1 /* Lower GIMPLE_SWITCH expressions to something more efficient than
2    a jump table.
3    Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA.  */
21 
22 /* This file handles the lowering of GIMPLE_SWITCH to an indexed
23    load, or a series of bit-test-and-branch expressions.  */
24 
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "insn-codes.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "cfghooks.h"
34 #include "tree-pass.h"
35 #include "ssa.h"
36 #include "optabs-tree.h"
37 #include "cgraph.h"
38 #include "gimple-pretty-print.h"
39 #include "params.h"
40 #include "fold-const.h"
41 #include "varasm.h"
42 #include "stor-layout.h"
43 #include "cfganal.h"
44 #include "gimplify.h"
45 #include "gimple-iterator.h"
46 #include "gimplify-me.h"
47 #include "tree-cfg.h"
48 #include "cfgloop.h"
49 
50 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
51    type in the GIMPLE type system that is language-independent?  */
52 #include "langhooks.h"
53 
54 
55 /* Maximum number of case bit tests.
56    FIXME: This should be derived from PARAM_CASE_VALUES_THRESHOLD and
57 	  targetm.case_values_threshold(), or be its own param.  */
58 #define MAX_CASE_BIT_TESTS  3
59 
60 /* Split the basic block at the statement pointed to by GSIP, and insert
61    a branch to the target basic block of E_TRUE conditional on tree
62    expression COND.
63 
64    It is assumed that there is already an edge from the to-be-split
65    basic block to E_TRUE->dest block.  This edge is removed, and the
66    profile information on the edge is re-used for the new conditional
67    jump.
68 
69    The CFG is updated.  The dominator tree will not be valid after
70    this transformation, but the immediate dominators are updated if
71    UPDATE_DOMINATORS is true.
72 
73    Returns the newly created basic block.  */
74 
75 static basic_block
hoist_edge_and_branch_if_true(gimple_stmt_iterator * gsip,tree cond,edge e_true,bool update_dominators)76 hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
77 			       tree cond, edge e_true,
78 			       bool update_dominators)
79 {
80   tree tmp;
81   gcond *cond_stmt;
82   edge e_false;
83   basic_block new_bb, split_bb = gsi_bb (*gsip);
84   bool dominated_e_true = false;
85 
86   gcc_assert (e_true->src == split_bb);
87 
88   if (update_dominators
89       && get_immediate_dominator (CDI_DOMINATORS, e_true->dest) == split_bb)
90     dominated_e_true = true;
91 
92   tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
93 				  /*before=*/true, GSI_SAME_STMT);
94   cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
95   gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
96 
97   e_false = split_block (split_bb, cond_stmt);
98   new_bb = e_false->dest;
99   redirect_edge_pred (e_true, split_bb);
100 
101   e_true->flags &= ~EDGE_FALLTHRU;
102   e_true->flags |= EDGE_TRUE_VALUE;
103 
104   e_false->flags &= ~EDGE_FALLTHRU;
105   e_false->flags |= EDGE_FALSE_VALUE;
106   e_false->probability = REG_BR_PROB_BASE - e_true->probability;
107   e_false->count = split_bb->count - e_true->count;
108   new_bb->count = e_false->count;
109 
110   if (update_dominators)
111     {
112       if (dominated_e_true)
113 	set_immediate_dominator (CDI_DOMINATORS, e_true->dest, split_bb);
114       set_immediate_dominator (CDI_DOMINATORS, e_false->dest, split_bb);
115     }
116 
117   return new_bb;
118 }
119 
120 
121 /* Return true if a switch should be expanded as a bit test.
