1 // random number generation (out of line) -*- C++ -*-
2 
3 // Copyright (C) 2009-2013 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/random.tcc
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly. @headername{random}
28  */
29 
30 #ifndef _RANDOM_TCC
31 #define _RANDOM_TCC 1
32 
33 #include <numeric> // std::accumulate and std::partial_sum
34 
35 namespace std _GLIBCXX_VISIBILITY(default)
36 {
37   /*
38    * (Further) implementation-space details.
39    */
40   namespace __detail
41   {
42   _GLIBCXX_BEGIN_NAMESPACE_VERSION
43 
44     // General case for x = (ax + c) mod m -- use Schrage's algorithm
45     // to avoid integer overflow.
46     //
47     // Preconditions:  a > 0, m > 0.
48     //
49     // Note: only works correctly for __m % __a < __m / __a.
50     template<typename _Tp, _Tp __m, _Tp __a, _Tp __c>
51       _Tp
52       _Mod<_Tp, __m, __a, __c, false, true>::
53       __calc(_Tp __x)
54       {
55 	if (__a == 1)
56 	  __x %= __m;
57 	else
58 	  {
59 	    static const _Tp __q = __m / __a;
60 	    static const _Tp __r = __m % __a;
61 
62 	    _Tp __t1 = __a * (__x % __q);
63 	    _Tp __t2 = __r * (__x / __q);
64 	    if (__t1 >= __t2)
65 	      __x = __t1 - __t2;
66 	    else
67 	      __x = __m - __t2 + __t1;
68 	  }
69 
70 	if (__c != 0)
71 	  {
72 	    const _Tp __d = __m - __x;
73 	    if (__d > __c)
74 	      __x += __c;
75 	    else
76 	      __x = __c - __d;
77 	  }
78 	return __x;
79       }
80 
81     template<typename _InputIterator, typename _OutputIterator,
82 	     typename _Tp>
83       _OutputIterator
84       __normalize(_InputIterator __first, _InputIterator __last,
85 		  _OutputIterator __result, const _Tp& __factor)
86       {
87 	for (; __first != __last; ++__first, ++__result)
88 	  *__result = *__first / __factor;
89 	return __result;
90       }
91 
92   _GLIBCXX_END_NAMESPACE_VERSION
93   } // namespace __detail
94 
95 _GLIBCXX_BEGIN_NAMESPACE_VERSION
96 
97   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
98     constexpr _UIntType
99     linear_congruential_engine<_UIntType, __a, __c, __m>::multiplier;
100 
101   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
102     constexpr _UIntType
103     linear_congruential_engine<_UIntType, __a, __c, __m>::increment;
104 
105   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
106     constexpr _UIntType
107     linear_congruential_engine<_UIntType, __a, __c, __m>::modulus;
108 
109   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
110     constexpr _UIntType
111     linear_congruential_engine<_UIntType, __a, __c, __m>::default_seed;
112 
113   /**
114    * Seeds the LCR with integral value @p __s, adjusted so that the
115    * ring identity is never a member of the convergence set.
116    */
117   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
118     void
119     linear_congruential_engine<_UIntType, __a, __c, __m>::
seed(result_type __s)120     seed(result_type __s)
121     {
122       if ((__detail::__mod<_UIntType, __m>(__c) == 0)
123 	  && (__detail::__mod<_UIntType, __m>(__s) == 0))
124 	_M_x = 1;
125       else
126 	_M_x = __detail::__mod<_UIntType, __m>(__s);
127     }
128 
129   /**
130    * Seeds the LCR engine with a value generated by @p __q.
131    */
132   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
133     template<typename _Sseq>
134       typename std::enable_if<std::is_class<_Sseq>::value>::type
135       linear_congruential_engine<_UIntType, __a, __c, __m>::
seed(_Sseq & __q)136       seed(_Sseq& __q)
137       {
138 	const _UIntType __k0 = __m == 0 ? std::numeric_limits<_UIntType>::digits
139 	                                : std::__lg(__m);
140 	const _UIntType __k = (__k0 + 31) / 32;
141 	uint_least32_t __arr[__k + 3];
142 	__q.generate(__arr + 0, __arr + __k + 3);
143 	_UIntType __factor = 1u;
144 	_UIntType __sum = 0u;
145 	for (size_t __j = 0; __j < __k; ++__j)
146 	  {
147 	    __sum += __arr[__j + 3] * __factor;
148 	    __factor *= __detail::_Shift<_UIntType, 32>::__value;
149 	  }
150 	seed(__sum);
151       }
152 
153   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m,
154 	   typename _CharT, typename _Traits>
155     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const linear_congruential_engine<_UIntType,__a,__c,__m> & __lcr)156     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
157 	       const linear_congruential_engine<_UIntType,
158 						__a, __c, __m>& __lcr)
159     {
160       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
161       typedef typename __ostream_type::ios_base    __ios_base;
162 
163       const typename __ios_base::fmtflags __flags = __os.flags();
164       const _CharT __fill = __os.fill();
165       __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
166       __os.fill(__os.widen(' '));
167 
168       __os << __lcr._M_x;
169 
170       __os.flags(__flags);
171       __os.fill(__fill);
172       return __os;
173     }
174 
175   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m,
176 	   typename _CharT, typename _Traits>
177     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,linear_congruential_engine<_UIntType,__a,__c,__m> & __lcr)178     operator>>(std::basic_istream<_CharT, _Traits>& __is,
179 	       linear_congruential_engine<_UIntType, __a, __c, __m>& __lcr)
180     {
181       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
182       typedef typename __istream_type::ios_base    __ios_base;
183 
184       const typename __ios_base::fmtflags __flags = __is.flags();
185       __is.flags(__ios_base::dec);
186 
187       __is >> __lcr._M_x;
188 
189       __is.flags(__flags);
190       return __is;
191     }
192 
193 
194   template<typename _UIntType,
195 	   size_t __w, size_t __n, size_t __m, size_t __r,
196 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
197 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
198 	   _UIntType __f>
199     constexpr size_t
200     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
201 			    __s, __b, __t, __c, __l, __f>::word_size;
202 
203   template<typename _UIntType,
204 	   size_t __w, size_t __n, size_t __m, size_t __r,
205 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
206 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
207 	   _UIntType __f>
208     constexpr size_t
209     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
210 			    __s, __b, __t, __c, __l, __f>::state_size;
211 
212   template<typename _UIntType,
213 	   size_t __w, size_t __n, size_t __m, size_t __r,
214 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
215 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
216 	   _UIntType __f>
217     constexpr size_t
218     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
219 			    __s, __b, __t, __c, __l, __f>::shift_size;
220 
221   template<typename _UIntType,
222 	   size_t __w, size_t __n, size_t __m, size_t __r,
223 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
224 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
225 	   _UIntType __f>
226     constexpr size_t
227     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
228 			    __s, __b, __t, __c, __l, __f>::mask_bits;
229 
230   template<typename _UIntType,
231 	   size_t __w, size_t __n, size_t __m, size_t __r,
232 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
233 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
234 	   _UIntType __f>
235     constexpr _UIntType
236     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
237 			    __s, __b, __t, __c, __l, __f>::xor_mask;
238 
239   template<typename _UIntType,
240 	   size_t __w, size_t __n, size_t __m, size_t __r,
241 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
242 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
243 	   _UIntType __f>
244     constexpr size_t
245     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
246 			    __s, __b, __t, __c, __l, __f>::tempering_u;
247 
248   template<typename _UIntType,
249 	   size_t __w, size_t __n, size_t __m, size_t __r,
250 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
251 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
252 	   _UIntType __f>
253     constexpr _UIntType
254     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
255 			    __s, __b, __t, __c, __l, __f>::tempering_d;
256 
257   template<typename _UIntType,
258 	   size_t __w, size_t __n, size_t __m, size_t __r,
259 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
260 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
261 	   _UIntType __f>
262     constexpr size_t
263     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
264 			    __s, __b, __t, __c, __l, __f>::tempering_s;
265 
266   template<typename _UIntType,
267 	   size_t __w, size_t __n, size_t __m, size_t __r,
268 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
269 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
270 	   _UIntType __f>
271     constexpr _UIntType
272     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
273 			    __s, __b, __t, __c, __l, __f>::tempering_b;
274 
275   template<typename _UIntType,
276 	   size_t __w, size_t __n, size_t __m, size_t __r,
277 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
278 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
279 	   _UIntType __f>
280     constexpr size_t
281     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
282 			    __s, __b, __t, __c, __l, __f>::tempering_t;
283 
284   template<typename _UIntType,
285 	   size_t __w, size_t __n, size_t __m, size_t __r,
286 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
287 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
288 	   _UIntType __f>
289     constexpr _UIntType
290     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
291 			    __s, __b, __t, __c, __l, __f>::tempering_c;
292 
293   template<typename _UIntType,
294 	   size_t __w, size_t __n, size_t __m, size_t __r,
295 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
296 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
297 	   _UIntType __f>
298     constexpr size_t
299     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
300 			    __s, __b, __t, __c, __l, __f>::tempering_l;
301 
302   template<typename _UIntType,
303 	   size_t __w, size_t __n, size_t __m, size_t __r,
304 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
305 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
306 	   _UIntType __f>
307     constexpr _UIntType
308     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
309 			    __s, __b, __t, __c, __l, __f>::
310                                               initialization_multiplier;
311 
312   template<typename _UIntType,
313 	   size_t __w, size_t __n, size_t __m, size_t __r,
314 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
315 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
316 	   _UIntType __f>
317     constexpr _UIntType
318     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
319 			    __s, __b, __t, __c, __l, __f>::default_seed;
320 
321   template<typename _UIntType,
322 	   size_t __w, size_t __n, size_t __m, size_t __r,
323 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
324 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
325 	   _UIntType __f>
326     void
327     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
328 			    __s, __b, __t, __c, __l, __f>::
seed(result_type __sd)329     seed(result_type __sd)
330     {
331       _M_x[0] = __detail::__mod<_UIntType,
332 	__detail::_Shift<_UIntType, __w>::__value>(__sd);
333 
334       for (size_t __i = 1; __i < state_size; ++__i)
335 	{
336 	  _UIntType __x = _M_x[__i - 1];
337 	  __x ^= __x >> (__w - 2);
338 	  __x *= __f;
339 	  __x += __detail::__mod<_UIntType, __n>(__i);
340 	  _M_x[__i] = __detail::__mod<_UIntType,
341 	    __detail::_Shift<_UIntType, __w>::__value>(__x);
342 	}
343       _M_p = state_size;
344     }
345 
346   template<typename _UIntType,
347 	   size_t __w, size_t __n, size_t __m, size_t __r,
348 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
349 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
350 	   _UIntType __f>
351     template<typename _Sseq>
352       typename std::enable_if<std::is_class<_Sseq>::value>::type
353       mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
354 			      __s, __b, __t, __c, __l, __f>::
seed(_Sseq & __q)355       seed(_Sseq& __q)
356       {
357 	const _UIntType __upper_mask = (~_UIntType()) << __r;
358 	const size_t __k = (__w + 31) / 32;
359 	uint_least32_t __arr[__n * __k];
360 	__q.generate(__arr + 0, __arr + __n * __k);
361 
362 	bool __zero = true;
363 	for (size_t __i = 0; __i < state_size; ++__i)
364 	  {
365 	    _UIntType __factor = 1u;
366 	    _UIntType __sum = 0u;
367 	    for (size_t __j = 0; __j < __k; ++__j)
368 	      {
369 		__sum += __arr[__k * __i + __j] * __factor;
370 		__factor *= __detail::_Shift<_UIntType, 32>::__value;
371 	      }
372 	    _M_x[__i] = __detail::__mod<_UIntType,
373 	      __detail::_Shift<_UIntType, __w>::__value>(__sum);
374 
375 	    if (__zero)
376 	      {
377 		if (__i == 0)
378 		  {
379 		    if ((_M_x[0] & __upper_mask) != 0u)
380 		      __zero = false;
381 		  }
382 		else if (_M_x[__i] != 0u)
383 		  __zero = false;
384 	      }
385 	  }
386         if (__zero)
387           _M_x[0] = __detail::_Shift<_UIntType, __w - 1>::__value;
388 	_M_p = state_size;
389       }
390 
391   template<typename _UIntType, size_t __w,
392 	   size_t __n, size_t __m, size_t __r,
393 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
394 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
395 	   _UIntType __f>
396     void
397     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
398 			    __s, __b, __t, __c, __l, __f>::
_M_gen_rand(void)399     _M_gen_rand(void)
400     {
401       const _UIntType __upper_mask = (~_UIntType()) << __r;
402       const _UIntType __lower_mask = ~__upper_mask;
403 
404       for (size_t __k = 0; __k < (__n - __m); ++__k)
405         {
406 	  _UIntType __y = ((_M_x[__k] & __upper_mask)
407 			   | (_M_x[__k + 1] & __lower_mask));
408 	  _M_x[__k] = (_M_x[__k + __m] ^ (__y >> 1)
409 		       ^ ((__y & 0x01) ? __a : 0));
410         }
411 
412       for (size_t __k = (__n - __m); __k < (__n - 1); ++__k)
413 	{
414 	  _UIntType __y = ((_M_x[__k] & __upper_mask)
415 			   | (_M_x[__k + 1] & __lower_mask));
416 	  _M_x[__k] = (_M_x[__k + (__m - __n)] ^ (__y >> 1)
417 		       ^ ((__y & 0x01) ? __a : 0));
418 	}
419 
420       _UIntType __y = ((_M_x[__n - 1] & __upper_mask)
421 		       | (_M_x[0] & __lower_mask));
422       _M_x[__n - 1] = (_M_x[__m - 1] ^ (__y >> 1)
423 		       ^ ((__y & 0x01) ? __a : 0));
424       _M_p = 0;
425     }
426 
427   template<typename _UIntType, size_t __w,
428 	   size_t __n, size_t __m, size_t __r,
429 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
430 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
431 	   _UIntType __f>
432     void
433     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
434 			    __s, __b, __t, __c, __l, __f>::
discard(unsigned long long __z)435     discard(unsigned long long __z)
436     {
437       while (__z > state_size - _M_p)
438 	{
439 	  __z -= state_size - _M_p;
440 	  _M_gen_rand();
441 	}
442       _M_p += __z;
443     }
444 
445   template<typename _UIntType, size_t __w,
446 	   size_t __n, size_t __m, size_t __r,
447 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
448 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
449 	   _UIntType __f>
450     typename
451     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
452 			    __s, __b, __t, __c, __l, __f>::result_type
453     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
454 			    __s, __b, __t, __c, __l, __f>::
operator ()()455     operator()()
456     {
457       // Reload the vector - cost is O(n) amortized over n calls.
458       if (_M_p >= state_size)
459 	_M_gen_rand();
460 
461       // Calculate o(x(i)).
