	d.bytes.nUnreadable = 0
224
225	x, err = d.readByte()
226	if err != nil {
227		return 0, err
228	}
229	d.bytes.nUnreadable = 1
230	if x != 0xff {
231		return x, nil
232	}
233
234	x, err = d.readByte()
235	if err != nil {
236		return 0, err
237	}
238	d.bytes.nUnreadable = 2
239	if x != 0x00 {
240		return 0, errMissingFF00
241	}
242	return 0xff, nil
243}
244
245// readFull reads exactly len(p) bytes into p. It does not care about byte
246// stuffing.
247func (d *decoder) readFull(p []byte) error {
248	// Unread the overshot bytes, if any.
249	if d.bytes.nUnreadable != 0 {
250		if d.bits.n >= 8 {
251			d.unreadByteStuffedByte()
252		}
253		d.bytes.nUnreadable = 0
254	}
255
256	for {
257		n := copy(p, d.bytes.buf[d.bytes.i:d.bytes.j])
258		p = p[n:]
259		d.bytes.i += n
260		if len(p) == 0 {
261			break
262		}
263		if err := d.fill(); err != nil {
264			if err == io.EOF {
265				err = io.ErrUnexpectedEOF
266			}
267			return err
268		}
269	}
270	return nil
271}
272
273// ignore ignores the next n bytes.
274func (d *decoder) ignore(n int) error {
275	// Unread the overshot bytes, if any.
276	if d.bytes.nUnreadable != 0 {
277		if d.bits.n >= 8 {
278			d.unreadByteStuffedByte()
279		}
280		d.bytes.nUnreadable = 0
281	}
282
283	for {
284		m := d.bytes.j - d.bytes.i
285		if m > n {
286			m = n
287		}
288		d.bytes.i += m
289		n -= m
290		if n == 0 {
291			break
292		}
293		if err := d.fill(); err != nil {
294			if err == io.EOF {
295				err = io.ErrUnexpectedEOF
296			}
297			return err
298		}
299	}
300	return nil
301}
302
303// Specified in section B.2.2.
304func (d *decoder) processSOF(n int) error {
305	if d.nComp != 0 {
306		return FormatError("multiple SOF markers")
307	}
308	switch n {
309	case 6 + 3*1: // Grayscale image.
310		d.nComp = 1
311	case 6 + 3*3: // YCbCr or RGB image.
312		d.nComp = 3
313	case 6 + 3*4: // YCbCrK or CMYK image.
314		d.nComp = 4
315	default:
316		return UnsupportedError("number of components")
317	}
318	if err := d.readFull(d.tmp[:n]); err != nil {
319		return err
320	}
321	// We only support 8-bit precision.
322	if d.tmp[0] != 8 {
323		return UnsupportedError("precision")
324	}
325	d.height = int(d.tmp[1])<<8 + int(d.tmp[2])
326	d.width = int(d.tmp[3])<<8 + int(d.tmp[4])
327	if int(d.tmp[5]) != d.nComp {
328		return FormatError("SOF has wrong length")
329	}
330
331	for i := 0; i < d.nComp; i++ {
332		d.comp[i].c = d.tmp[6+3*i]
333		// Section B.2.2 states that "the value of C_i shall be different from
334		// the values of C_1 through C_(i-1)".
335		for j := 0; j < i; j++ {
336			if d.comp[i].c == d.comp[j].c {
337				return FormatError("repeated component identifier")
338			}
339		}
340
341		d.comp[i].tq = d.tmp[8+3*i]
342		if d.comp[i].tq > maxTq {
343			return FormatError("bad Tq value")
344		}
345
346		hv := d.tmp[7+3*i]
347		h, v := int(hv>>4), int(hv&0x0f)
348		if h < 1 || 4 < h || v < 1 || 4 < v {
349			return FormatError("luma/chroma subsampling ratio")
350		}
351		if h == 3 || v == 3 {
352			return errUnsupportedSubsamplingRatio
353		}
354		switch d.nComp {
355		case 1:
356			// If a JPEG image has only one component, section A.2 says "this data
357			// is non-interleaved by definition" and section A.2.2 says "[in this
358			// case...] the order of data units within a scan shall be left-to-right
359			// and top-to-bottom... regardless of the values of H_1 and V_1". Section
360			// 4.8.2 also says "[for non-interleaved data], the MCU is defined to be
361			// one data unit". Similarly, section A.1.1 explains that it is the ratio
362			// of H_i to max_j(H_j) that matters, and similarly for V. For grayscale
363			// images, H_1 is the maximum H_j for all components j, so that ratio is
364			// always 1. The component's (h, v) is effectively always (1, 1): even if
365			// the nominal (h, v) is (2, 1), a 20x5 image is encoded in three 8x8
366			// MCUs, not two 16x8 MCUs.