122    RANGE is the difference between highest and lowest case.
123    UNIQ is number of unique case node targets, not counting the default case.
124    COUNT is the number of comparisons needed, not counting the default case.  */
125 
126 static bool
expand_switch_using_bit_tests_p(tree range,unsigned int uniq,unsigned int count,bool speed_p)127 expand_switch_using_bit_tests_p (tree range,
128 				 unsigned int uniq,
129 				 unsigned int count, bool speed_p)
130 {
131   return (((uniq == 1 && count >= 3)
132 	   || (uniq == 2 && count >= 5)
133 	   || (uniq == 3 && count >= 6))
134 	  && lshift_cheap_p (speed_p)
135 	  && compare_tree_int (range, GET_MODE_BITSIZE (word_mode)) < 0
136 	  && compare_tree_int (range, 0) > 0);
137 }
138 
139 /* Implement switch statements with bit tests
140 
141 A GIMPLE switch statement can be expanded to a short sequence of bit-wise
142 comparisons.  "switch(x)" is converted into "if ((1 << (x-MINVAL)) & CST)"
143 where CST and MINVAL are integer constants.  This is better than a series
144 of compare-and-banch insns in some cases,  e.g. we can implement:
145 
146 	if ((x==4) || (x==6) || (x==9) || (x==11))
147 
148 as a single bit test:
149 
150 	if ((1<<x) & ((1<<4)|(1<<6)|(1<<9)|(1<<11)))
151 
152 This transformation is only applied if the number of case targets is small,
153 if CST constains at least 3 bits, and "1 << x" is cheap.  The bit tests are
154 performed in "word_mode".
155 
156 The following example shows the code the transformation generates:
157 
158 	int bar(int x)
159 	{
160 		switch (x)
161 		{
162 		case '0':  case '1':  case '2':  case '3':  case '4':
163 		case '5':  case '6':  case '7':  case '8':  case '9':
164 		case 'A':  case 'B':  case 'C':  case 'D':  case 'E':
165 		case 'F':
166 			return 1;
167 		}
168 		return 0;
169 	}
170 
171 ==>
172 
173 	bar (int x)
174 	{
175 		tmp1 = x - 48;
176 		if (tmp1 > (70 - 48)) goto L2;
177 		tmp2 = 1 << tmp1;
178 		tmp3 = 0b11111100000001111111111;
179 		if ((tmp2 & tmp3) != 0) goto L1 ; else goto L2;
180 	L1:
181 		return 1;
182 	L2:
183 		return 0;
184 	}
185 
186 TODO: There are still some improvements to this transformation that could
187 be implemented:
188 
189 * A narrower mode than word_mode could be used if that is cheaper, e.g.
190   for x86_64 where a narrower-mode shift may result in smaller code.
191 
192 * The compounded constant could be shifted rather than the one.  The
193   test would be either on the sign bit or on the least significant bit,
194   depending on the direction of the shift.  On some machines, the test
195   for the branch would be free if the bit to test is already set by the
196   shift operation.
197 
198 This transformation was contributed by Roger Sayle, see this e-mail:
199    http://gcc.gnu.org/ml/gcc-patches/2003-01/msg01950.html
200 */
201 
202 /* A case_bit_test represents a set of case nodes that may be
203    selected from using a bit-wise comparison.  HI and LO hold
204    the integer to be tested against, TARGET_EDGE contains the
205    edge to the basic block to jump to upon success and BITS
206    counts the number of case nodes handled by this test,
207    typically the number of bits set in HI:LO.  The LABEL field
208    is used to quickly identify all cases in this set without
209    looking at label_to_block for every case label.  */
210 
211 struct case_bit_test
212 {
213   wide_int mask;
214   edge target_edge;
215   tree label;
216   int bits;
217 };
218 
219 /* Comparison function for qsort to order bit tests by decreasing
220    probability of execution.  Our best guess comes from a measured
221    profile.  If the profile counts are equal, break even on the
222    number of case nodes, i.e. the node with the most cases gets
223    tested first.
