1 /* Handle initialization things in C++.
2    Copyright (C) 1987-2013 Free Software Foundation, Inc.
3    Contributed by Michael Tiemann (tiemann@cygnus.com)
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* High-level class interface.  */
22 
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "cp-tree.h"
29 #include "flags.h"
30 #include "target.h"
31 
32 static bool begin_init_stmts (tree *, tree *);
33 static tree finish_init_stmts (bool, tree, tree);
34 static void construct_virtual_base (tree, tree);
35 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
36 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
37 static void perform_member_init (tree, tree);
38 static tree build_builtin_delete_call (tree);
39 static int member_init_ok_or_else (tree, tree, tree);
40 static void expand_virtual_init (tree, tree);
41 static tree sort_mem_initializers (tree, tree);
42 static tree initializing_context (tree);
43 static void expand_cleanup_for_base (tree, tree);
44 static tree dfs_initialize_vtbl_ptrs (tree, void *);
45 static tree build_field_list (tree, tree, int *);
46 static tree build_vtbl_address (tree);
47 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
48 
49 /* We are about to generate some complex initialization code.
50    Conceptually, it is all a single expression.  However, we may want
51    to include conditionals, loops, and other such statement-level
52    constructs.  Therefore, we build the initialization code inside a
53    statement-expression.  This function starts such an expression.
54    STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
55    pass them back to finish_init_stmts when the expression is
56    complete.  */
57 
58 static bool
begin_init_stmts(tree * stmt_expr_p,tree * compound_stmt_p)59 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
60 {
61   bool is_global = !building_stmt_list_p ();
62 
63   *stmt_expr_p = begin_stmt_expr ();
64   *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
65 
66   return is_global;
67 }
68 
69 /* Finish out the statement-expression begun by the previous call to
70    begin_init_stmts.  Returns the statement-expression itself.  */
71 
72 static tree
finish_init_stmts(bool is_global,tree stmt_expr,tree compound_stmt)73 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
74 {
75   finish_compound_stmt (compound_stmt);
76 
77   stmt_expr = finish_stmt_expr (stmt_expr, true);
78 
79   gcc_assert (!building_stmt_list_p () == is_global);
80 
81   return stmt_expr;
82 }
83 
84 /* Constructors */
85 
86 /* Called from initialize_vtbl_ptrs via dfs_walk.  BINFO is the base
87    which we want to initialize the vtable pointer for, DATA is
88    TREE_LIST whose TREE_VALUE is the this ptr expression.  */
89 
90 static tree
dfs_initialize_vtbl_ptrs(tree binfo,void * data)91 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
92 {
93   if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
94     return dfs_skip_bases;
95 
96   if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
97     {
98       tree base_ptr = TREE_VALUE ((tree) data);
99 
100       base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
101 				  tf_warning_or_error);
102 
103       expand_virtual_init (binfo, base_ptr);
104     }
105 
106   return NULL_TREE;
107 }
108 
109 /* Initialize all the vtable pointers in the object pointed to by
110    ADDR.  */
111 
112 void
initialize_vtbl_ptrs(tree addr)113 initialize_vtbl_ptrs (tree addr)
114 {
115   tree list;
116   tree type;
117 
118   type = TREE_TYPE (TREE_TYPE (addr));
119   list = build_tree_list (type, addr);
120 
121   /* Walk through the hierarchy, initializing the vptr in each base
122      class.  We do these in pre-order because we can't find the virtual
123      bases for a class until we've initialized the vtbl for that
124      class.  */
125   dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
126 }
127 
128 /* Return an expression for the zero-initialization of an object with
129    type T.  This expression will either be a constant (in the case
130    that T is a scalar), or a CONSTRUCTOR (in the case that T is an
131    aggregate), or NULL (in the case that T does not require
132    initialization).  In either case, the value can be used as
133    DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
134    initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
135    is the number of elements in the array.  If STATIC_STORAGE_P is
136    TRUE, initializers are only generated for entities for which
137    zero-initialization does not simply mean filling the storage with
138    zero bytes.  FIELD_SIZE, if non-NULL, is the bit size of the field,
139    subfields with bit positions at or above that bit size shouldn't
140    be added.  Note that this only works when the result is assigned
141    to a base COMPONENT_REF; if we only have a pointer to the base subobject,
142    expand_assignment will end up clearing the full size of TYPE.  */
143 
144 static tree
build_zero_init_1(tree type,tree nelts,bool static_storage_p,tree field_size)145 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
146 		   tree field_size)
147 {
148   tree init = NULL_TREE;
149 
150   /* [dcl.init]
151 
152      To zero-initialize an object of type T means:
153 
154      -- if T is a scalar type, the storage is set to the value of zero
155 	converted to T.
156 
157      -- if T is a non-union class type, the storage for each nonstatic
158 	data member and each base-class subobject is zero-initialized.
159 
160      -- if T is a union type, the storage for its first data member is
161 	zero-initialized.
162 
163      -- if T is an array type, the storage for each element is
164 	zero-initialized.
165 
166      -- if T is a reference type, no initialization is performed.  */
167 
168   gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
169 
170   if (type == error_mark_node)
171     ;
172   else if (static_storage_p && zero_init_p (type))
173     /* In order to save space, we do not explicitly build initializers
174        for items that do not need them.  GCC's semantics are that
175        items with static storage duration that are not otherwise
176        initialized are initialized to zero.  */
177     ;
178   else if (TYPE_PTR_OR_PTRMEM_P (type))
179     init = convert (type, nullptr_node);
180   else if (SCALAR_TYPE_P (type))
181     init = convert (type, integer_zero_node);
182   else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
183     {
184       tree field;
185       vec<constructor_elt, va_gc> *v = NULL;
186 
187       /* Iterate over the fields, building initializations.  */
188       for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
189 	{
190 	  if (TREE_CODE (field) != FIELD_DECL)
191 	    continue;
192 
193 	  /* Don't add virtual bases for base classes if they are beyond
194 	     the size of the current field, that means it is present
195 	     somewhere else in the object.  */
196 	  if (field_size)
197 	    {
198 	      tree bitpos = bit_position (field);
199 	      if (TREE_CODE (bitpos) == INTEGER_CST
200 		  && !tree_int_cst_lt (bitpos, field_size))
201 		continue;
202 	    }
203 
204 	  /* Note that for class types there will be FIELD_DECLs
205 	     corresponding to base classes as well.  Thus, iterating
206 	     over TYPE_FIELDs will result in correct initialization of
207 	     all of the subobjects.  */
208 	  if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
209 	    {
210 	      tree new_field_size
211 		= (DECL_FIELD_IS_BASE (field)
212 		   && DECL_SIZE (field)
213 		   && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
214 		  ? DECL_SIZE (field) : NULL_TREE;
215 	      tree value = build_zero_init_1 (TREE_TYPE (field),
216 					      /*nelts=*/NULL_TREE,
217 					      static_storage_p,
218 					      new_field_size);
219 	      if (value)
220 		CONSTRUCTOR_APPEND_ELT(v, field, value);
221 	    }
222 
223 	  /* For unions, only the first field is initialized.  */
224 	  if (TREE_CODE (type) == UNION_TYPE)
225 	    break;
226 	}
227 
228       /* Build a constructor to contain the initializations.  */
229       init = build_constructor (type, v);
230     }
231   else if (TREE_CODE (type) == ARRAY_TYPE)
232     {
233       tree max_index;
234       vec<constructor_elt, va_gc> *v = NULL;
235 
236       /* Iterate over the array elements, building initializations.  */
237       if (nelts)
238 	max_index = fold_build2_loc (input_location,
239 				 MINUS_EXPR, TREE_TYPE (nelts),
240 				 nelts, integer_one_node);
241       else
242 	max_index = array_type_nelts (type);
243 
244       /* If we have an error_mark here, we should just return error mark
245 	 as we don't know the size of the array yet.  */
246       if (max_index == error_mark_node)
247 	return error_mark_node;
248       gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
249 
250       /* A zero-sized array, which is accepted as an extension, will
251 	 have an upper bound of -1.  */
252       if (!tree_int_cst_equal (max_index, integer_minus_one_node))
253 	{
254 	  constructor_elt ce;
255 
256 	  /* If this is a one element array, we just use a regular init.  */
257 	  if (tree_int_cst_equal (size_zero_node, max_index))
258 	    ce.index = size_zero_node;
259 	  else
260 	    ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
261 				max_index);
262 
263 	  ce.value = build_zero_init_1 (TREE_TYPE (type),
264 					 /*nelts=*/NULL_TREE,
265 					 static_storage_p, NULL_TREE);
266 	  if (ce.value)
267 	    {
268 	      vec_alloc (v, 1);
269 	      v->quick_push (ce);
270 	    }
271 	}
272 
273       /* Build a constructor to contain the initializations.  */
274       init = build_constructor (type, v);
275     }
276   else if (TREE_CODE (type) == VECTOR_TYPE)
277     init = build_zero_cst (type);
278   else
279     gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
280 
281   /* In all cases, the initializer is a constant.  */
282   if (init)
283     TREE_CONSTANT (init) = 1;
284 
285   return init;
286 }
287 
288 /* Return an expression for the zero-initialization of an object with
289    type T.  This expression will either be a constant (in the case
290    that T is a scalar), or a CONSTRUCTOR (in the case that T is an
291    aggregate), or NULL (in the case that T does not require
292    initialization).  In either case, the value can be used as
293    DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
294    initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
295    is the number of elements in the array.  If STATIC_STORAGE_P is
296    TRUE, initializers are only generated for entities for which
297    zero-initialization does not simply mean filling the storage with
298    zero bytes.  */
299 
300 tree
build_zero_init(tree type,tree nelts,bool static_storage_p)301 build_zero_init (tree type, tree nelts, bool static_storage_p)
302 {
303   return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
304 }
305 
306 /* Return a suitable initializer for value-initializing an object of type
307    TYPE, as described in [dcl.init].  */
308 
309 tree
build_value_init(tree type,tsubst_flags_t complain)310 build_value_init (tree type, tsubst_flags_t complain)
311 {
312   /* [dcl.init]
313 
314      To value-initialize an object of type T means:
315 
316      - if T is a class type (clause 9) with a user-provided constructor
317        (12.1), then the default constructor for T is called (and the
318        initialization is ill-formed if T has no accessible default
319        constructor);
320 
321      - if T is a non-union class type without a user-provided constructor,
322        then every non-static data member and base-class component of T is
323        value-initialized;92)
324 
325      - if T is an array type, then each element is value-initialized;
326 
327      - otherwise, the object is zero-initialized.
328 
329      A program that calls for default-initialization or
330      value-initialization of an entity of reference type is ill-formed.
331 
332      92) Value-initialization for such a class object may be implemented by
333      zero-initializing the object and then calling the default
334      constructor.  */
335 
336   /* The AGGR_INIT_EXPR tweaking below breaks in templates.  */
337   gcc_assert (!processing_template_decl
338 	      || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
339 
340   if (CLASS_TYPE_P (type))
341     {
342       /* Instead of the above, only consider the user-providedness of the
343 	 default constructor itself so value-initializing a class with an
344 	 explicitly defaulted default constructor and another user-provided
345 	 constructor works properly (c++std-core-19883).  */
346       if (type_has_user_provided_default_constructor (type)
347 	  || (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
348 	      && type_has_user_provided_constructor (type)))
349 	return build_aggr_init_expr
350 	  (type,
351 	   build_special_member_call (NULL_TREE, complete_ctor_identifier,
352 				      NULL, type, LOOKUP_NORMAL,
353 				      complain));
354       else if (TYPE_HAS_COMPLEX_DFLT (type))
355 	{
356 	  /* This is a class that needs constructing, but doesn't have
357 	     a user-provided constructor.  So we need to zero-initialize
358 	     the object and then call the implicitly defined ctor.
359 	     This will be handled in simplify_aggr_init_expr.  */
360 	  tree ctor = build_special_member_call
361 	    (NULL_TREE, complete_ctor_identifier,
362 	     NULL, type, LOOKUP_NORMAL, complain);
363 	  ctor = build_aggr_init_expr (type, ctor);
364 	  if (ctor != error_mark_node)
365 	    AGGR_INIT_ZERO_FIRST (ctor) = 1;
366 	  return ctor;
367 	}
368     }
369   return build_value_init_noctor (type, complain);
370 }
371 
372 /* Like build_value_init, but don't call the constructor for TYPE.  Used
373    for base initializers.  */
374 
375 tree
build_value_init_noctor(tree type,tsubst_flags_t complain)376 build_value_init_noctor (tree type, tsubst_flags_t complain)
377 {
378   if (!COMPLETE_TYPE_P (type))
379     {
380       if (complain & tf_error)
381 	error ("value-initialization of incomplete type %qT", type);
382       return error_mark_node;
383     }
384   /* FIXME the class and array cases should just use digest_init once it is
385      SFINAE-enabled.  */
386   if (CLASS_TYPE_P (type))
387     {
388       gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type));
389 
390       if (TREE_CODE (type) != UNION_TYPE)
391 	{
392 	  tree field;
393 	  vec<constructor_elt, va_gc> *v = NULL;
394 
395 	  /* Iterate over the fields, building initializations.  */
396 	  for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
397 	    {
398 	      tree ftype, value;
399 
400 	      if (TREE_CODE (field) != FIELD_DECL)
401 		continue;
402 
403 	      ftype = TREE_TYPE (field);
404 
405 	      /* We could skip vfields and fields of types with
406 		 user-defined constructors, but I think that won't improve
407 		 performance at all; it should be simpler in general just
408 		 to zero out the entire object than try to only zero the
409 		 bits that actually need it.  */
410 
411 	      /* Note that for class types there will be FIELD_DECLs
412 		 corresponding to base classes as well.  Thus, iterating
413 		 over TYPE_FIELDs will result in correct initialization of
414 		 all of the subobjects.  */
415 	      value = build_value_init (ftype, complain);
416 
417 	      if (value == error_mark_node)
418 		return error_mark_node;
419 
420 	      if (value)
421 		CONSTRUCTOR_APPEND_ELT(v, field, value);
422 	    }
423 
424 	  /* Build a constructor to contain the zero- initializations.  */
425 	  return build_constructor (type, v);
426 	}
427     }
428   else if (TREE_CODE (type) == ARRAY_TYPE)
429     {
430       vec<constructor_elt, va_gc> *v = NULL;
431 
432       /* Iterate over the array elements, building initializations.  */
433       tree max_index = array_type_nelts (type);
434 
435       /* If we have an error_mark here, we should just return error mark
436 	 as we don't know the size of the array yet.  */
437       if (max_index == error_mark_node)
438 	{
439 	  if (complain & tf_error)
440 	    error ("cannot value-initialize array of unknown bound %qT",
441 		   type);
442 	  return error_mark_node;
443 	}
444       gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
445 
446       /* A zero-sized array, which is accepted as an extension, will
447 	 have an upper bound of -1.  */
448       if (!tree_int_cst_equal (max_index, integer_minus_one_node))
449 	{
450 	  constructor_elt ce;
451 
452 	  /* If this is a one element array, we just use a regular init.  */
453 	  if (tree_int_cst_equal (size_zero_node, max_index))
454 	    ce.index = size_zero_node;
455 	  else
456 	    ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
457 
458 	  ce.value = build_value_init (TREE_TYPE (type), complain);
459 	  if (ce.value)
460 	    {
461 	      if (ce.value == error_mark_node)
462 		return error_mark_node;
463 
464 	      vec_alloc (v, 1);
465 	      v->quick_push (ce);
466 
467 	      /* We shouldn't have gotten here for anything that would need
468 		 non-trivial initialization, and gimplify_init_ctor_preeval
469 		 would need to be fixed to allow it.  */
470 	      gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
471 			  && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
472 	    }
473 	}
474 
475       /* Build a constructor to contain the initializations.  */
476       return build_constructor (type, v);
477     }
478   else if (TREE_CODE (type) == FUNCTION_TYPE)
479     {
480       if (complain & tf_error)
481 	error ("value-initialization of function type %qT", type);
482       return error_mark_node;
483     }
484   else if (TREE_CODE (type) == REFERENCE_TYPE)
485     {
486       if (complain & tf_error)
487 	error ("value-initialization of reference type %qT", type);
488       return error_mark_node;
489     }
490 
491   return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
492 }
493 
494 /* Initialize current class with INIT, a TREE_LIST of
495    arguments for a target constructor. If TREE_LIST is void_type_node,
496    an empty initializer list was given.  */
497 
498 static void
perform_target_ctor(tree init)499 perform_target_ctor (tree init)
500 {
501   tree decl = current_class_ref;
502   tree type = current_class_type;
503 
504   finish_expr_stmt (build_aggr_init (decl, init, LOOKUP_NORMAL,
505                                      tf_warning_or_error));
506   if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
507     {
508       tree expr = build_delete (type, decl, sfk_complete_destructor,
509 				LOOKUP_NORMAL
510 				|LOOKUP_NONVIRTUAL
511 				|LOOKUP_DESTRUCTOR,
512 				0, tf_warning_or_error);
513       if (expr != error_mark_node)
514 	finish_eh_cleanup (expr);
515     }
516 }
517 
518 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
519    arguments.  If TREE_LIST is void_type_node, an empty initializer
520    list was given; if NULL_TREE no initializer was given.  */
521 
522 static void
perform_member_init(tree member,tree init)523 perform_member_init (tree member, tree init)
524 {
525   tree decl;
526   tree type = TREE_TYPE (member);
527 
528   /* Use the non-static data member initializer if there was no
529      mem-initializer for this field.  */
530   if (init == NULL_TREE)
531     {
532       if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
533 	/* Do deferred instantiation of the NSDMI.  */
534 	init = (tsubst_copy_and_build
535 		(DECL_INITIAL (DECL_TI_TEMPLATE (member)),
536 		 DECL_TI_ARGS (member),
537 		 tf_warning_or_error, member, /*function_p=*/false,
538 		 /*integral_constant_expression_p=*/false));
539       else
540 	{
541 	  init = DECL_INITIAL (member);
542 	  if (init && TREE_CODE (init) == DEFAULT_ARG)
543 	    {
544 	      error ("constructor required before non-static data member "
545 		     "for %qD has been parsed", member);
546 	      init = NULL_TREE;
547 	    }
548 	  /* Strip redundant TARGET_EXPR so we don't need to remap it, and
549 	     so the aggregate init code below will see a CONSTRUCTOR.  */
550 	  if (init && TREE_CODE (init) == TARGET_EXPR
551 	      && !VOID_TYPE_P (TREE_TYPE (TARGET_EXPR_INITIAL (init))))
552 	    init = TARGET_EXPR_INITIAL (init);
553 	  init = break_out_target_exprs (init);
554 	}
555     }
556 
557   if (init == error_mark_node)
558     return;
559 
560   /* Effective C++ rule 12 requires that all data members be
561      initialized.  */
562   if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
563     warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
564 		"%qD should be initialized in the member initialization list",
565 		member);
566 
567   /* Get an lvalue for the data member.  */
568   decl = build_class_member_access_expr (current_class_ref, member,
569 					 /*access_path=*/NULL_TREE,