367			h, v = 1, 1
368
369		case 3:
370			// For YCbCr images, we only support 4:4:4, 4:4:0, 4:2:2, 4:2:0,
371			// 4:1:1 or 4:1:0 chroma subsampling ratios. This implies that the
372			// (h, v) values for the Y component are either (1, 1), (1, 2),
373			// (2, 1), (2, 2), (4, 1) or (4, 2), and the Y component's values
374			// must be a multiple of the Cb and Cr component's values. We also
375			// assume that the two chroma components have the same subsampling
376			// ratio.
377			switch i {
378			case 0: // Y.
379				// We have already verified, above, that h and v are both
380				// either 1, 2 or 4, so invalid (h, v) combinations are those
381				// with v == 4.
382				if v == 4 {
383					return errUnsupportedSubsamplingRatio
384				}
385			case 1: // Cb.
386				if d.comp[0].h%h != 0 || d.comp[0].v%v != 0 {
387					return errUnsupportedSubsamplingRatio
388				}
389			case 2: // Cr.
390				if d.comp[1].h != h || d.comp[1].v != v {
391					return errUnsupportedSubsamplingRatio
392				}
393			}
394
395		case 4:
396			// For 4-component images (either CMYK or YCbCrK), we only support two
397			// hv vectors: [0x11 0x11 0x11 0x11] and [0x22 0x11 0x11 0x22].
398			// Theoretically, 4-component JPEG images could mix and match hv values
399			// but in practice, those two combinations are the only ones in use,
400			// and it simplifies the applyBlack code below if we can assume that:
401			//	- for CMYK, the C and K channels have full samples, and if the M
402			//	  and Y channels subsample, they subsample both horizontally and
403			//	  vertically.
404			//	- for YCbCrK, the Y and K channels have full samples.
405			switch i {
406			case 0:
407				if hv != 0x11 && hv != 0x22 {
408					return errUnsupportedSubsamplingRatio
409				}
410			case 1, 2:
411				if hv != 0x11 {
412					return errUnsupportedSubsamplingRatio
413				}
414			case 3:
415				if d.comp[0].h != h || d.comp[0].v != v {
416					return errUnsupportedSubsamplingRatio
417				}
418			}
419		}
420
421		d.comp[i].h = h
422		d.comp[i].v = v
423	}
424	return nil
425}
426
427// Specified in section B.2.4.1.
428func (d *decoder) processDQT(n int) error {
429loop:
430	for n > 0 {
431		n--
432		x, err := d.readByte()
433		if err != nil {
434			return err
435		}
436		tq := x & 0x0f
437		if tq > maxTq {
438			return FormatError("bad Tq value")
439		}
440		switch x >> 4 {
441		default:
442			return FormatError("bad Pq value")
443		case 0:
444			if n < blockSize {
445				break loop
446			}
447			n -= blockSize
448			if err := d.readFull(d.tmp[:blockSize]); err != nil {
449				return err
450			}
451			for i := range d.quant[tq] {
452				d.quant[tq][i] = int32(d.tmp[i])
453			}
454		case 1:
455			if n < 2*blockSize {
456				break loop
457			}
458			n -= 2 * blockSize
459			if err := d.readFull(d.tmp[:2*blockSize]); err != nil {
460				return err
461			}
462			for i := range d.quant[tq] {
463				d.quant[tq][i] = int32(d.tmp[2*i])<<8 | int32(d.tmp[2*i+1])
464			}
465		}
466	}
467	if n != 0 {
468		return FormatError("DQT has wrong length")
469	}
470	return nil
471}
472
473// Specified in section B.2.4.4.
