1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "diagnostic-core.h"
28 #include "flags.h"
29 #include "ggc.h"
30 #include "ggc-internal.h"
31 #include "timevar.h"
32 #include "params.h"
33 #include "tree-flow.h"
34 #include "cfgloop.h"
35 #include "plugin.h"
36
37 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
38 file open. Prefer either to valloc. */
39 #ifdef HAVE_MMAP_ANON
40 # undef HAVE_MMAP_DEV_ZERO
41 # define USING_MMAP
42 #endif
43
44 #ifdef HAVE_MMAP_DEV_ZERO
45 # define USING_MMAP
46 #endif
47
48 #ifndef USING_MMAP
49 #define USING_MALLOC_PAGE_GROUPS
50 #endif
51
52 #if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \
53 && defined(USING_MMAP)
54 # define USING_MADVISE
55 #endif
56
57 /* Strategy:
58
59 This garbage-collecting allocator allocates objects on one of a set
60 of pages. Each page can allocate objects of a single size only;
61 available sizes are powers of two starting at four bytes. The size
62 of an allocation request is rounded up to the next power of two
63 (`order'), and satisfied from the appropriate page.
64
65 Each page is recorded in a page-entry, which also maintains an
66 in-use bitmap of object positions on the page. This allows the
67 allocation state of a particular object to be flipped without
68 touching the page itself.
69
70 Each page-entry also has a context depth, which is used to track
71 pushing and popping of allocation contexts. Only objects allocated
72 in the current (highest-numbered) context may be collected.
73
74 Page entries are arranged in an array of singly-linked lists. The
75 array is indexed by the allocation size, in bits, of the pages on
76 it; i.e. all pages on a list allocate objects of the same size.
77 Pages are ordered on the list such that all non-full pages precede
78 all full pages, with non-full pages arranged in order of decreasing
79 context depth.
80
81 Empty pages (of all orders) are kept on a single page cache list,
82 and are considered first when new pages are required; they are
83 deallocated at the start of the next collection if they haven't
84 been recycled by then. */
85
86 /* Define GGC_DEBUG_LEVEL to print debugging information.
87 0: No debugging output.
88 1: GC statistics only.
89 2: Page-entry allocations/deallocations as well.
90 3: Object allocations as well.
91 4: Object marks as well. */
92 #define GGC_DEBUG_LEVEL (0)
93
94 #ifndef HOST_BITS_PER_PTR
95 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
96 #endif
97
98
99 /* A two-level tree is used to look up the page-entry for a given
100 pointer. Two chunks of the pointer's bits are extracted to index
101 the first and second levels of the tree, as follows:
102
103 HOST_PAGE_SIZE_BITS
104 32 | |
105 msb +----------------+----+------+------+ lsb
106 | | |
107 PAGE_L1_BITS |
108 | |
109 PAGE_L2_BITS
110
111 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
112 pages are aligned on system page boundaries. The next most
113 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
114 index values in the lookup table, respectively.
115
116 For 32-bit architectures and the settings below, there are no
117 leftover bits. For architectures with wider pointers, the lookup
118 tree points to a list of pages, which must be scanned to find the
119 correct one. */
120
121 #define PAGE_L1_BITS (8)
122 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
123 #define PAGE_L1_SIZE ((uintptr_t) 1 << PAGE_L1_BITS)
124 #define PAGE_L2_SIZE ((uintptr_t) 1 << PAGE_L2_BITS)
125
126 #define LOOKUP_L1(p) \
127 (((uintptr_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
128
129 #define LOOKUP_L2(p) \
130 (((uintptr_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
131
132 /* The number of objects per allocation page, for objects on a page of
133 the indicated ORDER. */
134 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
135
136 /* The number of objects in P. */
137 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
138
139 /* The size of an object on a page of the indicated ORDER. */
140 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
141
142 /* For speed, we avoid doing a general integer divide to locate the
143 offset in the allocation bitmap, by precalculating numbers M, S
144 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
145 within the page which is evenly divisible by the object size Z. */
146 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
147 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
148 #define OFFSET_TO_BIT(OFFSET, ORDER) \
149 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
150
151 /* We use this structure to determine the alignment required for
152 allocations. For power-of-two sized allocations, that's not a
153 problem, but it does matter for odd-sized allocations.
154 We do not care about alignment for floating-point types. */
155
156 struct max_alignment {
157 char c;
158 union {
159 HOST_WIDEST_INT i;
160 void *p;
161 } u;
162 };
163
164 /* The biggest alignment required. */
165
166 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
167
168
169 /* The number of extra orders, not corresponding to power-of-two sized
170 objects. */
171
172 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
173
174 #define RTL_SIZE(NSLOTS) \
175 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
176
177 #define TREE_EXP_SIZE(OPS) \
178 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
179
180 /* The Ith entry is the maximum size of an object to be stored in the
181 Ith extra order. Adding a new entry to this array is the *only*
182 thing you need to do to add a new special allocation size. */
183
184 static const size_t extra_order_size_table[] = {
185 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
186 There are a lot of structures with these sizes and explicitly
187 listing them risks orders being dropped because they changed size. */
188 MAX_ALIGNMENT * 3,
189 MAX_ALIGNMENT * 5,
190 MAX_ALIGNMENT * 6,
191 MAX_ALIGNMENT * 7,
192 MAX_ALIGNMENT * 9,
193 MAX_ALIGNMENT * 10,
194 MAX_ALIGNMENT * 11,
195 MAX_ALIGNMENT * 12,
196 MAX_ALIGNMENT * 13,
197 MAX_ALIGNMENT * 14,
198 MAX_ALIGNMENT * 15,
199 sizeof (struct tree_decl_non_common),
200 sizeof (struct tree_field_decl),
201 sizeof (struct tree_parm_decl),
202 sizeof (struct tree_var_decl),
203 sizeof (struct tree_type_non_common),
204 sizeof (struct function),
205 sizeof (struct basic_block_def),
206 sizeof (struct cgraph_node),
207 sizeof (struct loop),
208 };
209
210 /* The total number of orders. */
211
212 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
213
214 /* Compute the smallest nonnegative number which when added to X gives
215 a multiple of F. */
216
217 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
218
219 /* Compute the smallest multiple of F that is >= X. */
220
221 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
222
223 /* Round X to next multiple of the page size */
224
225 #define PAGE_ALIGN(x) (((x) + G.pagesize - 1) & ~(G.pagesize - 1))
226
227 /* The Ith entry is the number of objects on a page or order I. */
228
229 static unsigned objects_per_page_table[NUM_ORDERS];
230
231 /* The Ith entry is the size of an object on a page of order I. */
232
233 static size_t object_size_table[NUM_ORDERS];
234
235 /* The Ith entry is a pair of numbers (mult, shift) such that
236 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
237 for all k evenly divisible by OBJECT_SIZE(I). */
238
239 static struct
240 {
241 size_t mult;
242 unsigned int shift;
243 }
244 inverse_table[NUM_ORDERS];
245
246 /* A page_entry records the status of an allocation page. This
247 structure is dynamically sized to fit the bitmap in_use_p. */
248 typedef struct page_entry
249 {
250 /* The next page-entry with objects of the same size, or NULL if
251 this is the last page-entry. */
252 struct page_entry *next;
253
254 /* The previous page-entry with objects of the same size, or NULL if
255 this is the first page-entry. The PREV pointer exists solely to
256 keep the cost of ggc_free manageable. */
257 struct page_entry *prev;
258
259 /* The number of bytes allocated. (This will always be a multiple
260 of the host system page size.) */
261 size_t bytes;
262
263 /* The address at which the memory is allocated. */
264 char *page;
265
266 #ifdef USING_MALLOC_PAGE_GROUPS
267 /* Back pointer to the page group this page came from. */
268 struct page_group *group;
269 #endif
270
271 /* This is the index in the by_depth varray where this page table
272 can be found. */
273 unsigned long index_by_depth;
274
275 /* Context depth of this page. */
276 unsigned short context_depth;
277
278 /* The number of free objects remaining on this page. */
279 unsigned short num_free_objects;
280
281 /* A likely candidate for the bit position of a free object for the
282 next allocation from this page. */
283 unsigned short next_bit_hint;
284
285 /* The lg of size of objects allocated from this page. */
286 unsigned char order;
287
288 /* Discarded page? */
289 bool discarded;
290
291 /* A bit vector indicating whether or not objects are in use. The
292 Nth bit is one if the Nth object on this page is allocated. This
293 array is dynamically sized. */
294 unsigned long in_use_p[1];
295 } page_entry;
296
297 #ifdef USING_MALLOC_PAGE_GROUPS
298 /* A page_group describes a large allocation from malloc, from which
299 we parcel out aligned pages. */
300 typedef struct page_group
301 {
302 /* A linked list of all extant page groups. */
303 struct page_group *next;
304
305 /* The address we received from malloc. */
306 char *allocation;
307
308 /* The size of the block. */
309 size_t alloc_size;
310
311 /* A bitmask of pages in use. */
312 unsigned int in_use;
313 } page_group;
314 #endif
315
316 #if HOST_BITS_PER_PTR <= 32
317
318 /* On 32-bit hosts, we use a two level page table, as pictured above. */
319 typedef page_entry **page_table[PAGE_L1_SIZE];
320
321 #else
322
323 /* On 64-bit hosts, we use the same two level page tables plus a linked
324 list that disambiguates the top 32-bits. There will almost always be
325 exactly one entry in the list. */
326 typedef struct page_table_chain
327 {
328 struct page_table_chain *next;
329 size_t high_bits;
330 page_entry **table[PAGE_L1_SIZE];
331 } *page_table;
332
333 #endif
334
335 #ifdef ENABLE_GC_ALWAYS_COLLECT
336 /* List of free objects to be verified as actually free on the
337 next collection. */
338 struct free_object
339 {
340 void *object;
341 struct free_object *next;
342 };
343 #endif
344
345 /* The rest of the global variables. */
346 static struct globals
347 {
348 /* The Nth element in this array is a page with objects of size 2^N.