224 
225    TODO: Actually this currently runs before a profile is available.
226    Therefore the case-as-bit-tests transformation should be done
227    later in the pass pipeline, or something along the lines of
228    "Efficient and effective branch reordering using profile data"
229    (Yang et. al., 2002) should be implemented (although, how good
230    is a paper is called "Efficient and effective ..." when the
231    latter is implied by the former, but oh well...).  */
232 
233 static int
case_bit_test_cmp(const void * p1,const void * p2)234 case_bit_test_cmp (const void *p1, const void *p2)
235 {
236   const struct case_bit_test *const d1 = (const struct case_bit_test *) p1;
237   const struct case_bit_test *const d2 = (const struct case_bit_test *) p2;
238 
239   if (d2->target_edge->count != d1->target_edge->count)
240     return d2->target_edge->count - d1->target_edge->count;
241   if (d2->bits != d1->bits)
242     return d2->bits - d1->bits;
243 
244   /* Stabilize the sort.  */
245   return LABEL_DECL_UID (d2->label) - LABEL_DECL_UID (d1->label);
246 }
247 
248 /*  Expand a switch statement by a short sequence of bit-wise
249     comparisons.  "switch(x)" is effectively converted into
250     "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
251     integer constants.
252 
253     INDEX_EXPR is the value being switched on.
254 
255     MINVAL is the lowest case value of in the case nodes,
256     and RANGE is highest value minus MINVAL.  MINVAL and RANGE
257     are not guaranteed to be of the same type as INDEX_EXPR
258     (the gimplifier doesn't change the type of case label values,
259     and MINVAL and RANGE are derived from those values).
260     MAXVAL is MINVAL + RANGE.
261 
262     There *MUST* be MAX_CASE_BIT_TESTS or less unique case
263     node targets.  */
264 
265 static void
emit_case_bit_tests(gswitch * swtch,tree index_expr,tree minval,tree range,tree maxval)266 emit_case_bit_tests (gswitch *swtch, tree index_expr,
267 		     tree minval, tree range, tree maxval)
268 {
269   struct case_bit_test test[MAX_CASE_BIT_TESTS];
270   unsigned int i, j, k;
271   unsigned int count;
272 
273   basic_block switch_bb = gimple_bb (swtch);
274   basic_block default_bb, new_default_bb, new_bb;
275   edge default_edge;
276   bool update_dom = dom_info_available_p (CDI_DOMINATORS);
277 
278   vec<basic_block> bbs_to_fix_dom = vNULL;
279 
280   tree index_type = TREE_TYPE (index_expr);
281   tree unsigned_index_type = unsigned_type_for (index_type);
282   unsigned int branch_num = gimple_switch_num_labels (swtch);
283 
284   gimple_stmt_iterator gsi;
285   gassign *shift_stmt;
286 
287   tree idx, tmp, csui;
288   tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
289   tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
290   tree word_mode_one = fold_convert (word_type_node, integer_one_node);
291   int prec = TYPE_PRECISION (word_type_node);
292   wide_int wone = wi::one (prec);
293 
294   memset (&test, 0, sizeof (test));
295 
296   /* Get the edge for the default case.  */
297   tmp = gimple_switch_default_label (swtch);
298   default_bb = label_to_block (CASE_LABEL (tmp));
299   default_edge = find_edge (switch_bb, default_bb);
300 
301   /* Go through all case labels, and collect the case labels, profile
302      counts, and other information we need to build the branch tests.  */
303   count = 0;
304   for (i = 1; i < branch_num; i++)
305     {
306       unsigned int lo, hi;
307       tree cs = gimple_switch_label (swtch, i);