462       result_type __z = _M_x[_M_p++];
463       __z ^= (__z >> __u) & __d;
464       __z ^= (__z << __s) & __b;
465       __z ^= (__z << __t) & __c;
466       __z ^= (__z >> __l);
467 
468       return __z;
469     }
470 
471   template<typename _UIntType, size_t __w,
472 	   size_t __n, size_t __m, size_t __r,
473 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
474 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
475 	   _UIntType __f, typename _CharT, typename _Traits>
476     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const mersenne_twister_engine<_UIntType,__w,__n,__m,__r,__a,__u,__d,__s,__b,__t,__c,__l,__f> & __x)477     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
478 	       const mersenne_twister_engine<_UIntType, __w, __n, __m,
479 	       __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x)
480     {
481       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
482       typedef typename __ostream_type::ios_base    __ios_base;
483 
484       const typename __ios_base::fmtflags __flags = __os.flags();
485       const _CharT __fill = __os.fill();
486       const _CharT __space = __os.widen(' ');
487       __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
488       __os.fill(__space);
489 
490       for (size_t __i = 0; __i < __n; ++__i)
491 	__os << __x._M_x[__i] << __space;
492       __os << __x._M_p;
493 
494       __os.flags(__flags);
495       __os.fill(__fill);
496       return __os;
497     }
498 
499   template<typename _UIntType, size_t __w,
500 	   size_t __n, size_t __m, size_t __r,
501 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
502 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
503 	   _UIntType __f, typename _CharT, typename _Traits>
504     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,mersenne_twister_engine<_UIntType,__w,__n,__m,__r,__a,__u,__d,__s,__b,__t,__c,__l,__f> & __x)505     operator>>(std::basic_istream<_CharT, _Traits>& __is,
506 	       mersenne_twister_engine<_UIntType, __w, __n, __m,
507 	       __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x)
508     {
509       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
510       typedef typename __istream_type::ios_base    __ios_base;
511 
512       const typename __ios_base::fmtflags __flags = __is.flags();
513       __is.flags(__ios_base::dec | __ios_base::skipws);
514 
515       for (size_t __i = 0; __i < __n; ++__i)
516 	__is >> __x._M_x[__i];
517       __is >> __x._M_p;
518 
519       __is.flags(__flags);
520       return __is;
521     }
522 
523 
524   template<typename _UIntType, size_t __w, size_t __s, size_t __r>
525     constexpr size_t
526     subtract_with_carry_engine<_UIntType, __w, __s, __r>::word_size;
527 
528   template<typename _UIntType, size_t __w, size_t __s, size_t __r>
529     constexpr size_t
530     subtract_with_carry_engine<_UIntType, __w, __s, __r>::short_lag;
531 
532   template<typename _UIntType, size_t __w, size_t __s, size_t __r>
533     constexpr size_t
534     subtract_with_carry_engine<_UIntType, __w, __s, __r>::long_lag;
535 
536   template<typename _UIntType, size_t __w, size_t __s, size_t __r>
537     constexpr _UIntType
538     subtract_with_carry_engine<_UIntType, __w, __s, __r>::default_seed;
539 
540   template<typename _UIntType, size_t __w, size_t __s, size_t __r>
541     void
542     subtract_with_carry_engine<_UIntType, __w, __s, __r>::
seed(result_type __value)543     seed(result_type __value)
544     {
545       std::linear_congruential_engine<result_type, 40014u, 0u, 2147483563u>
546 	__lcg(__value == 0u ? default_seed : __value);
547 
548       const size_t __n = (__w + 31) / 32;
549 
550       for (size_t __i = 0; __i < long_lag; ++__i)
551 	{
552 	  _UIntType __sum = 0u;
553 	  _UIntType __factor = 1u;
554 	  for (size_t __j = 0; __j < __n; ++__j)
555 	    {
556 	      __sum += __detail::__mod<uint_least32_t,
557 		       __detail::_Shift<uint_least32_t, 32>::__value>
558 			 (__lcg()) * __factor;
559 	      __factor *= __detail::_Shift<_UIntType, 32>::__value;
560 	    }
561 	  _M_x[__i] = __detail::__mod<_UIntType,
562 	    __detail::_Shift<_UIntType, __w>::__value>(__sum);
563 	}
564       _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
565       _M_p = 0;
566     }
567 
568   template<typename _UIntType, size_t __w, size_t __s, size_t __r>
569     template<typename _Sseq>
570       typename std::enable_if<std::is_class<_Sseq>::value>::type
571       subtract_with_carry_engine<_UIntType, __w, __s, __r>::
seed(_Sseq & __q)572       seed(_Sseq& __q)
573       {
574 	const size_t __k = (__w + 31) / 32;
575 	uint_least32_t __arr[__r * __k];
576 	__q.generate(__arr + 0, __arr + __r * __k);
577 
578 	for (size_t __i = 0; __i < long_lag; ++__i)
579 	  {
580 	    _UIntType __sum = 0u;
581 	    _UIntType __factor = 1u;
582 	    for (size_t __j = 0; __j < __k; ++__j)
583 	      {
584 		__sum += __arr[__k * __i + __j] * __factor;
585 		__factor *= __detail::_Shift<_UIntType, 32>::__value;
586 	      }
587 	    _M_x[__i] = __detail::__mod<_UIntType,
588 	      __detail::_Shift<_UIntType, __w>::__value>(__sum);
589 	  }
590 	_M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
591 	_M_p = 0;
592       }
593 
594   template<typename _UIntType, size_t __w, size_t __s, size_t __r>
595     typename subtract_with_carry_engine<_UIntType, __w, __s, __r>::
596 	     result_type
597     subtract_with_carry_engine<_UIntType, __w, __s, __r>::
operator ()()598     operator()()
599     {
600       // Derive short lag index from current index.
601       long __ps = _M_p - short_lag;
602       if (__ps < 0)
603 	__ps += long_lag;
604 
605       // Calculate new x(i) without overflow or division.
606       // NB: Thanks to the requirements for _UIntType, _M_x[_M_p] + _M_carry
607       // cannot overflow.
608       _UIntType __xi;
609       if (_M_x[__ps] >= _M_x[_M_p] + _M_carry)
610 	{
611 	  __xi = _M_x[__ps] - _M_x[_M_p] - _M_carry;
612 	  _M_carry = 0;
613 	}
614       else
615 	{
616 	  __xi = (__detail::_Shift<_UIntType, __w>::__value
617 		  - _M_x[_M_p] - _M_carry + _M_x[__ps]);
618 	  _M_carry = 1;
619 	}
620       _M_x[_M_p] = __xi;
621 
622       // Adjust current index to loop around in ring buffer.
623       if (++_M_p >= long_lag)
624 	_M_p = 0;
625 
626       return __xi;
627     }
628 
629   template<typename _UIntType, size_t __w, size_t __s, size_t __r,
630 	   typename _CharT, typename _Traits>
631     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const subtract_with_carry_engine<_UIntType,__w,__s,__r> & __x)632     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
633 	       const subtract_with_carry_engine<_UIntType,
634 						__w, __s, __r>& __x)
635     {
636       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
637       typedef typename __ostream_type::ios_base    __ios_base;
638 
639       const typename __ios_base::fmtflags __flags = __os.flags();
640       const _CharT __fill = __os.fill();
641       const _CharT __space = __os.widen(' ');
642       __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
643       __os.fill(__space);
644 
645       for (size_t __i = 0; __i < __r; ++__i)
646 	__os << __x._M_x[__i] << __space;
647       __os << __x._M_carry << __space << __x._M_p;
648 
649       __os.flags(__flags);
650       __os.fill(__fill);
651       return __os;
652     }
653 
654   template<typename _UIntType, size_t __w, size_t __s, size_t __r,
655 	   typename _CharT, typename _Traits>
656     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,subtract_with_carry_engine<_UIntType,__w,__s,__r> & __x)657     operator>>(std::basic_istream<_CharT, _Traits>& __is,
658 	       subtract_with_carry_engine<_UIntType, __w, __s, __r>& __x)
659     {
660       typedef std::basic_ostream<_CharT, _Traits>  __istream_type;
661       typedef typename __istream_type::ios_base    __ios_base;
662 
663       const typename __ios_base::fmtflags __flags = __is.flags();
664       __is.flags(__ios_base::dec | __ios_base::skipws);
665 
666       for (size_t __i = 0; __i < __r; ++__i)
667 	__is >> __x._M_x[__i];
668       __is >> __x._M_carry;
669       __is >> __x._M_p;
670 
671       __is.flags(__flags);
672       return __is;
673     }
674 
675 
676   template<typename _RandomNumberEngine, size_t __p, size_t __r>
677     constexpr size_t
678     discard_block_engine<_RandomNumberEngine, __p, __r>::block_size;
679 
680   template<typename _RandomNumberEngine, size_t __p, size_t __r>
681     constexpr size_t
682     discard_block_engine<_RandomNumberEngine, __p, __r>::used_block;
683 
684   template<typename _RandomNumberEngine, size_t __p, size_t __r>
685     typename discard_block_engine<_RandomNumberEngine,
686 			   __p, __r>::result_type
687     discard_block_engine<_RandomNumberEngine, __p, __r>::
operator ()()688     operator()()
689     {
690       if (_M_n >= used_block)
691 	{
692 	  _M_b.discard(block_size - _M_n);
693 	  _M_n = 0;
694 	}
695       ++_M_n;
696       return _M_b();
697     }
698 
699   template<typename _RandomNumberEngine, size_t __p, size_t __r,
700 	   typename _CharT, typename _Traits>
701     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const discard_block_engine<_RandomNumberEngine,__p,__r> & __x)702     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
703 	       const discard_block_engine<_RandomNumberEngine,
704 	       __p, __r>& __x)
705     {
706       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
707       typedef typename __ostream_type::ios_base    __ios_base;
708 
709       const typename __ios_base::fmtflags __flags = __os.flags();
710       const _CharT __fill = __os.fill();
711       const _CharT __space = __os.widen(' ');
712       __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
713       __os.fill(__space);
714 
715       __os << __x.base() << __space << __x._M_n;
716 
717       __os.flags(__flags);
718       __os.fill(__fill);
719       return __os;
720     }
721 
722   template<typename _RandomNumberEngine, size_t __p, size_t __r,
723 	   typename _CharT, typename _Traits>
724     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,discard_block_engine<_RandomNumberEngine,__p,__r> & __x)725     operator>>(std::basic_istream<_CharT, _Traits>& __is,
726 	       discard_block_engine<_RandomNumberEngine, __p, __r>& __x)
727     {
728       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
729       typedef typename __istream_type::ios_base    __ios_base;
730 
731       const typename __ios_base::fmtflags __flags = __is.flags();
732       __is.flags(__ios_base::dec | __ios_base::skipws);
733 
734       __is >> __x._M_b >> __x._M_n;
735 
736       __is.flags(__flags);
737       return __is;
738     }
739 
740 
741   template<typename _RandomNumberEngine, size_t __w, typename _UIntType>
742     typename independent_bits_engine<_RandomNumberEngine, __w, _UIntType>::
743       result_type
744     independent_bits_engine<_RandomNumberEngine, __w, _UIntType>::
operator ()()745     operator()()
746     {
747       typedef typename _RandomNumberEngine::result_type _Eresult_type;
748       const _Eresult_type __r
749 	= (_M_b.max() - _M_b.min() < std::numeric_limits<_Eresult_type>::max()
750 	   ? _M_b.max() - _M_b.min() + 1 : 0);
751       const unsigned __edig = std::numeric_limits<_Eresult_type>::digits;
752       const unsigned __m = __r ? std::__lg(__r) : __edig;
753 
754       typedef typename std::common_type<_Eresult_type, result_type>::type
755 	__ctype;
756       const unsigned __cdig = std::numeric_limits<__ctype>::digits;
757 
758       unsigned __n, __n0;
759       __ctype __s0, __s1, __y0, __y1;
760 
761       for (size_t __i = 0; __i < 2; ++__i)
762 	{
763 	  __n = (__w + __m - 1) / __m + __i;
764 	  __n0 = __n - __w % __n;
765 	  const unsigned __w0 = __w / __n;  // __w0 <= __m
766 
767 	  __s0 = 0;
768 	  __s1 = 0;
769 	  if (__w0 < __cdig)
770 	    {
771 	      __s0 = __ctype(1) << __w0;
772 	      __s1 = __s0 << 1;
773 	    }
774 
775 	  __y0 = 0;
776 	  __y1 = 0;
777 	  if (__r)
778 	    {
779 	      __y0 = __s0 * (__r / __s0);
780 	      if (__s1)
781 		__y1 = __s1 * (__r / __s1);
782 
783 	      if (__r - __y0 <= __y0 / __n)
784 		break;
785 	    }
786 	  else
787 	    break;
788 	}
789 
790       result_type __sum = 0;
791       for (size_t __k = 0; __k < __n0; ++__k)
792 	{
793 	  __ctype __u;
794 	  do
795 	    __u = _M_b() - _M_b.min();
796 	  while (__y0 && __u >= __y0);
797 	  __sum = __s0 * __sum + (__s0 ? __u % __s0 : __u);
798 	}
799       for (size_t __k = __n0; __k < __n; ++__k)
800 	{
801 	  __ctype __u;
802 	  do
803 	    __u = _M_b() - _M_b.min();
804 	  while (__y1 && __u >= __y1);
805 	  __sum = __s1 * __sum + (__s1 ? __u % __s1 : __u);
806 	}
807       return __sum;
808     }
809 
810 
811   template<typename _RandomNumberEngine, size_t __k>
812     constexpr size_t
813     shuffle_order_engine<_RandomNumberEngine, __k>::table_size;
814 
815   template<typename _RandomNumberEngine, size_t __k>
816     typename shuffle_order_engine<_RandomNumberEngine, __k>::result_type
817     shuffle_order_engine<_RandomNumberEngine, __k>::
operator ()()818     operator()()
819     {
820       size_t __j = __k * ((_M_y - _M_b.min())
821 			  / (_M_b.max() - _M_b.min() + 1.0L));
822       _M_y = _M_v[__j];
823       _M_v[__j] = _M_b();
824 
825       return _M_y;
826     }
827 
828   template<typename _RandomNumberEngine, size_t __k,
829 	   typename _CharT, typename _Traits>
830     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const shuffle_order_engine<_RandomNumberEngine,__k> & __x)831     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
832 	       const shuffle_order_engine<_RandomNumberEngine, __k>& __x)
833     {
834       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
835       typedef typename __ostream_type::ios_base    __ios_base;
836 
837       const typename __ios_base::fmtflags __flags = __os.flags();
838       const _CharT __fill = __os.fill();
839       const _CharT __space = __os.widen(' ');
840       __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
841       __os.fill(__space);
842 
843       __os << __x.base();
844       for (size_t __i = 0; __i < __k; ++__i)
845 	__os << __space << __x._M_v[__i];
846       __os << __space << __x._M_y;
847 
848       __os.flags(__flags);
849       __os.fill(__fill);
850       return __os;
851     }
852 
853   template<typename _RandomNumberEngine, size_t __k,
854 	   typename _CharT, typename _Traits>
855     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,shuffle_order_engine<_RandomNumberEngine,__k> & __x)856     operator>>(std::basic_istream<_CharT, _Traits>& __is,
857 	       shuffle_order_engine<_RandomNumberEngine, __k>& __x)
858     {
859       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
860       typedef typename __istream_type::ios_base    __ios_base;
861 
862       const typename __ios_base::fmtflags __flags = __is.flags();
863       __is.flags(__ios_base::dec | __ios_base::skipws);
864 
865       __is >> __x._M_b;
866       for (size_t __i = 0; __i < __k; ++__i)
867 	__is >> __x._M_v[__i];
868       __is >> __x._M_y;
869 
870       __is.flags(__flags);
871       return __is;
872     }
873 
874 
875   template<typename _IntType>
876     template<typename _UniformRandomNumberGenerator>
877       typename uniform_int_distribution<_IntType>::result_type
878       uniform_int_distribution<_IntType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __param)879       operator()(_UniformRandomNumberGenerator& __urng,
880 		 const param_type& __param)
881       {
882 	typedef typename _UniformRandomNumberGenerator::result_type
883 	  _Gresult_type;
884 	typedef typename std::make_unsigned<result_type>::type __utype;
885 	typedef typename std::common_type<_Gresult_type, __utype>::type
886 	  __uctype;
887 
888 	const __uctype __urngmin = __urng.min();
889 	const __uctype __urngmax = __urng.max();
890 	const __uctype __urngrange = __urngmax - __urngmin;
891 	const __uctype __urange
892 	  = __uctype(__param.b()) - __uctype(__param.a());
893 
894 	__uctype __ret;
895 
896 	if (__urngrange > __urange)
897 	  {
898 	    // downscaling
899 	    const __uctype __uerange = __urange + 1; // __urange can be zero
900 	    const __uctype __scaling = __urngrange / __uerange;
901 	    const __uctype __past = __uerange * __scaling;
902 	    do
903 	      __ret = __uctype(__urng()) - __urngmin;
904 	    while (__ret >= __past);
905 	    __ret /= __scaling;
906 	  }
907 	else if (__urngrange < __urange)
908 	  {
909 	    // upscaling
910 	    /*
911 	      Note that every value in [0, urange]
912 	      can be written uniquely as
913 
914 	      (urngrange + 1) * high + low
915 
916 	      where
917 
918 	      high in [0, urange / (urngrange + 1)]
919 
920 	      and
921 
922 	      low in [0, urngrange].