570 					 /*preserve_reference=*/true,
571 					 tf_warning_or_error);
572   if (decl == error_mark_node)
573     return;
574 
575   if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
576       && TREE_CHAIN (init) == NULL_TREE)
577     {
578       tree val = TREE_VALUE (init);
579       if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
580 	  && TREE_OPERAND (val, 0) == current_class_ref)
581 	warning_at (DECL_SOURCE_LOCATION (current_function_decl),
582 		    OPT_Winit_self, "%qD is initialized with itself",
583 		    member);
584     }
585 
586   if (init == void_type_node)
587     {
588       /* mem() means value-initialization.  */
589       if (TREE_CODE (type) == ARRAY_TYPE)
590 	{
591 	  init = build_vec_init_expr (type, init, tf_warning_or_error);
592 	  init = build2 (INIT_EXPR, type, decl, init);
593 	  finish_expr_stmt (init);
594 	}
595       else
596 	{
597 	  tree value = build_value_init (type, tf_warning_or_error);
598 	  if (value == error_mark_node)
599 	    return;
600 	  init = build2 (INIT_EXPR, type, decl, value);
601 	  finish_expr_stmt (init);
602 	}
603     }
604   /* Deal with this here, as we will get confused if we try to call the
605      assignment op for an anonymous union.  This can happen in a
606      synthesized copy constructor.  */
607   else if (ANON_AGGR_TYPE_P (type))
608     {
609       if (init)
610 	{
611 	  init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
612 	  finish_expr_stmt (init);
613 	}
614     }
615   else if (init
616 	   && (TREE_CODE (type) == REFERENCE_TYPE
617 	       /* Pre-digested NSDMI.  */
618 	       || (((TREE_CODE (init) == CONSTRUCTOR
619 		     && TREE_TYPE (init) == type)
620 		    /* { } mem-initializer.  */
621 		    || (TREE_CODE (init) == TREE_LIST
622 			&& TREE_CODE (TREE_VALUE (init)) == CONSTRUCTOR
623 			&& CONSTRUCTOR_IS_DIRECT_INIT (TREE_VALUE (init))))
624 		   && (CP_AGGREGATE_TYPE_P (type)
625 		       || is_std_init_list (type)))))
626     {
627       /* With references and list-initialization, we need to deal with
628 	 extending temporary lifetimes.  12.2p5: "A temporary bound to a
629 	 reference member in a constructor’s ctor-initializer (12.6.2)
630 	 persists until the constructor exits."  */
631       unsigned i; tree t;
632       vec<tree, va_gc> *cleanups = make_tree_vector ();
633       if (TREE_CODE (init) == TREE_LIST)
634 	init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
635 						tf_warning_or_error);
636       if (TREE_TYPE (init) != type)
637 	{
638 	  if (BRACE_ENCLOSED_INITIALIZER_P (init)
639 	      && CP_AGGREGATE_TYPE_P (type))
640 	    init = reshape_init (type, init, tf_warning_or_error);
641 	  init = digest_init (type, init, tf_warning_or_error);
642 	}
643       if (init == error_mark_node)
644 	return;
645       /* A FIELD_DECL doesn't really have a suitable lifetime, but
646 	 make_temporary_var_for_ref_to_temp will treat it as automatic and
647 	 set_up_extended_ref_temp wants to use the decl in a warning.  */
648       init = extend_ref_init_temps (member, init, &cleanups);
649       if (TREE_CODE (type) == ARRAY_TYPE
650 	  && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
651 	init = build_vec_init_expr (type, init, tf_warning_or_error);
652       init = build2 (INIT_EXPR, type, decl, init);
653       finish_expr_stmt (init);
654       FOR_EACH_VEC_ELT (*cleanups, i, t)
655 	push_cleanup (decl, t, false);
656       release_tree_vector (cleanups);
657     }
658   else if (type_build_ctor_call (type)
659 	   || (init && CLASS_TYPE_P (strip_array_types (type))))
660     {
661       if (TREE_CODE (type) == ARRAY_TYPE)
662 	{
663 	  if (init)
664 	    {
665 	      if (TREE_CHAIN (init))
666 		init = error_mark_node;
667 	      else
668 		init = TREE_VALUE (init);
669 	      if (BRACE_ENCLOSED_INITIALIZER_P (init))
670 		init = digest_init (type, init, tf_warning_or_error);
671 	    }
672 	  if (init == NULL_TREE
673 	      || same_type_ignoring_top_level_qualifiers_p (type,
674 							    TREE_TYPE (init)))
675 	    {
676 	      init = build_vec_init_expr (type, init, tf_warning_or_error);
677 	      init = build2 (INIT_EXPR, type, decl, init);
678 	      finish_expr_stmt (init);
679 	    }
680 	  else
681 	    error ("invalid initializer for array member %q#D", member);
682 	}
683       else
684 	{
685 	  int flags = LOOKUP_NORMAL;
686 	  if (DECL_DEFAULTED_FN (current_function_decl))
687 	    flags |= LOOKUP_DEFAULTED;
688 	  if (CP_TYPE_CONST_P (type)
689 	      && init == NULL_TREE
690 	      && default_init_uninitialized_part (type))
691 	    /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
692 	       vtable; still give this diagnostic.  */
693 	    permerror (DECL_SOURCE_LOCATION (current_function_decl),
694 		       "uninitialized member %qD with %<const%> type %qT",
695 		       member, type);
696 	  finish_expr_stmt (build_aggr_init (decl, init, flags,
697 					     tf_warning_or_error));
698 	}
699     }
700   else
701     {
702       if (init == NULL_TREE)
703 	{
704 	  tree core_type;
705 	  /* member traversal: note it leaves init NULL */
706 	  if (TREE_CODE (type) == REFERENCE_TYPE)
707 	    permerror (DECL_SOURCE_LOCATION (current_function_decl),
708 		       "uninitialized reference member %qD",
709 		       member);
710 	  else if (CP_TYPE_CONST_P (type))
711 	    permerror (DECL_SOURCE_LOCATION (current_function_decl),
712 		       "uninitialized member %qD with %<const%> type %qT",
713 		       member, type);
714 
715 	  core_type = strip_array_types (type);
716 
717 	  if (CLASS_TYPE_P (core_type)
718 	      && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
719 		  || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
720 	    diagnose_uninitialized_cst_or_ref_member (core_type,
721 						      /*using_new=*/false,
722 						      /*complain=*/true);
723 	}
724       else if (TREE_CODE (init) == TREE_LIST)
725 	/* There was an explicit member initialization.  Do some work
726 	   in that case.  */
727 	init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
728 						tf_warning_or_error);
729 
730       if (init)
731 	finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
732 						tf_warning_or_error));
733     }
734 
735   if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
736     {
737       tree expr;
738 
739       expr = build_class_member_access_expr (current_class_ref, member,
740 					     /*access_path=*/NULL_TREE,
741 					     /*preserve_reference=*/false,
742 					     tf_warning_or_error);
743       expr = build_delete (type, expr, sfk_complete_destructor,
744 			   LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
745 			   tf_warning_or_error);
746 
747       if (expr != error_mark_node)
748 	finish_eh_cleanup (expr);
749     }
750 }
751 
752 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
753    the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order.  */
754 
755 static tree
build_field_list(tree t,tree list,int * uses_unions_p)756 build_field_list (tree t, tree list, int *uses_unions_p)
757 {
758   tree fields;
759 
760   /* Note whether or not T is a union.  */
761   if (TREE_CODE (t) == UNION_TYPE)
762     *uses_unions_p = 1;
763 
764   for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
765     {
766       tree fieldtype;
767 
768       /* Skip CONST_DECLs for enumeration constants and so forth.  */
769       if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
770 	continue;
771 
772       fieldtype = TREE_TYPE (fields);
773       /* Keep track of whether or not any fields are unions.  */
774       if (TREE_CODE (fieldtype) == UNION_TYPE)
775 	*uses_unions_p = 1;
776 
777       /* For an anonymous struct or union, we must recursively
778 	 consider the fields of the anonymous type.  They can be
779 	 directly initialized from the constructor.  */
780       if (ANON_AGGR_TYPE_P (fieldtype))
781 	{
782 	  /* Add this field itself.  Synthesized copy constructors
783 	     initialize the entire aggregate.  */
784 	  list = tree_cons (fields, NULL_TREE, list);
785 	  /* And now add the fields in the anonymous aggregate.  */
786 	  list = build_field_list (fieldtype, list, uses_unions_p);
787 	}
788       /* Add this field.  */
789       else if (DECL_NAME (fields))
790 	list = tree_cons (fields, NULL_TREE, list);
791     }
792 
793   return list;
794 }
795 
796 /* The MEM_INITS are a TREE_LIST.  The TREE_PURPOSE of each list gives
797    a FIELD_DECL or BINFO in T that needs initialization.  The
798    TREE_VALUE gives the initializer, or list of initializer arguments.
799 
800    Return a TREE_LIST containing all of the initializations required
801    for T, in the order in which they should be performed.  The output
802    list has the same format as the input.  */
803 
804 static tree
sort_mem_initializers(tree t,tree mem_inits)805 sort_mem_initializers (tree t, tree mem_inits)
806 {
807   tree init;
808   tree base, binfo, base_binfo;
809   tree sorted_inits;
810   tree next_subobject;
811   vec<tree, va_gc> *vbases;
812   int i;
813   int uses_unions_p = 0;
814 
815   /* Build up a list of initializations.  The TREE_PURPOSE of entry
816      will be the subobject (a FIELD_DECL or BINFO) to initialize.  The
817      TREE_VALUE will be the constructor arguments, or NULL if no
818      explicit initialization was provided.  */
819   sorted_inits = NULL_TREE;
820 
821   /* Process the virtual bases.  */
822   for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
823        vec_safe_iterate (vbases, i, &base); i++)
824     sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
825 
826   /* Process the direct bases.  */
827   for (binfo = TYPE_BINFO (t), i = 0;
828        BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
829     if (!BINFO_VIRTUAL_P (base_binfo))
830       sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
831 
832   /* Process the non-static data members.  */
833   sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
834   /* Reverse the entire list of initializations, so that they are in
835      the order that they will actually be performed.  */
836   sorted_inits = nreverse (sorted_inits);
837 
838   /* If the user presented the initializers in an order different from
839      that in which they will actually occur, we issue a warning.  Keep
840      track of the next subobject which can be explicitly initialized
841      without issuing a warning.  */
842   next_subobject = sorted_inits;
843 
844   /* Go through the explicit initializers, filling in TREE_PURPOSE in
845      the SORTED_INITS.  */
846   for (init = mem_inits; init; init = TREE_CHAIN (init))
847     {
848       tree subobject;
849       tree subobject_init;
850 
851       subobject = TREE_PURPOSE (init);
852 
853       /* If the explicit initializers are in sorted order, then
854 	 SUBOBJECT will be NEXT_SUBOBJECT, or something following
855 	 it.  */
856       for (subobject_init = next_subobject;
857 	   subobject_init;
858 	   subobject_init = TREE_CHAIN (subobject_init))
859 	if (TREE_PURPOSE (subobject_init) == subobject)
860 	  break;
861 
862       /* Issue a warning if the explicit initializer order does not
863 	 match that which will actually occur.
864 	 ??? Are all these on the correct lines?  */
865       if (warn_reorder && !subobject_init)
866 	{
867 	  if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
868 	    warning (OPT_Wreorder, "%q+D will be initialized after",
869 		     TREE_PURPOSE (next_subobject));
870 	  else
871 	    warning (OPT_Wreorder, "base %qT will be initialized after",
872 		     TREE_PURPOSE (next_subobject));
873 	  if (TREE_CODE (subobject) == FIELD_DECL)
874 	    warning (OPT_Wreorder, "  %q+#D", subobject);
875 	  else
876 	    warning (OPT_Wreorder, "  base %qT", subobject);
877 	  warning_at (DECL_SOURCE_LOCATION (current_function_decl),
878 		      OPT_Wreorder, "  when initialized here");
879 	}
880 
881       /* Look again, from the beginning of the list.  */
882       if (!subobject_init)
883 	{
884 	  subobject_init = sorted_inits;
885 	  while (TREE_PURPOSE (subobject_init) != subobject)
886 	    subobject_init = TREE_CHAIN (subobject_init);
887 	}
888 
889       /* It is invalid to initialize the same subobject more than
890 	 once.  */
891       if (TREE_VALUE (subobject_init))
892 	{
893 	  if (TREE_CODE (subobject) == FIELD_DECL)
894 	    error_at (DECL_SOURCE_LOCATION (current_function_decl),
895 		      "multiple initializations given for %qD",
896 		      subobject);
897 	  else
898 	    error_at (DECL_SOURCE_LOCATION (current_function_decl),
899 		      "multiple initializations given for base %qT",
900 		      subobject);
901 	}
902 
903       /* Record the initialization.  */
904       TREE_VALUE (subobject_init) = TREE_VALUE (init);
905       next_subobject = subobject_init;
906     }
907 
908   /* [class.base.init]
909 
910      If a ctor-initializer specifies more than one mem-initializer for
911      multiple members of the same union (including members of
912      anonymous unions), the ctor-initializer is ill-formed.
913 
914      Here we also splice out uninitialized union members.  */
915   if (uses_unions_p)
916     {
917       tree last_field = NULL_TREE;
918       tree *p;
919       for (p = &sorted_inits; *p; )
920 	{
921 	  tree field;
922 	  tree ctx;
923 	  int done;
924 
925 	  init = *p;
926 
927 	  field = TREE_PURPOSE (init);
928 
929 	  /* Skip base classes.  */
930 	  if (TREE_CODE (field) != FIELD_DECL)
931 	    goto next;
932 
933 	  /* If this is an anonymous union with no explicit initializer,
934 	     splice it out.  */
935 	  if (!TREE_VALUE (init) && ANON_UNION_TYPE_P (TREE_TYPE (field)))
936 	    goto splice;
937 
938 	  /* See if this field is a member of a union, or a member of a
939 	     structure contained in a union, etc.  */
940 	  for (ctx = DECL_CONTEXT (field);
941 	       !same_type_p (ctx, t);
942 	       ctx = TYPE_CONTEXT (ctx))
943 	    if (TREE_CODE (ctx) == UNION_TYPE)
944 	      break;
945 	  /* If this field is not a member of a union, skip it.  */
946 	  if (TREE_CODE (ctx) != UNION_TYPE)
947 	    goto next;
948 
949 	  /* If this union member has no explicit initializer, splice
950 	     it out.  */
951 	  if (!TREE_VALUE (init))
952 	    goto splice;
953 
954 	  /* It's only an error if we have two initializers for the same
955 	     union type.  */
956 	  if (!last_field)
957 	    {
958 	      last_field = field;
959 	      goto next;
960 	    }
961 
962 	  /* See if LAST_FIELD and the field initialized by INIT are
963 	     members of the same union.  If so, there's a problem,
964 	     unless they're actually members of the same structure
965 	     which is itself a member of a union.  For example, given:
966 
967 	       union { struct { int i; int j; }; };
968 
969 	     initializing both `i' and `j' makes sense.  */
970 	  ctx = DECL_CONTEXT (field);
971 	  done = 0;
972 	  do
973 	    {
974 	      tree last_ctx;
975 
976 	      last_ctx = DECL_CONTEXT (last_field);
977 	      while (1)
978 		{
979 		  if (same_type_p (last_ctx, ctx))
980 		    {
981 		      if (TREE_CODE (ctx) == UNION_TYPE)
982 			error_at (DECL_SOURCE_LOCATION (current_function_decl),
983 				  "initializations for multiple members of %qT",
984 				  last_ctx);
985 		      done = 1;
986 		      break;
987 		    }
988 
989 		  if (same_type_p (last_ctx, t))
990 		    break;
991 
992 		  last_ctx = TYPE_CONTEXT (last_ctx);
993 		}
994 
995 	      /* If we've reached the outermost class, then we're
996 		 done.  */
997 	      if (same_type_p (ctx, t))
998 		break;
999 
1000 	      ctx = TYPE_CONTEXT (ctx);
1001 	    }
1002 	  while (!done);
1003 
1004 	  last_field = field;
1005 
1006 	next:
1007 	  p = &TREE_CHAIN (*p);
1008 	  continue;
1009 	splice:
1010 	  *p = TREE_CHAIN (*p);
1011 	  continue;
1012 	}
1013     }
1014 
1015   return sorted_inits;
1016 }
1017 
1018 /* Initialize all bases and members of CURRENT_CLASS_TYPE.  MEM_INITS
1019    is a TREE_LIST giving the explicit mem-initializer-list for the
1020    constructor.  The TREE_PURPOSE of each entry is a subobject (a
1021    FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE.  The TREE_VALUE
1022    is a TREE_LIST giving the arguments to the constructor or
1023    void_type_node for an empty list of arguments.  */
1024 
1025 void
emit_mem_initializers(tree mem_inits)1026 emit_mem_initializers (tree mem_inits)
1027 {
1028   int flags = LOOKUP_NORMAL;
1029 
1030   /* We will already have issued an error message about the fact that
1031      the type is incomplete.  */
1032   if (!COMPLETE_TYPE_P (current_class_type))
1033     return;
1034 
1035   if (mem_inits
1036       && TYPE_P (TREE_PURPOSE (mem_inits))
1037       && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1038     {
1039       /* Delegating constructor. */
1040       gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1041       perform_target_ctor (TREE_VALUE (mem_inits));
1042       return;
1043     }
1044 
1045   if (DECL_DEFAULTED_FN (current_function_decl)
1046       && ! DECL_INHERITED_CTOR_BASE (current_function_decl))
1047     flags |= LOOKUP_DEFAULTED;
1048 
1049   /* Sort the mem-initializers into the order in which the
1050      initializations should be performed.  */
1051   mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1052 
1053   in_base_initializer = 1;
1054 
1055   /* Initialize base classes.  */
1056   for (; (mem_inits
1057 	  && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1058        mem_inits = TREE_CHAIN (mem_inits))
1059     {
1060       tree subobject = TREE_PURPOSE (mem_inits);
1061       tree arguments = TREE_VALUE (mem_inits);
1062 
1063       /* We already have issued an error message.  */
1064       if (arguments == error_mark_node)
1065 	continue;
1066 
1067       if (arguments == NULL_TREE)
1068 	{
1069 	  /* If these initializations are taking place in a copy constructor,
1070 	     the base class should probably be explicitly initialized if there
1071 	     is a user-defined constructor in the base class (other than the
1072 	     default constructor, which will be called anyway).  */
1073 	  if (extra_warnings
1074 	      && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1075 	      && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1076 	    warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1077 			OPT_Wextra, "base class %q#T should be explicitly "
1078 			"initialized in the copy constructor",
1079 			BINFO_TYPE (subobject));
1080 	}
1081 
1082       /* Initialize the base.  */
1083       if (BINFO_VIRTUAL_P (subobject))
1084 	construct_virtual_base (subobject, arguments);
1085       else
1086 	{
1087 	  tree base_addr;
1088 
1089 	  base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1090 				       subobject, 1, tf_warning_or_error);
1091 	  expand_aggr_init_1 (subobject, NULL_TREE,
1092 			      cp_build_indirect_ref (base_addr, RO_NULL,
1093                                                      tf_warning_or_error),
1094 			      arguments,
1095 			      flags,
1096                               tf_warning_or_error);
1097 	  expand_cleanup_for_base (subobject, NULL_TREE);
1098 	}
1099     }
1100   in_base_initializer = 0;
1101 
1102   /* Initialize the vptrs.  */
1103   initialize_vtbl_ptrs (current_class_ptr);
1104 
1105   /* Initialize the data members.  */
1106   while (mem_inits)
1107     {
1108       perform_member_init (TREE_PURPOSE (mem_inits),
1109 			   TREE_VALUE (mem_inits));
1110       mem_inits = TREE_CHAIN (mem_inits);
1111     }
1112 }
1113 
1114 /* Returns the address of the vtable (i.e., the value that should be
1115    assigned to the vptr) for BINFO.  */
1116 
1117 static tree
build_vtbl_address(tree binfo)1118 build_vtbl_address (tree binfo)
1119 {
1120   tree binfo_for = binfo;
1121   tree vtbl;
1122 
1123   if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1124     /* If this is a virtual primary base, then the vtable we want to store
1125        is that for the base this is being used as the primary base of.  We
1126        can't simply skip the initialization, because we may be expanding the
1127        inits of a subobject constructor where the virtual base layout
1128        can be different.  */
1129     while (BINFO_PRIMARY_P (binfo_for))
1130       binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1131 
1132   /* Figure out what vtable BINFO's vtable is based on, and mark it as
1133      used.  */
1134   vtbl = get_vtbl_decl_for_binfo (binfo_for);
1135   TREE_USED (vtbl) = 1;
1136 
1137   /* Now compute the address to use when initializing the vptr.  */
1138   vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1139   if (TREE_CODE (vtbl) == VAR_DECL)
1140     vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1141 
1142   return vtbl;
1143 }
1144 
1145 /* This code sets up the virtual function tables appropriate for
1146    the pointer DECL.  It is a one-ply initialization.