349 If there are any pages with free objects, they will be at the
350 head of the list. NULL if there are no page-entries for this
351 object size. */
352 page_entry *pages[NUM_ORDERS];
353
354 /* The Nth element in this array is the last page with objects of
355 size 2^N. NULL if there are no page-entries for this object
356 size. */
357 page_entry *page_tails[NUM_ORDERS];
358
359 /* Lookup table for associating allocation pages with object addresses. */
360 page_table lookup;
361
362 /* The system's page size. */
363 size_t pagesize;
364 size_t lg_pagesize;
365
366 /* Bytes currently allocated. */
367 size_t allocated;
368
369 /* Bytes currently allocated at the end of the last collection. */
370 size_t allocated_last_gc;
371
372 /* Total amount of memory mapped. */
373 size_t bytes_mapped;
374
375 /* Bit N set if any allocations have been done at context depth N. */
376 unsigned long context_depth_allocations;
377
378 /* Bit N set if any collections have been done at context depth N. */
379 unsigned long context_depth_collections;
380
381 /* The current depth in the context stack. */
382 unsigned short context_depth;
383
384 /* A file descriptor open to /dev/zero for reading. */
385 #if defined (HAVE_MMAP_DEV_ZERO)
386 int dev_zero_fd;
387 #endif
388
389 /* A cache of free system pages. */
390 page_entry *free_pages;
391
392 #ifdef USING_MALLOC_PAGE_GROUPS
393 page_group *page_groups;
394 #endif
395
396 /* The file descriptor for debugging output. */
397 FILE *debug_file;
398
399 /* Current number of elements in use in depth below. */
400 unsigned int depth_in_use;
401
402 /* Maximum number of elements that can be used before resizing. */
403 unsigned int depth_max;
404
405 /* Each element of this array is an index in by_depth where the given
406 depth starts. This structure is indexed by that given depth we
407 are interested in. */
408 unsigned int *depth;
409
410 /* Current number of elements in use in by_depth below. */
411 unsigned int by_depth_in_use;
412
413 /* Maximum number of elements that can be used before resizing. */
414 unsigned int by_depth_max;
415
416 /* Each element of this array is a pointer to a page_entry, all
417 page_entries can be found in here by increasing depth.
418 index_by_depth in the page_entry is the index into this data
419 structure where that page_entry can be found. This is used to
420 speed up finding all page_entries at a particular depth. */
421 page_entry **by_depth;
422
423 /* Each element is a pointer to the saved in_use_p bits, if any,
424 zero otherwise. We allocate them all together, to enable a
425 better runtime data access pattern. */
426 unsigned long **save_in_use;
427
428 #ifdef ENABLE_GC_ALWAYS_COLLECT
429 /* List of free objects to be verified as actually free on the
430 next collection. */
431 struct free_object *free_object_list;
432 #endif
433
434 struct
435 {
436 /* Total GC-allocated memory. */
437 unsigned long long total_allocated;
438 /* Total overhead for GC-allocated memory. */
439 unsigned long long total_overhead;
440
441 /* Total allocations and overhead for sizes less than 32, 64 and 128.
442 These sizes are interesting because they are typical cache line
443 sizes. */
444
445 unsigned long long total_allocated_under32;
446 unsigned long long total_overhead_under32;
447
448 unsigned long long total_allocated_under64;
449 unsigned long long total_overhead_under64;
450
451 unsigned long long total_allocated_under128;
452 unsigned long long total_overhead_under128;
453
454 /* The allocations for each of the allocation orders. */
455 unsigned long long total_allocated_per_order[NUM_ORDERS];
456
457 /* The overhead for each of the allocation orders. */
458 unsigned long long total_overhead_per_order[NUM_ORDERS];
459 } stats;
460 } G;
461
462 /* The size in bytes required to maintain a bitmap for the objects
463 on a page-entry. */
464 #define BITMAP_SIZE(Num_objects) \
465 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
466
467 /* Allocate pages in chunks of this size, to throttle calls to memory
468 allocation routines. The first page is used, the rest go onto the
469 free list. This cannot be larger than HOST_BITS_PER_INT for the
470 in_use bitmask for page_group. Hosts that need a different value
471 can override this by defining GGC_QUIRE_SIZE explicitly. */
472 #ifndef GGC_QUIRE_SIZE
473 # ifdef USING_MMAP
474 # define GGC_QUIRE_SIZE 512 /* 2MB for 4K pages */
475 # else
476 # define GGC_QUIRE_SIZE 16
477 # endif
478 #endif
479
480 /* Initial guess as to how many page table entries we might need. */
481 #define INITIAL_PTE_COUNT 128
482
483 static int ggc_allocated_p (const void *);
484 static page_entry *lookup_page_table_entry (const void *);
485 static void set_page_table_entry (void *, page_entry *);
486 #ifdef USING_MMAP
487 static char *alloc_anon (char *, size_t, bool check);
488 #endif
489 #ifdef USING_MALLOC_PAGE_GROUPS
490 static size_t page_group_index (char *, char *);
491 static void set_page_group_in_use (page_group *, char *);
492 static void clear_page_group_in_use (page_group *, char *);
493 #endif
494 static struct page_entry * alloc_page (unsigned);
495 static void free_page (struct page_entry *);
496 static void release_pages (void);
497 static void clear_marks (void);
498 static void sweep_pages (void);
499 static void ggc_recalculate_in_use_p (page_entry *);
500 static void compute_inverse (unsigned);
501 static inline void adjust_depth (void);
502 static void move_ptes_to_front (int, int);
503
504 void debug_print_page_list (int);
505 static void push_depth (unsigned int);
506 static void push_by_depth (page_entry *, unsigned long *);
507
508 /* Push an entry onto G.depth. */
509
510 inline static void
push_depth(unsigned int i)511 push_depth (unsigned int i)
512 {
513 if (G.depth_in_use >= G.depth_max)
514 {
515 G.depth_max *= 2;
516 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
517 }
518 G.depth[G.depth_in_use++] = i;
519 }
520
521 /* Push an entry onto G.by_depth and G.save_in_use. */
522
523 inline static void
push_by_depth(page_entry * p,unsigned long * s)524 push_by_depth (page_entry *p, unsigned long *s)
525 {
526 if (G.by_depth_in_use >= G.by_depth_max)
527 {
528 G.by_depth_max *= 2;
529 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
530 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
531 G.by_depth_max);
532 }
533 G.by_depth[G.by_depth_in_use] = p;
534 G.save_in_use[G.by_depth_in_use++] = s;
535 }
536
537 #if (GCC_VERSION < 3001)
538 #define prefetch(X) ((void) X)
539 #else
540 #define prefetch(X) __builtin_prefetch (X)
541 #endif
542
543 #define save_in_use_p_i(__i) \
544 (G.save_in_use[__i])
545 #define save_in_use_p(__p) \
546 (save_in_use_p_i (__p->index_by_depth))
547
548 /* Returns nonzero if P was allocated in GC'able memory. */
549
550 static inline int
ggc_allocated_p(const void * p)551 ggc_allocated_p (const void *p)
552 {
553 page_entry ***base;
554 size_t L1, L2;
555
556 #if HOST_BITS_PER_PTR <= 32
557 base = &G.lookup[0];
558 #else
559 page_table table = G.lookup;
560 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
561 while (1)
562 {
563 if (table == NULL)
564 return 0;
565 if (table->high_bits == high_bits)
566 break;
567 table = table->next;
568 }
569 base = &table->table[0];
570 #endif
571
572 /* Extract the level 1 and 2 indices. */
573 L1 = LOOKUP_L1 (p);
574 L2 = LOOKUP_L2 (p);
575
576 return base[L1] && base[L1][L2];
577 }
578
579 /* Traverse the page table and find the entry for a page.
