1 /* Compute complex base 10 logarithm for complex __float128.
2    Copyright (C) 1997-2012 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4    Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
5 
6    The GNU C Library is free software; you can redistribute it and/or
7    modify it under the terms of the GNU Lesser General Public
8    License as published by the Free Software Foundation; either
9    version 2.1 of the License, or (at your option) any later version.
10 
11    The GNU C Library is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14    Lesser General Public License for more details.
15 
16    You should have received a copy of the GNU Lesser General Public
17    License along with the GNU C Library; if not, see
18    <http://www.gnu.org/licenses/>.  */
19 
20 #include "quadmath-imp.h"
21 
22 
23 /* log_10 (2).  */
24 #define M_LOG10_2q 0.3010299956639811952137388947244930267682Q
25 
26 
27 __complex128
clog10q(__complex128 x)28 clog10q (__complex128 x)
29 {
30   __complex128 result;
31   int rcls = fpclassifyq (__real__ x);
32   int icls = fpclassifyq (__imag__ x);
33 
34   if (__builtin_expect (rcls == QUADFP_ZERO && icls == QUADFP_ZERO, 0))
35     {
36       /* Real and imaginary part are 0.0.  */
37       __imag__ result = signbitq (__real__ x) ? M_PIq : 0.0Q;
38       __imag__ result = copysignq (__imag__ result, __imag__ x);
39       /* Yes, the following line raises an exception.  */
40       __real__ result = -1.0Q / fabsq (__real__ x);
41     }
42   else if (__builtin_expect (rcls != QUADFP_NAN && icls != QUADFP_NAN, 1))
43     {
44       /* Neither real nor imaginary part is NaN.  */
45       __float128 absx = fabsq (__real__ x), absy = fabsq (__imag__ x);
46       int scale = 0;
47 
48       if (absx < absy)
49 	{
50 	  __float128 t = absx;
51 	  absx = absy;
52 	  absy = t;
53 	}
54 
55       if (absx > FLT128_MAX / 2.0Q)
56 	{
57 	  scale = -1;
58 	  absx = scalbnq (absx, scale);
59 	  absy = (absy >= FLT128_MIN * 2.0Q ? scalbnq (absy, scale) : 0.0Q);
60 	}
61       else if (absx < FLT128_MIN && absy < FLT128_MIN)
62 	{
63 	  scale = FLT128_MANT_DIG;
64 	  absx = scalbnq (absx, scale);
65 	  absy = scalbnq (absy, scale);
66 	}
67 
68       if (absx == 1.0Q && scale == 0)
69 	{
70 	  __float128 absy2 = absy * absy;
71 	  if (absy2 <= FLT128_MIN * 2.0Q * M_LN10q)
72 	    __real__ result
73 	      = (absy2 / 2.0Q - absy2 * absy2 / 4.0Q) * M_LOG10Eq;
74 	  else
75 	    __real__ result = log1pq (absy2) * (M_LOG10Eq / 2.0Q);
76 	}
77       else if (absx > 1.0Q && absx < 2.0Q && absy < 1.0Q && scale == 0)
78 	{
79 	  __float128 d2m1 = (absx - 1.0Q) * (absx + 1.0Q);
80 	  if (absy >= FLT128_EPSILON)
81 	    d2m1 += absy * absy;
82 	  __real__ result = log1pq (d2m1) * (M_LOG10Eq / 2.0Q);
83 	}
84       else if (absx < 1.0Q
85 	       && absx >= 0.75Q
86 	       && absy < FLT128_EPSILON / 2.0Q
87 	       && scale == 0)
88 	{
89 	  __float128 d2m1 = (absx - 1.0Q) * (absx + 1.0Q);
90 	  __real__ result = log1pq (d2m1) * (M_LOG10Eq / 2.0Q);
91 	}
92       else if (absx < 1.0Q && (absx >= 0.75Q || absy >= 0.5Q) && scale == 0)
93 	{
94 	  __float128 d2m1 = __quadmath_x2y2m1q (absx, absy);
95 	  __real__ result = log1pq (d2m1) * (M_LOG10Eq / 2.0Q);
96 	}
97       else
98 	{
99 	  __float128 d = hypotq (absx, absy);
100 	  __real__ result = log10q (d) - scale * M_LOG10_2q;
101 	}
102 
103       __imag__ result = M_LOG10Eq * atan2q (__imag__ x, __real__ x);
104     }
105   else
106     {
107       __imag__ result = nanq ("");
108       if (rcls == QUADFP_INFINITE || icls == QUADFP_INFINITE)
109 	/* Real or imaginary part is infinite.  */
110 	__real__ result = HUGE_VALQ;
111       else
112 	__real__ result = nanq ("");
113     }
114 
115   return result;
116 }
117