1147 
1148    BINFO is the exact type that DECL is supposed to be.  In
1149    multiple inheritance, this might mean "C's A" if C : A, B.  */
1150 
1151 static void
expand_virtual_init(tree binfo,tree decl)1152 expand_virtual_init (tree binfo, tree decl)
1153 {
1154   tree vtbl, vtbl_ptr;
1155   tree vtt_index;
1156 
1157   /* Compute the initializer for vptr.  */
1158   vtbl = build_vtbl_address (binfo);
1159 
1160   /* We may get this vptr from a VTT, if this is a subobject
1161      constructor or subobject destructor.  */
1162   vtt_index = BINFO_VPTR_INDEX (binfo);
1163   if (vtt_index)
1164     {
1165       tree vtbl2;
1166       tree vtt_parm;
1167 
1168       /* Compute the value to use, when there's a VTT.  */
1169       vtt_parm = current_vtt_parm;
1170       vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1171       vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
1172       vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1173 
1174       /* The actual initializer is the VTT value only in the subobject
1175 	 constructor.  In maybe_clone_body we'll substitute NULL for
1176 	 the vtt_parm in the case of the non-subobject constructor.  */
1177       vtbl = build3 (COND_EXPR,
1178 		     TREE_TYPE (vtbl),
1179 		     build2 (EQ_EXPR, boolean_type_node,
1180 			     current_in_charge_parm, integer_zero_node),
1181 		     vtbl2,
1182 		     vtbl);
1183     }
1184 
1185   /* Compute the location of the vtpr.  */
1186   vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
1187                                                       tf_warning_or_error),
1188 			       TREE_TYPE (binfo));
1189   gcc_assert (vtbl_ptr != error_mark_node);
1190 
1191   /* Assign the vtable to the vptr.  */
1192   vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1193   finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
1194 					  tf_warning_or_error));
1195 }
1196 
1197 /* If an exception is thrown in a constructor, those base classes already
1198    constructed must be destroyed.  This function creates the cleanup
1199    for BINFO, which has just been constructed.  If FLAG is non-NULL,
1200    it is a DECL which is nonzero when this base needs to be
1201    destroyed.  */
1202 
1203 static void
expand_cleanup_for_base(tree binfo,tree flag)1204 expand_cleanup_for_base (tree binfo, tree flag)
1205 {
1206   tree expr;
1207 
1208   if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1209     return;
1210 
1211   /* Call the destructor.  */
1212   expr = build_special_member_call (current_class_ref,
1213 				    base_dtor_identifier,
1214 				    NULL,
1215 				    binfo,
1216 				    LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1217                                     tf_warning_or_error);
1218   if (flag)
1219     expr = fold_build3_loc (input_location,
1220 			COND_EXPR, void_type_node,
1221 			c_common_truthvalue_conversion (input_location, flag),
1222 			expr, integer_zero_node);
1223 
1224   finish_eh_cleanup (expr);
1225 }
1226 
1227 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1228    constructor.  */
1229 
1230 static void
construct_virtual_base(tree vbase,tree arguments)1231 construct_virtual_base (tree vbase, tree arguments)
1232 {
1233   tree inner_if_stmt;
1234   tree exp;
1235   tree flag;
1236 
1237   /* If there are virtual base classes with destructors, we need to
1238      emit cleanups to destroy them if an exception is thrown during
1239      the construction process.  These exception regions (i.e., the
1240      period during which the cleanups must occur) begin from the time
1241      the construction is complete to the end of the function.  If we
1242      create a conditional block in which to initialize the
1243      base-classes, then the cleanup region for the virtual base begins
1244      inside a block, and ends outside of that block.  This situation
1245      confuses the sjlj exception-handling code.  Therefore, we do not
1246      create a single conditional block, but one for each
1247      initialization.  (That way the cleanup regions always begin
1248      in the outer block.)  We trust the back end to figure out
1249      that the FLAG will not change across initializations, and
1250      avoid doing multiple tests.  */
1251   flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1252   inner_if_stmt = begin_if_stmt ();
1253   finish_if_stmt_cond (flag, inner_if_stmt);
1254 
1255   /* Compute the location of the virtual base.  If we're
1256      constructing virtual bases, then we must be the most derived
1257      class.  Therefore, we don't have to look up the virtual base;
1258      we already know where it is.  */
1259   exp = convert_to_base_statically (current_class_ref, vbase);
1260 
1261   expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1262 		      0, tf_warning_or_error);
1263   finish_then_clause (inner_if_stmt);
1264   finish_if_stmt (inner_if_stmt);
1265 
1266   expand_cleanup_for_base (vbase, flag);
1267 }
1268 
1269 /* Find the context in which this FIELD can be initialized.  */
1270 
1271 static tree
initializing_context(tree field)1272 initializing_context (tree field)
1273 {
1274   tree t = DECL_CONTEXT (field);
1275 
1276   /* Anonymous union members can be initialized in the first enclosing
1277      non-anonymous union context.  */
1278   while (t && ANON_AGGR_TYPE_P (t))
1279     t = TYPE_CONTEXT (t);
1280   return t;
1281 }
1282 
1283 /* Function to give error message if member initialization specification
1284    is erroneous.  FIELD is the member we decided to initialize.
1285    TYPE is the type for which the initialization is being performed.
1286    FIELD must be a member of TYPE.
1287 
1288    MEMBER_NAME is the name of the member.  */
1289 
1290 static int
member_init_ok_or_else(tree field,tree type,tree member_name)1291 member_init_ok_or_else (tree field, tree type, tree member_name)
1292 {
1293   if (field == error_mark_node)
1294     return 0;
1295   if (!field)
1296     {
1297       error ("class %qT does not have any field named %qD", type,
1298 	     member_name);
1299       return 0;
1300     }
1301   if (TREE_CODE (field) == VAR_DECL)
1302     {
1303       error ("%q#D is a static data member; it can only be "
1304 	     "initialized at its definition",
1305 	     field);
1306       return 0;
1307     }
1308   if (TREE_CODE (field) != FIELD_DECL)
1309     {
1310       error ("%q#D is not a non-static data member of %qT",
1311 	     field, type);
1312       return 0;
1313     }
1314   if (initializing_context (field) != type)
1315     {
1316       error ("class %qT does not have any field named %qD", type,
1317 		member_name);
1318       return 0;
1319     }
1320 
1321   return 1;
1322 }
1323 
1324 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1325    is a _TYPE node or TYPE_DECL which names a base for that type.
1326    Check the validity of NAME, and return either the base _TYPE, base
1327    binfo, or the FIELD_DECL of the member.  If NAME is invalid, return
1328    NULL_TREE and issue a diagnostic.
1329 
1330    An old style unnamed direct single base construction is permitted,
1331    where NAME is NULL.  */
1332 
1333 tree
expand_member_init(tree name)1334 expand_member_init (tree name)
1335 {
1336   tree basetype;
1337   tree field;
1338 
1339   if (!current_class_ref)
1340     return NULL_TREE;
1341 
1342   if (!name)
1343     {
1344       /* This is an obsolete unnamed base class initializer.  The
1345 	 parser will already have warned about its use.  */
1346       switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1347 	{
1348 	case 0:
1349 	  error ("unnamed initializer for %qT, which has no base classes",
1350 		 current_class_type);
1351 	  return NULL_TREE;
1352 	case 1:
1353 	  basetype = BINFO_TYPE
1354 	    (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1355 	  break;
1356 	default:
1357 	  error ("unnamed initializer for %qT, which uses multiple inheritance",
1358 		 current_class_type);
1359 	  return NULL_TREE;
1360       }
1361     }
1362   else if (TYPE_P (name))
1363     {
1364       basetype = TYPE_MAIN_VARIANT (name);
1365       name = TYPE_NAME (name);
1366     }
1367   else if (TREE_CODE (name) == TYPE_DECL)
1368     basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1369   else
1370     basetype = NULL_TREE;
1371 
1372   if (basetype)
1373     {
1374       tree class_binfo;
1375       tree direct_binfo;
1376       tree virtual_binfo;
1377       int i;
1378 
1379       if (current_template_parms
1380 	  || same_type_p (basetype, current_class_type))
1381 	  return basetype;
1382 
1383       class_binfo = TYPE_BINFO (current_class_type);
1384       direct_binfo = NULL_TREE;
1385       virtual_binfo = NULL_TREE;
1386 
1387       /* Look for a direct base.  */
1388       for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1389 	if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1390 	  break;
1391 
1392       /* Look for a virtual base -- unless the direct base is itself
1393 	 virtual.  */
1394       if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1395 	virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1396 
1397       /* [class.base.init]
1398 
1399 	 If a mem-initializer-id is ambiguous because it designates
1400 	 both a direct non-virtual base class and an inherited virtual
1401 	 base class, the mem-initializer is ill-formed.  */
1402       if (direct_binfo && virtual_binfo)
1403 	{
1404 	  error ("%qD is both a direct base and an indirect virtual base",
1405 		 basetype);
1406 	  return NULL_TREE;
1407 	}
1408 
1409       if (!direct_binfo && !virtual_binfo)
1410 	{
1411 	  if (CLASSTYPE_VBASECLASSES (current_class_type))
1412 	    error ("type %qT is not a direct or virtual base of %qT",
1413 		   basetype, current_class_type);
1414 	  else
1415 	    error ("type %qT is not a direct base of %qT",
1416 		   basetype, current_class_type);
1417 	  return NULL_TREE;
1418 	}
1419 
1420       return direct_binfo ? direct_binfo : virtual_binfo;
1421     }
1422   else
1423     {
1424       if (TREE_CODE (name) == IDENTIFIER_NODE)
1425 	field = lookup_field (current_class_type, name, 1, false);
1426       else
1427 	field = name;
1428 
1429       if (member_init_ok_or_else (field, current_class_type, name))
1430 	return field;
1431     }
1432 
1433   return NULL_TREE;
1434 }
1435 
1436 /* This is like `expand_member_init', only it stores one aggregate
1437    value into another.
1438 
1439    INIT comes in two flavors: it is either a value which
1440    is to be stored in EXP, or it is a parameter list
1441    to go to a constructor, which will operate on EXP.
1442    If INIT is not a parameter list for a constructor, then set
1443    LOOKUP_ONLYCONVERTING.
1444    If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1445    the initializer, if FLAGS is 0, then it is the (init) form.
1446    If `init' is a CONSTRUCTOR, then we emit a warning message,
1447    explaining that such initializations are invalid.
1448 
1449    If INIT resolves to a CALL_EXPR which happens to return
1450    something of the type we are looking for, then we know
1451    that we can safely use that call to perform the
1452    initialization.
1453 
1454    The virtual function table pointer cannot be set up here, because
1455    we do not really know its type.
1456 
1457    This never calls operator=().
1458 
1459    When initializing, nothing is CONST.
1460 
1461    A default copy constructor may have to be used to perform the
1462    initialization.
1463 
1464    A constructor or a conversion operator may have to be used to
1465    perform the initialization, but not both, as it would be ambiguous.  */
1466 
1467 tree
build_aggr_init(tree exp,tree init,int flags,tsubst_flags_t complain)1468 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1469 {
1470   tree stmt_expr;
1471   tree compound_stmt;
1472   int destroy_temps;
1473   tree type = TREE_TYPE (exp);
1474   int was_const = TREE_READONLY (exp);
1475   int was_volatile = TREE_THIS_VOLATILE (exp);
1476   int is_global;
1477 
1478   if (init == error_mark_node)
1479     return error_mark_node;
1480 
1481   TREE_READONLY (exp) = 0;
1482   TREE_THIS_VOLATILE (exp) = 0;
1483 
1484   if (init && TREE_CODE (init) != TREE_LIST
1485       && !(TREE_CODE (init) == TARGET_EXPR
1486 	   && TARGET_EXPR_DIRECT_INIT_P (init))
1487       && !(BRACE_ENCLOSED_INITIALIZER_P (init)
1488 	   && CONSTRUCTOR_IS_DIRECT_INIT (init)))
1489     flags |= LOOKUP_ONLYCONVERTING;
1490 
1491   if (TREE_CODE (type) == ARRAY_TYPE)
1492     {
1493       tree itype;
1494 
1495       /* An array may not be initialized use the parenthesized
1496 	 initialization form -- unless the initializer is "()".  */
1497       if (init && TREE_CODE (init) == TREE_LIST)
1498 	{
1499           if (complain & tf_error)
1500             error ("bad array initializer");
1501 	  return error_mark_node;
1502 	}
1503       /* Must arrange to initialize each element of EXP
1504 	 from elements of INIT.  */
1505       itype = init ? TREE_TYPE (init) : NULL_TREE;
1506       if (cv_qualified_p (type))
1507 	TREE_TYPE (exp) = cv_unqualified (type);
1508       if (itype && cv_qualified_p (itype))
1509 	TREE_TYPE (init) = cv_unqualified (itype);
1510       stmt_expr = build_vec_init (exp, NULL_TREE, init,
1511 				  /*explicit_value_init_p=*/false,
1512 				  itype && same_type_p (TREE_TYPE (init),
1513 							TREE_TYPE (exp)),
1514                                   complain);
1515       TREE_READONLY (exp) = was_const;
1516       TREE_THIS_VOLATILE (exp) = was_volatile;
1517       TREE_TYPE (exp) = type;
1518       if (init)
1519 	TREE_TYPE (init) = itype;
1520       return stmt_expr;
1521     }
1522 
1523   if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1524     /* Just know that we've seen something for this node.  */
1525     TREE_USED (exp) = 1;
1526 
1527   is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1528   destroy_temps = stmts_are_full_exprs_p ();
1529   current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1530   expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1531 		      init, LOOKUP_NORMAL|flags, complain);
1532   stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1533   current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1534   TREE_READONLY (exp) = was_const;
1535   TREE_THIS_VOLATILE (exp) = was_volatile;
1536 
1537   return stmt_expr;
1538 }
1539 
1540 static void
expand_default_init(tree binfo,tree true_exp,tree exp,tree init,int flags,tsubst_flags_t complain)1541 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1542                      tsubst_flags_t complain)
1543 {
1544   tree type = TREE_TYPE (exp);
1545   tree ctor_name;
1546 
1547   /* It fails because there may not be a constructor which takes
1548      its own type as the first (or only parameter), but which does
1549      take other types via a conversion.  So, if the thing initializing
1550      the expression is a unit element of type X, first try X(X&),
1551      followed by initialization by X.  If neither of these work
1552      out, then look hard.  */
1553   tree rval;
1554   vec<tree, va_gc> *parms;
1555 
1556   /* If we have direct-initialization from an initializer list, pull
1557      it out of the TREE_LIST so the code below can see it.  */
1558   if (init && TREE_CODE (init) == TREE_LIST
1559       && BRACE_ENCLOSED_INITIALIZER_P (TREE_VALUE (init))
1560       && CONSTRUCTOR_IS_DIRECT_INIT (TREE_VALUE (init)))
1561     {
1562       gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1563 			   && TREE_CHAIN (init) == NULL_TREE);
1564       init = TREE_VALUE (init);
1565     }
1566 
1567   if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1568       && CP_AGGREGATE_TYPE_P (type))
1569     /* A brace-enclosed initializer for an aggregate.  In C++0x this can
1570        happen for direct-initialization, too.  */
1571     init = digest_init (type, init, complain);
1572 
1573   /* A CONSTRUCTOR of the target's type is a previously digested
1574      initializer, whether that happened just above or in
1575      cp_parser_late_parsing_nsdmi.