580 Die (probably) if the object wasn't allocated via GC. */
581
582 static inline page_entry *
lookup_page_table_entry(const void * p)583 lookup_page_table_entry (const void *p)
584 {
585 page_entry ***base;
586 size_t L1, L2;
587
588 #if HOST_BITS_PER_PTR <= 32
589 base = &G.lookup[0];
590 #else
591 page_table table = G.lookup;
592 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
593 while (table->high_bits != high_bits)
594 table = table->next;
595 base = &table->table[0];
596 #endif
597
598 /* Extract the level 1 and 2 indices. */
599 L1 = LOOKUP_L1 (p);
600 L2 = LOOKUP_L2 (p);
601
602 return base[L1][L2];
603 }
604
605 /* Set the page table entry for a page. */
606
607 static void
set_page_table_entry(void * p,page_entry * entry)608 set_page_table_entry (void *p, page_entry *entry)
609 {
610 page_entry ***base;
611 size_t L1, L2;
612
613 #if HOST_BITS_PER_PTR <= 32
614 base = &G.lookup[0];
615 #else
616 page_table table;
617 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
618 for (table = G.lookup; table; table = table->next)
619 if (table->high_bits == high_bits)
620 goto found;
621
622 /* Not found -- allocate a new table. */
623 table = XCNEW (struct page_table_chain);
624 table->next = G.lookup;
625 table->high_bits = high_bits;
626 G.lookup = table;
627 found:
628 base = &table->table[0];
629 #endif
630
631 /* Extract the level 1 and 2 indices. */
632 L1 = LOOKUP_L1 (p);
633 L2 = LOOKUP_L2 (p);
634
635 if (base[L1] == NULL)
636 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
637
638 base[L1][L2] = entry;
639 }
640
641 /* Prints the page-entry for object size ORDER, for debugging. */
642
643 DEBUG_FUNCTION void
debug_print_page_list(int order)644 debug_print_page_list (int order)
645 {
646 page_entry *p;
647 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
648 (void *) G.page_tails[order]);
649 p = G.pages[order];
650 while (p != NULL)
651 {
652 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
653 p->num_free_objects);
654 p = p->next;
655 }
656 printf ("NULL\n");
657 fflush (stdout);
658 }
659
660 #ifdef USING_MMAP
661 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
662 (if non-null). The ifdef structure here is intended to cause a
663 compile error unless exactly one of the HAVE_* is defined. */
664
665 static inline char *
alloc_anon(char * pref ATTRIBUTE_UNUSED,size_t size,bool check)666 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check)
667 {
668 #ifdef HAVE_MMAP_ANON
669 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
670 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
671 #endif
672 #ifdef HAVE_MMAP_DEV_ZERO
673 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
674 MAP_PRIVATE, G.dev_zero_fd, 0);
675 #endif
676
677 if (page == (char *) MAP_FAILED)
678 {
679 if (!check)
680 return NULL;
681 perror ("virtual memory exhausted");
682 exit (FATAL_EXIT_CODE);
683 }
684
685 /* Remember that we allocated this memory. */
686 G.bytes_mapped += size;
687
688 /* Pretend we don't have access to the allocated pages. We'll enable
689 access to smaller pieces of the area in ggc_internal_alloc. Discard the
690 handle to avoid handle leak. */
691 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
692
693 return page;
694 }
695 #endif
696 #ifdef USING_MALLOC_PAGE_GROUPS
697 /* Compute the index for this page into the page group. */
698
699 static inline size_t
page_group_index(char * allocation,char * page)700 page_group_index (char *allocation, char *page)
701 {
702 return (size_t) (page - allocation) >> G.lg_pagesize;
703 }
704
705 /* Set and clear the in_use bit for this page in the page group. */
706
707 static inline void
set_page_group_in_use(page_group * group,char * page)708 set_page_group_in_use (page_group *group, char *page)
709 {
710 group->in_use |= 1 << page_group_index (group->allocation, page);
711 }
712
713 static inline void
clear_page_group_in_use(page_group * group,char * page)714 clear_page_group_in_use (page_group *group, char *page)
715 {
716 group->in_use &= ~(1 << page_group_index (group->allocation, page));
717 }
718 #endif
719
720 /* Allocate a new page for allocating objects of size 2^ORDER,
721 and return an entry for it. The entry is not added to the
722 appropriate page_table list. */
723
724 static inline struct page_entry *
alloc_page(unsigned order)725 alloc_page (unsigned order)
726 {
727 struct page_entry *entry, *p, **pp;
728 char *page;
729 size_t num_objects;
730 size_t bitmap_size;
731 size_t page_entry_size;
732 size_t entry_size;
733 #ifdef USING_MALLOC_PAGE_GROUPS
734 page_group *group;
735 #endif
736
737 num_objects = OBJECTS_PER_PAGE (order);
738 bitmap_size = BITMAP_SIZE (num_objects + 1);
739 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
740 entry_size = num_objects * OBJECT_SIZE (order);
741 if (entry_size < G.pagesize)
742 entry_size = G.pagesize;
743 entry_size = PAGE_ALIGN (entry_size);
744
745 entry = NULL;
746 page = NULL;
747
748 /* Check the list of free pages for one we can use. */
749 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
750 if (p->bytes == entry_size)
751 break;
752
753 if (p != NULL)
754 {
755 if (p->discarded)
756 G.bytes_mapped += p->bytes;
757 p->discarded = false;
758
759 /* Recycle the allocated memory from this page ... */
760 *pp = p->next;
761 page = p->page;
762
763 #ifdef USING_MALLOC_PAGE_GROUPS
764 group = p->group;
765 #endif
766
767 /* ... and, if possible, the page entry itself. */
768 if (p->order == order)
769 {
770 entry = p;
771 memset (entry, 0, page_entry_size);
772 }
773 else
774 free (p);
775 }
776 #ifdef USING_MMAP
777 else if (entry_size == G.pagesize)
778 {
779 /* We want just one page. Allocate a bunch of them and put the
780 extras on the freelist. (Can only do this optimization with
781 mmap for backing store.) */
782 struct page_entry *e, *f = G.free_pages;
783 int i, entries = GGC_QUIRE_SIZE;
784
785 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE, false);
786 if (page == NULL)
787 {
788 page = alloc_anon(NULL, G.pagesize, true);
789 entries = 1;
790 }
791
792 /* This loop counts down so that the chain will be in ascending
793 memory order. */
794 for (i = entries - 1; i >= 1; i--)
795 {
796 e = XCNEWVAR (struct page_entry, page_entry_size);
797 e->order = order;
798 e->bytes = G.pagesize;
799 e->page = page + (i << G.lg_pagesize);
800 e->next = f;
801 f = e;
802 }
803
804 G.free_pages = f;
805 }
806 else
807 page = alloc_anon (NULL, entry_size, true);
808 #endif
809 #ifdef USING_MALLOC_PAGE_GROUPS
810 else
811 {
812 /* Allocate a large block of memory and serve out the aligned
813 pages therein. This results in much less memory wastage
814 than the traditional implementation of valloc. */
815
816 char *allocation, *a, *enda;
817 size_t alloc_size, head_slop, tail_slop;
818 int multiple_pages = (entry_size == G.pagesize);
819
820 if (multiple_pages)
821 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
822 else
823 alloc_size = entry_size + G.pagesize - 1;
824 allocation = XNEWVEC (char, alloc_size);
825
826 page = (char *) (((uintptr_t) allocation + G.pagesize - 1) & -G.pagesize);
827 head_slop = page - allocation;
828 if (multiple_pages)
829 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
830 else
831 tail_slop = alloc_size - entry_size - head_slop;
832 enda = allocation + alloc_size - tail_slop;
833
834 /* We allocated N pages, which are likely not aligned, leaving
835 us with N-1 usable pages. We plan to place the page_group
836 structure somewhere in the slop. */
837 if (head_slop >= sizeof (page_group))
838 group = (page_group *)page - 1;
839 else
840 {
841 /* We magically got an aligned allocation. Too bad, we have
842 to waste a page anyway. */
843 if (tail_slop == 0)
844 {
845 enda -= G.pagesize;
846 tail_slop += G.pagesize;
847 }
848 gcc_assert (tail_slop >= sizeof (page_group));
849 group = (page_group *)enda;
850 tail_slop -= sizeof (page_group);
851 }
852
853 /* Remember that we allocated this memory. */
854 group->next = G.page_groups;
855 group->allocation = allocation;
856 group->alloc_size = alloc_size;
857 group->in_use = 0;
858 G.page_groups = group;
859 G.bytes_mapped += alloc_size;
860
861 /* If we allocated multiple pages, put the rest on the free list. */
862 if (multiple_pages)
863 {
864 struct page_entry *e, *f = G.free_pages;
865 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
866 {
867 e = XCNEWVAR (struct page_entry, page_entry_size);
868 e->order = order;
869 e->bytes = G.pagesize;
870 e->page = a;
871 e->group = group;
872 e->next = f;
873 f = e;
874 }
875 G.free_pages = f;
876 }
877 }
878 #endif
879
880 if (entry == NULL)
881 entry = XCNEWVAR (struct page_entry, page_entry_size);
882
883 entry->bytes = entry_size;
884 entry->page = page;
885 entry->context_depth = G.context_depth;
886 entry->order = order;
887 entry->num_free_objects = num_objects;
888 entry->next_bit_hint = 1;
889
890 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
891
892 #ifdef USING_MALLOC_PAGE_GROUPS
893 entry->group = group;
894 set_page_group_in_use (group, page);
895 #endif
896
897 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
898 increment the hint. */
899 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
900 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
901
902 set_page_table_entry (page, entry);
903
904 if (GGC_DEBUG_LEVEL >= 2)
905 fprintf (G.debug_file,
906 "Allocating page at %p, object size=%lu, data %p-%p\n",
907 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
908 page + entry_size - 1);
909
910 return entry;
911 }
912
913 /* Adjust the size of G.depth so that no index greater than the one
914 used by the top of the G.by_depth is used. */
915
916 static inline void
adjust_depth(void)917 adjust_depth (void)
918 {
919 page_entry *top;
920
921 if (G.by_depth_in_use)
922 {
923 top = G.by_depth[G.by_depth_in_use-1];
924
925 /* Peel back indices in depth that index into by_depth, so that
926 as new elements are added to by_depth, we note the indices
927 of those elements, if they are for new context depths. */
928 while (G.depth_in_use > (size_t)top->context_depth+1)
929 --G.depth_in_use;
930 }
931 }
932
933 /* For a page that is no longer needed, put it on the free page list. */
934
935 static void
free_page(page_entry * entry)936 free_page (page_entry *entry)
937 {
938 if (GGC_DEBUG_LEVEL >= 2)
939 fprintf (G.debug_file,
940 "Deallocating page at %p, data %p-%p\n", (void *) entry,
941 entry->page, entry->page + entry->bytes - 1);
942
943 /* Mark the page as inaccessible. Discard the handle to avoid handle
944 leak. */
945 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
946
947 set_page_table_entry (entry->page, NULL);
948
949 #ifdef USING_MALLOC_PAGE_GROUPS
950 clear_page_group_in_use (entry->group, entry->page);
951 #endif
952
953 if (G.by_depth_in_use > 1)
954 {
955 page_entry *top = G.by_depth[G.by_depth_in_use-1];
956 int i = entry->index_by_depth;
957
958 /* We cannot free a page from a context deeper than the current
959 one. */
960 gcc_assert (entry->context_depth == top->context_depth);
961
962 /* Put top element into freed slot. */
963 G.by_depth[i] = top;
964 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
965 top->index_by_depth = i;
966 }
967 --G.by_depth_in_use;
968
969 adjust_depth ();
970
971 entry->next = G.free_pages;
972 G.free_pages = entry;
973 }
974
975 /* Release the free page cache to the system. */
976
977 static void
release_pages(void)978 release_pages (void)
979 {
980 #ifdef USING_MADVISE
981 page_entry *p, *start_p;
982 char *start;
983 size_t len;
984 size_t mapped_len;
985 page_entry *next, *prev, *newprev;
986 size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize;
987
988 /* First free larger continuous areas to the OS.