474func (d *decoder) processDRI(n int) error {
475	if n != 2 {
476		return FormatError("DRI has wrong length")
477	}
478	if err := d.readFull(d.tmp[:2]); err != nil {
479		return err
480	}
481	d.ri = int(d.tmp[0])<<8 + int(d.tmp[1])
482	return nil
483}
484
485func (d *decoder) processApp0Marker(n int) error {
486	if n < 5 {
487		return d.ignore(n)
488	}
489	if err := d.readFull(d.tmp[:5]); err != nil {
490		return err
491	}
492	n -= 5
493
494	d.jfif = d.tmp[0] == 'J' && d.tmp[1] == 'F' && d.tmp[2] == 'I' && d.tmp[3] == 'F' && d.tmp[4] == '\x00'
495
496	if n > 0 {
497		return d.ignore(n)
498	}
499	return nil
500}
501
502func (d *decoder) processApp14Marker(n int) error {
503	if n < 12 {
504		return d.ignore(n)
505	}
506	if err := d.readFull(d.tmp[:12]); err != nil {
507		return err
508	}
509	n -= 12
510
511	if d.tmp[0] == 'A' && d.tmp[1] == 'd' && d.tmp[2] == 'o' && d.tmp[3] == 'b' && d.tmp[4] == 'e' {
512		d.adobeTransformValid = true
513		d.adobeTransform = d.tmp[11]
514	}
515
516	if n > 0 {
517		return d.ignore(n)
518	}
519	return nil
520}
521
522// decode reads a JPEG image from r and returns it as an image.Image.
523func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) {
524	d.r = r
525
526	// Check for the Start Of Image marker.
527	if err := d.readFull(d.tmp[:2]); err != nil {
528		return nil, err
529	}
530	if d.tmp[0] != 0xff || d.tmp[1] != soiMarker {
531		return nil, FormatError("missing SOI marker")
532	}
533
534	// Process the remaining segments until the End Of Image marker.
535	for {
536		err := d.readFull(d.tmp[:2])
537		if err != nil {
538			return nil, err
539		}
540		for d.tmp[0] != 0xff {
541			// Strictly speaking, this is a format error. However, libjpeg is
542			// liberal in what it accepts. As of version 9, next_marker in
543			// jdmarker.c treats this as a warning (JWRN_EXTRANEOUS_DATA) and
544			// continues to decode the stream. Even before next_marker sees
545			// extraneous data, jpeg_fill_bit_buffer in jdhuff.c reads as many
546			// bytes as it can, possibly past the end of a scan's data. It
547			// effectively puts back any markers that it overscanned (e.g. an
548			// "\xff\xd9" EOI marker), but it does not put back non-marker data,
549			// and thus it can silently ignore a small number of extraneous
550			// non-marker bytes before next_marker has a chance to see them (and
551			// print a warning).
552			//
553			// We are therefore also liberal in what we accept. Extraneous data
554			// is silently ignored.
555			//
556			// This is similar to, but not exactly the same as, the restart
557			// mechanism within a scan (the RST[0-7] markers).
558			//
559			// Note that extraneous 0xff bytes in e.g. SOS data are escaped as
560			// "\xff\x00", and so are detected a little further down below.
561			d.tmp[0] = d.tmp[1]
562			d.tmp[1], err = d.readByte()
563			if err != nil {
564				return nil, err
565			}
566		}
567		marker := d.tmp[1]
568		if marker == 0 {
569			// Treat "\xff\x00" as extraneous data.
570			continue
571		}
572		for marker == 0xff {
573			// Section B.1.1.2 says, "Any marker may optionally be preceded by any
574			// number of fill bytes, which are bytes assigned code X'FF'".
575			marker, err = d.readByte()
576			if err != nil {
577				return nil, err
578			}
579		}
580		if marker == eoiMarker { // End Of Image.