923 	    */
924 	    __uctype __tmp; // wraparound control
925 	    do
926 	      {
927 		const __uctype __uerngrange = __urngrange + 1;
928 		__tmp = (__uerngrange * operator()
929 			 (__urng, param_type(0, __urange / __uerngrange)));
930 		__ret = __tmp + (__uctype(__urng()) - __urngmin);
931 	      }
932 	    while (__ret > __urange || __ret < __tmp);
933 	  }
934 	else
935 	  __ret = __uctype(__urng()) - __urngmin;
936 
937 	return __ret + __param.a();
938       }
939 
940 
941   template<typename _IntType>
942     template<typename _ForwardIterator,
943 	     typename _UniformRandomNumberGenerator>
944       void
945       uniform_int_distribution<_IntType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __param)946       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
947 		      _UniformRandomNumberGenerator& __urng,
948 		      const param_type& __param)
949       {
950 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
951 	typedef typename _UniformRandomNumberGenerator::result_type
952 	  _Gresult_type;
953 	typedef typename std::make_unsigned<result_type>::type __utype;
954 	typedef typename std::common_type<_Gresult_type, __utype>::type
955 	  __uctype;
956 
957 	const __uctype __urngmin = __urng.min();
958 	const __uctype __urngmax = __urng.max();
959 	const __uctype __urngrange = __urngmax - __urngmin;
960 	const __uctype __urange
961 	  = __uctype(__param.b()) - __uctype(__param.a());
962 
963 	__uctype __ret;
964 
965 	if (__urngrange > __urange)
966 	  {
967 	    if (__detail::_Power_of_2(__urngrange + 1)
968 		&& __detail::_Power_of_2(__urange + 1))
969 	      {
970 		while (__f != __t)
971 		  {
972 		    __ret = __uctype(__urng()) - __urngmin;
973 		    *__f++ = (__ret & __urange) + __param.a();
974 		  }
975 	      }
976 	    else
977 	      {
978 		// downscaling
979 		const __uctype __uerange = __urange + 1; // __urange can be zero
980 		const __uctype __scaling = __urngrange / __uerange;
981 		const __uctype __past = __uerange * __scaling;
982 		while (__f != __t)
983 		  {
984 		    do
985 		      __ret = __uctype(__urng()) - __urngmin;
986 		    while (__ret >= __past);
987 		    *__f++ = __ret / __scaling + __param.a();
988 		  }
989 	      }
990 	  }
991 	else if (__urngrange < __urange)
992 	  {
993 	    // upscaling
994 	    /*
995 	      Note that every value in [0, urange]
996 	      can be written uniquely as
997 
998 	      (urngrange + 1) * high + low
999 
1000 	      where
1001 
1002 	      high in [0, urange / (urngrange + 1)]
1003 
1004 	      and
1005 
1006 	      low in [0, urngrange].
1007 	    */
1008 	    __uctype __tmp; // wraparound control
1009 	    while (__f != __t)
1010 	      {
1011 		do
1012 		  {
1013 		    const __uctype __uerngrange = __urngrange + 1;
1014 		    __tmp = (__uerngrange * operator()
1015 			     (__urng, param_type(0, __urange / __uerngrange)));
1016 		    __ret = __tmp + (__uctype(__urng()) - __urngmin);
1017 		  }
1018 		while (__ret > __urange || __ret < __tmp);
1019 		*__f++ = __ret;
1020 	      }
1021 	  }
1022 	else
1023 	  while (__f != __t)
1024 	    *__f++ = __uctype(__urng()) - __urngmin + __param.a();
1025       }
1026 
1027   template<typename _IntType, typename _CharT, typename _Traits>
1028     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const uniform_int_distribution<_IntType> & __x)1029     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1030 	       const uniform_int_distribution<_IntType>& __x)
1031     {
1032       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1033       typedef typename __ostream_type::ios_base    __ios_base;
1034 
1035       const typename __ios_base::fmtflags __flags = __os.flags();
1036       const _CharT __fill = __os.fill();
1037       const _CharT __space = __os.widen(' ');
1038       __os.flags(__ios_base::scientific | __ios_base::left);
1039       __os.fill(__space);
1040 
1041       __os << __x.a() << __space << __x.b();
1042 
1043       __os.flags(__flags);
1044       __os.fill(__fill);
1045       return __os;
1046     }
1047 
1048   template<typename _IntType, typename _CharT, typename _Traits>
1049     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,uniform_int_distribution<_IntType> & __x)1050     operator>>(std::basic_istream<_CharT, _Traits>& __is,
1051 	       uniform_int_distribution<_IntType>& __x)
1052     {
1053       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1054       typedef typename __istream_type::ios_base    __ios_base;
1055 
1056       const typename __ios_base::fmtflags __flags = __is.flags();
1057       __is.flags(__ios_base::dec | __ios_base::skipws);
1058 
1059       _IntType __a, __b;
1060       __is >> __a >> __b;
1061       __x.param(typename uniform_int_distribution<_IntType>::
1062 		param_type(__a, __b));
1063 
1064       __is.flags(__flags);
1065       return __is;
1066     }
1067 
1068 
1069   template<typename _RealType>
1070     template<typename _ForwardIterator,
1071 	     typename _UniformRandomNumberGenerator>
1072       void
1073       uniform_real_distribution<_RealType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)1074       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
1075 		      _UniformRandomNumberGenerator& __urng,
1076 		      const param_type& __p)
1077       {
1078 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
1079 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
1080 	  __aurng(__urng);
1081 	auto __range = __p.b() - __p.a();
1082 	while (__f != __t)
1083 	  *__f++ = __aurng() * __range + __p.a();
1084       }
1085 
1086   template<typename _RealType, typename _CharT, typename _Traits>
1087     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const uniform_real_distribution<_RealType> & __x)1088     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1089 	       const uniform_real_distribution<_RealType>& __x)
1090     {
1091       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1092       typedef typename __ostream_type::ios_base    __ios_base;
1093 
1094       const typename __ios_base::fmtflags __flags = __os.flags();
1095       const _CharT __fill = __os.fill();
1096       const std::streamsize __precision = __os.precision();
1097       const _CharT __space = __os.widen(' ');
1098       __os.flags(__ios_base::scientific | __ios_base::left);
1099       __os.fill(__space);
1100       __os.precision(std::numeric_limits<_RealType>::max_digits10);
1101 
1102       __os << __x.a() << __space << __x.b();
1103 
1104       __os.flags(__flags);
1105       __os.fill(__fill);
1106       __os.precision(__precision);
1107       return __os;
1108     }
1109 
1110   template<typename _RealType, typename _CharT, typename _Traits>
1111     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,uniform_real_distribution<_RealType> & __x)1112     operator>>(std::basic_istream<_CharT, _Traits>& __is,
1113 	       uniform_real_distribution<_RealType>& __x)
1114     {
1115       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1116       typedef typename __istream_type::ios_base    __ios_base;
1117 
1118       const typename __ios_base::fmtflags __flags = __is.flags();
1119       __is.flags(__ios_base::skipws);
1120 
1121       _RealType __a, __b;
1122       __is >> __a >> __b;
1123       __x.param(typename uniform_real_distribution<_RealType>::
1124 		param_type(__a, __b));
1125 
1126       __is.flags(__flags);
1127       return __is;
1128     }
1129 
1130 
1131   template<typename _ForwardIterator,
1132 	   typename _UniformRandomNumberGenerator>
1133     void
1134     std::bernoulli_distribution::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)1135     __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
1136 		    _UniformRandomNumberGenerator& __urng,
1137 		    const param_type& __p)
1138     {
1139       __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
1140       __detail::_Adaptor<_UniformRandomNumberGenerator, double>
1141 	__aurng(__urng);
1142       auto __limit = __p.p() * (__aurng.max() - __aurng.min());
1143 
1144       while (__f != __t)
1145 	*__f++ = (__aurng() - __aurng.min()) < __limit;
1146     }
1147 
1148   template<typename _CharT, typename _Traits>
1149     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const bernoulli_distribution & __x)1150     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1151 	       const bernoulli_distribution& __x)
1152     {
1153       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1154       typedef typename __ostream_type::ios_base    __ios_base;
1155 
1156       const typename __ios_base::fmtflags __flags = __os.flags();
1157       const _CharT __fill = __os.fill();
1158       const std::streamsize __precision = __os.precision();
1159       __os.flags(__ios_base::scientific | __ios_base::left);
1160       __os.fill(__os.widen(' '));
1161       __os.precision(std::numeric_limits<double>::max_digits10);
1162 
1163       __os << __x.p();
1164 
1165       __os.flags(__flags);
1166       __os.fill(__fill);
1167       __os.precision(__precision);
1168       return __os;
1169     }
1170 
1171 
1172   template<typename _IntType>
1173     template<typename _UniformRandomNumberGenerator>
1174       typename geometric_distribution<_IntType>::result_type
1175       geometric_distribution<_IntType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __param)1176       operator()(_UniformRandomNumberGenerator& __urng,
1177 		 const param_type& __param)
1178       {
1179 	// About the epsilon thing see this thread:
1180 	// http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html
1181 	const double __naf =
1182 	  (1 - std::numeric_limits<double>::epsilon()) / 2;
1183 	// The largest _RealType convertible to _IntType.
1184 	const double __thr =
1185 	  std::numeric_limits<_IntType>::max() + __naf;
1186 	__detail::_Adaptor<_UniformRandomNumberGenerator, double>
1187 	  __aurng(__urng);
1188 
1189 	double __cand;
1190 	do
1191 	  __cand = std::floor(std::log(1.0 - __aurng()) / __param._M_log_1_p);
1192 	while (__cand >= __thr);
1193 
1194 	return result_type(__cand + __naf);
1195       }
1196 
1197   template<typename _IntType>
1198     template<typename _ForwardIterator,
1199 	     typename _UniformRandomNumberGenerator>
1200       void
1201       geometric_distribution<_IntType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __param)1202       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
1203 		      _UniformRandomNumberGenerator& __urng,
1204 		      const param_type& __param)
1205       {
1206 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
1207 	// About the epsilon thing see this thread:
1208 	// http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html
1209 	const double __naf =
1210 	  (1 - std::numeric_limits<double>::epsilon()) / 2;
1211 	// The largest _RealType convertible to _IntType.
1212 	const double __thr =
1213 	  std::numeric_limits<_IntType>::max() + __naf;
1214 	__detail::_Adaptor<_UniformRandomNumberGenerator, double>
1215 	  __aurng(__urng);
1216 
1217 	while (__f != __t)
1218 	  {
1219 	    double __cand;
1220 	    do
1221 	      __cand = std::floor(std::log(1.0 - __aurng())
1222 				  / __param._M_log_1_p);
1223 	    while (__cand >= __thr);
1224 
1225 	    *__f++ = __cand + __naf;
1226 	  }
1227       }
1228 
1229   template<typename _IntType,
1230 	   typename _CharT, typename _Traits>
1231     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const geometric_distribution<_IntType> & __x)1232     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1233 	       const geometric_distribution<_IntType>& __x)
1234     {
1235       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1236       typedef typename __ostream_type::ios_base    __ios_base;
1237 
1238       const typename __ios_base::fmtflags __flags = __os.flags();
1239       const _CharT __fill = __os.fill();
1240       const std::streamsize __precision = __os.precision();
1241       __os.flags(__ios_base::scientific | __ios_base::left);
1242       __os.fill(__os.widen(' '));
1243       __os.precision(std::numeric_limits<double>::max_digits10);
1244 
1245       __os << __x.p();
1246 
1247       __os.flags(__flags);
1248       __os.fill(__fill);
1249       __os.precision(__precision);
1250       return __os;
1251     }
1252 
1253   template<typename _IntType,
1254 	   typename _CharT, typename _Traits>
1255     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,geometric_distribution<_IntType> & __x)1256     operator>>(std::basic_istream<_CharT, _Traits>& __is,
1257 	       geometric_distribution<_IntType>& __x)
1258     {
1259       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1260       typedef typename __istream_type::ios_base    __ios_base;
1261 
1262       const typename __ios_base::fmtflags __flags = __is.flags();
1263       __is.flags(__ios_base::skipws);
1264 
1265       double __p;
1266       __is >> __p;
1267       __x.param(typename geometric_distribution<_IntType>::param_type(__p));
1268 
1269       __is.flags(__flags);
1270       return __is;
1271     }
1272 
1273   // This is Leger's algorithm, also in Devroye, Ch. X, Example 1.5.
1274   template<typename _IntType>
1275     template<typename _UniformRandomNumberGenerator>
1276       typename negative_binomial_distribution<_IntType>::result_type
1277       negative_binomial_distribution<_IntType>::
operator ()(_UniformRandomNumberGenerator & __urng)1278       operator()(_UniformRandomNumberGenerator& __urng)
1279       {
1280 	const double __y = _M_gd(__urng);
1281 
1282 	// XXX Is the constructor too slow?
1283 	std::poisson_distribution<result_type> __poisson(__y);
1284 	return __poisson(__urng);
1285       }
1286 
1287   template<typename _IntType>
1288     template<typename _UniformRandomNumberGenerator>
1289       typename negative_binomial_distribution<_IntType>::result_type
1290       negative_binomial_distribution<_IntType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __p)1291       operator()(_UniformRandomNumberGenerator& __urng,
1292 		 const param_type& __p)
1293       {
1294 	typedef typename std::gamma_distribution<double>::param_type
1295 	  param_type;
1296 
1297 	const double __y =
1298 	  _M_gd(__urng, param_type(__p.k(), (1.0 - __p.p()) / __p.p()));
1299 
1300 	std::poisson_distribution<result_type> __poisson(__y);
1301 	return __poisson(__urng);
1302       }
1303 
1304   template<typename _IntType>
1305     template<typename _ForwardIterator,
1306 	     typename _UniformRandomNumberGenerator>
1307       void
1308       negative_binomial_distribution<_IntType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng)1309       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
1310 		      _UniformRandomNumberGenerator& __urng)
1311       {
1312 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
1313 	while (__f != __t)
1314 	  {
1315 	    const double __y = _M_gd(__urng);
1316 
1317 	    // XXX Is the constructor too slow?