989 This allows other allocators to grab these areas if needed.
990 This is only done on larger chunks to avoid fragmentation.
991 This does not always work because the free_pages list is only
992 approximately sorted. */
993
994 p = G.free_pages;
995 prev = NULL;
996 while (p)
997 {
998 start = p->page;
999 start_p = p;
1000 len = 0;
1001 mapped_len = 0;
1002 newprev = prev;
1003 while (p && p->page == start + len)
1004 {
1005 len += p->bytes;
1006 if (!p->discarded)
1007 mapped_len += p->bytes;
1008 newprev = p;
1009 p = p->next;
1010 }
1011 if (len >= free_unit)
1012 {
1013 while (start_p != p)
1014 {
1015 next = start_p->next;
1016 free (start_p);
1017 start_p = next;
1018 }
1019 munmap (start, len);
1020 if (prev)
1021 prev->next = p;
1022 else
1023 G.free_pages = p;
1024 G.bytes_mapped -= mapped_len;
1025 continue;
1026 }
1027 prev = newprev;
1028 }
1029
1030 /* Now give back the fragmented pages to the OS, but keep the address
1031 space to reuse it next time. */
1032
1033 for (p = G.free_pages; p; )
1034 {
1035 if (p->discarded)
1036 {
1037 p = p->next;
1038 continue;
1039 }
1040 start = p->page;
1041 len = p->bytes;
1042 start_p = p;
1043 p = p->next;
1044 while (p && p->page == start + len)
1045 {
1046 len += p->bytes;
1047 p = p->next;
1048 }
1049 /* Give the page back to the kernel, but don't free the mapping.
1050 This avoids fragmentation in the virtual memory map of the
1051 process. Next time we can reuse it by just touching it. */
1052 madvise (start, len, MADV_DONTNEED);
1053 /* Don't count those pages as mapped to not touch the garbage collector
1054 unnecessarily. */
1055 G.bytes_mapped -= len;
1056 while (start_p != p)
1057 {
1058 start_p->discarded = true;
1059 start_p = start_p->next;
1060 }
1061 }
1062 #endif
1063 #if defined(USING_MMAP) && !defined(USING_MADVISE)
1064 page_entry *p, *next;
1065 char *start;
1066 size_t len;
1067
1068 /* Gather up adjacent pages so they are unmapped together. */
1069 p = G.free_pages;
1070
1071 while (p)
1072 {
1073 start = p->page;
1074 next = p->next;
1075 len = p->bytes;
1076 free (p);
1077 p = next;
1078
1079 while (p && p->page == start + len)
1080 {
1081 next = p->next;
1082 len += p->bytes;
1083 free (p);
1084 p = next;
1085 }
1086
1087 munmap (start, len);
1088 G.bytes_mapped -= len;
1089 }
1090
1091 G.free_pages = NULL;
1092 #endif
1093 #ifdef USING_MALLOC_PAGE_GROUPS
1094 page_entry **pp, *p;
1095 page_group **gp, *g;
1096
1097 /* Remove all pages from free page groups from the list. */
1098 pp = &G.free_pages;
1099 while ((p = *pp) != NULL)
1100 if (p->group->in_use == 0)
1101 {
1102 *pp = p->next;
1103 free (p);
1104 }
1105 else
1106 pp = &p->next;
1107
1108 /* Remove all free page groups, and release the storage. */
1109 gp = &G.page_groups;
1110 while ((g = *gp) != NULL)
1111 if (g->in_use == 0)
1112 {
1113 *gp = g->next;
1114 G.bytes_mapped -= g->alloc_size;
1115 free (g->allocation);
1116 }
1117 else
1118 gp = &g->next;
1119 #endif
1120 }
1121
1122 /* This table provides a fast way to determine ceil(log_2(size)) for
1123 allocation requests. The minimum allocation size is eight bytes. */
1124 #define NUM_SIZE_LOOKUP 512
1125 static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1126 {
1127 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1128 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1129 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1130 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1131 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1132 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1133 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1134 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1135 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1136 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1137 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1138 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1139 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1140 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1141 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1142 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1143 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1144 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1145 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1146 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1147 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1148 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1149 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1150 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1151 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1152 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1153 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1154 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1155 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1156 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1157 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1158 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1159 };
1160
1161 /* For a given size of memory requested for allocation, return the
1162 actual size that is going to be allocated, as well as the size
1163 order. */
1164
1165 static void
ggc_round_alloc_size_1(size_t requested_size,size_t * size_order,size_t * alloced_size)1166 ggc_round_alloc_size_1 (size_t requested_size,
1167 size_t *size_order,
1168 size_t *alloced_size)
1169 {
1170 size_t order, object_size;
1171
1172 if (requested_size < NUM_SIZE_LOOKUP)
1173 {
1174 order = size_lookup[requested_size];
1175 object_size = OBJECT_SIZE (order);
1176 }
1177 else
1178 {
1179 order = 10;
1180 while (requested_size > (object_size = OBJECT_SIZE (order)))
1181 order++;
1182 }
1183
1184 if (size_order)
1185 *size_order = order;
1186 if (alloced_size)
1187 *alloced_size = object_size;
1188 }
1189
1190 /* For a given size of memory requested for allocation, return the
1191 actual size that is going to be allocated. */
1192
1193 size_t
ggc_round_alloc_size(size_t requested_size)1194 ggc_round_alloc_size (size_t requested_size)
1195 {
1196 size_t size = 0;
1197
1198 ggc_round_alloc_size_1 (requested_size, NULL, &size);
1199 return size;
1200 }
1201
1202 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1203
1204 void *
ggc_internal_alloc_stat(size_t size MEM_STAT_DECL)1205 ggc_internal_alloc_stat (size_t size MEM_STAT_DECL)
1206 {
1207 size_t order, word, bit, object_offset, object_size;
1208 struct page_entry *entry;
1209 void *result;
1210
1211 ggc_round_alloc_size_1 (size, &order, &object_size);
1212
1213 /* If there are non-full pages for this size allocation, they are at
1214 the head of the list. */
1215 entry = G.pages[order];
1216
1217 /* If there is no page for this object size, or all pages in this
1218 context are full, allocate a new page. */
1219 if (entry == NULL || entry->num_free_objects == 0)
1220 {
1221 struct page_entry *new_entry;
1222 new_entry = alloc_page (order);
1223
1224 new_entry->index_by_depth = G.by_depth_in_use;
1225 push_by_depth (new_entry, 0);
1226
1227 /* We can skip context depths, if we do, make sure we go all the
1228 way to the new depth. */
1229 while (new_entry->context_depth >= G.depth_in_use)
1230 push_depth (G.by_depth_in_use-1);
1231
1232 /* If this is the only entry, it's also the tail. If it is not
1233 the only entry, then we must update the PREV pointer of the
1234 ENTRY (G.pages[order]) to point to our new page entry. */
1235 if (entry == NULL)
1236 G.page_tails[order] = new_entry;
1237 else
1238 entry->prev = new_entry;
1239
1240 /* Put new pages at the head of the page list. By definition the
1241 entry at the head of the list always has a NULL pointer. */
1242 new_entry->next = entry;
1243 new_entry->prev = NULL;
1244 entry = new_entry;
1245 G.pages[order] = new_entry;
1246
1247 /* For a new page, we know the word and bit positions (in the
1248 in_use bitmap) of the first available object -- they're zero. */
1249 new_entry->next_bit_hint = 1;
1250 word = 0;
1251 bit = 0;
1252 object_offset = 0;
1253 }
1254 else
1255 {
1256 /* First try to use the hint left from the previous allocation
1257 to locate a clear bit in the in-use bitmap. We've made sure
1258 that the one-past-the-end bit is always set, so if the hint
1259 has run over, this test will fail. */
1260 unsigned hint = entry->next_bit_hint;
1261 word = hint / HOST_BITS_PER_LONG;
1262 bit = hint % HOST_BITS_PER_LONG;
1263
1264 /* If the hint didn't work, scan the bitmap from the beginning. */
1265 if ((entry->in_use_p[word] >> bit) & 1)
1266 {
1267 word = bit = 0;
1268 while (~entry->in_use_p[word] == 0)
1269 ++word;
1270
1271 #if GCC_VERSION >= 3004
1272 bit = __builtin_ctzl (~entry->in_use_p[word]);
1273 #else
1274 while ((entry->in_use_p[word] >> bit) & 1)
1275 ++bit;
1276 #endif
1277
1278 hint = word * HOST_BITS_PER_LONG + bit;
1279 }
1280
1281 /* Next time, try the next bit. */
1282 entry->next_bit_hint = hint + 1;
1283
1284 object_offset = hint * object_size;
1285 }
1286
1287 /* Set the in-use bit. */
1288 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1289
1290 /* Keep a running total of the number of free objects. If this page
1291 fills up, we may have to move it to the end of the list if the
1292 next page isn't full. If the next page is full, all subsequent
1293 pages are full, so there's no need to move it. */
1294 if (--entry->num_free_objects == 0
1295 && entry->next != NULL
1296 && entry->next->num_free_objects > 0)
1297 {
1298 /* We have a new head for the list. */
1299 G.pages[order] = entry->next;
1300
1301 /* We are moving ENTRY to the end of the page table list.