1576 
1577      A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1578      set represents the whole initialization, so we shouldn't build up
1579      another ctor call.  */
1580   if (init
1581       && (TREE_CODE (init) == CONSTRUCTOR
1582 	  || (TREE_CODE (init) == TARGET_EXPR
1583 	      && (TARGET_EXPR_DIRECT_INIT_P (init)
1584 		  || TARGET_EXPR_LIST_INIT_P (init))))
1585       && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1586     {
1587       /* Early initialization via a TARGET_EXPR only works for
1588 	 complete objects.  */
1589       gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1590 
1591       init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1592       TREE_SIDE_EFFECTS (init) = 1;
1593       finish_expr_stmt (init);
1594       return;
1595     }
1596 
1597   if (init && TREE_CODE (init) != TREE_LIST
1598       && (flags & LOOKUP_ONLYCONVERTING))
1599     {
1600       /* Base subobjects should only get direct-initialization.  */
1601       gcc_assert (true_exp == exp);
1602 
1603       if (flags & DIRECT_BIND)
1604 	/* Do nothing.  We hit this in two cases:  Reference initialization,
1605 	   where we aren't initializing a real variable, so we don't want
1606 	   to run a new constructor; and catching an exception, where we
1607 	   have already built up the constructor call so we could wrap it
1608 	   in an exception region.  */;
1609       else
1610 	init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
1611 			    flags, complain);
1612 
1613       if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1614 	/* We need to protect the initialization of a catch parm with a
1615 	   call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1616 	   around the TARGET_EXPR for the copy constructor.  See
1617 	   initialize_handler_parm.  */
1618 	{
1619 	  TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1620 					   TREE_OPERAND (init, 0));
1621 	  TREE_TYPE (init) = void_type_node;
1622 	}
1623       else
1624 	init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1625       TREE_SIDE_EFFECTS (init) = 1;
1626       finish_expr_stmt (init);
1627       return;
1628     }
1629 
1630   if (init == NULL_TREE)
1631     parms = NULL;
1632   else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1633     {
1634       parms = make_tree_vector ();
1635       for (; init != NULL_TREE; init = TREE_CHAIN (init))
1636 	vec_safe_push (parms, TREE_VALUE (init));
1637     }
1638   else
1639     parms = make_tree_vector_single (init);
1640 
1641   if (exp == current_class_ref && current_function_decl
1642       && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1643     {
1644       /* Delegating constructor. */
1645       tree complete;
1646       tree base;
1647       tree elt; unsigned i;
1648 
1649       /* Unshare the arguments for the second call.  */
1650       vec<tree, va_gc> *parms2 = make_tree_vector ();
1651       FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
1652 	{
1653 	  elt = break_out_target_exprs (elt);
1654 	  vec_safe_push (parms2, elt);
1655 	}
1656       complete = build_special_member_call (exp, complete_ctor_identifier,
1657 					    &parms2, binfo, flags,
1658 					    complain);
1659       complete = fold_build_cleanup_point_expr (void_type_node, complete);
1660       release_tree_vector (parms2);
1661 
1662       base = build_special_member_call (exp, base_ctor_identifier,
1663 					&parms, binfo, flags,
1664 					complain);
1665       base = fold_build_cleanup_point_expr (void_type_node, base);
1666       rval = build3 (COND_EXPR, void_type_node,
1667 		     build2 (EQ_EXPR, boolean_type_node,
1668 			     current_in_charge_parm, integer_zero_node),
1669 		     base,
1670 		     complete);
1671     }
1672    else
1673     {
1674       if (true_exp == exp)
1675 	ctor_name = complete_ctor_identifier;
1676       else
1677 	ctor_name = base_ctor_identifier;
1678       rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1679 					complain);
1680   }
1681 
1682   if (parms != NULL)
1683     release_tree_vector (parms);
1684 
1685   if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1686     {
1687       tree fn = get_callee_fndecl (rval);
1688       if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1689 	{
1690 	  tree e = maybe_constant_init (rval);
1691 	  if (TREE_CONSTANT (e))
1692 	    rval = build2 (INIT_EXPR, type, exp, e);
1693 	}
1694     }
1695 
1696   /* FIXME put back convert_to_void?  */
1697   if (TREE_SIDE_EFFECTS (rval))
1698     finish_expr_stmt (rval);
1699 }
1700 
1701 /* This function is responsible for initializing EXP with INIT
1702    (if any).
1703 
1704    BINFO is the binfo of the type for who we are performing the
1705    initialization.  For example, if W is a virtual base class of A and B,
1706    and C : A, B.
1707    If we are initializing B, then W must contain B's W vtable, whereas
1708    were we initializing C, W must contain C's W vtable.
1709 
1710    TRUE_EXP is nonzero if it is the true expression being initialized.
1711    In this case, it may be EXP, or may just contain EXP.  The reason we
1712    need this is because if EXP is a base element of TRUE_EXP, we
1713    don't necessarily know by looking at EXP where its virtual
1714    baseclass fields should really be pointing.  But we do know
1715    from TRUE_EXP.  In constructors, we don't know anything about
1716    the value being initialized.
1717 
1718    FLAGS is just passed to `build_new_method_call'.  See that function
1719    for its description.  */
1720 
1721 static void
expand_aggr_init_1(tree binfo,tree true_exp,tree exp,tree init,int flags,tsubst_flags_t complain)1722 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1723                     tsubst_flags_t complain)
1724 {
1725   tree type = TREE_TYPE (exp);
1726 
1727   gcc_assert (init != error_mark_node && type != error_mark_node);
1728   gcc_assert (building_stmt_list_p ());
1729 
1730   /* Use a function returning the desired type to initialize EXP for us.
1731      If the function is a constructor, and its first argument is
1732      NULL_TREE, know that it was meant for us--just slide exp on
1733      in and expand the constructor.  Constructors now come
1734      as TARGET_EXPRs.  */
1735 
1736   if (init && TREE_CODE (exp) == VAR_DECL
1737       && COMPOUND_LITERAL_P (init))
1738     {
1739       vec<tree, va_gc> *cleanups = NULL;
1740       /* If store_init_value returns NULL_TREE, the INIT has been
1741 	 recorded as the DECL_INITIAL for EXP.  That means there's
1742 	 nothing more we have to do.  */
1743       init = store_init_value (exp, init, &cleanups, flags);
1744       if (init)
1745 	finish_expr_stmt (init);
1746       gcc_assert (!cleanups);
1747       return;
1748     }
1749 
1750   /* If an explicit -- but empty -- initializer list was present,
1751      that's value-initialization.  */
1752   if (init == void_type_node)
1753     {
1754       /* If the type has data but no user-provided ctor, we need to zero
1755 	 out the object.  */
1756       if (!type_has_user_provided_constructor (type)
1757 	  && !is_really_empty_class (type))
1758 	{
1759 	  tree field_size = NULL_TREE;
1760 	  if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
1761 	    /* Don't clobber already initialized virtual bases.  */
1762 	    field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
1763 	  init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
1764 				    field_size);
1765 	  init = build2 (INIT_EXPR, type, exp, init);
1766 	  finish_expr_stmt (init);
1767 	}
1768 
1769       /* If we don't need to mess with the constructor at all,
1770 	 then we're done.  */
1771       if (! type_build_ctor_call (type))
1772 	return;
1773 
1774       /* Otherwise fall through and call the constructor.  */
1775       init = NULL_TREE;
1776     }
1777 
1778   /* We know that expand_default_init can handle everything we want
1779      at this point.  */
1780   expand_default_init (binfo, true_exp, exp, init, flags, complain);
1781 }
1782 
1783 /* Report an error if TYPE is not a user-defined, class type.  If
1784    OR_ELSE is nonzero, give an error message.  */
1785 
1786 int
is_class_type(tree type,int or_else)1787 is_class_type (tree type, int or_else)
1788 {
1789   if (type == error_mark_node)
1790     return 0;
1791 
1792   if (! CLASS_TYPE_P (type))
1793     {
1794       if (or_else)
1795 	error ("%qT is not a class type", type);
1796       return 0;
1797     }
1798   return 1;
1799 }
1800 
1801 tree
get_type_value(tree name)1802 get_type_value (tree name)
1803 {
1804   if (name == error_mark_node)
1805     return NULL_TREE;
1806 
1807   if (IDENTIFIER_HAS_TYPE_VALUE (name))
1808     return IDENTIFIER_TYPE_VALUE (name);
1809   else
1810     return NULL_TREE;
1811 }
1812 
1813 /* Build a reference to a member of an aggregate.  This is not a C++
1814    `&', but really something which can have its address taken, and
1815    then act as a pointer to member, for example TYPE :: FIELD can have
1816    its address taken by saying & TYPE :: FIELD.  ADDRESS_P is true if
1817    this expression is the operand of "&".
1818 
1819    @@ Prints out lousy diagnostics for operator <typename>
1820    @@ fields.
1821 
1822    @@ This function should be rewritten and placed in search.c.  */
1823 
1824 tree
build_offset_ref(tree type,tree member,bool address_p,tsubst_flags_t complain)1825 build_offset_ref (tree type, tree member, bool address_p,
1826 		  tsubst_flags_t complain)
1827 {
1828   tree decl;
1829   tree basebinfo = NULL_TREE;
1830 
1831   /* class templates can come in as TEMPLATE_DECLs here.  */
1832   if (TREE_CODE (member) == TEMPLATE_DECL)
1833     return member;
1834 
1835   if (dependent_scope_p (type) || type_dependent_expression_p (member))
1836     return build_qualified_name (NULL_TREE, type, member,
1837 				  /*template_p=*/false);
1838 
1839   gcc_assert (TYPE_P (type));
1840   if (! is_class_type (type, 1))
1841     return error_mark_node;
1842 
1843   gcc_assert (DECL_P (member) || BASELINK_P (member));
1844   /* Callers should call mark_used before this point.  */
1845   gcc_assert (!DECL_P (member) || TREE_USED (member));
1846 
1847   type = TYPE_MAIN_VARIANT (type);
1848   if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
1849     {
1850       if (complain & tf_error)
1851 	error ("incomplete type %qT does not have member %qD", type, member);
1852       return error_mark_node;
1853     }
1854 
1855   /* Entities other than non-static members need no further
1856      processing.  */
1857   if (TREE_CODE (member) == TYPE_DECL)
1858     return member;
1859   if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1860     return convert_from_reference (member);
1861 
1862   if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1863     {
1864       if (complain & tf_error)
1865 	error ("invalid pointer to bit-field %qD", member);
1866       return error_mark_node;
1867     }
1868 
1869   /* Set up BASEBINFO for member lookup.  */
1870   decl = maybe_dummy_object (type, &basebinfo);
1871 
1872   /* A lot of this logic is now handled in lookup_member.  */
1873   if (BASELINK_P (member))
1874     {
1875       /* Go from the TREE_BASELINK to the member function info.  */
1876       tree t = BASELINK_FUNCTIONS (member);
1877 
1878       if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1879 	{
1880 	  /* Get rid of a potential OVERLOAD around it.  */
1881 	  t = OVL_CURRENT (t);
1882 
1883 	  /* Unique functions are handled easily.  */
1884 
1885 	  /* For non-static member of base class, we need a special rule
1886 	     for access checking [class.protected]:
1887 
1888 	       If the access is to form a pointer to member, the
1889 	       nested-name-specifier shall name the derived class
1890 	       (or any class derived from that class).  */
1891 	  if (address_p && DECL_P (t)
1892 	      && DECL_NONSTATIC_MEMBER_P (t))
1893 	    perform_or_defer_access_check (TYPE_BINFO (type), t, t,
1894 					   complain);
1895 	  else
1896 	    perform_or_defer_access_check (basebinfo, t, t,
1897 					   complain);
1898 
1899 	  if (DECL_STATIC_FUNCTION_P (t))
1900 	    return t;
1901 	  member = t;
1902 	}
1903       else
1904 	TREE_TYPE (member) = unknown_type_node;
1905     }
1906   else if (address_p && TREE_CODE (member) == FIELD_DECL)
1907     /* We need additional test besides the one in
1908        check_accessibility_of_qualified_id in case it is
1909        a pointer to non-static member.  */
1910     perform_or_defer_access_check (TYPE_BINFO (type), member, member,
1911 				   complain);
1912 
1913   if (!address_p)
1914     {
1915       /* If MEMBER is non-static, then the program has fallen afoul of
1916 	 [expr.prim]:
1917 
1918 	   An id-expression that denotes a nonstatic data member or
1919 	   nonstatic member function of a class can only be used:
1920 
1921 	   -- as part of a class member access (_expr.ref_) in which the
1922 	   object-expression refers to the member's class or a class
1923 	   derived from that class, or
1924 
1925 	   -- to form a pointer to member (_expr.unary.op_), or
1926 
1927 	   -- in the body of a nonstatic member function of that class or
1928 	   of a class derived from that class (_class.mfct.nonstatic_), or
1929 
1930 	   -- in a mem-initializer for a constructor for that class or for
1931 	   a class derived from that class (_class.base.init_).  */
1932       if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1933 	{
1934 	  /* Build a representation of the qualified name suitable
1935 	     for use as the operand to "&" -- even though the "&" is
1936 	     not actually present.  */
1937 	  member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1938 	  /* In Microsoft mode, treat a non-static member function as if
1939 	     it were a pointer-to-member.  */
1940 	  if (flag_ms_extensions)
1941 	    {
1942 	      PTRMEM_OK_P (member) = 1;
1943 	      return cp_build_addr_expr (member, complain);
1944 	    }
1945 	  if (complain & tf_error)
1946 	    error ("invalid use of non-static member function %qD",
1947 		   TREE_OPERAND (member, 1));
1948 	  return error_mark_node;
1949 	}
1950       else if (TREE_CODE (member) == FIELD_DECL)
1951 	{
1952 	  if (complain & tf_error)
1953 	    error ("invalid use of non-static data member %qD", member);
1954 	  return error_mark_node;
1955 	}
1956       return member;
1957     }
1958 
1959   member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1960   PTRMEM_OK_P (member) = 1;
1961   return member;
1962 }
1963 
1964 /* If DECL is a scalar enumeration constant or variable with a
1965    constant initializer, return the initializer (or, its initializers,
1966    recursively); otherwise, return DECL.  If INTEGRAL_P, the
1967    initializer is only returned if DECL is an integral
1968    constant-expression.  If RETURN_AGGREGATE_CST_OK_P, it is ok to
1969    return an aggregate constant.  */
1970 
1971 static tree
constant_value_1(tree decl,bool integral_p,bool return_aggregate_cst_ok_p)1972 constant_value_1 (tree decl, bool integral_p, bool return_aggregate_cst_ok_p)
1973 {
1974   while (TREE_CODE (decl) == CONST_DECL
1975 	 || (integral_p
1976 	     ? decl_constant_var_p (decl)
1977 	     : (TREE_CODE (decl) == VAR_DECL
1978 		&& CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1979     {
1980       tree init;
1981       /* If DECL is a static data member in a template
1982 	 specialization, we must instantiate it here.  The
1983 	 initializer for the static data member is not processed
1984 	 until needed; we need it now.  */
1985       mark_used (decl);
1986       mark_rvalue_use (decl);
1987       init = DECL_INITIAL (decl);
1988       if (init == error_mark_node)
1989 	{
1990 	  if (DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
1991 	    /* Treat the error as a constant to avoid cascading errors on
1992 	       excessively recursive template instantiation (c++/9335).  */
1993 	    return init;
1994 	  else
1995 	    return decl;
1996 	}
1997       /* Initializers in templates are generally expanded during
1998 	 instantiation, so before that for const int i(2)
1999 	 INIT is a TREE_LIST with the actual initializer as
2000 	 TREE_VALUE.  */
2001       if (processing_template_decl
2002 	  && init
2003 	  && TREE_CODE (init) == TREE_LIST
2004 	  && TREE_CHAIN (init) == NULL_TREE)
2005 	init = TREE_VALUE (init);
2006       if (!init
2007 	  || !TREE_TYPE (init)
2008 	  || !TREE_CONSTANT (init)
2009 	  || (!integral_p && !return_aggregate_cst_ok_p
2010 	      /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2011 		 return an aggregate constant (of which string
2012 		 literals are a special case), as we do not want
2013 		 to make inadvertent copies of such entities, and
2014 		 we must be sure that their addresses are the
2015  		 same everywhere.  */
2016 	      && (TREE_CODE (init) == CONSTRUCTOR
2017 		  || TREE_CODE (init) == STRING_CST)))
2018 	break;
2019       decl = unshare_expr (init);
2020     }
2021   return decl;
2022 }
2023 
2024 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
2025    constant of integral or enumeration type, then return that value.
2026    These are those variables permitted in constant expressions by
2027    [5.19/1].  */
2028 
2029 tree
integral_constant_value(tree decl)2030 integral_constant_value (tree decl)
2031 {
2032   return constant_value_1 (decl, /*integral_p=*/true,
2033 			   /*return_aggregate_cst_ok_p=*/false);
2034 }
2035 
2036 /* A more relaxed version of integral_constant_value, used by the
2037    common C/C++ code.  */
2038 
2039 tree
decl_constant_value(tree decl)2040 decl_constant_value (tree decl)
2041 {
2042   return constant_value_1 (decl, /*integral_p=*/processing_template_decl,
2043 			   /*return_aggregate_cst_ok_p=*/true);
2044 }
2045 
2046 /* A version of integral_constant_value used by the C++ front end for
2047    optimization purposes.  */
2048 
2049 tree
decl_constant_value_safe(tree decl)2050 decl_constant_value_safe (tree decl)
2051 {
2052   return constant_value_1 (decl, /*integral_p=*/processing_template_decl,
2053 			   /*return_aggregate_cst_ok_p=*/false);
2054 }
2055 
2056 /* Common subroutines of build_new and build_vec_delete.  */
2057 
2058 /* Call the global __builtin_delete to delete ADDR.  */
2059 
2060 static tree
build_builtin_delete_call(tree addr)2061 build_builtin_delete_call (tree addr)
2062 {
2063   mark_used (global_delete_fndecl);
2064   return build_call_n (global_delete_fndecl, 1, addr);
2065 }
2066 
2067 /* Build and return a NEW_EXPR.  If NELTS is non-NULL, TYPE[NELTS] is
2068    the type of the object being allocated; otherwise, it's just TYPE.