1318 	    std::poisson_distribution<result_type> __poisson(__y);
1319 	    *__f++ = __poisson(__urng);
1320 	  }
1321       }
1322 
1323   template<typename _IntType>
1324     template<typename _ForwardIterator,
1325 	     typename _UniformRandomNumberGenerator>
1326       void
1327       negative_binomial_distribution<_IntType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)1328       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
1329 		      _UniformRandomNumberGenerator& __urng,
1330 		      const param_type& __p)
1331       {
1332 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
1333 	typename std::gamma_distribution<result_type>::param_type
1334 	  __p2(__p.k(), (1.0 - __p.p()) / __p.p());
1335 
1336 	while (__f != __t)
1337 	  {
1338 	    const double __y = _M_gd(__urng, __p2);
1339 
1340 	    std::poisson_distribution<result_type> __poisson(__y);
1341 	    *__f++ = __poisson(__urng);
1342 	  }
1343       }
1344 
1345   template<typename _IntType, typename _CharT, typename _Traits>
1346     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const negative_binomial_distribution<_IntType> & __x)1347     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1348 	       const negative_binomial_distribution<_IntType>& __x)
1349     {
1350       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1351       typedef typename __ostream_type::ios_base    __ios_base;
1352 
1353       const typename __ios_base::fmtflags __flags = __os.flags();
1354       const _CharT __fill = __os.fill();
1355       const std::streamsize __precision = __os.precision();
1356       const _CharT __space = __os.widen(' ');
1357       __os.flags(__ios_base::scientific | __ios_base::left);
1358       __os.fill(__os.widen(' '));
1359       __os.precision(std::numeric_limits<double>::max_digits10);
1360 
1361       __os << __x.k() << __space << __x.p()
1362 	   << __space << __x._M_gd;
1363 
1364       __os.flags(__flags);
1365       __os.fill(__fill);
1366       __os.precision(__precision);
1367       return __os;
1368     }
1369 
1370   template<typename _IntType, typename _CharT, typename _Traits>
1371     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,negative_binomial_distribution<_IntType> & __x)1372     operator>>(std::basic_istream<_CharT, _Traits>& __is,
1373 	       negative_binomial_distribution<_IntType>& __x)
1374     {
1375       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1376       typedef typename __istream_type::ios_base    __ios_base;
1377 
1378       const typename __ios_base::fmtflags __flags = __is.flags();
1379       __is.flags(__ios_base::skipws);
1380 
1381       _IntType __k;
1382       double __p;
1383       __is >> __k >> __p >> __x._M_gd;
1384       __x.param(typename negative_binomial_distribution<_IntType>::
1385 		param_type(__k, __p));
1386 
1387       __is.flags(__flags);
1388       return __is;
1389     }
1390 
1391 
1392   template<typename _IntType>
1393     void
1394     poisson_distribution<_IntType>::param_type::
_M_initialize()1395     _M_initialize()
1396     {
1397 #if _GLIBCXX_USE_C99_MATH_TR1
1398       if (_M_mean >= 12)
1399 	{
1400 	  const double __m = std::floor(_M_mean);
1401 	  _M_lm_thr = std::log(_M_mean);
1402 	  _M_lfm = std::lgamma(__m + 1);
1403 	  _M_sm = std::sqrt(__m);
1404 
1405 	  const double __pi_4 = 0.7853981633974483096156608458198757L;
1406 	  const double __dx = std::sqrt(2 * __m * std::log(32 * __m
1407 							      / __pi_4));
1408 	  _M_d = std::round(std::max(6.0, std::min(__m, __dx)));
1409 	  const double __cx = 2 * __m + _M_d;
1410 	  _M_scx = std::sqrt(__cx / 2);
1411 	  _M_1cx = 1 / __cx;
1412 
1413 	  _M_c2b = std::sqrt(__pi_4 * __cx) * std::exp(_M_1cx);
1414 	  _M_cb = 2 * __cx * std::exp(-_M_d * _M_1cx * (1 + _M_d / 2))
1415 		/ _M_d;
1416 	}
1417       else
1418 #endif
1419 	_M_lm_thr = std::exp(-_M_mean);
1420       }
1421 
1422   /**
1423    * A rejection algorithm when mean >= 12 and a simple method based
1424    * upon the multiplication of uniform random variates otherwise.
1425    * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1
1426    * is defined.
1427    *
1428    * Reference:
1429    * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
1430    * New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!).
1431    */
1432   template<typename _IntType>
1433     template<typename _UniformRandomNumberGenerator>
1434       typename poisson_distribution<_IntType>::result_type
1435       poisson_distribution<_IntType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __param)1436       operator()(_UniformRandomNumberGenerator& __urng,
1437 		 const param_type& __param)
1438       {
1439 	__detail::_Adaptor<_UniformRandomNumberGenerator, double>
1440 	  __aurng(__urng);
1441 #if _GLIBCXX_USE_C99_MATH_TR1
1442 	if (__param.mean() >= 12)
1443 	  {
1444 	    double __x;
1445 
1446 	    // See comments above...
1447 	    const double __naf =
1448 	      (1 - std::numeric_limits<double>::epsilon()) / 2;
1449 	    const double __thr =
1450 	      std::numeric_limits<_IntType>::max() + __naf;
1451 
1452 	    const double __m = std::floor(__param.mean());
1453 	    // sqrt(pi / 2)
1454 	    const double __spi_2 = 1.2533141373155002512078826424055226L;
1455 	    const double __c1 = __param._M_sm * __spi_2;
1456 	    const double __c2 = __param._M_c2b + __c1;
1457 	    const double __c3 = __c2 + 1;
1458 	    const double __c4 = __c3 + 1;
1459 	    // e^(1 / 78)
1460 	    const double __e178 = 1.0129030479320018583185514777512983L;
1461 	    const double __c5 = __c4 + __e178;
1462 	    const double __c = __param._M_cb + __c5;
1463 	    const double __2cx = 2 * (2 * __m + __param._M_d);
1464 
1465 	    bool __reject = true;
1466 	    do
1467 	      {
1468 		const double __u = __c * __aurng();
1469 		const double __e = -std::log(1.0 - __aurng());
1470 
1471 		double __w = 0.0;
1472 
1473 		if (__u <= __c1)
1474 		  {
1475 		    const double __n = _M_nd(__urng);
1476 		    const double __y = -std::abs(__n) * __param._M_sm - 1;
1477 		    __x = std::floor(__y);
1478 		    __w = -__n * __n / 2;
1479 		    if (__x < -__m)
1480 		      continue;
1481 		  }
1482 		else if (__u <= __c2)
1483 		  {
1484 		    const double __n = _M_nd(__urng);
1485 		    const double __y = 1 + std::abs(__n) * __param._M_scx;
1486 		    __x = std::ceil(__y);
1487 		    __w = __y * (2 - __y) * __param._M_1cx;
1488 		    if (__x > __param._M_d)
1489 		      continue;
1490 		  }
1491 		else if (__u <= __c3)
1492 		  // NB: This case not in the book, nor in the Errata,
1493 		  // but should be ok...
1494 		  __x = -1;
1495 		else if (__u <= __c4)
1496 		  __x = 0;
1497 		else if (__u <= __c5)
1498 		  __x = 1;
1499 		else
1500 		  {
1501 		    const double __v = -std::log(1.0 - __aurng());
1502 		    const double __y = __param._M_d
1503 				     + __v * __2cx / __param._M_d;
1504 		    __x = std::ceil(__y);
1505 		    __w = -__param._M_d * __param._M_1cx * (1 + __y / 2);
1506 		  }
1507 
1508 		__reject = (__w - __e - __x * __param._M_lm_thr
1509 			    > __param._M_lfm - std::lgamma(__x + __m + 1));
1510 
1511 		__reject |= __x + __m >= __thr;
1512 
1513 	      } while (__reject);
1514 
1515 	    return result_type(__x + __m + __naf);
1516 	  }
1517 	else
1518 #endif
1519 	  {
1520 	    _IntType     __x = 0;
1521 	    double __prod = 1.0;
1522 
1523 	    do
1524 	      {
1525 		__prod *= __aurng();
1526 		__x += 1;
1527 	      }
1528 	    while (__prod > __param._M_lm_thr);
1529 
1530 	    return __x - 1;
1531 	  }
1532       }
1533 
1534   template<typename _IntType>
1535     template<typename _ForwardIterator,
1536 	     typename _UniformRandomNumberGenerator>
1537       void
1538       poisson_distribution<_IntType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __param)1539       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
1540 		      _UniformRandomNumberGenerator& __urng,
1541 		      const param_type& __param)
1542       {
1543 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
1544 	// We could duplicate everything from operator()...
1545 	while (__f != __t)
1546 	  *__f++ = this->operator()(__urng, __param);
1547       }
1548 
1549   template<typename _IntType,
1550 	   typename _CharT, typename _Traits>
1551     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const poisson_distribution<_IntType> & __x)1552     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1553 	       const poisson_distribution<_IntType>& __x)
1554     {
1555       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1556       typedef typename __ostream_type::ios_base    __ios_base;
1557 
1558       const typename __ios_base::fmtflags __flags = __os.flags();
1559       const _CharT __fill = __os.fill();
1560       const std::streamsize __precision = __os.precision();
1561       const _CharT __space = __os.widen(' ');
1562       __os.flags(__ios_base::scientific | __ios_base::left);
1563       __os.fill(__space);
1564       __os.precision(std::numeric_limits<double>::max_digits10);
1565 
1566       __os << __x.mean() << __space << __x._M_nd;
1567 
1568       __os.flags(__flags);
1569       __os.fill(__fill);
1570       __os.precision(__precision);
1571       return __os;
1572     }
1573 
1574   template<typename _IntType,
1575 	   typename _CharT, typename _Traits>
1576     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,poisson_distribution<_IntType> & __x)1577     operator>>(std::basic_istream<_CharT, _Traits>& __is,
1578 	       poisson_distribution<_IntType>& __x)
1579     {
1580       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1581       typedef typename __istream_type::ios_base    __ios_base;
1582 
1583       const typename __ios_base::fmtflags __flags = __is.flags();
1584       __is.flags(__ios_base::skipws);
1585 
1586       double __mean;
1587       __is >> __mean >> __x._M_nd;
1588       __x.param(typename poisson_distribution<_IntType>::param_type(__mean));
1589 
1590       __is.flags(__flags);
1591       return __is;
1592     }
1593 
1594 
1595   template<typename _IntType>
1596     void
1597     binomial_distribution<_IntType>::param_type::
_M_initialize()1598     _M_initialize()
1599     {
1600       const double __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p;
1601 
1602       _M_easy = true;
1603 
1604 #if _GLIBCXX_USE_C99_MATH_TR1
1605       if (_M_t * __p12 >= 8)
1606 	{
1607 	  _M_easy = false;
1608 	  const double __np = std::floor(_M_t * __p12);
1609 	  const double __pa = __np / _M_t;
1610 	  const double __1p = 1 - __pa;
1611 
1612 	  const double __pi_4 = 0.7853981633974483096156608458198757L;
1613 	  const double __d1x =
1614 	    std::sqrt(__np * __1p * std::log(32 * __np
1615 					     / (81 * __pi_4 * __1p)));
1616 	  _M_d1 = std::round(std::max(1.0, __d1x));
1617 	  const double __d2x =
1618 	    std::sqrt(__np * __1p * std::log(32 * _M_t * __1p
1619 					     / (__pi_4 * __pa)));
1620 	  _M_d2 = std::round(std::max(1.0, __d2x));
1621 
1622 	  // sqrt(pi / 2)
1623 	  const double __spi_2 = 1.2533141373155002512078826424055226L;
1624 	  _M_s1 = std::sqrt(__np * __1p) * (1 + _M_d1 / (4 * __np));
1625 	  _M_s2 = std::sqrt(__np * __1p) * (1 + _M_d2 / (4 * _M_t * __1p));
1626 	  _M_c = 2 * _M_d1 / __np;
1627 	  _M_a1 = std::exp(_M_c) * _M_s1 * __spi_2;
1628 	  const double __a12 = _M_a1 + _M_s2 * __spi_2;
1629 	  const double __s1s = _M_s1 * _M_s1;
1630 	  _M_a123 = __a12 + (std::exp(_M_d1 / (_M_t * __1p))
1631 			     * 2 * __s1s / _M_d1
1632 			     * std::exp(-_M_d1 * _M_d1 / (2 * __s1s)));
1633 	  const double __s2s = _M_s2 * _M_s2;
1634 	  _M_s = (_M_a123 + 2 * __s2s / _M_d2
1635 		  * std::exp(-_M_d2 * _M_d2 / (2 * __s2s)));
1636 	  _M_lf = (std::lgamma(__np + 1)
1637 		   + std::lgamma(_M_t - __np + 1));
1638 	  _M_lp1p = std::log(__pa / __1p);
1639 
1640 	  _M_q = -std::log(1 - (__p12 - __pa) / __1p);
1641 	}
1642       else
1643 #endif
1644 	_M_q = -std::log(1 - __p12);
1645     }
1646 
1647   template<typename _IntType>
1648     template<typename _UniformRandomNumberGenerator>
1649       typename binomial_distribution<_IntType>::result_type
1650       binomial_distribution<_IntType>::
_M_waiting(_UniformRandomNumberGenerator & __urng,_IntType __t,double __q)1651       _M_waiting(_UniformRandomNumberGenerator& __urng,
1652 		 _IntType __t, double __q)
1653       {
1654 	_IntType __x = 0;
1655 	double __sum = 0.0;
1656 	__detail::_Adaptor<_UniformRandomNumberGenerator, double>
1657 	  __aurng(__urng);
1658 
1659 	do
1660 	  {
1661 	    if (__t == __x)
1662 	      return __x;
1663 	    const double __e = -std::log(1.0 - __aurng());
1664 	    __sum += __e / (__t - __x);
1665 	    __x += 1;
1666 	  }
1667 	while (__sum <= __q);
1668 
1669 	return __x - 1;
1670       }
1671 
1672   /**
1673    * A rejection algorithm when t * p >= 8 and a simple waiting time
1674    * method - the second in the referenced book - otherwise.
1675    * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1
1676    * is defined.
1677    *
1678    * Reference:
1679    * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
1680    * New York, 1986, Ch. X, Sect. 4 (+ Errata!).
1681    */
1682   template<typename _IntType>
1683     template<typename _UniformRandomNumberGenerator>
1684       typename binomial_distribution<_IntType>::result_type
1685       binomial_distribution<_IntType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __param)1686       operator()(_UniformRandomNumberGenerator& __urng,
1687 		 const param_type& __param)
1688       {
1689 	result_type __ret;
1690 	const _IntType __t = __param.t();
1691 	const double __p = __param.p();
1692 	const double __p12 = __p <= 0.5 ? __p : 1.0 - __p;
1693 	__detail::_Adaptor<_UniformRandomNumberGenerator, double>
1694 	  __aurng(__urng);
1695 
1696 #if _GLIBCXX_USE_C99_MATH_TR1
1697 	if (!__param._M_easy)
1698 	  {
1699 	    double __x;
1700 
1701 	    // See comments above...
1702 	    const double __naf =
1703 	      (1 - std::numeric_limits<double>::epsilon()) / 2;
1704 	    const double __thr =
1705 	      std::numeric_limits<_IntType>::max() + __naf;
1706 
1707 	    const double __np = std::floor(__t * __p12);
1708 
1709 	    // sqrt(pi / 2)
1710 	    const double __spi_2 = 1.2533141373155002512078826424055226L;
1711 	    const double __a1 = __param._M_a1;
1712 	    const double __a12 = __a1 + __param._M_s2 * __spi_2;
1713 	    const double __a123 = __param._M_a123;
1714 	    const double __s1s = __param._M_s1 * __param._M_s1;
1715 	    const double __s2s = __param._M_s2 * __param._M_s2;
1716 
1717 	    bool __reject;
1718 	    do
1719 	      {
1720 		const double __u = __param._M_s * __aurng();
1721 
1722 		double __v;
1723 
1724 		if (__u <= __a1)
1725 		  {
1726 		    const double __n = _M_nd(__urng);
1727 		    const double __y = __param._M_s1 * std::abs(__n);
1728 		    __reject = __y >= __param._M_d1;
1729 		    if (!__reject)
1730 		      {
1731 			const double __e = -std::log(1.0 - __aurng());
1732 			__x = std::floor(__y);
1733 			__v = -__e - __n * __n / 2 + __param._M_c;
1734 		      }
1735 		  }
1736 		else if (__u <= __a12)
1737 		  {
1738 		    const double __n = _M_nd(__urng);
1739 		    const double __y = __param._M_s2 * std::abs(__n);
1740 		    __reject = __y >= __param._M_d2;
1741 		    if (!__reject)
1742 		      {
1743 			const double __e = -std::log(1.0 - __aurng());
1744 			__x = std::floor(-__y);
1745 			__v = -__e - __n * __n / 2;
1746 		      }
1747 		  }
1748 		else if (__u <= __a123)
1749 		  {
1750 		    const double __e1 = -std::log(1.0 - __aurng());
1751 		    const double __e2 = -std::log(1.0 - __aurng());
1752 
1753 		    const double __y = __param._M_d1
1754 				     + 2 * __s1s * __e1 / __param._M_d1;
1755 		    __x = std::floor(__y);
1756 		    __v = (-__e2 + __param._M_d1 * (1 / (__t - __np)
1757 						    -__y / (2 * __s1s)));
1758 		    __reject = false;
1759 		  }
1760 		else
1761 		  {
1762 		    const double __e1 = -std::log(1.0 - __aurng());
1763 		    const double __e2 = -std::log(1.0 - __aurng());
1764 
1765 		    const double __y = __param._M_d2
1766 				     + 2 * __s2s * __e1 / __param._M_d2;
1767 		    __x = std::floor(-__y);
1768 		    __v = -__e2 - __param._M_d2 * __y / (2 * __s2s);
1769 		    __reject = false;
1770 		  }
1771 
1772 		__reject = __reject || __x < -__np || __x > __t - __np;
1773 		if (!__reject)
1774 		  {
1775 		    const double __lfx =
1776 		      std::lgamma(__np + __x + 1)
1777 		      + std::lgamma(__t - (__np + __x) + 1);
1778 		    __reject = __v > __param._M_lf - __lfx
1779 			     + __x * __param._M_lp1p;
1780 		  }
1781 
1782 		__reject |= __x + __np >= __thr;
1783 	      }
1784 	    while (__reject);
1785 
1786 	    __x += __np + __naf;
1787 
1788 	    const _IntType __z = _M_waiting(__urng, __t - _IntType(__x),
1789 					    __param._M_q);
1790 	    __ret = _IntType(__x) + __z;
1791 	  }
1792 	else
1793 #endif
1794 	  __ret = _M_waiting(__urng, __t, __param._M_q);
1795 
1796 	if (__p12 != __p)
1797 	  __ret = __t - __ret;
1798 	return __ret;
1799       }
1800 
1801   template<typename _IntType>
1802     template<typename _ForwardIterator,
1803 	     typename _UniformRandomNumberGenerator>
1804       void
1805       binomial_distribution<_IntType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __param)1806       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
1807 		      _UniformRandomNumberGenerator& __urng,
1808 		      const param_type& __param)
1809       {
1810 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
1811 	// We could duplicate everything from operator()...