1302 The new page at the head of the list will have NULL in
1303 its PREV field and ENTRY will have NULL in its NEXT field. */
1304 entry->next->prev = NULL;
1305 entry->next = NULL;
1306
1307 /* Append ENTRY to the tail of the list. */
1308 entry->prev = G.page_tails[order];
1309 G.page_tails[order]->next = entry;
1310 G.page_tails[order] = entry;
1311 }
1312
1313 /* Calculate the object's address. */
1314 result = entry->page + object_offset;
1315 if (GATHER_STATISTICS)
1316 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1317 result FINAL_PASS_MEM_STAT);
1318
1319 #ifdef ENABLE_GC_CHECKING
1320 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1321 exact same semantics in presence of memory bugs, regardless of
1322 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1323 handle to avoid handle leak. */
1324 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
1325
1326 /* `Poison' the entire allocated object, including any padding at
1327 the end. */
1328 memset (result, 0xaf, object_size);
1329
1330 /* Make the bytes after the end of the object unaccessible. Discard the
1331 handle to avoid handle leak. */
1332 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1333 object_size - size));
1334 #endif
1335
1336 /* Tell Valgrind that the memory is there, but its content isn't
1337 defined. The bytes at the end of the object are still marked
1338 unaccessible. */
1339 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1340
1341 /* Keep track of how many bytes are being allocated. This
1342 information is used in deciding when to collect. */
1343 G.allocated += object_size;
1344
1345 /* For timevar statistics. */
1346 timevar_ggc_mem_total += object_size;
1347
1348 if (GATHER_STATISTICS)
1349 {
1350 size_t overhead = object_size - size;
1351
1352 G.stats.total_overhead += overhead;
1353 G.stats.total_allocated += object_size;
1354 G.stats.total_overhead_per_order[order] += overhead;
1355 G.stats.total_allocated_per_order[order] += object_size;
1356
1357 if (size <= 32)
1358 {
1359 G.stats.total_overhead_under32 += overhead;
1360 G.stats.total_allocated_under32 += object_size;
1361 }
1362 if (size <= 64)
1363 {
1364 G.stats.total_overhead_under64 += overhead;
1365 G.stats.total_allocated_under64 += object_size;
1366 }
1367 if (size <= 128)
1368 {
1369 G.stats.total_overhead_under128 += overhead;
1370 G.stats.total_allocated_under128 += object_size;
1371 }
1372 }
1373
1374 if (GGC_DEBUG_LEVEL >= 3)
1375 fprintf (G.debug_file,
1376 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1377 (unsigned long) size, (unsigned long) object_size, result,
1378 (void *) entry);
1379
1380 return result;
1381 }
1382
1383 /* Mark function for strings. */
1384
1385 void
gt_ggc_m_S(const void * p)1386 gt_ggc_m_S (const void *p)
1387 {
1388 page_entry *entry;
1389 unsigned bit, word;
1390 unsigned long mask;
1391 unsigned long offset;
1392
1393 if (!p || !ggc_allocated_p (p))
1394 return;
1395
1396 /* Look up the page on which the object is alloced. . */
1397 entry = lookup_page_table_entry (p);
1398 gcc_assert (entry);
1399
1400 /* Calculate the index of the object on the page; this is its bit
1401 position in the in_use_p bitmap. Note that because a char* might
1402 point to the middle of an object, we need special code here to
1403 make sure P points to the start of an object. */
1404 offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1405 if (offset)
1406 {
1407 /* Here we've seen a char* which does not point to the beginning
1408 of an allocated object. We assume it points to the middle of
1409 a STRING_CST. */
1410 gcc_assert (offset == offsetof (struct tree_string, str));
1411 p = ((const char *) p) - offset;
1412 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
1413 return;
1414 }
1415
1416 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1417 word = bit / HOST_BITS_PER_LONG;
1418 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1419
1420 /* If the bit was previously set, skip it. */
1421 if (entry->in_use_p[word] & mask)
1422 return;
1423
1424 /* Otherwise set it, and decrement the free object count. */
1425 entry->in_use_p[word] |= mask;
1426 entry->num_free_objects -= 1;
1427
1428 if (GGC_DEBUG_LEVEL >= 4)
1429 fprintf (G.debug_file, "Marking %p\n", p);
1430
1431 return;
1432 }
1433
1434
1435 /* User-callable entry points for marking string X. */
1436
1437 void
gt_ggc_mx(const char * & x)1438 gt_ggc_mx (const char *& x)
1439 {
1440 gt_ggc_m_S (x);
1441 }
1442
1443 void
gt_ggc_mx(unsigned char * & x)1444 gt_ggc_mx (unsigned char *& x)
1445 {
1446 gt_ggc_m_S (x);
1447 }
1448
1449 void
gt_ggc_mx(unsigned char & x ATTRIBUTE_UNUSED)1450 gt_ggc_mx (unsigned char& x ATTRIBUTE_UNUSED)
1451 {
1452 }
1453
1454 /* If P is not marked, marks it and return false. Otherwise return true.
1455 P must have been allocated by the GC allocator; it mustn't point to
1456 static objects, stack variables, or memory allocated with malloc. */
1457
1458 int
ggc_set_mark(const void * p)1459 ggc_set_mark (const void *p)
1460 {
1461 page_entry *entry;
1462 unsigned bit, word;
1463 unsigned long mask;
1464
1465 /* Look up the page on which the object is alloced. If the object
1466 wasn't allocated by the collector, we'll probably die. */
1467 entry = lookup_page_table_entry (p);
1468 gcc_assert (entry);
1469
1470 /* Calculate the index of the object on the page; this is its bit
1471 position in the in_use_p bitmap. */
1472 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1473 word = bit / HOST_BITS_PER_LONG;
1474 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1475
1476 /* If the bit was previously set, skip it. */
1477 if (entry->in_use_p[word] & mask)
1478 return 1;
1479
1480 /* Otherwise set it, and decrement the free object count. */
1481 entry->in_use_p[word] |= mask;
1482 entry->num_free_objects -= 1;
1483
1484 if (GGC_DEBUG_LEVEL >= 4)
1485 fprintf (G.debug_file, "Marking %p\n", p);
1486
1487 return 0;
1488 }
1489
1490 /* Return 1 if P has been marked, zero otherwise.
1491 P must have been allocated by the GC allocator; it mustn't point to
1492 static objects, stack variables, or memory allocated with malloc. */
1493
1494 int
ggc_marked_p(const void * p)1495 ggc_marked_p (const void *p)
1496 {
1497 page_entry *entry;
1498 unsigned bit, word;
1499 unsigned long mask;
1500
1501 /* Look up the page on which the object is alloced. If the object
1502 wasn't allocated by the collector, we'll probably die. */
1503 entry = lookup_page_table_entry (p);
1504 gcc_assert (entry);
1505
1506 /* Calculate the index of the object on the page; this is its bit
1507 position in the in_use_p bitmap. */
1508 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1509 word = bit / HOST_BITS_PER_LONG;
1510 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1511
1512 return (entry->in_use_p[word] & mask) != 0;
1513 }
1514
1515 /* Return the size of the gc-able object P. */
1516
1517 size_t
ggc_get_size(const void * p)1518 ggc_get_size (const void *p)
1519 {
1520 page_entry *pe = lookup_page_table_entry (p);
1521 return OBJECT_SIZE (pe->order);
1522 }
1523
1524 /* Release the memory for object P. */
1525
1526 void
ggc_free(void * p)1527 ggc_free (void *p)
1528 {
1529 page_entry *pe = lookup_page_table_entry (p);
1530 size_t order = pe->order;
1531 size_t size = OBJECT_SIZE (order);
1532
1533 if (GATHER_STATISTICS)
1534 ggc_free_overhead (p);
1535
1536 if (GGC_DEBUG_LEVEL >= 3)
1537 fprintf (G.debug_file,
1538 "Freeing object, actual size=%lu, at %p on %p\n",
1539 (unsigned long) size, p, (void *) pe);
1540
1541 #ifdef ENABLE_GC_CHECKING
1542 /* Poison the data, to indicate the data is garbage. */
1543 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
1544 memset (p, 0xa5, size);
1545 #endif
1546 /* Let valgrind know the object is free. */
1547 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
1548
1549 #ifdef ENABLE_GC_ALWAYS_COLLECT
1550 /* In the completely-anal-checking mode, we do *not* immediately free
1551 the data, but instead verify that the data is *actually* not
1552 reachable the next time we collect. */
1553 {
1554 struct free_object *fo = XNEW (struct free_object);
1555 fo->object = p;
1556 fo->next = G.free_object_list;
1557 G.free_object_list = fo;
1558 }
1559 #else
1560 {
1561 unsigned int bit_offset, word, bit;
1562
1563 G.allocated -= size;
1564
1565 /* Mark the object not-in-use. */
1566 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1567 word = bit_offset / HOST_BITS_PER_LONG;
1568 bit = bit_offset % HOST_BITS_PER_LONG;
1569 pe->in_use_p[word] &= ~(1UL << bit);
1570
1571 if (pe->num_free_objects++ == 0)
1572 {
1573 page_entry *p, *q;
1574
1575 /* If the page is completely full, then it's supposed to
1576 be after all pages that aren't. Since we've freed one
1577 object from a page that was full, we need to move the
1578 page to the head of the list.