2069    INIT is the initializer, if any.  USE_GLOBAL_NEW is true if the
2070    user explicitly wrote "::operator new".  PLACEMENT, if non-NULL, is
2071    a vector of arguments to be provided as arguments to a placement
2072    new operator.  This routine performs no semantic checks; it just
2073    creates and returns a NEW_EXPR.  */
2074 
2075 static tree
build_raw_new_expr(vec<tree,va_gc> * placement,tree type,tree nelts,vec<tree,va_gc> * init,int use_global_new)2076 build_raw_new_expr (vec<tree, va_gc> *placement, tree type, tree nelts,
2077 		    vec<tree, va_gc> *init, int use_global_new)
2078 {
2079   tree init_list;
2080   tree new_expr;
2081 
2082   /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2083      If INIT is not NULL, then we want to store VOID_ZERO_NODE.  This
2084      permits us to distinguish the case of a missing initializer "new
2085      int" from an empty initializer "new int()".  */
2086   if (init == NULL)
2087     init_list = NULL_TREE;
2088   else if (init->is_empty ())
2089     init_list = void_zero_node;
2090   else
2091     init_list = build_tree_list_vec (init);
2092 
2093   new_expr = build4 (NEW_EXPR, build_pointer_type (type),
2094 		     build_tree_list_vec (placement), type, nelts,
2095 		     init_list);
2096   NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2097   TREE_SIDE_EFFECTS (new_expr) = 1;
2098 
2099   return new_expr;
2100 }
2101 
2102 /* Diagnose uninitialized const members or reference members of type
2103    TYPE. USING_NEW is used to disambiguate the diagnostic between a
2104    new expression without a new-initializer and a declaration. Returns
2105    the error count. */
2106 
2107 static int
diagnose_uninitialized_cst_or_ref_member_1(tree type,tree origin,bool using_new,bool complain)2108 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2109 					    bool using_new, bool complain)
2110 {
2111   tree field;
2112   int error_count = 0;
2113 
2114   if (type_has_user_provided_constructor (type))
2115     return 0;
2116 
2117   for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2118     {
2119       tree field_type;
2120 
2121       if (TREE_CODE (field) != FIELD_DECL)
2122 	continue;
2123 
2124       field_type = strip_array_types (TREE_TYPE (field));
2125 
2126       if (type_has_user_provided_constructor (field_type))
2127 	continue;
2128 
2129       if (TREE_CODE (field_type) == REFERENCE_TYPE)
2130 	{
2131 	  ++ error_count;
2132 	  if (complain)
2133 	    {
2134 	      if (using_new)
2135 		error ("uninitialized reference member in %q#T "
2136 		       "using %<new%> without new-initializer", origin);
2137 	      else
2138 		error ("uninitialized reference member in %q#T", origin);
2139 	      inform (DECL_SOURCE_LOCATION (field),
2140 		      "%qD should be initialized", field);
2141 	    }
2142 	}
2143 
2144       if (CP_TYPE_CONST_P (field_type))
2145 	{
2146 	  ++ error_count;
2147 	  if (complain)
2148 	    {
2149 	      if (using_new)
2150 		error ("uninitialized const member in %q#T "
2151 		       "using %<new%> without new-initializer", origin);
2152 	      else
2153 		error ("uninitialized const member in %q#T", origin);
2154 	      inform (DECL_SOURCE_LOCATION (field),
2155 		      "%qD should be initialized", field);
2156 	    }
2157 	}
2158 
2159       if (CLASS_TYPE_P (field_type))
2160 	error_count
2161 	  += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2162 							 using_new, complain);
2163     }
2164   return error_count;
2165 }
2166 
2167 int
diagnose_uninitialized_cst_or_ref_member(tree type,bool using_new,bool complain)2168 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2169 {
2170   return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2171 }
2172 
2173 /* Generate code for a new-expression, including calling the "operator
2174    new" function, initializing the object, and, if an exception occurs
2175    during construction, cleaning up.  The arguments are as for
2176    build_raw_new_expr.  This may change PLACEMENT and INIT.  */
2177 
2178 static tree
build_new_1(vec<tree,va_gc> ** placement,tree type,tree nelts,vec<tree,va_gc> ** init,bool globally_qualified_p,tsubst_flags_t complain)2179 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
2180 	     vec<tree, va_gc> **init, bool globally_qualified_p,
2181 	     tsubst_flags_t complain)
2182 {
2183   tree size, rval;
2184   /* True iff this is a call to "operator new[]" instead of just
2185      "operator new".  */
2186   bool array_p = false;
2187   /* If ARRAY_P is true, the element type of the array.  This is never
2188      an ARRAY_TYPE; for something like "new int[3][4]", the
2189      ELT_TYPE is "int".  If ARRAY_P is false, this is the same type as
2190      TYPE.  */
2191   tree elt_type;
2192   /* The type of the new-expression.  (This type is always a pointer
2193      type.)  */
2194   tree pointer_type;
2195   tree non_const_pointer_type;
2196   tree outer_nelts = NULL_TREE;
2197   /* For arrays, a bounds checks on the NELTS parameter. */
2198   tree outer_nelts_check = NULL_TREE;
2199   bool outer_nelts_from_type = false;
2200   double_int inner_nelts_count = double_int_one;
2201   tree alloc_call, alloc_expr;
2202   /* Size of the inner array elements. */
2203   double_int inner_size;
2204   /* The address returned by the call to "operator new".  This node is
2205      a VAR_DECL and is therefore reusable.  */
2206   tree alloc_node;
2207   tree alloc_fn;
2208   tree cookie_expr, init_expr;
2209   int nothrow, check_new;
2210   int use_java_new = 0;
2211   /* If non-NULL, the number of extra bytes to allocate at the
2212      beginning of the storage allocated for an array-new expression in
2213      order to store the number of elements.  */
2214   tree cookie_size = NULL_TREE;
2215   tree placement_first;
2216   tree placement_expr = NULL_TREE;
2217   /* True if the function we are calling is a placement allocation
2218      function.  */
2219   bool placement_allocation_fn_p;
2220   /* True if the storage must be initialized, either by a constructor
2221      or due to an explicit new-initializer.  */
2222   bool is_initialized;
2223   /* The address of the thing allocated, not including any cookie.  In
2224      particular, if an array cookie is in use, DATA_ADDR is the
2225      address of the first array element.  This node is a VAR_DECL, and
2226      is therefore reusable.  */
2227   tree data_addr;
2228   tree init_preeval_expr = NULL_TREE;
2229 
2230   if (nelts)
2231     {
2232       outer_nelts = nelts;
2233       array_p = true;
2234     }
2235   else if (TREE_CODE (type) == ARRAY_TYPE)
2236     {
2237       /* Transforms new (T[N]) to new T[N].  The former is a GNU
2238 	 extension for variable N.  (This also covers new T where T is
2239 	 a VLA typedef.)  */
2240       array_p = true;
2241       nelts = array_type_nelts_top (type);
2242       outer_nelts = nelts;
2243       type = TREE_TYPE (type);
2244       outer_nelts_from_type = true;
2245     }
2246 
2247   /* If our base type is an array, then make sure we know how many elements
2248      it has.  */
2249   for (elt_type = type;
2250        TREE_CODE (elt_type) == ARRAY_TYPE;
2251        elt_type = TREE_TYPE (elt_type))
2252     {
2253       tree inner_nelts = array_type_nelts_top (elt_type);
2254       tree inner_nelts_cst = maybe_constant_value (inner_nelts);
2255       if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
2256 	{
2257 	  bool overflow;
2258 	  double_int result = TREE_INT_CST (inner_nelts_cst)
2259 			      .mul_with_sign (inner_nelts_count,
2260 					      false, &overflow);
2261 	  if (overflow)
2262 	    {
2263 	      if (complain & tf_error)
2264 		error ("integer overflow in array size");
2265 	      nelts = error_mark_node;
2266 	    }
2267 	  inner_nelts_count = result;
2268 	}
2269       else
2270 	{
2271 	  if (complain & tf_error)
2272 	    {
2273 	      error_at (EXPR_LOC_OR_HERE (inner_nelts),
2274 			"array size in operator new must be constant");
2275 	      cxx_constant_value(inner_nelts);
2276 	    }
2277 	  nelts = error_mark_node;
2278 	}
2279       if (nelts != error_mark_node)
2280 	nelts = cp_build_binary_op (input_location,
2281 				    MULT_EXPR, nelts,
2282 				    inner_nelts_cst,
2283 				    complain);
2284     }
2285 
2286   if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
2287     {
2288       error ("variably modified type not allowed in operator new");
2289       return error_mark_node;
2290     }
2291 
2292   if (nelts == error_mark_node)
2293     return error_mark_node;
2294 
2295   /* Warn if we performed the (T[N]) to T[N] transformation and N is
2296      variable.  */
2297   if (outer_nelts_from_type
2298       && !TREE_CONSTANT (maybe_constant_value (outer_nelts)))
2299     {
2300       if (complain & tf_warning_or_error)
2301 	pedwarn(EXPR_LOC_OR_HERE (outer_nelts), OPT_Wvla,
2302 		"ISO C++ does not support variable-length array types");
2303       else
2304 	return error_mark_node;
2305     }
2306 
2307   if (TREE_CODE (elt_type) == VOID_TYPE)
2308     {
2309       if (complain & tf_error)
2310         error ("invalid type %<void%> for new");
2311       return error_mark_node;
2312     }
2313 
2314   if (abstract_virtuals_error_sfinae (NULL_TREE, elt_type, complain))
2315     return error_mark_node;
2316 
2317   is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
2318 
2319   if (*init == NULL)
2320     {
2321       bool maybe_uninitialized_error = false;
2322       /* A program that calls for default-initialization [...] of an
2323 	 entity of reference type is ill-formed. */
2324       if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
2325 	maybe_uninitialized_error = true;
2326 
2327       /* A new-expression that creates an object of type T initializes
2328 	 that object as follows:
2329       - If the new-initializer is omitted:
2330         -- If T is a (possibly cv-qualified) non-POD class type
2331 	   (or array thereof), the object is default-initialized (8.5).
2332 	   [...]
2333         -- Otherwise, the object created has indeterminate
2334 	   value. If T is a const-qualified type, or a (possibly
2335 	   cv-qualified) POD class type (or array thereof)
2336 	   containing (directly or indirectly) a member of
2337 	   const-qualified type, the program is ill-formed; */
2338 
2339       if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
2340 	maybe_uninitialized_error = true;
2341 
2342       if (maybe_uninitialized_error
2343 	  && diagnose_uninitialized_cst_or_ref_member (elt_type,
2344 						       /*using_new=*/true,
2345 						       complain & tf_error))
2346 	return error_mark_node;
2347     }
2348 
2349   if (CP_TYPE_CONST_P (elt_type) && *init == NULL
2350       && default_init_uninitialized_part (elt_type))
2351     {
2352       if (complain & tf_error)
2353         error ("uninitialized const in %<new%> of %q#T", elt_type);
2354       return error_mark_node;
2355     }
2356 
2357   size = size_in_bytes (elt_type);
2358   if (array_p)
2359     {
2360       /* Maximum available size in bytes.  Half of the address space
2361 	 minus the cookie size.  */
2362       double_int max_size
2363 	= double_int_one.llshift (TYPE_PRECISION (sizetype) - 1,
2364 				  HOST_BITS_PER_DOUBLE_INT);
2365       /* Maximum number of outer elements which can be allocated. */
2366       double_int max_outer_nelts;
2367       tree max_outer_nelts_tree;
2368 
2369       gcc_assert (TREE_CODE (size) == INTEGER_CST);
2370       cookie_size = targetm.cxx.get_cookie_size (elt_type);
2371       gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
2372       gcc_checking_assert (TREE_INT_CST (cookie_size).ult (max_size));
2373       /* Unconditionally substract the cookie size.  This decreases the
2374 	 maximum object size and is safe even if we choose not to use
2375 	 a cookie after all.  */
2376       max_size -= TREE_INT_CST (cookie_size);
2377       bool overflow;
2378       inner_size = TREE_INT_CST (size)
2379 		   .mul_with_sign (inner_nelts_count, false, &overflow);
2380       if (overflow || inner_size.ugt (max_size))
2381 	{
2382 	  if (complain & tf_error)
2383 	    error ("size of array is too large");
2384 	  return error_mark_node;
2385 	}
2386       max_outer_nelts = max_size.udiv (inner_size, TRUNC_DIV_EXPR);
2387       /* Only keep the top-most seven bits, to simplify encoding the
2388 	 constant in the instruction stream.  */
2389       {
2390 	unsigned shift = HOST_BITS_PER_DOUBLE_INT - 7
2391 	  - (max_outer_nelts.high ? clz_hwi (max_outer_nelts.high)
2392 	     : (HOST_BITS_PER_WIDE_INT + clz_hwi (max_outer_nelts.low)));
2393 	max_outer_nelts
2394 	  = max_outer_nelts.lrshift (shift, HOST_BITS_PER_DOUBLE_INT)
2395 	    .llshift (shift, HOST_BITS_PER_DOUBLE_INT);
2396       }
2397       max_outer_nelts_tree = double_int_to_tree (sizetype, max_outer_nelts);
2398 
2399       size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
2400       outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
2401 				       outer_nelts,
2402 				       max_outer_nelts_tree);
2403     }
2404 
2405   alloc_fn = NULL_TREE;
2406 
2407   /* If PLACEMENT is a single simple pointer type not passed by
2408      reference, prepare to capture it in a temporary variable.  Do
2409      this now, since PLACEMENT will change in the calls below.  */
2410   placement_first = NULL_TREE;
2411   if (vec_safe_length (*placement) == 1
2412       && (TREE_CODE (TREE_TYPE ((**placement)[0])) == POINTER_TYPE))
2413     placement_first = (**placement)[0];
2414 
2415   /* Allocate the object.  */
2416   if (vec_safe_is_empty (*placement) && TYPE_FOR_JAVA (elt_type))
2417     {
2418       tree class_addr;
2419       tree class_decl = build_java_class_ref (elt_type);
2420       static const char alloc_name[] = "_Jv_AllocObject";
2421 
2422       if (class_decl == error_mark_node)
2423 	return error_mark_node;
2424 
2425       use_java_new = 1;
2426       if (!get_global_value_if_present (get_identifier (alloc_name),
2427 					&alloc_fn))
2428 	{
2429           if (complain & tf_error)
2430             error ("call to Java constructor with %qs undefined", alloc_name);
2431 	  return error_mark_node;
2432 	}
2433       else if (really_overloaded_fn (alloc_fn))
2434 	{
2435           if (complain & tf_error)
2436             error ("%qD should never be overloaded", alloc_fn);
2437 	  return error_mark_node;
2438 	}
2439       alloc_fn = OVL_CURRENT (alloc_fn);
2440       class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2441       alloc_call = cp_build_function_call_nary (alloc_fn, complain,
2442 						class_addr, NULL_TREE);
2443     }
2444   else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
2445     {
2446       error ("Java class %q#T object allocated using placement new", elt_type);
2447       return error_mark_node;
2448     }
2449   else
2450     {
2451       tree fnname;
2452       tree fns;
2453 
2454       fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
2455 
2456       if (!globally_qualified_p
2457 	  && CLASS_TYPE_P (elt_type)
2458 	  && (array_p
2459 	      ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
2460 	      : TYPE_HAS_NEW_OPERATOR (elt_type)))
2461 	{
2462 	  /* Use a class-specific operator new.  */
2463 	  /* If a cookie is required, add some extra space.  */
2464 	  if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2465 	    size = size_binop (PLUS_EXPR, size, cookie_size);
2466 	  else
2467 	    {
2468 	      cookie_size = NULL_TREE;
2469 	      /* No size arithmetic necessary, so the size check is
2470 		 not needed. */
2471 	      if (outer_nelts_check != NULL && inner_size.is_one ())
2472 		outer_nelts_check = NULL_TREE;
2473 	    }
2474 	  /* Perform the overflow check.  */
2475 	  if (outer_nelts_check != NULL_TREE)
2476             size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
2477                                 size, TYPE_MAX_VALUE (sizetype));
2478 	  /* Create the argument list.  */
2479 	  vec_safe_insert (*placement, 0, size);
2480 	  /* Do name-lookup to find the appropriate operator.  */
2481 	  fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
2482 	  if (fns == NULL_TREE)
2483 	    {
2484               if (complain & tf_error)
2485                 error ("no suitable %qD found in class %qT", fnname, elt_type);
2486 	      return error_mark_node;
2487 	    }
2488 	  if (TREE_CODE (fns) == TREE_LIST)
2489 	    {
2490               if (complain & tf_error)
2491                 {
2492                   error ("request for member %qD is ambiguous", fnname);
2493                   print_candidates (fns);
2494                 }
2495 	      return error_mark_node;
2496 	    }
2497 	  alloc_call = build_new_method_call (build_dummy_object (elt_type),
2498 					      fns, placement,
2499 					      /*conversion_path=*/NULL_TREE,
2500 					      LOOKUP_NORMAL,
2501 					      &alloc_fn,
2502 					      complain);
2503 	}
2504       else
2505 	{
2506 	  /* Use a global operator new.  */
2507 	  /* See if a cookie might be required.  */
2508 	  if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
2509 	    {
2510 	      cookie_size = NULL_TREE;
2511 	      /* No size arithmetic necessary, so the size check is
2512 		 not needed. */
2513 	      if (outer_nelts_check != NULL && inner_size.is_one ())
2514 		outer_nelts_check = NULL_TREE;
2515 	    }
2516 
2517 	  alloc_call = build_operator_new_call (fnname, placement,
2518 						&size, &cookie_size,
2519 						outer_nelts_check,
2520 						&alloc_fn, complain);
2521 	}
2522     }
2523 
2524   if (alloc_call == error_mark_node)
2525     return error_mark_node;
2526 
2527   gcc_assert (alloc_fn != NULL_TREE);
2528 
2529   /* If we found a simple case of PLACEMENT_EXPR above, then copy it
2530      into a temporary variable.  */
2531   if (!processing_template_decl
2532       && placement_first != NULL_TREE
2533       && TREE_CODE (alloc_call) == CALL_EXPR
2534       && call_expr_nargs (alloc_call) == 2
2535       && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
2536       && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))) == POINTER_TYPE)
2537     {
2538       tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
2539 
2540       if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
2541 	  || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
2542 	{
2543 	  placement_expr = get_target_expr (placement_first);
2544 	  CALL_EXPR_ARG (alloc_call, 1)
2545 	    = convert (TREE_TYPE (placement_arg), placement_expr);
2546 	}
2547     }
2548 
2549   /* In the simple case, we can stop now.  */
2550   pointer_type = build_pointer_type (type);
2551   if (!cookie_size && !is_initialized)
2552     return build_nop (pointer_type, alloc_call);
2553 
2554   /* Store the result of the allocation call in a variable so that we can
2555      use it more than once.  */
2556   alloc_expr = get_target_expr (alloc_call);
2557   alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2558 
2559   /* Strip any COMPOUND_EXPRs from ALLOC_CALL.  */
2560   while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2561     alloc_call = TREE_OPERAND (alloc_call, 1);
2562 
2563   /* Now, check to see if this function is actually a placement
2564      allocation function.  This can happen even when PLACEMENT is NULL
2565      because we might have something like:
2566 
2567        struct S { void* operator new (size_t, int i = 0); };
2568 
2569      A call to `new S' will get this allocation function, even though
2570      there is no explicit placement argument.  If there is more than
2571      one argument, or there are variable arguments, then this is a
2572      placement allocation function.  */
2573   placement_allocation_fn_p
2574     = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2575        || varargs_function_p (alloc_fn));
2576 
2577   /* Preevaluate the placement args so that we don't reevaluate them for a
2578      placement delete.  */
2579   if (placement_allocation_fn_p)
2580     {
2581       tree inits;
2582       stabilize_call (alloc_call, &inits);
2583       if (inits)
2584 	alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2585 			     alloc_expr);
2586     }
2587 
2588   /*        unless an allocation function is declared with an empty  excep-
2589      tion-specification  (_except.spec_),  throw(), it indicates failure to
2590      allocate storage by throwing a bad_alloc exception  (clause  _except_,
2591      _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2592      cation function is declared  with  an  empty  exception-specification,
2593      throw(), it returns null to indicate failure to allocate storage and a
2594      non-null pointer otherwise.