581			break
582		}
583		if rst0Marker <= marker && marker <= rst7Marker {
584			// Figures B.2 and B.16 of the specification suggest that restart markers should
585			// only occur between Entropy Coded Segments and not after the final ECS.
586			// However, some encoders may generate incorrect JPEGs with a final restart
587			// marker. That restart marker will be seen here instead of inside the processSOS
588			// method, and is ignored as a harmless error. Restart markers have no extra data,
589			// so we check for this before we read the 16-bit length of the segment.
590			continue
591		}
592
593		// Read the 16-bit length of the segment. The value includes the 2 bytes for the
594		// length itself, so we subtract 2 to get the number of remaining bytes.
595		if err = d.readFull(d.tmp[:2]); err != nil {
596			return nil, err
597		}
598		n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2
599		if n < 0 {
600			return nil, FormatError("short segment length")
601		}
602
603		switch marker {
604		case sof0Marker, sof1Marker, sof2Marker:
605			d.baseline = marker == sof0Marker
606			d.progressive = marker == sof2Marker
607			err = d.processSOF(n)
608			if configOnly && d.jfif {
609				return nil, err
610			}
611		case dhtMarker:
612			if configOnly {
613				err = d.ignore(n)
614			} else {
615				err = d.processDHT(n)
616			}
617		case dqtMarker:
618			if configOnly {
619				err = d.ignore(n)
620			} else {
621				err = d.processDQT(n)
622			}
623		case sosMarker:
624			if configOnly {
625				return nil, nil
626			}
627			err = d.processSOS(n)
628		case driMarker:
629			if configOnly {
630				err = d.ignore(n)
631			} else {
632				err = d.processDRI(n)
633			}
634		case app0Marker:
635			err = d.processApp0Marker(n)
636		case app14Marker:
637			err = d.processApp14Marker(n)
638		default:
639			if app0Marker <= marker && marker <= app15Marker || marker == comMarker {
640				err = d.ignore(n)
641			} else if marker < 0xc0 { // See Table B.1 "Marker code assignments".
642				err = FormatError("unknown marker")
643			} else {
644				err = UnsupportedError("unknown marker")
645			}
646		}
647		if err != nil {
648			return nil, err
649		}
650	}
651
652	if d.progressive {
653		if err := d.reconstructProgressiveImage(); err != nil {
654			return nil, err
655		}
656	}
657	if d.img1 != nil {
658		return d.img1, nil
659	}
660	if d.img3 != nil {
661		if d.blackPix != nil {
662			return d.applyBlack()
663		} else if d.isRGB() {
664			return d.convertToRGB()
665		}
666		return d.img3, nil
667	}
668	return nil, FormatError("missing SOS marker")
669}
670
671// applyBlack combines d.img3 and d.blackPix into a CMYK image. The formula
672// used depends on whether the JPEG image is stored as CMYK or YCbCrK,
673// indicated by the APP14 (Adobe) metadata.
674//
675// Adobe CMYK JPEG images are inverted, where 255 means no ink instead of full
676// ink, so we apply "v = 255 - v" at various points. Note that a double
677// inversion is a no-op, so inversions might be implicit in the code below.
678func (d *decoder) applyBlack() (image.Image, error) {
679	if !d.adobeTransformValid {
680		return nil, UnsupportedError("unknown color model: 4-component JPEG doesn't have Adobe APP14 metadata")
681	}
682
683	// If the 4-component JPEG image isn't explicitly marked as "Unknown (RGB
684	// or CMYK)" as per
685	// https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
686	// we assume that it is YCbCrK. This matches libjpeg's jdapimin.c.
687	if d.adobeTransform != adobeTransformUnknown {
688		// Convert the YCbCr part of the YCbCrK to RGB, invert the RGB to get
689		// CMY, and patch in the original K. The RGB to CMY inversion cancels
690		// out the 'Adobe inversion' described in the applyBlack doc comment
691		// above, so in practice, only the fourth channel (black) is inverted.