1579
1580 PE is the node we want to move. Q is the previous node
1581 and P is the next node in the list. */
1582 q = pe->prev;
1583 if (q && q->num_free_objects == 0)
1584 {
1585 p = pe->next;
1586
1587 q->next = p;
1588
1589 /* If PE was at the end of the list, then Q becomes the
1590 new end of the list. If PE was not the end of the
1591 list, then we need to update the PREV field for P. */
1592 if (!p)
1593 G.page_tails[order] = q;
1594 else
1595 p->prev = q;
1596
1597 /* Move PE to the head of the list. */
1598 pe->next = G.pages[order];
1599 pe->prev = NULL;
1600 G.pages[order]->prev = pe;
1601 G.pages[order] = pe;
1602 }
1603
1604 /* Reset the hint bit to point to the only free object. */
1605 pe->next_bit_hint = bit_offset;
1606 }
1607 }
1608 #endif
1609 }
1610
1611 /* Subroutine of init_ggc which computes the pair of numbers used to
1612 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1613
1614 This algorithm is taken from Granlund and Montgomery's paper
1615 "Division by Invariant Integers using Multiplication"
1616 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1617 constants). */
1618
1619 static void
compute_inverse(unsigned order)1620 compute_inverse (unsigned order)
1621 {
1622 size_t size, inv;
1623 unsigned int e;
1624
1625 size = OBJECT_SIZE (order);
1626 e = 0;
1627 while (size % 2 == 0)
1628 {
1629 e++;
1630 size >>= 1;
1631 }
1632
1633 inv = size;
1634 while (inv * size != 1)
1635 inv = inv * (2 - inv*size);
1636
1637 DIV_MULT (order) = inv;
1638 DIV_SHIFT (order) = e;
1639 }
1640
1641 /* Initialize the ggc-mmap allocator. */
1642 void
init_ggc(void)1643 init_ggc (void)
1644 {
1645 unsigned order;
1646
1647 G.pagesize = getpagesize();
1648 G.lg_pagesize = exact_log2 (G.pagesize);
1649
1650 #ifdef HAVE_MMAP_DEV_ZERO
1651 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1652 if (G.dev_zero_fd == -1)
1653 internal_error ("open /dev/zero: %m");
1654 #endif
1655
1656 #if 0
1657 G.debug_file = fopen ("ggc-mmap.debug", "w");
1658 #else
1659 G.debug_file = stdout;
1660 #endif
1661
1662 #ifdef USING_MMAP
1663 /* StunOS has an amazing off-by-one error for the first mmap allocation
1664 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1665 believe, is an unaligned page allocation, which would cause us to
1666 hork badly if we tried to use it. */
1667 {
1668 char *p = alloc_anon (NULL, G.pagesize, true);
1669 struct page_entry *e;
1670 if ((uintptr_t)p & (G.pagesize - 1))
1671 {
1672 /* How losing. Discard this one and try another. If we still
1673 can't get something useful, give up. */
1674
1675 p = alloc_anon (NULL, G.pagesize, true);
1676 gcc_assert (!((uintptr_t)p & (G.pagesize - 1)));
1677 }
1678
1679 /* We have a good page, might as well hold onto it... */
1680 e = XCNEW (struct page_entry);
1681 e->bytes = G.pagesize;
1682 e->page = p;
1683 e->next = G.free_pages;
1684 G.free_pages = e;
1685 }
1686 #endif
1687
1688 /* Initialize the object size table. */
1689 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1690 object_size_table[order] = (size_t) 1 << order;
1691 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1692 {
1693 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1694
1695 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1696 so that we're sure of getting aligned memory. */
1697 s = ROUND_UP (s, MAX_ALIGNMENT);
1698 object_size_table[order] = s;
1699 }
1700
1701 /* Initialize the objects-per-page and inverse tables. */
1702 for (order = 0; order < NUM_ORDERS; ++order)
1703 {
1704 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1705 if (objects_per_page_table[order] == 0)
1706 objects_per_page_table[order] = 1;
1707 compute_inverse (order);
1708 }
1709
1710 /* Reset the size_lookup array to put appropriately sized objects in
1711 the special orders. All objects bigger than the previous power
1712 of two, but no greater than the special size, should go in the
1713 new order. */
1714 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1715 {
1716 int o;
1717 int i;
1718
1719 i = OBJECT_SIZE (order);
1720 if (i >= NUM_SIZE_LOOKUP)
1721 continue;
1722
1723 for (o = size_lookup[i]; o == size_lookup [i]; --i)
1724 size_lookup[i] = order;
1725 }
1726
1727 G.depth_in_use = 0;
1728 G.depth_max = 10;
1729 G.depth = XNEWVEC (unsigned int, G.depth_max);
1730
1731 G.by_depth_in_use = 0;
1732 G.by_depth_max = INITIAL_PTE_COUNT;
1733 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1734 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1735 }
1736
1737 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1738 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1739
1740 static void
ggc_recalculate_in_use_p(page_entry * p)1741 ggc_recalculate_in_use_p (page_entry *p)
1742 {
1743 unsigned int i;
1744 size_t num_objects;
1745
1746 /* Because the past-the-end bit in in_use_p is always set, we
1747 pretend there is one additional object. */
1748 num_objects = OBJECTS_IN_PAGE (p) + 1;
1749
1750 /* Reset the free object count. */
1751 p->num_free_objects = num_objects;
1752
1753 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1754 for (i = 0;
1755 i < CEIL (BITMAP_SIZE (num_objects),
1756 sizeof (*p->in_use_p));
1757 ++i)
1758 {
1759 unsigned long j;
1760
1761 /* Something is in use if it is marked, or if it was in use in a
1762 context further down the context stack. */
1763 p->in_use_p[i] |= save_in_use_p (p)[i];
1764
1765 /* Decrement the free object count for every object allocated. */
1766 for (j = p->in_use_p[i]; j; j >>= 1)
1767 p->num_free_objects -= (j & 1);
1768 }
1769
1770 gcc_assert (p->num_free_objects < num_objects);
1771 }
1772
1773 /* Unmark all objects. */
1774
1775 static void
clear_marks(void)1776 clear_marks (void)
1777 {
1778 unsigned order;
1779
1780 for (order = 2; order < NUM_ORDERS; order++)
1781 {
1782 page_entry *p;
1783
1784 for (p = G.pages[order]; p != NULL; p = p->next)
1785 {
1786 size_t num_objects = OBJECTS_IN_PAGE (p);
1787 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1788
1789 /* The data should be page-aligned. */
1790 gcc_assert (!((uintptr_t) p->page & (G.pagesize - 1)));
1791
1792 /* Pages that aren't in the topmost context are not collected;
1793 nevertheless, we need their in-use bit vectors to store GC
1794 marks. So, back them up first. */
1795 if (p->context_depth < G.context_depth)
1796 {
1797 if (! save_in_use_p (p))
1798 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
1799 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1800 }
1801
1802 /* Reset reset the number of free objects and clear the
1803 in-use bits. These will be adjusted by mark_obj. */
1804 p->num_free_objects = num_objects;
1805 memset (p->in_use_p, 0, bitmap_size);
1806
1807 /* Make sure the one-past-the-end bit is always set. */
1808 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1809 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1810 }
1811 }
1812 }
1813
1814 /* Free all empty pages. Partially empty pages need no attention
1815 because the `mark' bit doubles as an `unused' bit. */
1816
1817 static void
sweep_pages(void)1818 sweep_pages (void)
1819 {
1820 unsigned order;
1821
1822 for (order = 2; order < NUM_ORDERS; order++)
1823 {
1824 /* The last page-entry to consider, regardless of entries
1825 placed at the end of the list. */
1826 page_entry * const last = G.page_tails[order];
1827
1828 size_t num_objects;
1829 size_t live_objects;
1830 page_entry *p, *previous;
1831 int done;
1832
1833 p = G.pages[order];
1834 if (p == NULL)
1835 continue;
1836
1837 previous = NULL;
1838 do
1839 {
1840 page_entry *next = p->next;
1841
1842 /* Loop until all entries have been examined. */
1843 done = (p == last);
1844
1845 num_objects = OBJECTS_IN_PAGE (p);
1846
1847 /* Add all live objects on this page to the count of
1848 allocated memory. */
1849 live_objects = num_objects - p->num_free_objects;
1850
1851 G.allocated += OBJECT_SIZE (order) * live_objects;
1852
1853 /* Only objects on pages in the topmost context should get
1854 collected. */
1855 if (p->context_depth < G.context_depth)
1856 ;
1857
1858 /* Remove the page if it's empty. */
1859 else if (live_objects == 0)
1860 {
1861 /* If P was the first page in the list, then NEXT
1862 becomes the new first page in the list, otherwise
1863 splice P out of the forward pointers. */
1864 if (! previous)
1865 G.pages[order] = next;
1866 else
1867 previous->next = next;
1868
1869 /* Splice P out of the back pointers too. */
1870 if (next)
1871 next->prev = previous;
1872
1873 /* Are we removing the last element? */
1874 if (p == G.page_tails[order])
1875 G.page_tails[order] = previous;
1876 free_page (p);
1877 p = previous;
1878 }
1879
1880 /* If the page is full, move it to the end. */
1881 else if (p->num_free_objects == 0)
1882 {
1883 /* Don't move it if it's already at the end. */
1884 if (p != G.page_tails[order])
1885 {
1886 /* Move p to the end of the list. */
1887 p->next = NULL;
1888 p->prev = G.page_tails[order];
1889 G.page_tails[order]->next = p;
1890
1891 /* Update the tail pointer... */
1892 G.page_tails[order] = p;
1893
1894 /* ... and the head pointer, if necessary. */
1895 if (! previous)
1896 G.pages[order] = next;
1897 else
1898 previous->next = next;