2595 
2596      So check for a null exception spec on the op new we just called.  */
2597 
2598   nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2599   check_new = (flag_check_new || nothrow) && ! use_java_new;
2600 
2601   if (cookie_size)
2602     {
2603       tree cookie;
2604       tree cookie_ptr;
2605       tree size_ptr_type;
2606 
2607       /* Adjust so we're pointing to the start of the object.  */
2608       data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
2609 
2610       /* Store the number of bytes allocated so that we can know how
2611 	 many elements to destroy later.  We use the last sizeof
2612 	 (size_t) bytes to store the number of elements.  */
2613       cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2614       cookie_ptr = fold_build_pointer_plus_loc (input_location,
2615 						alloc_node, cookie_ptr);
2616       size_ptr_type = build_pointer_type (sizetype);
2617       cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2618       cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2619 
2620       cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2621 
2622       if (targetm.cxx.cookie_has_size ())
2623 	{
2624 	  /* Also store the element size.  */
2625 	  cookie_ptr = fold_build_pointer_plus (cookie_ptr,
2626 			       fold_build1_loc (input_location,
2627 						NEGATE_EXPR, sizetype,
2628 						size_in_bytes (sizetype)));
2629 
2630 	  cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2631 	  cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2632 			   size_in_bytes (elt_type));
2633 	  cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2634 				cookie, cookie_expr);
2635 	}
2636     }
2637   else
2638     {
2639       cookie_expr = NULL_TREE;
2640       data_addr = alloc_node;
2641     }
2642 
2643   /* Now use a pointer to the type we've actually allocated.  */
2644 
2645   /* But we want to operate on a non-const version to start with,
2646      since we'll be modifying the elements.  */
2647   non_const_pointer_type = build_pointer_type
2648     (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
2649 
2650   data_addr = fold_convert (non_const_pointer_type, data_addr);
2651   /* Any further uses of alloc_node will want this type, too.  */
2652   alloc_node = fold_convert (non_const_pointer_type, alloc_node);
2653 
2654   /* Now initialize the allocated object.  Note that we preevaluate the
2655      initialization expression, apart from the actual constructor call or
2656      assignment--we do this because we want to delay the allocation as long
2657      as possible in order to minimize the size of the exception region for
2658      placement delete.  */
2659   if (is_initialized)
2660     {
2661       bool stable;
2662       bool explicit_value_init_p = false;
2663 
2664       if (*init != NULL && (*init)->is_empty ())
2665 	{
2666 	  *init = NULL;
2667 	  explicit_value_init_p = true;
2668 	}
2669 
2670       if (processing_template_decl && explicit_value_init_p)
2671 	{
2672 	  /* build_value_init doesn't work in templates, and we don't need
2673 	     the initializer anyway since we're going to throw it away and
2674 	     rebuild it at instantiation time, so just build up a single
2675 	     constructor call to get any appropriate diagnostics.  */
2676 	  init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2677 	  if (type_build_ctor_call (elt_type))
2678 	    init_expr = build_special_member_call (init_expr,
2679 						   complete_ctor_identifier,
2680 						   init, elt_type,
2681 						   LOOKUP_NORMAL,
2682 						   complain);
2683 	  stable = stabilize_init (init_expr, &init_preeval_expr);
2684 	}
2685       else if (array_p)
2686 	{
2687 	  tree vecinit = NULL_TREE;
2688 	  if (vec_safe_length (*init) == 1
2689 	      && BRACE_ENCLOSED_INITIALIZER_P ((**init)[0])
2690 	      && CONSTRUCTOR_IS_DIRECT_INIT ((**init)[0]))
2691 	    {
2692 	      vecinit = (**init)[0];
2693 	      if (CONSTRUCTOR_NELTS (vecinit) == 0)
2694 		/* List-value-initialization, leave it alone.  */;
2695 	      else
2696 		{
2697 		  tree arraytype, domain;
2698 		  if (TREE_CONSTANT (nelts))
2699 		    domain = compute_array_index_type (NULL_TREE, nelts,
2700 						       complain);
2701 		  else
2702 		    {
2703 		      domain = NULL_TREE;
2704 		      if (CONSTRUCTOR_NELTS (vecinit) > 0)
2705 			warning (0, "non-constant array size in new, unable "
2706 				 "to verify length of initializer-list");
2707 		    }
2708 		  arraytype = build_cplus_array_type (type, domain);
2709 		  vecinit = digest_init (arraytype, vecinit, complain);
2710 		}
2711 	    }
2712 	  else if (*init)
2713             {
2714               if (complain & tf_error)
2715                 permerror (input_location,
2716 			   "parenthesized initializer in array new");
2717               else
2718                 return error_mark_node;
2719 	      vecinit = build_tree_list_vec (*init);
2720             }
2721 	  init_expr
2722 	    = build_vec_init (data_addr,
2723 			      cp_build_binary_op (input_location,
2724 						  MINUS_EXPR, outer_nelts,
2725 						  integer_one_node,
2726 						  complain),
2727 			      vecinit,
2728 			      explicit_value_init_p,
2729 			      /*from_array=*/0,
2730                               complain);
2731 
2732 	  /* An array initialization is stable because the initialization
2733 	     of each element is a full-expression, so the temporaries don't
2734 	     leak out.  */
2735 	  stable = true;
2736 	}
2737       else
2738 	{
2739 	  init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2740 
2741 	  if (type_build_ctor_call (type) && !explicit_value_init_p)
2742 	    {
2743 	      init_expr = build_special_member_call (init_expr,
2744 						     complete_ctor_identifier,
2745 						     init, elt_type,
2746 						     LOOKUP_NORMAL,
2747                                                      complain);
2748 	    }
2749 	  else if (explicit_value_init_p)
2750 	    {
2751 	      /* Something like `new int()'.  */
2752 	      tree val = build_value_init (type, complain);
2753 	      if (val == error_mark_node)
2754 		return error_mark_node;
2755 	      init_expr = build2 (INIT_EXPR, type, init_expr, val);
2756 	    }
2757 	  else
2758 	    {
2759 	      tree ie;
2760 
2761 	      /* We are processing something like `new int (10)', which
2762 		 means allocate an int, and initialize it with 10.  */
2763 
2764 	      ie = build_x_compound_expr_from_vec (*init, "new initializer",
2765 						   complain);
2766 	      init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie,
2767 						complain);
2768 	    }
2769 	  stable = stabilize_init (init_expr, &init_preeval_expr);
2770 	}
2771 
2772       if (init_expr == error_mark_node)
2773 	return error_mark_node;
2774 
2775       /* If any part of the object initialization terminates by throwing an
2776 	 exception and a suitable deallocation function can be found, the
2777 	 deallocation function is called to free the memory in which the
2778 	 object was being constructed, after which the exception continues
2779 	 to propagate in the context of the new-expression. If no
2780 	 unambiguous matching deallocation function can be found,
2781 	 propagating the exception does not cause the object's memory to be
2782 	 freed.  */
2783       if (flag_exceptions && ! use_java_new)
2784 	{
2785 	  enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2786 	  tree cleanup;
2787 
2788 	  /* The Standard is unclear here, but the right thing to do
2789 	     is to use the same method for finding deallocation
2790 	     functions that we use for finding allocation functions.  */
2791 	  cleanup = (build_op_delete_call
2792 		     (dcode,
2793 		      alloc_node,
2794 		      size,
2795 		      globally_qualified_p,
2796 		      placement_allocation_fn_p ? alloc_call : NULL_TREE,
2797 		      alloc_fn,
2798 		      complain));
2799 
2800 	  if (!cleanup)
2801 	    /* We're done.  */;
2802 	  else if (stable)
2803 	    /* This is much simpler if we were able to preevaluate all of
2804 	       the arguments to the constructor call.  */
2805 	    {
2806 	      /* CLEANUP is compiler-generated, so no diagnostics.  */
2807 	      TREE_NO_WARNING (cleanup) = true;
2808 	      init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2809 				  init_expr, cleanup);
2810 	      /* Likewise, this try-catch is compiler-generated.  */
2811 	      TREE_NO_WARNING (init_expr) = true;
2812 	    }
2813 	  else
2814 	    /* Ack!  First we allocate the memory.  Then we set our sentry
2815 	       variable to true, and expand a cleanup that deletes the
2816 	       memory if sentry is true.  Then we run the constructor, and
2817 	       finally clear the sentry.
2818 
2819 	       We need to do this because we allocate the space first, so
2820 	       if there are any temporaries with cleanups in the
2821 	       constructor args and we weren't able to preevaluate them, we
2822 	       need this EH region to extend until end of full-expression
2823 	       to preserve nesting.  */
2824 	    {
2825 	      tree end, sentry, begin;
2826 
2827 	      begin = get_target_expr (boolean_true_node);
2828 	      CLEANUP_EH_ONLY (begin) = 1;
2829 
2830 	      sentry = TARGET_EXPR_SLOT (begin);
2831 
2832 	      /* CLEANUP is compiler-generated, so no diagnostics.  */
2833 	      TREE_NO_WARNING (cleanup) = true;
2834 
2835 	      TARGET_EXPR_CLEANUP (begin)
2836 		= build3 (COND_EXPR, void_type_node, sentry,
2837 			  cleanup, void_zero_node);
2838 
2839 	      end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2840 			    sentry, boolean_false_node);
2841 
2842 	      init_expr
2843 		= build2 (COMPOUND_EXPR, void_type_node, begin,
2844 			  build2 (COMPOUND_EXPR, void_type_node, init_expr,
2845 				  end));
2846 	      /* Likewise, this is compiler-generated.  */
2847 	      TREE_NO_WARNING (init_expr) = true;
2848 	    }
2849 	}
2850     }
2851   else
2852     init_expr = NULL_TREE;
2853 
2854   /* Now build up the return value in reverse order.  */
2855 
2856   rval = data_addr;
2857 
2858   if (init_expr)
2859     rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2860   if (cookie_expr)
2861     rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2862 
2863   if (rval == data_addr)
2864     /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2865        and return the call (which doesn't need to be adjusted).  */
2866     rval = TARGET_EXPR_INITIAL (alloc_expr);
2867   else
2868     {
2869       if (check_new)
2870 	{
2871 	  tree ifexp = cp_build_binary_op (input_location,
2872 					   NE_EXPR, alloc_node,
2873 					   nullptr_node,
2874 					   complain);
2875 	  rval = build_conditional_expr (ifexp, rval, alloc_node,
2876                                          complain);
2877 	}
2878 
2879       /* Perform the allocation before anything else, so that ALLOC_NODE
2880 	 has been initialized before we start using it.  */
2881       rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2882     }
2883 
2884   if (init_preeval_expr)
2885     rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2886 
2887   /* A new-expression is never an lvalue.  */
2888   gcc_assert (!lvalue_p (rval));
2889 
2890   return convert (pointer_type, rval);
2891 }
2892 
2893 /* Generate a representation for a C++ "new" expression.  *PLACEMENT
2894    is a vector of placement-new arguments (or NULL if none).  If NELTS
2895    is NULL, TYPE is the type of the storage to be allocated.  If NELTS
2896    is not NULL, then this is an array-new allocation; TYPE is the type
2897    of the elements in the array and NELTS is the number of elements in
2898    the array.  *INIT, if non-NULL, is the initializer for the new
2899    object, or an empty vector to indicate an initializer of "()".  If
2900    USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
2901    rather than just "new".  This may change PLACEMENT and INIT.  */
2902 
2903 tree
build_new(vec<tree,va_gc> ** placement,tree type,tree nelts,vec<tree,va_gc> ** init,int use_global_new,tsubst_flags_t complain)2904 build_new (vec<tree, va_gc> **placement, tree type, tree nelts,
2905 	   vec<tree, va_gc> **init, int use_global_new, tsubst_flags_t complain)
2906 {
2907   tree rval;
2908   vec<tree, va_gc> *orig_placement = NULL;
2909   tree orig_nelts = NULL_TREE;
2910   vec<tree, va_gc> *orig_init = NULL;
2911 
2912   if (type == error_mark_node)
2913     return error_mark_node;
2914 
2915   if (nelts == NULL_TREE && vec_safe_length (*init) == 1
2916       /* Don't do auto deduction where it might affect mangling.  */
2917       && (!processing_template_decl || at_function_scope_p ()))
2918     {
2919       tree auto_node = type_uses_auto (type);
2920       if (auto_node)
2921 	{
2922 	  tree d_init = (**init)[0];
2923 	  d_init = resolve_nondeduced_context (d_init);
2924 	  type = do_auto_deduction (type, d_init, auto_node);
2925 	}
2926     }
2927 
2928   if (processing_template_decl)
2929     {
2930       if (dependent_type_p (type)
2931 	  || any_type_dependent_arguments_p (*placement)
2932 	  || (nelts && type_dependent_expression_p (nelts))
2933 	  || (nelts && *init)
2934 	  || any_type_dependent_arguments_p (*init))
2935 	return build_raw_new_expr (*placement, type, nelts, *init,
2936 				   use_global_new);
2937 
2938       orig_placement = make_tree_vector_copy (*placement);
2939       orig_nelts = nelts;
2940       if (*init)
2941 	orig_init = make_tree_vector_copy (*init);
2942 
2943       make_args_non_dependent (*placement);
2944       if (nelts)
2945 	nelts = build_non_dependent_expr (nelts);
2946       make_args_non_dependent (*init);
2947     }
2948 
2949   if (nelts)
2950     {
2951       if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
2952         {
2953           if (complain & tf_error)
2954             permerror (input_location, "size in array new must have integral type");
2955           else
2956             return error_mark_node;
2957         }
2958       nelts = mark_rvalue_use (nelts);
2959       nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
2960     }
2961 
2962   /* ``A reference cannot be created by the new operator.  A reference
2963      is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2964      returned by new.'' ARM 5.3.3 */
2965   if (TREE_CODE (type) == REFERENCE_TYPE)
2966     {
2967       if (complain & tf_error)
2968         error ("new cannot be applied to a reference type");
2969       else
2970         return error_mark_node;
2971       type = TREE_TYPE (type);
2972     }
2973 
2974   if (TREE_CODE (type) == FUNCTION_TYPE)
2975     {
2976       if (complain & tf_error)
2977         error ("new cannot be applied to a function type");
2978       return error_mark_node;
2979     }
2980 
2981   /* The type allocated must be complete.  If the new-type-id was
2982      "T[N]" then we are just checking that "T" is complete here, but
2983      that is equivalent, since the value of "N" doesn't matter.  */
2984   if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
2985     return error_mark_node;
2986 
2987   rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
2988   if (rval == error_mark_node)
2989     return error_mark_node;
2990 
2991   if (processing_template_decl)
2992     {
2993       tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
2994 				     orig_init, use_global_new);
2995       release_tree_vector (orig_placement);
2996       release_tree_vector (orig_init);
2997       return ret;
2998     }
2999 
3000   /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain.  */
3001   rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
3002   TREE_NO_WARNING (rval) = 1;
3003 
3004   return rval;
3005 }
3006 
3007 /* Given a Java class, return a decl for the corresponding java.lang.Class.  */
3008 
3009 tree
build_java_class_ref(tree type)3010 build_java_class_ref (tree type)
3011 {
3012   tree name = NULL_TREE, class_decl;
3013   static tree CL_suffix = NULL_TREE;
3014   if (CL_suffix == NULL_TREE)
3015     CL_suffix = get_identifier("class$");
3016   if (jclass_node == NULL_TREE)
3017     {
3018       jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
3019       if (jclass_node == NULL_TREE)
3020 	{
3021 	  error ("call to Java constructor, while %<jclass%> undefined");
3022 	  return error_mark_node;
3023 	}
3024       jclass_node = TREE_TYPE (jclass_node);
3025     }
3026 
3027   /* Mangle the class$ field.  */
3028   {
3029     tree field;
3030     for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3031       if (DECL_NAME (field) == CL_suffix)
3032 	{
3033 	  mangle_decl (field);
3034 	  name = DECL_ASSEMBLER_NAME (field);
3035 	  break;
3036 	}
3037     if (!field)
3038       {
3039 	error ("can%'t find %<class$%> in %qT", type);
3040 	return error_mark_node;
3041       }
3042   }
3043 
3044   class_decl = IDENTIFIER_GLOBAL_VALUE (name);
3045   if (class_decl == NULL_TREE)
3046     {
3047       class_decl = build_decl (input_location,
3048 			       VAR_DECL, name, TREE_TYPE (jclass_node));
3049       TREE_STATIC (class_decl) = 1;
3050       DECL_EXTERNAL (class_decl) = 1;
3051       TREE_PUBLIC (class_decl) = 1;
3052       DECL_ARTIFICIAL (class_decl) = 1;
3053       DECL_IGNORED_P (class_decl) = 1;
3054       pushdecl_top_level (class_decl);
3055       make_decl_rtl (class_decl);
3056     }
3057   return class_decl;
3058 }
3059 
3060 static tree
build_vec_delete_1(tree base,tree maxindex,tree type,special_function_kind auto_delete_vec,int use_global_delete,tsubst_flags_t complain)3061 build_vec_delete_1 (tree base, tree maxindex, tree type,
3062 		    special_function_kind auto_delete_vec,
3063 		    int use_global_delete, tsubst_flags_t complain)
3064 {
3065   tree virtual_size;
3066   tree ptype = build_pointer_type (type = complete_type (type));
3067   tree size_exp = size_in_bytes (type);
3068 
3069   /* Temporary variables used by the loop.  */
3070   tree tbase, tbase_init;
3071 
3072   /* This is the body of the loop that implements the deletion of a
3073      single element, and moves temp variables to next elements.  */
3074   tree body;
3075 
3076   /* This is the LOOP_EXPR that governs the deletion of the elements.  */
3077   tree loop = 0;
3078 
3079   /* This is the thing that governs what to do after the loop has run.  */
3080   tree deallocate_expr = 0;
3081 
3082   /* This is the BIND_EXPR which holds the outermost iterator of the
3083      loop.  It is convenient to set this variable up and test it before
3084      executing any other code in the loop.