1812 	while (__f != __t)
1813 	  *__f++ = this->operator()(__urng, __param);
1814       }
1815 
1816   template<typename _IntType,
1817 	   typename _CharT, typename _Traits>
1818     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const binomial_distribution<_IntType> & __x)1819     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1820 	       const binomial_distribution<_IntType>& __x)
1821     {
1822       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1823       typedef typename __ostream_type::ios_base    __ios_base;
1824 
1825       const typename __ios_base::fmtflags __flags = __os.flags();
1826       const _CharT __fill = __os.fill();
1827       const std::streamsize __precision = __os.precision();
1828       const _CharT __space = __os.widen(' ');
1829       __os.flags(__ios_base::scientific | __ios_base::left);
1830       __os.fill(__space);
1831       __os.precision(std::numeric_limits<double>::max_digits10);
1832 
1833       __os << __x.t() << __space << __x.p()
1834 	   << __space << __x._M_nd;
1835 
1836       __os.flags(__flags);
1837       __os.fill(__fill);
1838       __os.precision(__precision);
1839       return __os;
1840     }
1841 
1842   template<typename _IntType,
1843 	   typename _CharT, typename _Traits>
1844     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,binomial_distribution<_IntType> & __x)1845     operator>>(std::basic_istream<_CharT, _Traits>& __is,
1846 	       binomial_distribution<_IntType>& __x)
1847     {
1848       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1849       typedef typename __istream_type::ios_base    __ios_base;
1850 
1851       const typename __ios_base::fmtflags __flags = __is.flags();
1852       __is.flags(__ios_base::dec | __ios_base::skipws);
1853 
1854       _IntType __t;
1855       double __p;
1856       __is >> __t >> __p >> __x._M_nd;
1857       __x.param(typename binomial_distribution<_IntType>::
1858 		param_type(__t, __p));
1859 
1860       __is.flags(__flags);
1861       return __is;
1862     }
1863 
1864 
1865   template<typename _RealType>
1866     template<typename _ForwardIterator,
1867 	     typename _UniformRandomNumberGenerator>
1868       void
1869       std::exponential_distribution<_RealType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)1870       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
1871 		      _UniformRandomNumberGenerator& __urng,
1872 		      const param_type& __p)
1873       {
1874 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
1875 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
1876 	  __aurng(__urng);
1877 	while (__f != __t)
1878 	  *__f++ = -std::log(result_type(1) - __aurng()) / __p.lambda();
1879       }
1880 
1881   template<typename _RealType, typename _CharT, typename _Traits>
1882     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const exponential_distribution<_RealType> & __x)1883     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1884 	       const exponential_distribution<_RealType>& __x)
1885     {
1886       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1887       typedef typename __ostream_type::ios_base    __ios_base;
1888 
1889       const typename __ios_base::fmtflags __flags = __os.flags();
1890       const _CharT __fill = __os.fill();
1891       const std::streamsize __precision = __os.precision();
1892       __os.flags(__ios_base::scientific | __ios_base::left);
1893       __os.fill(__os.widen(' '));
1894       __os.precision(std::numeric_limits<_RealType>::max_digits10);
1895 
1896       __os << __x.lambda();
1897 
1898       __os.flags(__flags);
1899       __os.fill(__fill);
1900       __os.precision(__precision);
1901       return __os;
1902     }
1903 
1904   template<typename _RealType, typename _CharT, typename _Traits>
1905     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,exponential_distribution<_RealType> & __x)1906     operator>>(std::basic_istream<_CharT, _Traits>& __is,
1907 	       exponential_distribution<_RealType>& __x)
1908     {
1909       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1910       typedef typename __istream_type::ios_base    __ios_base;
1911 
1912       const typename __ios_base::fmtflags __flags = __is.flags();
1913       __is.flags(__ios_base::dec | __ios_base::skipws);
1914 
1915       _RealType __lambda;
1916       __is >> __lambda;
1917       __x.param(typename exponential_distribution<_RealType>::
1918 		param_type(__lambda));
1919 
1920       __is.flags(__flags);
1921       return __is;
1922     }
1923 
1924 
1925   /**
1926    * Polar method due to Marsaglia.
1927    *
1928    * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
1929    * New York, 1986, Ch. V, Sect. 4.4.
1930    */
1931   template<typename _RealType>
1932     template<typename _UniformRandomNumberGenerator>
1933       typename normal_distribution<_RealType>::result_type
1934       normal_distribution<_RealType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __param)1935       operator()(_UniformRandomNumberGenerator& __urng,
1936 		 const param_type& __param)
1937       {
1938 	result_type __ret;
1939 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
1940 	  __aurng(__urng);
1941 
1942 	if (_M_saved_available)
1943 	  {
1944 	    _M_saved_available = false;
1945 	    __ret = _M_saved;
1946 	  }
1947 	else
1948 	  {
1949 	    result_type __x, __y, __r2;
1950 	    do
1951 	      {
1952 		__x = result_type(2.0) * __aurng() - 1.0;
1953 		__y = result_type(2.0) * __aurng() - 1.0;
1954 		__r2 = __x * __x + __y * __y;
1955 	      }
1956 	    while (__r2 > 1.0 || __r2 == 0.0);
1957 
1958 	    const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2);
1959 	    _M_saved = __x * __mult;
1960 	    _M_saved_available = true;
1961 	    __ret = __y * __mult;
1962 	  }
1963 
1964 	__ret = __ret * __param.stddev() + __param.mean();
1965 	return __ret;
1966       }
1967 
1968   template<typename _RealType>
1969     template<typename _ForwardIterator,
1970 	     typename _UniformRandomNumberGenerator>
1971       void
1972       normal_distribution<_RealType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __param)1973       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
1974 		      _UniformRandomNumberGenerator& __urng,
1975 		      const param_type& __param)
1976       {
1977 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
1978 
1979 	if (__f == __t)
1980 	  return;
1981 
1982 	if (_M_saved_available)
1983 	  {
1984 	    _M_saved_available = false;
1985 	    *__f++ = _M_saved * __param.stddev() + __param.mean();
1986 
1987 	    if (__f == __t)
1988 	      return;
1989 	  }
1990 
1991 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
1992 	  __aurng(__urng);
1993 
1994 	while (__f + 1 < __t)
1995 	  {
1996 	    result_type __x, __y, __r2;
1997 	    do
1998 	      {
1999 		__x = result_type(2.0) * __aurng() - 1.0;
2000 		__y = result_type(2.0) * __aurng() - 1.0;
2001 		__r2 = __x * __x + __y * __y;
2002 	      }
2003 	    while (__r2 > 1.0 || __r2 == 0.0);
2004 
2005 	    const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2);
2006 	    *__f++ = __y * __mult * __param.stddev() + __param.mean();
2007 	    *__f++ = __x * __mult * __param.stddev() + __param.mean();
2008 	  }
2009 
2010 	if (__f != __t)
2011 	  {
2012 	    result_type __x, __y, __r2;
2013 	    do
2014 	      {
2015 		__x = result_type(2.0) * __aurng() - 1.0;
2016 		__y = result_type(2.0) * __aurng() - 1.0;
2017 		__r2 = __x * __x + __y * __y;
2018 	      }
2019 	    while (__r2 > 1.0 || __r2 == 0.0);
2020 
2021 	    const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2);
2022 	    _M_saved = __x * __mult;
2023 	    _M_saved_available = true;
2024 	    *__f = __y * __mult * __param.stddev() + __param.mean();
2025 	  }
2026       }
2027 
2028   template<typename _RealType>
2029     bool
operator ==(const std::normal_distribution<_RealType> & __d1,const std::normal_distribution<_RealType> & __d2)2030     operator==(const std::normal_distribution<_RealType>& __d1,
2031 	       const std::normal_distribution<_RealType>& __d2)
2032     {
2033       if (__d1._M_param == __d2._M_param
2034 	  && __d1._M_saved_available == __d2._M_saved_available)
2035 	{
2036 	  if (__d1._M_saved_available
2037 	      && __d1._M_saved == __d2._M_saved)
2038 	    return true;
2039 	  else if(!__d1._M_saved_available)
2040 	    return true;
2041 	  else
2042 	    return false;
2043 	}
2044       else
2045 	return false;
2046     }
2047 
2048   template<typename _RealType, typename _CharT, typename _Traits>
2049     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const normal_distribution<_RealType> & __x)2050     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2051 	       const normal_distribution<_RealType>& __x)
2052     {
2053       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
2054       typedef typename __ostream_type::ios_base    __ios_base;
2055 
2056       const typename __ios_base::fmtflags __flags = __os.flags();
2057       const _CharT __fill = __os.fill();
2058       const std::streamsize __precision = __os.precision();
2059       const _CharT __space = __os.widen(' ');
2060       __os.flags(__ios_base::scientific | __ios_base::left);
2061       __os.fill(__space);
2062       __os.precision(std::numeric_limits<_RealType>::max_digits10);
2063 
2064       __os << __x.mean() << __space << __x.stddev()
2065 	   << __space << __x._M_saved_available;
2066       if (__x._M_saved_available)
2067 	__os << __space << __x._M_saved;
2068 
2069       __os.flags(__flags);
2070       __os.fill(__fill);
2071       __os.precision(__precision);
2072       return __os;
2073     }
2074 
2075   template<typename _RealType, typename _CharT, typename _Traits>
2076     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,normal_distribution<_RealType> & __x)2077     operator>>(std::basic_istream<_CharT, _Traits>& __is,
2078 	       normal_distribution<_RealType>& __x)
2079     {
2080       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
2081       typedef typename __istream_type::ios_base    __ios_base;
2082 
2083       const typename __ios_base::fmtflags __flags = __is.flags();
2084       __is.flags(__ios_base::dec | __ios_base::skipws);
2085 
2086       double __mean, __stddev;
2087       __is >> __mean >> __stddev
2088 	   >> __x._M_saved_available;
2089       if (__x._M_saved_available)
2090 	__is >> __x._M_saved;
2091       __x.param(typename normal_distribution<_RealType>::
2092 		param_type(__mean, __stddev));
2093 
2094       __is.flags(__flags);
2095       return __is;
2096     }
2097 
2098 
2099   template<typename _RealType>
2100     template<typename _ForwardIterator,
2101 	     typename _UniformRandomNumberGenerator>
2102       void
2103       lognormal_distribution<_RealType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)2104       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2105 		      _UniformRandomNumberGenerator& __urng,
2106 		      const param_type& __p)
2107       {
2108 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2109 	  while (__f != __t)
2110 	    *__f++ = std::exp(__p.s() * _M_nd(__urng) + __p.m());
2111       }
2112 
2113   template<typename _RealType, typename _CharT, typename _Traits>
2114     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const lognormal_distribution<_RealType> & __x)2115     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2116 	       const lognormal_distribution<_RealType>& __x)
2117     {
2118       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
2119       typedef typename __ostream_type::ios_base    __ios_base;
2120 
2121       const typename __ios_base::fmtflags __flags = __os.flags();
2122       const _CharT __fill = __os.fill();
2123       const std::streamsize __precision = __os.precision();
2124       const _CharT __space = __os.widen(' ');
2125       __os.flags(__ios_base::scientific | __ios_base::left);
2126       __os.fill(__space);
2127       __os.precision(std::numeric_limits<_RealType>::max_digits10);
2128 
2129       __os << __x.m() << __space << __x.s()
2130 	   << __space << __x._M_nd;
2131 
2132       __os.flags(__flags);
2133       __os.fill(__fill);
2134       __os.precision(__precision);
2135       return __os;
2136     }
2137 
2138   template<typename _RealType, typename _CharT, typename _Traits>
2139     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,lognormal_distribution<_RealType> & __x)2140     operator>>(std::basic_istream<_CharT, _Traits>& __is,
2141 	       lognormal_distribution<_RealType>& __x)
2142     {
2143       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
2144       typedef typename __istream_type::ios_base    __ios_base;
2145 
2146       const typename __ios_base::fmtflags __flags = __is.flags();
2147       __is.flags(__ios_base::dec | __ios_base::skipws);
2148 
2149       _RealType __m, __s;
2150       __is >> __m >> __s >> __x._M_nd;
2151       __x.param(typename lognormal_distribution<_RealType>::
2152 		param_type(__m, __s));
2153 
2154       __is.flags(__flags);
2155       return __is;
2156     }
2157 
2158   template<typename _RealType>
2159     template<typename _ForwardIterator,
2160 	     typename _UniformRandomNumberGenerator>
2161       void
2162       std::chi_squared_distribution<_RealType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng)2163       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2164 		      _UniformRandomNumberGenerator& __urng)
2165       {
2166 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2167 	while (__f != __t)
2168 	  *__f++ = 2 * _M_gd(__urng);
2169       }
2170 
2171   template<typename _RealType>
2172     template<typename _ForwardIterator,
2173 	     typename _UniformRandomNumberGenerator>
2174       void
2175       std::chi_squared_distribution<_RealType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng,const typename std::gamma_distribution<result_type>::param_type & __p)2176       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2177 		      _UniformRandomNumberGenerator& __urng,
2178 		      const typename
2179 		      std::gamma_distribution<result_type>::param_type& __p)
2180       {
2181 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2182 	while (__f != __t)
2183 	  *__f++ = 2 * _M_gd(__urng, __p);
2184       }
2185 
2186   template<typename _RealType, typename _CharT, typename _Traits>
2187     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const chi_squared_distribution<_RealType> & __x)2188     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2189 	       const chi_squared_distribution<_RealType>& __x)
2190     {
2191       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
2192       typedef typename __ostream_type::ios_base    __ios_base;
2193 
2194       const typename __ios_base::fmtflags __flags = __os.flags();
2195       const _CharT __fill = __os.fill();
2196       const std::streamsize __precision = __os.precision();
2197       const _CharT __space = __os.widen(' ');
2198       __os.flags(__ios_base::scientific | __ios_base::left);
2199       __os.fill(__space);
2200       __os.precision(std::numeric_limits<_RealType>::max_digits10);
2201 
2202       __os << __x.n() << __space << __x._M_gd;
2203 
2204       __os.flags(__flags);
2205       __os.fill(__fill);
2206       __os.precision(__precision);
2207       return __os;
2208     }
2209 
2210   template<typename _RealType, typename _CharT, typename _Traits>
2211     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,chi_squared_distribution<_RealType> & __x)2212     operator>>(std::basic_istream<_CharT, _Traits>& __is,
2213 	       chi_squared_distribution<_RealType>& __x)
2214     {
2215       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
2216       typedef typename __istream_type::ios_base    __ios_base;
2217 
2218       const typename __ios_base::fmtflags __flags = __is.flags();
2219       __is.flags(__ios_base::dec | __ios_base::skipws);
2220 
2221       _RealType __n;
2222       __is >> __n >> __x._M_gd;
2223       __x.param(typename chi_squared_distribution<_RealType>::
2224 		param_type(__n));
2225 
2226       __is.flags(__flags);
2227       return __is;
2228     }
2229 
2230 
2231   template<typename _RealType>
2232     template<typename _UniformRandomNumberGenerator>
2233       typename cauchy_distribution<_RealType>::result_type
2234       cauchy_distribution<_RealType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __p)2235       operator()(_UniformRandomNumberGenerator& __urng,
2236 		 const param_type& __p)
2237       {
2238 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2239 	  __aurng(__urng);
2240 	_RealType __u;
2241 	do
2242 	  __u = __aurng();
2243 	while (__u == 0.5);
2244 
2245 	const _RealType __pi = 3.1415926535897932384626433832795029L;
2246 	return __p.a() + __p.b() * std::tan(__pi * __u);
2247       }
2248 
2249   template<typename _RealType>
2250     template<typename _ForwardIterator,
2251 	     typename _UniformRandomNumberGenerator>
2252       void
2253       cauchy_distribution<_RealType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)2254       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2255 		      _UniformRandomNumberGenerator& __urng,
2256 		      const param_type& __p)
2257       {
2258 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2259 	const _RealType __pi = 3.1415926535897932384626433832795029L;
2260 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2261 	  __aurng(__urng);
2262 	while (__f != __t)
2263 	  {
2264 	    _RealType __u;