1899
1900 /* And update the backpointer in NEXT if necessary. */
1901 if (next)
1902 next->prev = previous;
1903
1904 p = previous;
1905 }
1906 }
1907
1908 /* If we've fallen through to here, it's a page in the
1909 topmost context that is neither full nor empty. Such a
1910 page must precede pages at lesser context depth in the
1911 list, so move it to the head. */
1912 else if (p != G.pages[order])
1913 {
1914 previous->next = p->next;
1915
1916 /* Update the backchain in the next node if it exists. */
1917 if (p->next)
1918 p->next->prev = previous;
1919
1920 /* Move P to the head of the list. */
1921 p->next = G.pages[order];
1922 p->prev = NULL;
1923 G.pages[order]->prev = p;
1924
1925 /* Update the head pointer. */
1926 G.pages[order] = p;
1927
1928 /* Are we moving the last element? */
1929 if (G.page_tails[order] == p)
1930 G.page_tails[order] = previous;
1931 p = previous;
1932 }
1933
1934 previous = p;
1935 p = next;
1936 }
1937 while (! done);
1938
1939 /* Now, restore the in_use_p vectors for any pages from contexts
1940 other than the current one. */
1941 for (p = G.pages[order]; p; p = p->next)
1942 if (p->context_depth != G.context_depth)
1943 ggc_recalculate_in_use_p (p);
1944 }
1945 }
1946
1947 #ifdef ENABLE_GC_CHECKING
1948 /* Clobber all free objects. */
1949
1950 static void
poison_pages(void)1951 poison_pages (void)
1952 {
1953 unsigned order;
1954
1955 for (order = 2; order < NUM_ORDERS; order++)
1956 {
1957 size_t size = OBJECT_SIZE (order);
1958 page_entry *p;
1959
1960 for (p = G.pages[order]; p != NULL; p = p->next)
1961 {
1962 size_t num_objects;
1963 size_t i;
1964
1965 if (p->context_depth != G.context_depth)
1966 /* Since we don't do any collection for pages in pushed
1967 contexts, there's no need to do any poisoning. And
1968 besides, the IN_USE_P array isn't valid until we pop
1969 contexts. */
1970 continue;
1971
1972 num_objects = OBJECTS_IN_PAGE (p);
1973 for (i = 0; i < num_objects; i++)
1974 {
1975 size_t word, bit;
1976 word = i / HOST_BITS_PER_LONG;
1977 bit = i % HOST_BITS_PER_LONG;
1978 if (((p->in_use_p[word] >> bit) & 1) == 0)
1979 {
1980 char *object = p->page + i * size;
1981
1982 /* Keep poison-by-write when we expect to use Valgrind,
1983 so the exact same memory semantics is kept, in case
1984 there are memory errors. We override this request
1985 below. */
1986 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
1987 size));
1988 memset (object, 0xa5, size);
1989
1990 /* Drop the handle to avoid handle leak. */
1991 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
1992 }
1993 }
1994 }
1995 }
1996 }
1997 #else
1998 #define poison_pages()
1999 #endif
2000
2001 #ifdef ENABLE_GC_ALWAYS_COLLECT
2002 /* Validate that the reportedly free objects actually are. */
2003
2004 static void
validate_free_objects(void)2005 validate_free_objects (void)
2006 {
2007 struct free_object *f, *next, *still_free = NULL;
2008
2009 for (f = G.free_object_list; f ; f = next)
2010 {
2011 page_entry *pe = lookup_page_table_entry (f->object);
2012 size_t bit, word;
2013
2014 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
2015 word = bit / HOST_BITS_PER_LONG;
2016 bit = bit % HOST_BITS_PER_LONG;
2017 next = f->next;
2018
2019 /* Make certain it isn't visible from any root. Notice that we
2020 do this check before sweep_pages merges save_in_use_p. */
2021 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
2022
2023 /* If the object comes from an outer context, then retain the
2024 free_object entry, so that we can verify that the address
2025 isn't live on the stack in some outer context. */
2026 if (pe->context_depth != G.context_depth)
2027 {
2028 f->next = still_free;
2029 still_free = f;
2030 }
2031 else
2032 free (f);
2033 }
2034
2035 G.free_object_list = still_free;
2036 }
2037 #else
2038 #define validate_free_objects()
2039 #endif
2040
2041 /* Top level mark-and-sweep routine. */
2042
2043 void
ggc_collect(void)2044 ggc_collect (void)
2045 {
2046 /* Avoid frequent unnecessary work by skipping collection if the
2047 total allocations haven't expanded much since the last
2048 collection. */
2049 float allocated_last_gc =
2050 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
2051
2052 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
2053
2054 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
2055 return;
2056
2057 timevar_push (TV_GC);
2058 if (!quiet_flag)
2059 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
2060 if (GGC_DEBUG_LEVEL >= 2)
2061 fprintf (G.debug_file, "BEGIN COLLECTING\n");
2062
2063 /* Zero the total allocated bytes. This will be recalculated in the
2064 sweep phase. */
2065 G.allocated = 0;
2066
2067 /* Release the pages we freed the last time we collected, but didn't
2068 reuse in the interim. */
2069 release_pages ();
2070
2071 /* Indicate that we've seen collections at this context depth. */
2072 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
2073
2074 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
2075
2076 clear_marks ();
2077 ggc_mark_roots ();
2078
2079 if (GATHER_STATISTICS)
2080 ggc_prune_overhead_list ();
2081
2082 poison_pages ();
2083 validate_free_objects ();
2084 sweep_pages ();
2085
2086 G.allocated_last_gc = G.allocated;
2087
2088 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
2089
2090 timevar_pop (TV_GC);
2091
2092 if (!quiet_flag)
2093 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
2094 if (GGC_DEBUG_LEVEL >= 2)
2095 fprintf (G.debug_file, "END COLLECTING\n");
2096 }
2097
2098 /* Print allocation statistics. */
2099 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
2100 ? (x) \
2101 : ((x) < 1024*1024*10 \
2102 ? (x) / 1024 \
2103 : (x) / (1024*1024))))
2104 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
2105
2106 void
ggc_print_statistics(void)2107 ggc_print_statistics (void)
2108 {
2109 struct ggc_statistics stats;
2110 unsigned int i;
2111 size_t total_overhead = 0;
2112
2113 /* Clear the statistics. */
2114 memset (&stats, 0, sizeof (stats));
2115
2116 /* Make sure collection will really occur. */
2117 G.allocated_last_gc = 0;
2118
2119 /* Collect and print the statistics common across collectors. */
2120 ggc_print_common_statistics (stderr, &stats);
2121
2122 /* Release free pages so that we will not count the bytes allocated
2123 there as part of the total allocated memory. */
2124 release_pages ();
2125
2126 /* Collect some information about the various sizes of
2127 allocation. */
2128 fprintf (stderr,
2129 "Memory still allocated at the end of the compilation process\n");
2130 fprintf (stderr, "%-5s %10s %10s %10s\n",
2131 "Size", "Allocated", "Used", "Overhead");
2132 for (i = 0; i < NUM_ORDERS; ++i)
2133 {
2134 page_entry *p;
2135 size_t allocated;
2136 size_t in_use;
2137 size_t overhead;
2138
2139 /* Skip empty entries. */
2140 if (!G.pages[i])
2141 continue;
2142
2143 overhead = allocated = in_use = 0;
2144
2145 /* Figure out the total number of bytes allocated for objects of
2146 this size, and how many of them are actually in use. Also figure
2147 out how much memory the page table is using. */
2148 for (p = G.pages[i]; p; p = p->next)
2149 {
2150 allocated += p->bytes;
2151 in_use +=
2152 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2153
2154 overhead += (sizeof (page_entry) - sizeof (long)
2155 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2156 }
2157 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2158 (unsigned long) OBJECT_SIZE (i),
2159 SCALE (allocated), STAT_LABEL (allocated),
2160 SCALE (in_use), STAT_LABEL (in_use),
2161 SCALE (overhead), STAT_LABEL (overhead));
2162 total_overhead += overhead;
2163 }
2164 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
2165 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2166 SCALE (G.allocated), STAT_LABEL(G.allocated),
2167 SCALE (total_overhead), STAT_LABEL (total_overhead));
2168
2169 if (GATHER_STATISTICS)
2170 {
2171 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2172
2173 fprintf (stderr, "Total Overhead: %10" HOST_LONG_LONG_FORMAT "d\n",
2174 G.stats.total_overhead);
2175 fprintf (stderr, "Total Allocated: %10" HOST_LONG_LONG_FORMAT "d\n",
2176 G.stats.total_allocated);
2177
2178 fprintf (stderr, "Total Overhead under 32B: %10" HOST_LONG_LONG_FORMAT "d\n",
2179 G.stats.total_overhead_under32);
2180 fprintf (stderr, "Total Allocated under 32B: %10" HOST_LONG_LONG_FORMAT "d\n",
2181 G.stats.total_allocated_under32);
2182 fprintf (stderr, "Total Overhead under 64B: %10" HOST_LONG_LONG_FORMAT "d\n",
2183 G.stats.total_overhead_under64);
2184 fprintf (stderr, "Total Allocated under 64B: %10" HOST_LONG_LONG_FORMAT "d\n",
2185 G.stats.total_allocated_under64);
2186 fprintf (stderr, "Total Overhead under 128B: %10" HOST_LONG_LONG_FORMAT "d\n",
2187 G.stats.total_overhead_under128);
2188 fprintf (stderr, "Total Allocated under 128B: %10" HOST_LONG_LONG_FORMAT "d\n",
2189 G.stats.total_allocated_under128);
2190
2191 for (i = 0; i < NUM_ORDERS; i++)
2192 if (G.stats.total_allocated_per_order[i])
2193 {
2194 fprintf (stderr, "Total Overhead page size %7lu: %10" HOST_LONG_LONG_FORMAT "d\n",
2195 (unsigned long) OBJECT_SIZE (i),
2196 G.stats.total_overhead_per_order[i]);