3085      This is also the containing expression returned by this function.  */
3086   tree controller = NULL_TREE;
3087   tree tmp;
3088 
3089   /* We should only have 1-D arrays here.  */
3090   gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
3091 
3092   if (base == error_mark_node || maxindex == error_mark_node)
3093     return error_mark_node;
3094 
3095   if (! MAYBE_CLASS_TYPE_P (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3096     goto no_destructor;
3097 
3098   /* The below is short by the cookie size.  */
3099   virtual_size = size_binop (MULT_EXPR, size_exp,
3100 			     convert (sizetype, maxindex));
3101 
3102   tbase = create_temporary_var (ptype);
3103   tbase_init
3104     = cp_build_modify_expr (tbase, NOP_EXPR,
3105 			    fold_build_pointer_plus_loc (input_location,
3106 							 fold_convert (ptype,
3107 								       base),
3108 							 virtual_size),
3109 			    complain);
3110   if (tbase_init == error_mark_node)
3111     return error_mark_node;
3112   controller = build3 (BIND_EXPR, void_type_node, tbase,
3113 		       NULL_TREE, NULL_TREE);
3114   TREE_SIDE_EFFECTS (controller) = 1;
3115 
3116   body = build1 (EXIT_EXPR, void_type_node,
3117 		 build2 (EQ_EXPR, boolean_type_node, tbase,
3118 			 fold_convert (ptype, base)));
3119   tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
3120   tmp = fold_build_pointer_plus (tbase, tmp);
3121   tmp = cp_build_modify_expr (tbase, NOP_EXPR, tmp, complain);
3122   if (tmp == error_mark_node)
3123     return error_mark_node;
3124   body = build_compound_expr (input_location, body, tmp);
3125   tmp = build_delete (ptype, tbase, sfk_complete_destructor,
3126 		      LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3127 		      complain);
3128   if (tmp == error_mark_node)
3129     return error_mark_node;
3130   body = build_compound_expr (input_location, body, tmp);
3131 
3132   loop = build1 (LOOP_EXPR, void_type_node, body);
3133   loop = build_compound_expr (input_location, tbase_init, loop);
3134 
3135  no_destructor:
3136   /* Delete the storage if appropriate.  */
3137   if (auto_delete_vec == sfk_deleting_destructor)
3138     {
3139       tree base_tbd;
3140 
3141       /* The below is short by the cookie size.  */
3142       virtual_size = size_binop (MULT_EXPR, size_exp,
3143 				 convert (sizetype, maxindex));
3144 
3145       if (! TYPE_VEC_NEW_USES_COOKIE (type))
3146 	/* no header */
3147 	base_tbd = base;
3148       else
3149 	{
3150 	  tree cookie_size;
3151 
3152 	  cookie_size = targetm.cxx.get_cookie_size (type);
3153 	  base_tbd = cp_build_binary_op (input_location,
3154 					 MINUS_EXPR,
3155 					 cp_convert (string_type_node,
3156 						     base, complain),
3157 					 cookie_size,
3158 					 complain);
3159 	  if (base_tbd == error_mark_node)
3160 	    return error_mark_node;
3161 	  base_tbd = cp_convert (ptype, base_tbd, complain);
3162 	  /* True size with header.  */
3163 	  virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
3164 	}
3165 
3166       deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
3167 					      base_tbd, virtual_size,
3168 					      use_global_delete & 1,
3169 					      /*placement=*/NULL_TREE,
3170 					      /*alloc_fn=*/NULL_TREE,
3171 					      complain);
3172     }
3173 
3174   body = loop;
3175   if (!deallocate_expr)
3176     ;
3177   else if (!body)
3178     body = deallocate_expr;
3179   else
3180     body = build_compound_expr (input_location, body, deallocate_expr);
3181 
3182   if (!body)
3183     body = integer_zero_node;
3184 
3185   /* Outermost wrapper: If pointer is null, punt.  */
3186   body = fold_build3_loc (input_location, COND_EXPR, void_type_node,
3187 		      fold_build2_loc (input_location,
3188 				   NE_EXPR, boolean_type_node, base,
3189 				   convert (TREE_TYPE (base),
3190 					    nullptr_node)),
3191 		      body, integer_zero_node);
3192   body = build1 (NOP_EXPR, void_type_node, body);
3193 
3194   if (controller)
3195     {
3196       TREE_OPERAND (controller, 1) = body;
3197       body = controller;
3198     }
3199 
3200   if (TREE_CODE (base) == SAVE_EXPR)
3201     /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR.  */
3202     body = build2 (COMPOUND_EXPR, void_type_node, base, body);
3203 
3204   return convert_to_void (body, ICV_CAST, complain);
3205 }
3206 
3207 /* Create an unnamed variable of the indicated TYPE.  */
3208 
3209 tree
create_temporary_var(tree type)3210 create_temporary_var (tree type)
3211 {
3212   tree decl;
3213 
3214   decl = build_decl (input_location,
3215 		     VAR_DECL, NULL_TREE, type);
3216   TREE_USED (decl) = 1;
3217   DECL_ARTIFICIAL (decl) = 1;
3218   DECL_IGNORED_P (decl) = 1;
3219   DECL_CONTEXT (decl) = current_function_decl;
3220 
3221   return decl;
3222 }
3223 
3224 /* Create a new temporary variable of the indicated TYPE, initialized
3225    to INIT.
3226 
3227    It is not entered into current_binding_level, because that breaks
3228    things when it comes time to do final cleanups (which take place
3229    "outside" the binding contour of the function).  */
3230 
3231 tree
get_temp_regvar(tree type,tree init)3232 get_temp_regvar (tree type, tree init)
3233 {
3234   tree decl;
3235 
3236   decl = create_temporary_var (type);
3237   add_decl_expr (decl);
3238 
3239   finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
3240 					  tf_warning_or_error));
3241 
3242   return decl;
3243 }
3244 
3245 /* `build_vec_init' returns tree structure that performs
3246    initialization of a vector of aggregate types.
3247 
3248    BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
3249      to the first element, of POINTER_TYPE.
3250    MAXINDEX is the maximum index of the array (one less than the
3251      number of elements).  It is only used if BASE is a pointer or
3252      TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
3253 
3254    INIT is the (possibly NULL) initializer.
3255 
3256    If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL.  All
3257    elements in the array are value-initialized.
3258 
3259    FROM_ARRAY is 0 if we should init everything with INIT
3260    (i.e., every element initialized from INIT).
3261    FROM_ARRAY is 1 if we should index into INIT in parallel
3262    with initialization of DECL.
3263    FROM_ARRAY is 2 if we should index into INIT in parallel,
3264    but use assignment instead of initialization.  */
3265 
3266 tree
build_vec_init(tree base,tree maxindex,tree init,bool explicit_value_init_p,int from_array,tsubst_flags_t complain)3267 build_vec_init (tree base, tree maxindex, tree init,
3268 		bool explicit_value_init_p,
3269 		int from_array, tsubst_flags_t complain)
3270 {
3271   tree rval;
3272   tree base2 = NULL_TREE;
3273   tree itype = NULL_TREE;
3274   tree iterator;
3275   /* The type of BASE.  */
3276   tree atype = TREE_TYPE (base);
3277   /* The type of an element in the array.  */
3278   tree type = TREE_TYPE (atype);
3279   /* The element type reached after removing all outer array
3280      types.  */
3281   tree inner_elt_type;
3282   /* The type of a pointer to an element in the array.  */
3283   tree ptype;
3284   tree stmt_expr;
3285   tree compound_stmt;
3286   int destroy_temps;
3287   tree try_block = NULL_TREE;
3288   int num_initialized_elts = 0;
3289   bool is_global;
3290   tree const_init = NULL_TREE;
3291   tree obase = base;
3292   bool xvalue = false;
3293   bool errors = false;
3294 
3295   if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
3296     maxindex = array_type_nelts (atype);
3297 
3298   if (maxindex == NULL_TREE || maxindex == error_mark_node)
3299     return error_mark_node;
3300 
3301   if (explicit_value_init_p)
3302     gcc_assert (!init);
3303 
3304   inner_elt_type = strip_array_types (type);
3305 
3306   /* Look through the TARGET_EXPR around a compound literal.  */
3307   if (init && TREE_CODE (init) == TARGET_EXPR
3308       && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
3309       && from_array != 2)
3310     init = TARGET_EXPR_INITIAL (init);
3311 
3312   if (init
3313       && TREE_CODE (atype) == ARRAY_TYPE
3314       && (from_array == 2
3315 	  ? (!CLASS_TYPE_P (inner_elt_type)
3316 	     || !TYPE_HAS_COMPLEX_COPY_ASSIGN (inner_elt_type))
3317 	  : !TYPE_NEEDS_CONSTRUCTING (type))
3318       && ((TREE_CODE (init) == CONSTRUCTOR
3319 	   /* Don't do this if the CONSTRUCTOR might contain something
3320 	      that might throw and require us to clean up.  */
3321 	   && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
3322 	       || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
3323 	  || from_array))
3324     {
3325       /* Do non-default initialization of trivial arrays resulting from
3326 	 brace-enclosed initializers.  In this case, digest_init and
3327 	 store_constructor will handle the semantics for us.  */
3328 
3329       stmt_expr = build2 (INIT_EXPR, atype, base, init);
3330       return stmt_expr;
3331     }
3332 
3333   maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
3334   if (TREE_CODE (atype) == ARRAY_TYPE)
3335     {
3336       ptype = build_pointer_type (type);
3337       base = decay_conversion (base, complain);
3338       if (base == error_mark_node)
3339 	return error_mark_node;
3340       base = cp_convert (ptype, base, complain);
3341     }
3342   else
3343     ptype = atype;
3344 
3345   /* The code we are generating looks like:
3346      ({
3347        T* t1 = (T*) base;
3348        T* rval = t1;
3349        ptrdiff_t iterator = maxindex;
3350        try {
3351 	 for (; iterator != -1; --iterator) {
3352 	   ... initialize *t1 ...
3353 	   ++t1;
3354 	 }
3355        } catch (...) {
3356 	 ... destroy elements that were constructed ...
3357        }
3358        rval;
3359      })
3360 
3361      We can omit the try and catch blocks if we know that the
3362      initialization will never throw an exception, or if the array
3363      elements do not have destructors.  We can omit the loop completely if
3364      the elements of the array do not have constructors.
3365 
3366      We actually wrap the entire body of the above in a STMT_EXPR, for
3367      tidiness.
3368 
3369      When copying from array to another, when the array elements have
3370      only trivial copy constructors, we should use __builtin_memcpy
3371      rather than generating a loop.  That way, we could take advantage
3372      of whatever cleverness the back end has for dealing with copies
3373      of blocks of memory.  */
3374 
3375   is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
3376   destroy_temps = stmts_are_full_exprs_p ();
3377   current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3378   rval = get_temp_regvar (ptype, base);
3379   base = get_temp_regvar (ptype, rval);
3380   iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
3381 
3382   /* If initializing one array from another, initialize element by
3383      element.  We rely upon the below calls to do the argument
3384      checking.  Evaluate the initializer before entering the try block.  */
3385   if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
3386     {
3387       if (lvalue_kind (init) & clk_rvalueref)
3388 	xvalue = true;
3389       base2 = decay_conversion (init, complain);
3390       if (base2 == error_mark_node)
3391 	return error_mark_node;
3392       itype = TREE_TYPE (base2);
3393       base2 = get_temp_regvar (itype, base2);
3394       itype = TREE_TYPE (itype);
3395     }
3396 
3397   /* Protect the entire array initialization so that we can destroy
3398      the partially constructed array if an exception is thrown.
3399      But don't do this if we're assigning.  */
3400   if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3401       && from_array != 2)
3402     {
3403       try_block = begin_try_block ();
3404     }
3405 
3406   /* If the initializer is {}, then all elements are initialized from {}.
3407      But for non-classes, that's the same as value-initialization.  */
3408   if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
3409       && CONSTRUCTOR_NELTS (init) == 0)
3410     {
3411       if (CLASS_TYPE_P (type))
3412 	/* Leave init alone.  */;
3413       else
3414 	{
3415 	  init = NULL_TREE;
3416 	  explicit_value_init_p = true;
3417 	}
3418     }
3419 
3420   /* Maybe pull out constant value when from_array? */
3421 
3422   else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
3423     {
3424       /* Do non-default initialization of non-trivial arrays resulting from
3425 	 brace-enclosed initializers.  */
3426       unsigned HOST_WIDE_INT idx;
3427       tree field, elt;
3428       /* Should we try to create a constant initializer?  */
3429       bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
3430 			&& (literal_type_p (inner_elt_type)
3431 			    || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
3432       /* If the constructor already has the array type, it's been through
3433 	 digest_init, so we shouldn't try to do anything more.  */
3434       bool digested = same_type_p (atype, TREE_TYPE (init));
3435       bool saw_non_const = false;
3436       bool saw_const = false;
3437       /* If we're initializing a static array, we want to do static
3438 	 initialization of any elements with constant initializers even if
3439 	 some are non-constant.  */
3440       bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
3441       vec<constructor_elt, va_gc> *new_vec;
3442       from_array = 0;
3443 
3444       if (try_const)
3445 	vec_alloc (new_vec, CONSTRUCTOR_NELTS (init));
3446       else
3447 	new_vec = NULL;
3448 
3449       FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
3450 	{
3451 	  tree baseref = build1 (INDIRECT_REF, type, base);
3452 	  tree one_init;
3453 
3454 	  num_initialized_elts++;
3455 
3456 	  current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3457 	  if (digested)
3458 	    one_init = build2 (INIT_EXPR, type, baseref, elt);
3459 	  else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
3460 	    one_init = build_aggr_init (baseref, elt, 0, complain);
3461 	  else
3462 	    one_init = cp_build_modify_expr (baseref, NOP_EXPR,
3463 					     elt, complain);
3464 	  if (one_init == error_mark_node)
3465 	    errors = true;
3466 	  if (try_const)
3467 	    {
3468 	      tree e = one_init;
3469 	      if (TREE_CODE (e) == EXPR_STMT)
3470 		e = TREE_OPERAND (e, 0);
3471 	      if (TREE_CODE (e) == CONVERT_EXPR
3472 		  && VOID_TYPE_P (TREE_TYPE (e)))
3473 		e = TREE_OPERAND (e, 0);
3474 	      e = maybe_constant_init (e);
3475 	      if (reduced_constant_expression_p (e))
3476 		{
3477 		  CONSTRUCTOR_APPEND_ELT (new_vec, field, e);
3478 		  if (do_static_init)
3479 		    one_init = NULL_TREE;
3480 		  else
3481 		    one_init = build2 (INIT_EXPR, type, baseref, e);
3482 		  saw_const = true;
3483 		}
3484 	      else
3485 		{
3486 		  if (do_static_init)
3487 		    {
3488 		      tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
3489 						    true);
3490 		      if (value)
3491 			CONSTRUCTOR_APPEND_ELT (new_vec, field, value);
3492 		    }
3493 		  saw_non_const = true;
3494 		}
3495 	    }
3496 
3497 	  if (one_init)
3498 	    finish_expr_stmt (one_init);
3499 	  current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3500 
3501 	  one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, 0, complain);
3502 	  if (one_init == error_mark_node)
3503 	    errors = true;
3504 	  else
3505 	    finish_expr_stmt (one_init);
3506 
3507 	  one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3508 					complain);
3509 	  if (one_init == error_mark_node)
3510 	    errors = true;
3511 	  else
3512 	    finish_expr_stmt (one_init);
3513 	}
3514 
3515       if (try_const)
3516 	{
3517 	  if (!saw_non_const)
3518 	    const_init = build_constructor (atype, new_vec);
3519 	  else if (do_static_init && saw_const)
3520 	    DECL_INITIAL (obase) = build_constructor (atype, new_vec);
3521 	  else
3522 	    vec_free (new_vec);
3523 	}
3524 
3525       /* Clear out INIT so that we don't get confused below.  */
3526       init = NULL_TREE;
3527       /* Any elements without explicit initializers get {}.  */
3528       explicit_value_init_p = true;
3529     }
3530   else if (from_array)
3531     {
3532       if (init)
3533 	/* OK, we set base2 above.  */;
3534       else if (CLASS_TYPE_P (type)
3535 	       && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
3536 	{
3537           if (complain & tf_error)
3538             error ("initializer ends prematurely");
3539 	  errors = true;
3540 	}
3541     }
3542 
3543   /* Now, default-initialize any remaining elements.  We don't need to
3544      do that if a) the type does not need constructing, or b) we've
3545      already initialized all the elements.