2265 	    do
2266 	      __u = __aurng();
2267 	    while (__u == 0.5);
2268 
2269 	    *__f++ = __p.a() + __p.b() * std::tan(__pi * __u);
2270 	  }
2271       }
2272 
2273   template<typename _RealType, typename _CharT, typename _Traits>
2274     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const cauchy_distribution<_RealType> & __x)2275     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2276 	       const cauchy_distribution<_RealType>& __x)
2277     {
2278       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
2279       typedef typename __ostream_type::ios_base    __ios_base;
2280 
2281       const typename __ios_base::fmtflags __flags = __os.flags();
2282       const _CharT __fill = __os.fill();
2283       const std::streamsize __precision = __os.precision();
2284       const _CharT __space = __os.widen(' ');
2285       __os.flags(__ios_base::scientific | __ios_base::left);
2286       __os.fill(__space);
2287       __os.precision(std::numeric_limits<_RealType>::max_digits10);
2288 
2289       __os << __x.a() << __space << __x.b();
2290 
2291       __os.flags(__flags);
2292       __os.fill(__fill);
2293       __os.precision(__precision);
2294       return __os;
2295     }
2296 
2297   template<typename _RealType, typename _CharT, typename _Traits>
2298     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,cauchy_distribution<_RealType> & __x)2299     operator>>(std::basic_istream<_CharT, _Traits>& __is,
2300 	       cauchy_distribution<_RealType>& __x)
2301     {
2302       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
2303       typedef typename __istream_type::ios_base    __ios_base;
2304 
2305       const typename __ios_base::fmtflags __flags = __is.flags();
2306       __is.flags(__ios_base::dec | __ios_base::skipws);
2307 
2308       _RealType __a, __b;
2309       __is >> __a >> __b;
2310       __x.param(typename cauchy_distribution<_RealType>::
2311 		param_type(__a, __b));
2312 
2313       __is.flags(__flags);
2314       return __is;
2315     }
2316 
2317 
2318   template<typename _RealType>
2319     template<typename _ForwardIterator,
2320 	     typename _UniformRandomNumberGenerator>
2321       void
2322       std::fisher_f_distribution<_RealType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng)2323       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2324 		      _UniformRandomNumberGenerator& __urng)
2325       {
2326 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2327 	while (__f != __t)
2328 	  *__f++ = ((_M_gd_x(__urng) * n()) / (_M_gd_y(__urng) * m()));
2329       }
2330 
2331   template<typename _RealType>
2332     template<typename _ForwardIterator,
2333 	     typename _UniformRandomNumberGenerator>
2334       void
2335       std::fisher_f_distribution<_RealType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)2336       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2337 		      _UniformRandomNumberGenerator& __urng,
2338 		      const param_type& __p)
2339       {
2340 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2341 	typedef typename std::gamma_distribution<result_type>::param_type
2342 	  param_type;
2343 	param_type __p1(__p.m() / 2);
2344 	param_type __p2(__p.n() / 2);
2345 	while (__f != __t)
2346 	  *__f++ = ((_M_gd_x(__urng, __p1) * n())
2347 		    / (_M_gd_y(__urng, __p2) * m()));
2348       }
2349 
2350   template<typename _RealType, typename _CharT, typename _Traits>
2351     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const fisher_f_distribution<_RealType> & __x)2352     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2353 	       const fisher_f_distribution<_RealType>& __x)
2354     {
2355       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
2356       typedef typename __ostream_type::ios_base    __ios_base;
2357 
2358       const typename __ios_base::fmtflags __flags = __os.flags();
2359       const _CharT __fill = __os.fill();
2360       const std::streamsize __precision = __os.precision();
2361       const _CharT __space = __os.widen(' ');
2362       __os.flags(__ios_base::scientific | __ios_base::left);
2363       __os.fill(__space);
2364       __os.precision(std::numeric_limits<_RealType>::max_digits10);
2365 
2366       __os << __x.m() << __space << __x.n()
2367 	   << __space << __x._M_gd_x << __space << __x._M_gd_y;
2368 
2369       __os.flags(__flags);
2370       __os.fill(__fill);
2371       __os.precision(__precision);
2372       return __os;
2373     }
2374 
2375   template<typename _RealType, typename _CharT, typename _Traits>
2376     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,fisher_f_distribution<_RealType> & __x)2377     operator>>(std::basic_istream<_CharT, _Traits>& __is,
2378 	       fisher_f_distribution<_RealType>& __x)
2379     {
2380       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
2381       typedef typename __istream_type::ios_base    __ios_base;
2382 
2383       const typename __ios_base::fmtflags __flags = __is.flags();
2384       __is.flags(__ios_base::dec | __ios_base::skipws);
2385 
2386       _RealType __m, __n;
2387       __is >> __m >> __n >> __x._M_gd_x >> __x._M_gd_y;
2388       __x.param(typename fisher_f_distribution<_RealType>::
2389 		param_type(__m, __n));
2390 
2391       __is.flags(__flags);
2392       return __is;
2393     }
2394 
2395 
2396   template<typename _RealType>
2397     template<typename _ForwardIterator,
2398 	     typename _UniformRandomNumberGenerator>
2399       void
2400       std::student_t_distribution<_RealType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng)2401       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2402 		      _UniformRandomNumberGenerator& __urng)
2403       {
2404 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2405 	while (__f != __t)
2406 	  *__f++ = _M_nd(__urng) * std::sqrt(n() / _M_gd(__urng));
2407       }
2408 
2409   template<typename _RealType>
2410     template<typename _ForwardIterator,
2411 	     typename _UniformRandomNumberGenerator>
2412       void
2413       std::student_t_distribution<_RealType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)2414       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2415 		      _UniformRandomNumberGenerator& __urng,
2416 		      const param_type& __p)
2417       {
2418 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2419 	typename std::gamma_distribution<result_type>::param_type
2420 	  __p2(__p.n() / 2, 2);
2421 	while (__f != __t)
2422 	  *__f++ =  _M_nd(__urng) * std::sqrt(__p.n() / _M_gd(__urng, __p2));
2423       }
2424 
2425   template<typename _RealType, typename _CharT, typename _Traits>
2426     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const student_t_distribution<_RealType> & __x)2427     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2428 	       const student_t_distribution<_RealType>& __x)
2429     {
2430       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
2431       typedef typename __ostream_type::ios_base    __ios_base;
2432 
2433       const typename __ios_base::fmtflags __flags = __os.flags();
2434       const _CharT __fill = __os.fill();
2435       const std::streamsize __precision = __os.precision();
2436       const _CharT __space = __os.widen(' ');
2437       __os.flags(__ios_base::scientific | __ios_base::left);
2438       __os.fill(__space);
2439       __os.precision(std::numeric_limits<_RealType>::max_digits10);
2440 
2441       __os << __x.n() << __space << __x._M_nd << __space << __x._M_gd;
2442 
2443       __os.flags(__flags);
2444       __os.fill(__fill);
2445       __os.precision(__precision);
2446       return __os;
2447     }
2448 
2449   template<typename _RealType, typename _CharT, typename _Traits>
2450     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,student_t_distribution<_RealType> & __x)2451     operator>>(std::basic_istream<_CharT, _Traits>& __is,
2452 	       student_t_distribution<_RealType>& __x)
2453     {
2454       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
2455       typedef typename __istream_type::ios_base    __ios_base;
2456 
2457       const typename __ios_base::fmtflags __flags = __is.flags();
2458       __is.flags(__ios_base::dec | __ios_base::skipws);
2459 
2460       _RealType __n;
2461       __is >> __n >> __x._M_nd >> __x._M_gd;
2462       __x.param(typename student_t_distribution<_RealType>::param_type(__n));
2463 
2464       __is.flags(__flags);
2465       return __is;
2466     }
2467 
2468 
2469   template<typename _RealType>
2470     void
2471     gamma_distribution<_RealType>::param_type::
_M_initialize()2472     _M_initialize()
2473     {
2474       _M_malpha = _M_alpha < 1.0 ? _M_alpha + _RealType(1.0) : _M_alpha;
2475 
2476       const _RealType __a1 = _M_malpha - _RealType(1.0) / _RealType(3.0);
2477       _M_a2 = _RealType(1.0) / std::sqrt(_RealType(9.0) * __a1);
2478     }
2479 
2480   /**
2481    * Marsaglia, G. and Tsang, W. W.
2482    * "A Simple Method for Generating Gamma Variables"
2483    * ACM Transactions on Mathematical Software, 26, 3, 363-372, 2000.
2484    */
2485   template<typename _RealType>
2486     template<typename _UniformRandomNumberGenerator>
2487       typename gamma_distribution<_RealType>::result_type
2488       gamma_distribution<_RealType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __param)2489       operator()(_UniformRandomNumberGenerator& __urng,
2490 		 const param_type& __param)
2491       {
2492 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2493 	  __aurng(__urng);
2494 
2495 	result_type __u, __v, __n;
2496 	const result_type __a1 = (__param._M_malpha
2497 				  - _RealType(1.0) / _RealType(3.0));
2498 
2499 	do
2500 	  {
2501 	    do
2502 	      {
2503 		__n = _M_nd(__urng);
2504 		__v = result_type(1.0) + __param._M_a2 * __n;
2505 	      }
2506 	    while (__v <= 0.0);
2507 
2508 	    __v = __v * __v * __v;
2509 	    __u = __aurng();
2510 	  }
2511 	while (__u > result_type(1.0) - 0.331 * __n * __n * __n * __n
2512 	       && (std::log(__u) > (0.5 * __n * __n + __a1
2513 				    * (1.0 - __v + std::log(__v)))));
2514 
2515 	if (__param.alpha() == __param._M_malpha)
2516 	  return __a1 * __v * __param.beta();
2517 	else
2518 	  {
2519 	    do
2520 	      __u = __aurng();
2521 	    while (__u == 0.0);
2522 
2523 	    return (std::pow(__u, result_type(1.0) / __param.alpha())
2524 		    * __a1 * __v * __param.beta());
2525 	  }
2526       }
2527 
2528   template<typename _RealType>
2529     template<typename _ForwardIterator,
2530 	     typename _UniformRandomNumberGenerator>
2531       void
2532       gamma_distribution<_RealType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __param)2533       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2534 		      _UniformRandomNumberGenerator& __urng,
2535 		      const param_type& __param)
2536       {
2537 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2538 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2539 	  __aurng(__urng);
2540 
2541 	result_type __u, __v, __n;
2542 	const result_type __a1 = (__param._M_malpha
2543 				  - _RealType(1.0) / _RealType(3.0));
2544 
2545 	if (__param.alpha() == __param._M_malpha)
2546 	  while (__f != __t)
2547 	    {
2548 	      do
2549 		{
2550 		  do
2551 		    {
2552 		      __n = _M_nd(__urng);
2553 		      __v = result_type(1.0) + __param._M_a2 * __n;
2554 		    }
2555 		  while (__v <= 0.0);
2556 
2557 		  __v = __v * __v * __v;
2558 		  __u = __aurng();
2559 		}
2560 	      while (__u > result_type(1.0) - 0.331 * __n * __n * __n * __n
2561 		     && (std::log(__u) > (0.5 * __n * __n + __a1
2562 					  * (1.0 - __v + std::log(__v)))));
2563 
2564 	      *__f++ = __a1 * __v * __param.beta();
2565 	    }
2566 	else
2567 	  while (__f != __t)
2568 	    {
2569 	      do
2570 		{
2571 		  do
2572 		    {
2573 		      __n = _M_nd(__urng);
2574 		      __v = result_type(1.0) + __param._M_a2 * __n;
2575 		    }
2576 		  while (__v <= 0.0);
2577 
2578 		  __v = __v * __v * __v;
2579 		  __u = __aurng();
2580 		}
2581 	      while (__u > result_type(1.0) - 0.331 * __n * __n * __n * __n
2582 		     && (std::log(__u) > (0.5 * __n * __n + __a1
2583 					  * (1.0 - __v + std::log(__v)))));
2584 
2585 	      do
2586 		__u = __aurng();
2587 	      while (__u == 0.0);
2588 
2589 	      *__f++ = (std::pow(__u, result_type(1.0) / __param.alpha())
2590 			* __a1 * __v * __param.beta());
2591 	    }
2592       }
2593 
2594   template<typename _RealType, typename _CharT, typename _Traits>
2595     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const gamma_distribution<_RealType> & __x)2596     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2597 	       const gamma_distribution<_RealType>& __x)
2598     {
2599       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
2600       typedef typename __ostream_type::ios_base    __ios_base;
2601 
2602       const typename __ios_base::fmtflags __flags = __os.flags();
2603       const _CharT __fill = __os.fill();
2604       const std::streamsize __precision = __os.precision();
2605       const _CharT __space = __os.widen(' ');
2606       __os.flags(__ios_base::scientific | __ios_base::left);
2607       __os.fill(__space);
2608       __os.precision(std::numeric_limits<_RealType>::max_digits10);
2609 
2610       __os << __x.alpha() << __space << __x.beta()
2611 	   << __space << __x._M_nd;
2612 
2613       __os.flags(__flags);
2614       __os.fill(__fill);
2615       __os.precision(__precision);
2616       return __os;
2617     }
2618 
2619   template<typename _RealType, typename _CharT, typename _Traits>
2620     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,gamma_distribution<_RealType> & __x)2621     operator>>(std::basic_istream<_CharT, _Traits>& __is,
2622 	       gamma_distribution<_RealType>& __x)
2623     {
2624       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
2625       typedef typename __istream_type::ios_base    __ios_base;
2626 
2627       const typename __ios_base::fmtflags __flags = __is.flags();
2628       __is.flags(__ios_base::dec | __ios_base::skipws);
2629 
2630       _RealType __alpha_val, __beta_val;
2631       __is >> __alpha_val >> __beta_val >> __x._M_nd;
2632       __x.param(typename gamma_distribution<_RealType>::
2633 		param_type(__alpha_val, __beta_val));
2634 
2635       __is.flags(__flags);
2636       return __is;
2637     }
2638 
2639 
2640   template<typename _RealType>
2641     template<typename _UniformRandomNumberGenerator>
2642       typename weibull_distribution<_RealType>::result_type
2643       weibull_distribution<_RealType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __p)2644       operator()(_UniformRandomNumberGenerator& __urng,
2645 		 const param_type& __p)
2646       {
2647 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2648 	  __aurng(__urng);
2649 	return __p.b() * std::pow(-std::log(result_type(1) - __aurng()),
2650 				  result_type(1) / __p.a());
2651       }
2652 
2653   template<typename _RealType>
2654     template<typename _ForwardIterator,
2655 	     typename _UniformRandomNumberGenerator>
2656       void
2657       weibull_distribution<_RealType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)2658       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2659 		      _UniformRandomNumberGenerator& __urng,
2660 		      const param_type& __p)
2661       {
2662 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2663 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2664 	  __aurng(__urng);
2665 	auto __inv_a = result_type(1) / __p.a();
2666 
2667 	while (__f != __t)
2668 	  *__f++ = __p.b() * std::pow(-std::log(result_type(1) - __aurng()),
2669 				      __inv_a);
2670       }
2671 
2672   template<typename _RealType, typename _CharT, typename _Traits>
2673     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const weibull_distribution<_RealType> & __x)2674     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2675 	       const weibull_distribution<_RealType>& __x)
2676     {
2677       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
2678       typedef typename __ostream_type::ios_base    __ios_base;
2679 
2680       const typename __ios_base::fmtflags __flags = __os.flags();
2681       const _CharT __fill = __os.fill();
2682       const std::streamsize __precision = __os.precision();
2683       const _CharT __space = __os.widen(' ');
2684       __os.flags(__ios_base::scientific | __ios_base::left);
2685       __os.fill(__space);
2686       __os.precision(std::numeric_limits<_RealType>::max_digits10);
2687 
2688       __os << __x.a() << __space << __x.b();
2689 
2690       __os.flags(__flags);
2691       __os.fill(__fill);
2692       __os.precision(__precision);
2693       return __os;
2694     }
2695 
2696   template<typename _RealType, typename _CharT, typename _Traits>
2697     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,weibull_distribution<_RealType> & __x)2698     operator>>(std::basic_istream<_CharT, _Traits>& __is,
2699 	       weibull_distribution<_RealType>& __x)
2700     {
2701       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
2702       typedef typename __istream_type::ios_base    __ios_base;
2703 
2704       const typename __ios_base::fmtflags __flags = __is.flags();
2705       __is.flags(__ios_base::dec | __ios_base::skipws);
2706 
2707       _RealType __a, __b;
2708       __is >> __a >> __b;
2709       __x.param(typename weibull_distribution<_RealType>::
2710 		param_type(__a, __b));
2711 
2712       __is.flags(__flags);
2713       return __is;