2197 fprintf (stderr, "Total Allocated page size %7lu: %10" HOST_LONG_LONG_FORMAT "d\n",
2198 (unsigned long) OBJECT_SIZE (i),
2199 G.stats.total_allocated_per_order[i]);
2200 }
2201 }
2202 }
2203
2204 struct ggc_pch_ondisk
2205 {
2206 unsigned totals[NUM_ORDERS];
2207 };
2208
2209 struct ggc_pch_data
2210 {
2211 struct ggc_pch_ondisk d;
2212 uintptr_t base[NUM_ORDERS];
2213 size_t written[NUM_ORDERS];
2214 };
2215
2216 struct ggc_pch_data *
init_ggc_pch(void)2217 init_ggc_pch (void)
2218 {
2219 return XCNEW (struct ggc_pch_data);
2220 }
2221
2222 void
ggc_pch_count_object(struct ggc_pch_data * d,void * x ATTRIBUTE_UNUSED,size_t size,bool is_string ATTRIBUTE_UNUSED)2223 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2224 size_t size, bool is_string ATTRIBUTE_UNUSED)
2225 {
2226 unsigned order;
2227
2228 if (size < NUM_SIZE_LOOKUP)
2229 order = size_lookup[size];
2230 else
2231 {
2232 order = 10;
2233 while (size > OBJECT_SIZE (order))
2234 order++;
2235 }
2236
2237 d->d.totals[order]++;
2238 }
2239
2240 size_t
ggc_pch_total_size(struct ggc_pch_data * d)2241 ggc_pch_total_size (struct ggc_pch_data *d)
2242 {
2243 size_t a = 0;
2244 unsigned i;
2245
2246 for (i = 0; i < NUM_ORDERS; i++)
2247 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2248 return a;
2249 }
2250
2251 void
ggc_pch_this_base(struct ggc_pch_data * d,void * base)2252 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2253 {
2254 uintptr_t a = (uintptr_t) base;
2255 unsigned i;
2256
2257 for (i = 0; i < NUM_ORDERS; i++)
2258 {
2259 d->base[i] = a;
2260 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2261 }
2262 }
2263
2264
2265 char *
ggc_pch_alloc_object(struct ggc_pch_data * d,void * x ATTRIBUTE_UNUSED,size_t size,bool is_string ATTRIBUTE_UNUSED)2266 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2267 size_t size, bool is_string ATTRIBUTE_UNUSED)
2268 {
2269 unsigned order;
2270 char *result;
2271
2272 if (size < NUM_SIZE_LOOKUP)
2273 order = size_lookup[size];
2274 else
2275 {
2276 order = 10;
2277 while (size > OBJECT_SIZE (order))
2278 order++;
2279 }
2280
2281 result = (char *) d->base[order];
2282 d->base[order] += OBJECT_SIZE (order);
2283 return result;
2284 }
2285
2286 void
ggc_pch_prepare_write(struct ggc_pch_data * d ATTRIBUTE_UNUSED,FILE * f ATTRIBUTE_UNUSED)2287 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2288 FILE *f ATTRIBUTE_UNUSED)
2289 {
2290 /* Nothing to do. */
2291 }
2292
2293 void
ggc_pch_write_object(struct ggc_pch_data * d ATTRIBUTE_UNUSED,FILE * f,void * x,void * newx ATTRIBUTE_UNUSED,size_t size,bool is_string ATTRIBUTE_UNUSED)2294 ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2295 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2296 size_t size, bool is_string ATTRIBUTE_UNUSED)
2297 {
2298 unsigned order;
2299 static const char emptyBytes[256] = { 0 };
2300
2301 if (size < NUM_SIZE_LOOKUP)
2302 order = size_lookup[size];
2303 else
2304 {
2305 order = 10;
2306 while (size > OBJECT_SIZE (order))
2307 order++;
2308 }
2309
2310 if (fwrite (x, size, 1, f) != 1)
2311 fatal_error ("can%'t write PCH file: %m");
2312
2313 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2314 object out to OBJECT_SIZE(order). This happens for strings. */
2315
2316 if (size != OBJECT_SIZE (order))
2317 {
2318 unsigned padding = OBJECT_SIZE(order) - size;
2319
2320 /* To speed small writes, we use a nulled-out array that's larger
2321 than most padding requests as the source for our null bytes. This
2322 permits us to do the padding with fwrite() rather than fseek(), and
2323 limits the chance the OS may try to flush any outstanding writes. */
2324 if (padding <= sizeof(emptyBytes))
2325 {
2326 if (fwrite (emptyBytes, 1, padding, f) != padding)
2327 fatal_error ("can%'t write PCH file");
2328 }
2329 else
2330 {
2331 /* Larger than our buffer? Just default to fseek. */
2332 if (fseek (f, padding, SEEK_CUR) != 0)
2333 fatal_error ("can%'t write PCH file");
2334 }
2335 }
2336
2337 d->written[order]++;
2338 if (d->written[order] == d->d.totals[order]
2339 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2340 G.pagesize),
2341 SEEK_CUR) != 0)
2342 fatal_error ("can%'t write PCH file: %m");
2343 }
2344
2345 void
ggc_pch_finish(struct ggc_pch_data * d,FILE * f)2346 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2347 {
2348 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2349 fatal_error ("can%'t write PCH file: %m");
2350 free (d);
2351 }
2352
2353 /* Move the PCH PTE entries just added to the end of by_depth, to the
2354 front. */
2355
2356 static void
move_ptes_to_front(int count_old_page_tables,int count_new_page_tables)2357 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2358 {
2359 unsigned i;
2360
2361 /* First, we swap the new entries to the front of the varrays. */
2362 page_entry **new_by_depth;
2363 unsigned long **new_save_in_use;
2364
2365 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2366 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2367
2368 memcpy (&new_by_depth[0],
2369 &G.by_depth[count_old_page_tables],
2370 count_new_page_tables * sizeof (void *));
2371 memcpy (&new_by_depth[count_new_page_tables],
2372 &G.by_depth[0],
2373 count_old_page_tables * sizeof (void *));
2374 memcpy (&new_save_in_use[0],
2375 &G.save_in_use[count_old_page_tables],
2376 count_new_page_tables * sizeof (void *));
2377 memcpy (&new_save_in_use[count_new_page_tables],
2378 &G.save_in_use[0],
2379 count_old_page_tables * sizeof (void *));
2380
2381 free (G.by_depth);
2382 free (G.save_in_use);
2383
2384 G.by_depth = new_by_depth;
2385 G.save_in_use = new_save_in_use;
2386
2387 /* Now update all the index_by_depth fields. */
2388 for (i = G.by_depth_in_use; i > 0; --i)
2389 {
2390 page_entry *p = G.by_depth[i-1];
2391 p->index_by_depth = i-1;
2392 }
2393
2394 /* And last, we update the depth pointers in G.depth. The first
2395 entry is already 0, and context 0 entries always start at index
2396 0, so there is nothing to update in the first slot. We need a
2397 second slot, only if we have old ptes, and if we do, they start
2398 at index count_new_page_tables. */
2399 if (count_old_page_tables)
2400 push_depth (count_new_page_tables);
2401 }
2402
2403 void
ggc_pch_read(FILE * f,void * addr)2404 ggc_pch_read (FILE *f, void *addr)
2405 {
2406 struct ggc_pch_ondisk d;
2407 unsigned i;
2408 char *offs = (char *) addr;
2409 unsigned long count_old_page_tables;
2410 unsigned long count_new_page_tables;
2411
2412 count_old_page_tables = G.by_depth_in_use;
2413
2414 /* We've just read in a PCH file. So, every object that used to be
2415 allocated is now free. */
2416 clear_marks ();
2417 #ifdef ENABLE_GC_CHECKING
2418 poison_pages ();
2419 #endif
2420 /* Since we free all the allocated objects, the free list becomes
2421 useless. Validate it now, which will also clear it. */
2422 validate_free_objects();
2423
2424 /* No object read from a PCH file should ever be freed. So, set the
2425 context depth to 1, and set the depth of all the currently-allocated
2426 pages to be 1 too. PCH pages will have depth 0. */
2427 gcc_assert (!G.context_depth);
2428 G.context_depth = 1;
2429 for (i = 0; i < NUM_ORDERS; i++)
2430 {
2431 page_entry *p;
2432 for (p = G.pages[i]; p != NULL; p = p->next)
2433 p->context_depth = G.context_depth;
2434 }
2435
2436 /* Allocate the appropriate page-table entries for the pages read from
2437 the PCH file. */
2438 if (fread (&d, sizeof (d), 1, f) != 1)
2439 fatal_error ("can%'t read PCH file: %m");
2440
2441 for (i = 0; i < NUM_ORDERS; i++)
2442 {
2443 struct page_entry *entry;
2444 char *pte;
2445 size_t bytes;
2446 size_t num_objs;
2447 size_t j;
2448
2449 if (d.totals[i] == 0)
2450 continue;
2451
2452 bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i));
2453 num_objs = bytes / OBJECT_SIZE (i);
2454 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2455 - sizeof (long)
2456 + BITMAP_SIZE (num_objs + 1)));
2457 entry->bytes = bytes;
2458 entry->page = offs;
2459 entry->context_depth = 0;
2460 offs += bytes;
2461 entry->num_free_objects = 0;
2462 entry->order = i;
2463
2464 for (j = 0;
2465 j + HOST_BITS_PER_LONG <= num_objs + 1;
2466 j += HOST_BITS_PER_LONG)
2467 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2468 for (; j < num_objs + 1; j++)
2469 entry->in_use_p[j / HOST_BITS_PER_LONG]
2470 |= 1L << (j % HOST_BITS_PER_LONG);
2471
2472 for (pte = entry->page;
2473 pte < entry->page + entry->bytes;
2474 pte += G.pagesize)
2475 set_page_table_entry (pte, entry);
2476
2477 if (G.page_tails[i] != NULL)
2478 G.page_tails[i]->next = entry;
2479 else
2480 G.pages[i] = entry;
2481 G.page_tails[i] = entry;
2482
2483 /* We start off by just adding all the new information to the
2484 end of the varrays, later, we will move the new information
2485 to the front of the varrays, as the PCH page tables are at
2486 context 0. */
2487 push_by_depth (entry, 0);
2488 }
2489
2490 /* Now, we update the various data structures that speed page table
2491 handling. */
2492 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2493
2494 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2495
2496 /* Update the statistics. */
2497 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2498 }
2499