692		bounds := d.img3.Bounds()
693		img := image.NewRGBA(bounds)
694		imageutil.DrawYCbCr(img, bounds, d.img3, bounds.Min)
695		for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 {
696			for i, x := iBase+3, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 {
697				img.Pix[i] = 255 - d.blackPix[(y-bounds.Min.Y)*d.blackStride+(x-bounds.Min.X)]
698			}
699		}
700		return &image.CMYK{
701			Pix:    img.Pix,
702			Stride: img.Stride,
703			Rect:   img.Rect,
704		}, nil
705	}
706
707	// The first three channels (cyan, magenta, yellow) of the CMYK
708	// were decoded into d.img3, but each channel was decoded into a separate
709	// []byte slice, and some channels may be subsampled. We interleave the
710	// separate channels into an image.CMYK's single []byte slice containing 4
711	// contiguous bytes per pixel.
712	bounds := d.img3.Bounds()
713	img := image.NewCMYK(bounds)
714
715	translations := [4]struct {
716		src    []byte
717		stride int
718	}{
719		{d.img3.Y, d.img3.YStride},
720		{d.img3.Cb, d.img3.CStride},
721		{d.img3.Cr, d.img3.CStride},
722		{d.blackPix, d.blackStride},
723	}
724	for t, translation := range translations {
725		subsample := d.comp[t].h != d.comp[0].h || d.comp[t].v != d.comp[0].v
726		for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 {
727			sy := y - bounds.Min.Y
728			if subsample {
729				sy /= 2
730			}
731			for i, x := iBase+t, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 {
732				sx := x - bounds.Min.X
733				if subsample {
734					sx /= 2
735				}
736				img.Pix[i] = 255 - translation.src[sy*translation.stride+sx]
737			}
738		}
739	}
740	return img, nil
741}
742
743func (d *decoder) isRGB() bool {
744	if d.jfif {
745		return false
746	}
747	if d.adobeTransformValid && d.adobeTransform == adobeTransformUnknown {
748		// https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
749		// says that 0 means Unknown (and in practice RGB) and 1 means YCbCr.
750		return true
751	}
752	return d.comp[0].c == 'R' && d.comp[1].c == 'G' && d.comp[2].c == 'B'
753}
754
755func (d *decoder) convertToRGB() (image.Image, error) {
756	cScale := d.comp[0].h / d.comp[1].h
757	bounds := d.img3.Bounds()
758	img := image.NewRGBA(bounds)
759	for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
760		po := img.PixOffset(bounds.Min.X, y)
761		yo := d.img3.YOffset(bounds.Min.X, y)
762		co := d.img3.COffset(bounds.Min.X, y)
763		for i, iMax := 0, bounds.Max.X-bounds.Min.X; i < iMax; i++ {
764			img.Pix[po+4*i+0] = d.img3.Y[yo+i]
765			img.Pix[po+4*i+1] = d.img3.Cb[co+i/cScale]
766			img.Pix[po+4*i+2] = d.img3.Cr[co+i/cScale]
767			img.Pix[po+4*i+3] = 255
768		}
769	}
770	return img, nil
771}
772
773// Decode reads a JPEG image from r and returns it as an image.Image.
774func Decode(r io.Reader) (image.Image, error) {
775	var d decoder
776	return d.decode(r, false)
777}
778
779// DecodeConfig returns the color model and dimensions of a JPEG image without
780// decoding the entire image.
781func DecodeConfig(r io.Reader) (image.Config, error) {
782	var d decoder
783	if _, err := d.decode(r, true); err != nil {
784		return image.Config{}, err
785	}
786	switch d.nComp {
787	case 1:
788		return image.Config{
789			ColorModel: color.GrayModel,
790			Width:      d.width,
791			Height:     d.height,
792		}, nil
793	case 3:
794		cm := color.YCbCrModel
795		if d.isRGB() {
796			cm = color.RGBAModel
797		}
798		return image.Config{
799			ColorModel: cm,
800			Width:      d.width,
801			Height:     d.height,
802		}, nil
803	case 4:
804		return image.Config{
805			ColorModel: color.CMYKModel,
806			Width:      d.width,
807			Height:     d.height,
808		}, nil
809	}
810	return image.Config{}, FormatError("missing SOF marker")
811}
812
813func init() {
814	image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig)
815}
816