2714     }
2715 
2716 
2717   template<typename _RealType>
2718     template<typename _UniformRandomNumberGenerator>
2719       typename extreme_value_distribution<_RealType>::result_type
2720       extreme_value_distribution<_RealType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __p)2721       operator()(_UniformRandomNumberGenerator& __urng,
2722 		 const param_type& __p)
2723       {
2724 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2725 	  __aurng(__urng);
2726 	return __p.a() - __p.b() * std::log(-std::log(result_type(1)
2727 						      - __aurng()));
2728       }
2729 
2730   template<typename _RealType>
2731     template<typename _ForwardIterator,
2732 	     typename _UniformRandomNumberGenerator>
2733       void
2734       extreme_value_distribution<_RealType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)2735       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2736 		      _UniformRandomNumberGenerator& __urng,
2737 		      const param_type& __p)
2738       {
2739 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2740 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2741 	  __aurng(__urng);
2742 
2743 	while (__f != __t)
2744 	  *__f++ = __p.a() - __p.b() * std::log(-std::log(result_type(1)
2745 							  - __aurng()));
2746       }
2747 
2748   template<typename _RealType, typename _CharT, typename _Traits>
2749     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const extreme_value_distribution<_RealType> & __x)2750     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2751 	       const extreme_value_distribution<_RealType>& __x)
2752     {
2753       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
2754       typedef typename __ostream_type::ios_base    __ios_base;
2755 
2756       const typename __ios_base::fmtflags __flags = __os.flags();
2757       const _CharT __fill = __os.fill();
2758       const std::streamsize __precision = __os.precision();
2759       const _CharT __space = __os.widen(' ');
2760       __os.flags(__ios_base::scientific | __ios_base::left);
2761       __os.fill(__space);
2762       __os.precision(std::numeric_limits<_RealType>::max_digits10);
2763 
2764       __os << __x.a() << __space << __x.b();
2765 
2766       __os.flags(__flags);
2767       __os.fill(__fill);
2768       __os.precision(__precision);
2769       return __os;
2770     }
2771 
2772   template<typename _RealType, typename _CharT, typename _Traits>
2773     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,extreme_value_distribution<_RealType> & __x)2774     operator>>(std::basic_istream<_CharT, _Traits>& __is,
2775 	       extreme_value_distribution<_RealType>& __x)
2776     {
2777       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
2778       typedef typename __istream_type::ios_base    __ios_base;
2779 
2780       const typename __ios_base::fmtflags __flags = __is.flags();
2781       __is.flags(__ios_base::dec | __ios_base::skipws);
2782 
2783       _RealType __a, __b;
2784       __is >> __a >> __b;
2785       __x.param(typename extreme_value_distribution<_RealType>::
2786 		param_type(__a, __b));
2787 
2788       __is.flags(__flags);
2789       return __is;
2790     }
2791 
2792 
2793   template<typename _IntType>
2794     void
2795     discrete_distribution<_IntType>::param_type::
_M_initialize()2796     _M_initialize()
2797     {
2798       if (_M_prob.size() < 2)
2799 	{
2800 	  _M_prob.clear();
2801 	  return;
2802 	}
2803 
2804       const double __sum = std::accumulate(_M_prob.begin(),
2805 					   _M_prob.end(), 0.0);
2806       // Now normalize the probabilites.
2807       __detail::__normalize(_M_prob.begin(), _M_prob.end(), _M_prob.begin(),
2808 			    __sum);
2809       // Accumulate partial sums.
2810       _M_cp.reserve(_M_prob.size());
2811       std::partial_sum(_M_prob.begin(), _M_prob.end(),
2812 		       std::back_inserter(_M_cp));
2813       // Make sure the last cumulative probability is one.
2814       _M_cp[_M_cp.size() - 1] = 1.0;
2815     }
2816 
2817   template<typename _IntType>
2818     template<typename _Func>
2819       discrete_distribution<_IntType>::param_type::
param_type(size_t __nw,double __xmin,double __xmax,_Func __fw)2820       param_type(size_t __nw, double __xmin, double __xmax, _Func __fw)
2821       : _M_prob(), _M_cp()
2822       {
2823 	const size_t __n = __nw == 0 ? 1 : __nw;
2824 	const double __delta = (__xmax - __xmin) / __n;
2825 
2826 	_M_prob.reserve(__n);
2827 	for (size_t __k = 0; __k < __nw; ++__k)
2828 	  _M_prob.push_back(__fw(__xmin + __k * __delta + 0.5 * __delta));
2829 
2830 	_M_initialize();
2831       }
2832 
2833   template<typename _IntType>
2834     template<typename _UniformRandomNumberGenerator>
2835       typename discrete_distribution<_IntType>::result_type
2836       discrete_distribution<_IntType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __param)2837       operator()(_UniformRandomNumberGenerator& __urng,
2838 		 const param_type& __param)
2839       {
2840 	if (__param._M_cp.empty())
2841 	  return result_type(0);
2842 
2843 	__detail::_Adaptor<_UniformRandomNumberGenerator, double>
2844 	  __aurng(__urng);
2845 
2846 	const double __p = __aurng();
2847 	auto __pos = std::lower_bound(__param._M_cp.begin(),
2848 				      __param._M_cp.end(), __p);
2849 
2850 	return __pos - __param._M_cp.begin();
2851       }
2852 
2853   template<typename _IntType>
2854     template<typename _ForwardIterator,
2855 	     typename _UniformRandomNumberGenerator>
2856       void
2857       discrete_distribution<_IntType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __param)2858       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2859 		      _UniformRandomNumberGenerator& __urng,
2860 		      const param_type& __param)
2861       {
2862 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2863 
2864 	if (__param._M_cp.empty())
2865 	  {
2866 	    while (__f != __t)
2867 	      *__f++ = result_type(0);
2868 	    return;
2869 	  }
2870 
2871 	__detail::_Adaptor<_UniformRandomNumberGenerator, double>
2872 	  __aurng(__urng);
2873 
2874 	while (__f != __t)
2875 	  {
2876 	    const double __p = __aurng();
2877 	    auto __pos = std::lower_bound(__param._M_cp.begin(),
2878 					  __param._M_cp.end(), __p);
2879 
2880 	    *__f++ = __pos - __param._M_cp.begin();
2881 	  }
2882       }
2883 
2884   template<typename _IntType, typename _CharT, typename _Traits>
2885     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const discrete_distribution<_IntType> & __x)2886     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2887 	       const discrete_distribution<_IntType>& __x)
2888     {
2889       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
2890       typedef typename __ostream_type::ios_base    __ios_base;
2891 
2892       const typename __ios_base::fmtflags __flags = __os.flags();
2893       const _CharT __fill = __os.fill();
2894       const std::streamsize __precision = __os.precision();
2895       const _CharT __space = __os.widen(' ');
2896       __os.flags(__ios_base::scientific | __ios_base::left);
2897       __os.fill(__space);
2898       __os.precision(std::numeric_limits<double>::max_digits10);
2899 
2900       std::vector<double> __prob = __x.probabilities();
2901       __os << __prob.size();
2902       for (auto __dit = __prob.begin(); __dit != __prob.end(); ++__dit)
2903 	__os << __space << *__dit;
2904 
2905       __os.flags(__flags);
2906       __os.fill(__fill);
2907       __os.precision(__precision);
2908       return __os;
2909     }
2910 
2911   template<typename _IntType, typename _CharT, typename _Traits>
2912     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,discrete_distribution<_IntType> & __x)2913     operator>>(std::basic_istream<_CharT, _Traits>& __is,
2914 	       discrete_distribution<_IntType>& __x)
2915     {
2916       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
2917       typedef typename __istream_type::ios_base    __ios_base;
2918 
2919       const typename __ios_base::fmtflags __flags = __is.flags();
2920       __is.flags(__ios_base::dec | __ios_base::skipws);
2921 
2922       size_t __n;
2923       __is >> __n;
2924 
2925       std::vector<double> __prob_vec;
2926       __prob_vec.reserve(__n);
2927       for (; __n != 0; --__n)
2928 	{
2929 	  double __prob;
2930 	  __is >> __prob;
2931 	  __prob_vec.push_back(__prob);
2932 	}
2933 
2934       __x.param(typename discrete_distribution<_IntType>::
2935 		param_type(__prob_vec.begin(), __prob_vec.end()));
2936 
2937       __is.flags(__flags);
2938       return __is;
2939     }
2940 
2941 
2942   template<typename _RealType>
2943     void
2944     piecewise_constant_distribution<_RealType>::param_type::
_M_initialize()2945     _M_initialize()
2946     {
2947       if (_M_int.size() < 2
2948 	  || (_M_int.size() == 2
2949 	      && _M_int[0] == _RealType(0)
2950 	      && _M_int[1] == _RealType(1)))
2951 	{
2952 	  _M_int.clear();
2953 	  _M_den.clear();
2954 	  return;
2955 	}
2956 
2957       const double __sum = std::accumulate(_M_den.begin(),
2958 					   _M_den.end(), 0.0);
2959 
2960       __detail::__normalize(_M_den.begin(), _M_den.end(), _M_den.begin(),
2961 			    __sum);
2962 
2963       _M_cp.reserve(_M_den.size());
2964       std::partial_sum(_M_den.begin(), _M_den.end(),
2965 		       std::back_inserter(_M_cp));
2966 
2967       // Make sure the last cumulative probability is one.
2968       _M_cp[_M_cp.size() - 1] = 1.0;
2969 
2970       for (size_t __k = 0; __k < _M_den.size(); ++__k)
2971 	_M_den[__k] /= _M_int[__k + 1] - _M_int[__k];
2972     }
2973 
2974   template<typename _RealType>
2975     template<typename _InputIteratorB, typename _InputIteratorW>
2976       piecewise_constant_distribution<_RealType>::param_type::
param_type(_InputIteratorB __bbegin,_InputIteratorB __bend,_InputIteratorW __wbegin)2977       param_type(_InputIteratorB __bbegin,
2978 		 _InputIteratorB __bend,
2979 		 _InputIteratorW __wbegin)
2980       : _M_int(), _M_den(), _M_cp()
2981       {
2982 	if (__bbegin != __bend)
2983 	  {
2984 	    for (;;)
2985 	      {
2986 		_M_int.push_back(*__bbegin);
2987 		++__bbegin;
2988 		if (__bbegin == __bend)
2989 		  break;
2990 
2991 		_M_den.push_back(*__wbegin);
2992 		++__wbegin;
2993 	      }
2994 	  }
2995 
2996 	_M_initialize();
2997       }
2998 
2999   template<typename _RealType>
3000     template<typename _Func>
3001       piecewise_constant_distribution<_RealType>::param_type::
param_type(initializer_list<_RealType> __bl,_Func __fw)3002       param_type(initializer_list<_RealType> __bl, _Func __fw)
3003       : _M_int(), _M_den(), _M_cp()
3004       {
3005 	_M_int.reserve(__bl.size());
3006 	for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter)
3007 	  _M_int.push_back(*__biter);
3008 
3009 	_M_den.reserve(_M_int.size() - 1);
3010 	for (size_t __k = 0; __k < _M_int.size() - 1; ++__k)
3011 	  _M_den.push_back(__fw(0.5 * (_M_int[__k + 1] + _M_int[__k])));
3012 
3013 	_M_initialize();
3014       }
3015 
3016   template<typename _RealType>
3017     template<typename _Func>
3018       piecewise_constant_distribution<_RealType>::param_type::
param_type(size_t __nw,_RealType __xmin,_RealType __xmax,_Func __fw)3019       param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw)
3020       : _M_int(), _M_den(), _M_cp()
3021       {
3022 	const size_t __n = __nw == 0 ? 1 : __nw;
3023 	const _RealType __delta = (__xmax - __xmin) / __n;
3024 
3025 	_M_int.reserve(__n + 1);
3026 	for (size_t __k = 0; __k <= __nw; ++__k)
3027 	  _M_int.push_back(__xmin + __k * __delta);
3028 
3029 	_M_den.reserve(__n);
3030 	for (size_t __k = 0; __k < __nw; ++__k)
3031 	  _M_den.push_back(__fw(_M_int[__k] + 0.5 * __delta));
3032 
3033 	_M_initialize();
3034       }
3035 
3036   template<typename _RealType>
3037     template<typename _UniformRandomNumberGenerator>
3038       typename piecewise_constant_distribution<_RealType>::result_type
3039       piecewise_constant_distribution<_RealType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __param)3040       operator()(_UniformRandomNumberGenerator& __urng,
3041 		 const param_type& __param)
3042       {
3043 	__detail::_Adaptor<_UniformRandomNumberGenerator, double>
3044 	  __aurng(__urng);
3045 
3046 	const double __p = __aurng();
3047 	if (__param._M_cp.empty())
3048 	  return __p;
3049 
3050 	auto __pos = std::lower_bound(__param._M_cp.begin(),
3051 				      __param._M_cp.end(), __p);
3052 	const size_t __i = __pos - __param._M_cp.begin();
3053 
3054 	const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
3055 
3056 	return __param._M_int[__i] + (__p - __pref) / __param._M_den[__i];
3057       }
3058 
3059   template<typename _RealType>
3060     template<typename _ForwardIterator,
3061 	     typename _UniformRandomNumberGenerator>
3062       void
3063       piecewise_constant_distribution<_RealType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __param)3064       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
3065 		      _UniformRandomNumberGenerator& __urng,
3066 		      const param_type& __param)
3067       {
3068 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
3069 	__detail::_Adaptor<_UniformRandomNumberGenerator, double>
3070 	  __aurng(__urng);
3071 
3072 	if (__param._M_cp.empty())
3073 	  {
3074 	    while (__f != __t)
3075 	      *__f++ = __aurng();
3076 	    return;
3077 	  }
3078 
3079 	while (__f != __t)
3080 	  {
3081 	    const double __p = __aurng();
3082 
3083 	    auto __pos = std::lower_bound(__param._M_cp.begin(),
3084 					  __param._M_cp.end(), __p);
3085 	    const size_t __i = __pos - __param._M_cp.begin();
3086 
3087 	    const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
3088 
3089 	    *__f++ = (__param._M_int[__i]
3090 		      + (__p - __pref) / __param._M_den[__i]);
3091 	  }
3092       }
3093 
3094   template<typename _RealType, typename _CharT, typename _Traits>
3095     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const piecewise_constant_distribution<_RealType> & __x)3096     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
3097 	       const piecewise_constant_distribution<_RealType>& __x)
3098     {
3099       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
3100       typedef typename __ostream_type::ios_base    __ios_base;
3101 
3102       const typename __ios_base::fmtflags __flags = __os.flags();
3103       const _CharT __fill = __os.fill();
3104       const std::streamsize __precision = __os.precision();
3105       const _CharT __space = __os.widen(' ');
3106       __os.flags(__ios_base::scientific | __ios_base::left);
3107       __os.fill(__space);
3108       __os.precision(std::numeric_limits<_RealType>::max_digits10);
3109 
3110       std::vector<_RealType> __int = __x.intervals();
3111       __os << __int.size() - 1;
3112 
3113       for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit)
3114 	__os << __space << *__xit;
3115 
3116       std::vector<double> __den = __x.densities();
3117       for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit)
3118 	__os << __space << *__dit;
3119 
3120       __os.flags(__flags);
3121       __os.fill(__fill);
3122       __os.precision(__precision);
3123       return __os;
3124     }
3125 
3126   template<typename _RealType, typename _CharT, typename _Traits>
3127     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,piecewise_constant_distribution<_RealType> & __x)3128     operator>>(std::basic_istream<_CharT, _Traits>& __is,
3129 	       piecewise_constant_distribution<_RealType>& __x)
3130     {
3131       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
3132       typedef typename __istream_type::ios_base    __ios_base;
3133 
3134       const typename __ios_base::fmtflags __flags = __is.flags();
3135       __is.flags(__ios_base::dec | __ios_base::skipws);
3136 
3137       size_t __n;
3138       __is >> __n;
3139 
3140       std::vector<_RealType> __int_vec;
3141       __int_vec.reserve(__n + 1);
3142       for (size_t __i = 0; __i <= __n; ++__i)
3143 	{
3144 	  _RealType __int;
3145 	  __is >> __int;
3146 	  __int_vec.push_back(__int);
3147 	}
3148 
3149       std::vector<double> __den_vec;
3150       __den_vec.reserve(__n);
3151       for (size_t __i = 0; __i < __n; ++__i)
3152 	{
3153 	  double __den;
3154 	  __is >> __den;
3155 	  __den_vec.push_back(__den);
3156 	}
3157 
3158       __x.param(typename piecewise_constant_distribution<_RealType>::
3159 	  param_type(__int_vec.begin(), __int_vec.end(), __den_vec.begin()));
3160 
3161       __is.flags(__flags);
3162       return __is;
3163     }
3164 
3165 
3166   template<typename _RealType>
3167     void
3168     piecewise_linear_distribution<_RealType>::param_type::
_M_initialize()3169     _M_initialize()
3170     {
3171       if (_M_int.size() < 2
3172 	  || (_M_int.size() == 2
3173 	      && _M_int[0] == _RealType(0)
3174 	      && _M_int[1] == _RealType(1)
3175 	      && _M_den[0] == _M_den[1]))
3176 	{
3177 	  _M_int.clear();
3178 	  _M_den.clear();
3179 	  return;
3180 	}
3181 
3182       double __sum = 0.0;
3183       _M_cp.reserve(_M_int.size() - 1);
3184       _M_m.reserve(_M_int.size() - 1);
3185       for (size_t __k = 0; __k < _M_int.size() - 1; ++__k)
3186 	{
3187 	  const _RealType __delta = _M_int[__k + 1] - _M_int[__k];
3188 	  __sum += 0.5 * (_M_den[__k + 1] + _M_den[__k]) * __delta;
3189 	  _M_cp.push_back(__sum);
3190 	  _M_m.push_back((_M_den[__k + 1] - _M_den[__k]) / __delta);
3191 	}
3192 
3193       //  Now normalize the densities...