3546 
3547      We do need to keep going if we're copying an array.  */
3548 
3549   if (from_array
3550       || ((type_build_ctor_call (type) || init || explicit_value_init_p)
3551 	  && ! (host_integerp (maxindex, 0)
3552 		&& (num_initialized_elts
3553 		    == tree_low_cst (maxindex, 0) + 1))))
3554     {
3555       /* If the ITERATOR is equal to -1, then we don't have to loop;
3556 	 we've already initialized all the elements.  */
3557       tree for_stmt;
3558       tree elt_init;
3559       tree to;
3560 
3561       for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
3562       finish_for_init_stmt (for_stmt);
3563       finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
3564 			       build_int_cst (TREE_TYPE (iterator), -1)),
3565 		       for_stmt);
3566       elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3567 				    complain);
3568       if (elt_init == error_mark_node)
3569 	errors = true;
3570       finish_for_expr (elt_init, for_stmt);
3571 
3572       to = build1 (INDIRECT_REF, type, base);
3573 
3574       if (from_array)
3575 	{
3576 	  tree from;
3577 
3578 	  if (base2)
3579 	    {
3580 	      from = build1 (INDIRECT_REF, itype, base2);
3581 	      if (xvalue)
3582 		from = move (from);
3583 	    }
3584 	  else
3585 	    from = NULL_TREE;
3586 
3587 	  if (from_array == 2)
3588 	    elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3589 					     complain);
3590 	  else if (type_build_ctor_call (type))
3591 	    elt_init = build_aggr_init (to, from, 0, complain);
3592 	  else if (from)
3593 	    elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3594 					     complain);
3595 	  else
3596 	    gcc_unreachable ();
3597 	}
3598       else if (TREE_CODE (type) == ARRAY_TYPE)
3599 	{
3600 	  if (init != 0)
3601 	    sorry
3602 	      ("cannot initialize multi-dimensional array with initializer");
3603 	  elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
3604 				     0, 0,
3605 				     explicit_value_init_p,
3606 				     0, complain);
3607 	}
3608       else if (explicit_value_init_p)
3609 	{
3610 	  elt_init = build_value_init (type, complain);
3611 	  if (elt_init != error_mark_node)
3612 	    elt_init = build2 (INIT_EXPR, type, to, elt_init);
3613 	}
3614       else
3615 	{
3616 	  gcc_assert (type_build_ctor_call (type) || init);
3617 	  if (CLASS_TYPE_P (type))
3618 	    elt_init = build_aggr_init (to, init, 0, complain);
3619 	  else
3620 	    {
3621 	      if (TREE_CODE (init) == TREE_LIST)
3622 		init = build_x_compound_expr_from_list (init, ELK_INIT,
3623 							complain);
3624 	      elt_init = build2 (INIT_EXPR, type, to, init);
3625 	    }
3626 	}
3627 
3628       if (elt_init == error_mark_node)
3629 	errors = true;
3630 
3631       current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3632       finish_expr_stmt (elt_init);
3633       current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3634 
3635       finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
3636                                            complain));
3637       if (base2)
3638 	finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
3639                                              complain));
3640 
3641       finish_for_stmt (for_stmt);
3642     }
3643 
3644   /* Make sure to cleanup any partially constructed elements.  */
3645   if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3646       && from_array != 2)
3647     {
3648       tree e;
3649       tree m = cp_build_binary_op (input_location,
3650 				   MINUS_EXPR, maxindex, iterator,
3651 				   complain);
3652 
3653       /* Flatten multi-dimensional array since build_vec_delete only
3654 	 expects one-dimensional array.  */
3655       if (TREE_CODE (type) == ARRAY_TYPE)
3656 	m = cp_build_binary_op (input_location,
3657 				MULT_EXPR, m,
3658 				/* Avoid mixing signed and unsigned.  */
3659 				convert (TREE_TYPE (m),
3660 					 array_type_nelts_total (type)),
3661 				complain);
3662 
3663       finish_cleanup_try_block (try_block);
3664       e = build_vec_delete_1 (rval, m,
3665 			      inner_elt_type, sfk_complete_destructor,
3666 			      /*use_global_delete=*/0, complain);
3667       if (e == error_mark_node)
3668 	errors = true;
3669       finish_cleanup (e, try_block);
3670     }
3671 
3672   /* The value of the array initialization is the array itself, RVAL
3673      is a pointer to the first element.  */
3674   finish_stmt_expr_expr (rval, stmt_expr);
3675 
3676   stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
3677 
3678   /* Now make the result have the correct type.  */
3679   if (TREE_CODE (atype) == ARRAY_TYPE)
3680     {
3681       atype = build_pointer_type (atype);
3682       stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
3683       stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
3684       TREE_NO_WARNING (stmt_expr) = 1;
3685     }
3686 
3687   current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3688 
3689   if (const_init)
3690     return build2 (INIT_EXPR, atype, obase, const_init);
3691   if (errors)
3692     return error_mark_node;
3693   return stmt_expr;
3694 }
3695 
3696 /* Call the DTOR_KIND destructor for EXP.  FLAGS are as for
3697    build_delete.  */
3698 
3699 static tree
build_dtor_call(tree exp,special_function_kind dtor_kind,int flags,tsubst_flags_t complain)3700 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
3701 		 tsubst_flags_t complain)
3702 {
3703   tree name;
3704   tree fn;
3705   switch (dtor_kind)
3706     {
3707     case sfk_complete_destructor:
3708       name = complete_dtor_identifier;
3709       break;
3710 
3711     case sfk_base_destructor:
3712       name = base_dtor_identifier;
3713       break;
3714 
3715     case sfk_deleting_destructor:
3716       name = deleting_dtor_identifier;
3717       break;
3718 
3719     default:
3720       gcc_unreachable ();
3721     }
3722   fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
3723   return build_new_method_call (exp, fn,
3724 				/*args=*/NULL,
3725 				/*conversion_path=*/NULL_TREE,
3726 				flags,
3727 				/*fn_p=*/NULL,
3728 				complain);
3729 }
3730 
3731 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3732    ADDR is an expression which yields the store to be destroyed.
3733    AUTO_DELETE is the name of the destructor to call, i.e., either
3734    sfk_complete_destructor, sfk_base_destructor, or
3735    sfk_deleting_destructor.
3736 
3737    FLAGS is the logical disjunction of zero or more LOOKUP_
3738    flags.  See cp-tree.h for more info.  */
3739 
3740 tree
build_delete(tree type,tree addr,special_function_kind auto_delete,int flags,int use_global_delete,tsubst_flags_t complain)3741 build_delete (tree type, tree addr, special_function_kind auto_delete,
3742 	      int flags, int use_global_delete, tsubst_flags_t complain)
3743 {
3744   tree expr;
3745 
3746   if (addr == error_mark_node)
3747     return error_mark_node;
3748 
3749   /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3750      set to `error_mark_node' before it gets properly cleaned up.  */
3751   if (type == error_mark_node)
3752     return error_mark_node;
3753 
3754   type = TYPE_MAIN_VARIANT (type);
3755 
3756   addr = mark_rvalue_use (addr);
3757 
3758   if (TREE_CODE (type) == POINTER_TYPE)
3759     {
3760       bool complete_p = true;
3761 
3762       type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3763       if (TREE_CODE (type) == ARRAY_TYPE)
3764 	goto handle_array;
3765 
3766       /* We don't want to warn about delete of void*, only other
3767 	  incomplete types.  Deleting other incomplete types
3768 	  invokes undefined behavior, but it is not ill-formed, so
3769 	  compile to something that would even do The Right Thing
3770 	  (TM) should the type have a trivial dtor and no delete
3771 	  operator.  */
3772       if (!VOID_TYPE_P (type))
3773 	{
3774 	  complete_type (type);
3775 	  if (!COMPLETE_TYPE_P (type))
3776 	    {
3777 	      if ((complain & tf_warning)
3778 		  && warning (0, "possible problem detected in invocation of "
3779 			      "delete operator:"))
3780 		{
3781 		  cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
3782 		  inform (input_location, "neither the destructor nor the class-specific "
3783 			  "operator delete will be called, even if they are "
3784 			  "declared when the class is defined");
3785 		}
3786 	      complete_p = false;
3787 	    }
3788 	  else if (auto_delete == sfk_deleting_destructor && warn_delnonvdtor
3789 	           && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
3790 		   && TYPE_POLYMORPHIC_P (type))
3791 	    {
3792 	      tree dtor;
3793 	      dtor = CLASSTYPE_DESTRUCTORS (type);
3794 	      if (!dtor || !DECL_VINDEX (dtor))
3795 		{
3796 		  if (CLASSTYPE_PURE_VIRTUALS (type))
3797 		    warning (OPT_Wdelete_non_virtual_dtor,
3798 			     "deleting object of abstract class type %qT"
3799 			     " which has non-virtual destructor"
3800 			     " will cause undefined behaviour", type);
3801 		  else
3802 		    warning (OPT_Wdelete_non_virtual_dtor,
3803 			     "deleting object of polymorphic class type %qT"
3804 			     " which has non-virtual destructor"
3805 			     " might cause undefined behaviour", type);
3806 		}
3807 	    }
3808 	}
3809       if (VOID_TYPE_P (type) || !complete_p || !MAYBE_CLASS_TYPE_P (type))
3810 	/* Call the builtin operator delete.  */
3811 	return build_builtin_delete_call (addr);
3812       if (TREE_SIDE_EFFECTS (addr))
3813 	addr = save_expr (addr);
3814 
3815       /* Throw away const and volatile on target type of addr.  */
3816       addr = convert_force (build_pointer_type (type), addr, 0, complain);
3817     }
3818   else if (TREE_CODE (type) == ARRAY_TYPE)
3819     {
3820     handle_array:
3821 
3822       if (TYPE_DOMAIN (type) == NULL_TREE)
3823 	{
3824 	  if (complain & tf_error)
3825 	    error ("unknown array size in delete");
3826 	  return error_mark_node;
3827 	}
3828       return build_vec_delete (addr, array_type_nelts (type),
3829 			       auto_delete, use_global_delete, complain);
3830     }
3831   else
3832     {
3833       /* Don't check PROTECT here; leave that decision to the
3834 	 destructor.  If the destructor is accessible, call it,
3835 	 else report error.  */
3836       addr = cp_build_addr_expr (addr, complain);
3837       if (addr == error_mark_node)
3838 	return error_mark_node;
3839       if (TREE_SIDE_EFFECTS (addr))
3840 	addr = save_expr (addr);
3841 
3842       addr = convert_force (build_pointer_type (type), addr, 0, complain);
3843     }
3844 
3845   gcc_assert (MAYBE_CLASS_TYPE_P (type));
3846 
3847   if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3848     {
3849       if (auto_delete != sfk_deleting_destructor)
3850 	return void_zero_node;
3851 
3852       return build_op_delete_call (DELETE_EXPR, addr,
3853 				   cxx_sizeof_nowarn (type),
3854 				   use_global_delete,
3855 				   /*placement=*/NULL_TREE,
3856 				   /*alloc_fn=*/NULL_TREE,
3857 				   complain);
3858     }
3859   else
3860     {
3861       tree head = NULL_TREE;
3862       tree do_delete = NULL_TREE;
3863       tree ifexp;
3864 
3865       if (CLASSTYPE_LAZY_DESTRUCTOR (type))
3866 	lazily_declare_fn (sfk_destructor, type);
3867 
3868       /* For `::delete x', we must not use the deleting destructor
3869 	 since then we would not be sure to get the global `operator
3870 	 delete'.  */
3871       if (use_global_delete && auto_delete == sfk_deleting_destructor)
3872 	{
3873 	  /* We will use ADDR multiple times so we must save it.  */
3874 	  addr = save_expr (addr);
3875 	  head = get_target_expr (build_headof (addr));
3876 	  /* Delete the object.  */
3877 	  do_delete = build_builtin_delete_call (head);
3878 	  /* Otherwise, treat this like a complete object destructor
3879 	     call.  */
3880 	  auto_delete = sfk_complete_destructor;
3881 	}
3882       /* If the destructor is non-virtual, there is no deleting
3883 	 variant.  Instead, we must explicitly call the appropriate
3884 	 `operator delete' here.  */
3885       else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
3886 	       && auto_delete == sfk_deleting_destructor)
3887 	{
3888 	  /* We will use ADDR multiple times so we must save it.  */
3889 	  addr = save_expr (addr);
3890 	  /* Build the call.  */
3891 	  do_delete = build_op_delete_call (DELETE_EXPR,
3892 					    addr,
3893 					    cxx_sizeof_nowarn (type),
3894 					    /*global_p=*/false,
3895 					    /*placement=*/NULL_TREE,
3896 					    /*alloc_fn=*/NULL_TREE,
3897 					    complain);
3898 	  /* Call the complete object destructor.  */
3899 	  auto_delete = sfk_complete_destructor;
3900 	}
3901       else if (auto_delete == sfk_deleting_destructor
3902 	       && TYPE_GETS_REG_DELETE (type))
3903 	{
3904 	  /* Make sure we have access to the member op delete, even though
3905 	     we'll actually be calling it from the destructor.  */
3906 	  build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3907 				/*global_p=*/false,
3908 				/*placement=*/NULL_TREE,
3909 				/*alloc_fn=*/NULL_TREE,
3910 				complain);
3911 	}
3912 
3913       expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL, complain),
3914 			      auto_delete, flags, complain);
3915       if (expr == error_mark_node)
3916 	return error_mark_node;
3917       if (do_delete)
3918 	expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
3919 
3920       /* We need to calculate this before the dtor changes the vptr.  */
3921       if (head)
3922 	expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
3923 
3924       if (flags & LOOKUP_DESTRUCTOR)
3925 	/* Explicit destructor call; don't check for null pointer.  */
3926 	ifexp = integer_one_node;
3927       else
3928 	{
3929 	  /* Handle deleting a null pointer.  */
3930 	  ifexp = fold (cp_build_binary_op (input_location,
3931 					    NE_EXPR, addr, nullptr_node,
3932 					    complain));
3933 	  if (ifexp == error_mark_node)
3934 	    return error_mark_node;
3935 	}
3936 
3937       if (ifexp != integer_one_node)
3938 	expr = build3 (COND_EXPR, void_type_node,
3939 		       ifexp, expr, void_zero_node);
3940 
3941       return expr;
3942     }
3943 }
3944 
3945 /* At the beginning of a destructor, push cleanups that will call the
3946    destructors for our base classes and members.
3947 
3948    Called from begin_destructor_body.  */
3949 
3950 void
push_base_cleanups(void)3951 push_base_cleanups (void)
3952 {
3953   tree binfo, base_binfo;
3954   int i;
3955   tree member;
3956   tree expr;
3957   vec<tree, va_gc> *vbases;
3958 
3959   /* Run destructors for all virtual baseclasses.  */
3960   if (CLASSTYPE_VBASECLASSES (current_class_type))
3961     {
3962       tree cond = (condition_conversion
3963 		   (build2 (BIT_AND_EXPR, integer_type_node,
3964 			    current_in_charge_parm,
3965 			    integer_two_node)));
3966 
3967       /* The CLASSTYPE_VBASECLASSES vector is in initialization
3968 	 order, which is also the right order for pushing cleanups.  */
3969       for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
3970 	   vec_safe_iterate (vbases, i, &base_binfo); i++)
3971 	{
3972 	  if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
3973 	    {
3974 	      expr = build_special_member_call (current_class_ref,
3975 						base_dtor_identifier,
3976 						NULL,
3977 						base_binfo,
3978 						(LOOKUP_NORMAL
3979 						 | LOOKUP_NONVIRTUAL),
3980                                                 tf_warning_or_error);
3981 	      expr = build3 (COND_EXPR, void_type_node, cond,
3982 			     expr, void_zero_node);
3983 	      finish_decl_cleanup (NULL_TREE, expr);
3984 	    }
3985 	}
3986     }
3987 
3988   /* Take care of the remaining baseclasses.  */
3989   for (binfo = TYPE_BINFO (current_class_type), i = 0;
3990        BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
3991     {
3992       if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
3993 	  || BINFO_VIRTUAL_P (base_binfo))
3994 	continue;
3995 
3996       expr = build_special_member_call (current_class_ref,
3997 					base_dtor_identifier,
3998 					NULL, base_binfo,
3999 					LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
4000                                         tf_warning_or_error);
4001       finish_decl_cleanup (NULL_TREE, expr);
4002     }
4003 
4004   /* Don't automatically destroy union members.  */
4005   if (TREE_CODE (current_class_type) == UNION_TYPE)
4006     return;
4007 
4008   for (member = TYPE_FIELDS (current_class_type); member;
4009        member = DECL_CHAIN (member))
4010     {
4011       tree this_type = TREE_TYPE (member);
4012       if (this_type == error_mark_node
4013 	  || TREE_CODE (member) != FIELD_DECL
4014 	  || DECL_ARTIFICIAL (member))
4015 	continue;
4016       if (ANON_UNION_TYPE_P (this_type))
4017 	continue;
4018       if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
4019 	{
4020 	  tree this_member = (build_class_member_access_expr
4021 			      (current_class_ref, member,
4022 			       /*access_path=*/NULL_TREE,
4023 			       /*preserve_reference=*/false,
4024 			       tf_warning_or_error));
4025 	  expr = build_delete (this_type, this_member,
4026 			       sfk_complete_destructor,
4027 			       LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
4028 			       0, tf_warning_or_error);
4029 	  finish_decl_cleanup (NULL_TREE, expr);
4030 	}
4031     }
4032 }
4033 
4034 /* Build a C++ vector delete expression.
4035    MAXINDEX is the number of elements to be deleted.
4036    ELT_SIZE is the nominal size of each element in the vector.
4037    BASE is the expression that should yield the store to be deleted.
4038    This function expands (or synthesizes) these calls itself.
4039    AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
4040 
4041    This also calls delete for virtual baseclasses of elements of the vector.
4042 
4043    Update: MAXINDEX is no longer needed.  The size can be extracted from the
4044    start of the vector for pointers, and from the type for arrays.  We still
4045    use MAXINDEX for arrays because it happens to already have one of the
4046    values we'd have to extract.  (We could use MAXINDEX with pointers to
4047    confirm the size, and trap if the numbers differ; not clear that it'd
4048    be worth bothering.)  */
4049 
4050 tree
build_vec_delete(tree base,tree maxindex,special_function_kind auto_delete_vec,int use_global_delete,tsubst_flags_t complain)4051 build_vec_delete (tree base, tree maxindex,
4052 		  special_function_kind auto_delete_vec,
4053 		  int use_global_delete, tsubst_flags_t complain)
4054 {
4055   tree type;
4056   tree rval;
4057   tree base_init = NULL_TREE;
4058 
4059   type = TREE_TYPE (base);
4060 
4061   if (TREE_CODE (type) == POINTER_TYPE)
4062     {
4063       /* Step back one from start of vector, and read dimension.  */
4064       tree cookie_addr;
4065       tree size_ptr_type = build_pointer_type (sizetype);
4066 
4067       base = mark_rvalue_use (base);
4068       if (TREE_SIDE_EFFECTS (base))
4069 	{
4070 	  base_init = get_target_expr (base);
4071 	  base = TARGET_EXPR_SLOT (base_init);
4072 	}
4073       type = strip_array_types (TREE_TYPE (type));
4074       cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
4075 				 sizetype, TYPE_SIZE_UNIT (sizetype));
4076       cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
4077 					     cookie_addr);
4078       maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, complain);
4079     }
4080   else if (TREE_CODE (type) == ARRAY_TYPE)
4081     {
4082       /* Get the total number of things in the array, maxindex is a
4083 	 bad name.  */
4084       maxindex = array_type_nelts_total (type);
4085       type = strip_array_types (type);
4086       base = cp_build_addr_expr (base, complain);
4087       if (base == error_mark_node)
4088 	return error_mark_node;
4089       if (TREE_SIDE_EFFECTS (base))
4090 	{
4091 	  base_init = get_target_expr (base);
4092 	  base = TARGET_EXPR_SLOT (base_init);
4093 	}
4094     }
4095   else
4096     {
4097       if (base != error_mark_node && !(complain & tf_error))
4098 	error ("type to vector delete is neither pointer or array type");
4099       return error_mark_node;
4100     }
4101 
4102   rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
4103 			     use_global_delete, complain);
4104   if (base_init && rval != error_mark_node)
4105     rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
4106 
4107   return rval;
4108 }
4109