3194       __detail::__normalize(_M_den.begin(), _M_den.end(), _M_den.begin(),
3195 			    __sum);
3196       //  ... and partial sums...
3197       __detail::__normalize(_M_cp.begin(), _M_cp.end(), _M_cp.begin(), __sum);
3198       //  ... and slopes.
3199       __detail::__normalize(_M_m.begin(), _M_m.end(), _M_m.begin(), __sum);
3200 
3201       //  Make sure the last cumulative probablility is one.
3202       _M_cp[_M_cp.size() - 1] = 1.0;
3203      }
3204 
3205   template<typename _RealType>
3206     template<typename _InputIteratorB, typename _InputIteratorW>
3207       piecewise_linear_distribution<_RealType>::param_type::
param_type(_InputIteratorB __bbegin,_InputIteratorB __bend,_InputIteratorW __wbegin)3208       param_type(_InputIteratorB __bbegin,
3209 		 _InputIteratorB __bend,
3210 		 _InputIteratorW __wbegin)
3211       : _M_int(), _M_den(), _M_cp(), _M_m()
3212       {
3213 	for (; __bbegin != __bend; ++__bbegin, ++__wbegin)
3214 	  {
3215 	    _M_int.push_back(*__bbegin);
3216 	    _M_den.push_back(*__wbegin);
3217 	  }
3218 
3219 	_M_initialize();
3220       }
3221 
3222   template<typename _RealType>
3223     template<typename _Func>
3224       piecewise_linear_distribution<_RealType>::param_type::
param_type(initializer_list<_RealType> __bl,_Func __fw)3225       param_type(initializer_list<_RealType> __bl, _Func __fw)
3226       : _M_int(), _M_den(), _M_cp(), _M_m()
3227       {
3228 	_M_int.reserve(__bl.size());
3229 	_M_den.reserve(__bl.size());
3230 	for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter)
3231 	  {
3232 	    _M_int.push_back(*__biter);
3233 	    _M_den.push_back(__fw(*__biter));
3234 	  }
3235 
3236 	_M_initialize();
3237       }
3238 
3239   template<typename _RealType>
3240     template<typename _Func>
3241       piecewise_linear_distribution<_RealType>::param_type::
param_type(size_t __nw,_RealType __xmin,_RealType __xmax,_Func __fw)3242       param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw)
3243       : _M_int(), _M_den(), _M_cp(), _M_m()
3244       {
3245 	const size_t __n = __nw == 0 ? 1 : __nw;
3246 	const _RealType __delta = (__xmax - __xmin) / __n;
3247 
3248 	_M_int.reserve(__n + 1);
3249 	_M_den.reserve(__n + 1);
3250 	for (size_t __k = 0; __k <= __nw; ++__k)
3251 	  {
3252 	    _M_int.push_back(__xmin + __k * __delta);
3253 	    _M_den.push_back(__fw(_M_int[__k] + __delta));
3254 	  }
3255 
3256 	_M_initialize();
3257       }
3258 
3259   template<typename _RealType>
3260     template<typename _UniformRandomNumberGenerator>
3261       typename piecewise_linear_distribution<_RealType>::result_type
3262       piecewise_linear_distribution<_RealType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __param)3263       operator()(_UniformRandomNumberGenerator& __urng,
3264 		 const param_type& __param)
3265       {
3266 	__detail::_Adaptor<_UniformRandomNumberGenerator, double>
3267 	  __aurng(__urng);
3268 
3269 	const double __p = __aurng();
3270 	if (__param._M_cp.empty())
3271 	  return __p;
3272 
3273 	auto __pos = std::lower_bound(__param._M_cp.begin(),
3274 				      __param._M_cp.end(), __p);
3275 	const size_t __i = __pos - __param._M_cp.begin();
3276 
3277 	const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
3278 
3279 	const double __a = 0.5 * __param._M_m[__i];
3280 	const double __b = __param._M_den[__i];
3281 	const double __cm = __p - __pref;
3282 
3283 	_RealType __x = __param._M_int[__i];
3284 	if (__a == 0)
3285 	  __x += __cm / __b;
3286 	else
3287 	  {
3288 	    const double __d = __b * __b + 4.0 * __a * __cm;
3289 	    __x += 0.5 * (std::sqrt(__d) - __b) / __a;
3290           }
3291 
3292         return __x;
3293       }
3294 
3295   template<typename _RealType>
3296     template<typename _ForwardIterator,
3297 	     typename _UniformRandomNumberGenerator>
3298       void
3299       piecewise_linear_distribution<_RealType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __param)3300       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
3301 		      _UniformRandomNumberGenerator& __urng,
3302 		      const param_type& __param)
3303       {
3304 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
3305 	// We could duplicate everything from operator()...
3306 	while (__f != __t)
3307 	  *__f++ = this->operator()(__urng, __param);
3308       }
3309 
3310   template<typename _RealType, typename _CharT, typename _Traits>
3311     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const piecewise_linear_distribution<_RealType> & __x)3312     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
3313 	       const piecewise_linear_distribution<_RealType>& __x)
3314     {
3315       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
3316       typedef typename __ostream_type::ios_base    __ios_base;
3317 
3318       const typename __ios_base::fmtflags __flags = __os.flags();
3319       const _CharT __fill = __os.fill();
3320       const std::streamsize __precision = __os.precision();
3321       const _CharT __space = __os.widen(' ');
3322       __os.flags(__ios_base::scientific | __ios_base::left);
3323       __os.fill(__space);
3324       __os.precision(std::numeric_limits<_RealType>::max_digits10);
3325 
3326       std::vector<_RealType> __int = __x.intervals();
3327       __os << __int.size() - 1;
3328 
3329       for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit)
3330 	__os << __space << *__xit;
3331 
3332       std::vector<double> __den = __x.densities();
3333       for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit)
3334 	__os << __space << *__dit;
3335 
3336       __os.flags(__flags);
3337       __os.fill(__fill);
3338       __os.precision(__precision);
3339       return __os;
3340     }
3341 
3342   template<typename _RealType, typename _CharT, typename _Traits>
3343     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,piecewise_linear_distribution<_RealType> & __x)3344     operator>>(std::basic_istream<_CharT, _Traits>& __is,
3345 	       piecewise_linear_distribution<_RealType>& __x)
3346     {
3347       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
3348       typedef typename __istream_type::ios_base    __ios_base;
3349 
3350       const typename __ios_base::fmtflags __flags = __is.flags();
3351       __is.flags(__ios_base::dec | __ios_base::skipws);
3352 
3353       size_t __n;
3354       __is >> __n;
3355 
3356       std::vector<_RealType> __int_vec;
3357       __int_vec.reserve(__n + 1);
3358       for (size_t __i = 0; __i <= __n; ++__i)
3359 	{
3360 	  _RealType __int;
3361 	  __is >> __int;
3362 	  __int_vec.push_back(__int);
3363 	}
3364 
3365       std::vector<double> __den_vec;
3366       __den_vec.reserve(__n + 1);
3367       for (size_t __i = 0; __i <= __n; ++__i)
3368 	{
3369 	  double __den;
3370 	  __is >> __den;
3371 	  __den_vec.push_back(__den);
3372 	}
3373 
3374       __x.param(typename piecewise_linear_distribution<_RealType>::
3375 	  param_type(__int_vec.begin(), __int_vec.end(), __den_vec.begin()));
3376 
3377       __is.flags(__flags);
3378       return __is;
3379     }
3380 
3381 
3382   template<typename _IntType>
seed_seq(std::initializer_list<_IntType> __il)3383     seed_seq::seed_seq(std::initializer_list<_IntType> __il)
3384     {
3385       for (auto __iter = __il.begin(); __iter != __il.end(); ++__iter)
3386 	_M_v.push_back(__detail::__mod<result_type,
3387 		       __detail::_Shift<result_type, 32>::__value>(*__iter));
3388     }
3389 
3390   template<typename _InputIterator>
seed_seq(_InputIterator __begin,_InputIterator __end)3391     seed_seq::seed_seq(_InputIterator __begin, _InputIterator __end)
3392     {
3393       for (_InputIterator __iter = __begin; __iter != __end; ++__iter)
3394 	_M_v.push_back(__detail::__mod<result_type,
3395 		       __detail::_Shift<result_type, 32>::__value>(*__iter));
3396     }
3397 
3398   template<typename _RandomAccessIterator>
3399     void
generate(_RandomAccessIterator __begin,_RandomAccessIterator __end)3400     seed_seq::generate(_RandomAccessIterator __begin,
3401 		       _RandomAccessIterator __end)
3402     {
3403       typedef typename iterator_traits<_RandomAccessIterator>::value_type
3404         _Type;
3405 
3406       if (__begin == __end)
3407 	return;
3408 
3409       std::fill(__begin, __end, _Type(0x8b8b8b8bu));
3410 
3411       const size_t __n = __end - __begin;
3412       const size_t __s = _M_v.size();
3413       const size_t __t = (__n >= 623) ? 11
3414 		       : (__n >=  68) ? 7
3415 		       : (__n >=  39) ? 5
3416 		       : (__n >=   7) ? 3
3417 		       : (__n - 1) / 2;
3418       const size_t __p = (__n - __t) / 2;
3419       const size_t __q = __p + __t;
3420       const size_t __m = std::max(size_t(__s + 1), __n);
3421 
3422       for (size_t __k = 0; __k < __m; ++__k)
3423 	{
3424 	  _Type __arg = (__begin[__k % __n]
3425 			 ^ __begin[(__k + __p) % __n]
3426 			 ^ __begin[(__k - 1) % __n]);
3427 	  _Type __r1 = __arg ^ (__arg >> 27);
3428 	  __r1 = __detail::__mod<_Type,
3429 		    __detail::_Shift<_Type, 32>::__value>(1664525u * __r1);
3430 	  _Type __r2 = __r1;
3431 	  if (__k == 0)
3432 	    __r2 += __s;
3433 	  else if (__k <= __s)
3434 	    __r2 += __k % __n + _M_v[__k - 1];
3435 	  else
3436 	    __r2 += __k % __n;
3437 	  __r2 = __detail::__mod<_Type,
3438 	           __detail::_Shift<_Type, 32>::__value>(__r2);
3439 	  __begin[(__k + __p) % __n] += __r1;
3440 	  __begin[(__k + __q) % __n] += __r2;
3441 	  __begin[__k % __n] = __r2;
3442 	}
3443 
3444       for (size_t __k = __m; __k < __m + __n; ++__k)
3445 	{
3446 	  _Type __arg = (__begin[__k % __n]
3447 			 + __begin[(__k + __p) % __n]
3448 			 + __begin[(__k - 1) % __n]);
3449 	  _Type __r3 = __arg ^ (__arg >> 27);
3450 	  __r3 = __detail::__mod<_Type,
3451 		   __detail::_Shift<_Type, 32>::__value>(1566083941u * __r3);
3452 	  _Type __r4 = __r3 - __k % __n;
3453 	  __r4 = __detail::__mod<_Type,
3454 	           __detail::_Shift<_Type, 32>::__value>(__r4);
3455 	  __begin[(__k + __p) % __n] ^= __r3;
3456 	  __begin[(__k + __q) % __n] ^= __r4;
3457 	  __begin[__k % __n] = __r4;
3458 	}
3459     }
3460 
3461   template<typename _RealType, size_t __bits,
3462 	   typename _UniformRandomNumberGenerator>
3463     _RealType
3464     generate_canonical(_UniformRandomNumberGenerator& __urng)
3465     {
3466       const size_t __b
3467 	= std::min(static_cast<size_t>(std::numeric_limits<_RealType>::digits),
3468                    __bits);
3469       const long double __r = static_cast<long double>(__urng.max())
3470 			    - static_cast<long double>(__urng.min()) + 1.0L;
3471       const size_t __log2r = std::log(__r) / std::log(2.0L);
3472       size_t __k = std::max<size_t>(1UL, (__b + __log2r - 1UL) / __log2r);
3473       _RealType __sum = _RealType(0);
3474       _RealType __tmp = _RealType(1);
3475       for (; __k != 0; --__k)
3476 	{
3477 	  __sum += _RealType(__urng() - __urng.min()) * __tmp;
3478 	  __tmp *= __r;
3479 	}
3480       return __sum / __tmp;
3481     }
3482 
3483 _GLIBCXX_END_NAMESPACE_VERSION
3484 } // namespace
3485 
3486 #endif
3487