308       tree label = CASE_LABEL (cs);
309       edge e = find_edge (switch_bb, label_to_block (label));
310       for (k = 0; k < count; k++)
311 	if (e == test[k].target_edge)
312 	  break;
313 
314       if (k == count)
315 	{
316 	  gcc_checking_assert (count < MAX_CASE_BIT_TESTS);
317 	  test[k].mask = wi::zero (prec);
318 	  test[k].target_edge = e;
319 	  test[k].label = label;
320 	  test[k].bits = 1;
321 	  count++;
322 	}
323       else
324         test[k].bits++;
325 
326       lo = tree_to_uhwi (int_const_binop (MINUS_EXPR,
327 					  CASE_LOW (cs), minval));
328       if (CASE_HIGH (cs) == NULL_TREE)
329 	hi = lo;
330       else
331 	hi = tree_to_uhwi (int_const_binop (MINUS_EXPR,
332 					    CASE_HIGH (cs), minval));
333 
334       for (j = lo; j <= hi; j++)
335 	test[k].mask |= wi::lshift (wone, j);
336     }
337 
338   qsort (test, count, sizeof (*test), case_bit_test_cmp);
339 
340   /* If all values are in the 0 .. BITS_PER_WORD-1 range, we can get rid of
341      the minval subtractions, but it might make the mask constants more
342      expensive.  So, compare the costs.  */
343   if (compare_tree_int (minval, 0) > 0
344       && compare_tree_int (maxval, GET_MODE_BITSIZE (word_mode)) < 0)
345     {
346       int cost_diff;
347       HOST_WIDE_INT m = tree_to_uhwi (minval);
348       rtx reg = gen_raw_REG (word_mode, 10000);
349       bool speed_p = optimize_bb_for_speed_p (gimple_bb (swtch));
350       cost_diff = set_rtx_cost (gen_rtx_PLUS (word_mode, reg,
351 					      GEN_INT (-m)), speed_p);
352       for (i = 0; i < count; i++)
353 	{
354 	  rtx r = immed_wide_int_const (test[i].mask, word_mode);
355 	  cost_diff += set_src_cost (gen_rtx_AND (word_mode, reg, r),
356 				     word_mode, speed_p);
357 	  r = immed_wide_int_const (wi::lshift (test[i].mask, m), word_mode);
358 	  cost_diff -= set_src_cost (gen_rtx_AND (word_mode, reg, r),
359 				     word_mode, speed_p);
360 	}
361       if (cost_diff > 0)
362 	{
363 	  for (i = 0; i < count; i++)
364 	    test[i].mask = wi::lshift (test[i].mask, m);
365 	  minval = build_zero_cst (TREE_TYPE (minval));
366 	  range = maxval;
367 	}
368     }
369 
370   /* We generate two jumps to the default case label.
371      Split the default edge, so that we don't have to do any PHI node
372      updating.  */
373   new_default_bb = split_edge (default_edge);
374 
375   if (update_dom)
376     {
377       bbs_to_fix_dom.create (10);
378       bbs_to_fix_dom.quick_push (switch_bb);
379       bbs_to_fix_dom.quick_push (default_bb);
380       bbs_to_fix_dom.quick_push (new_default_bb);
381     }
382 
383   /* Now build the test-and-branch code.  */
384 
385   gsi = gsi_last_bb (switch_bb);
386 
387   /* idx = (unsigned)x - minval.  */
388   idx = fold_convert (unsigned_index_type, index_expr);
389   idx = fold_build2 (MINUS_EXPR, unsigned_index_type, idx,
390 		     fold_convert (unsigned_index_type, minval));
391   idx = force_gimple_operand_gsi (&gsi, idx,
392 				  /*simple=*/true, NULL_TREE,
393 				  /*before=*/true, GSI_SAME_STMT);
394 
395   /* if (idx > range) goto default */
396   range = force_gimple_operand_gsi (&gsi,
397 				    fold_convert (unsigned_index_type, range),
398 				    /*simple=*/true, NULL_TREE,
399 				    /*before=*/true, GSI_SAME_STMT);
400   tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
401   new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, default_edge, update_dom);
402   if (update_dom)
403     bbs_to_fix_dom.quick_push (new_bb);
404   gcc_assert (gimple_bb (swtch) == new_bb);
405   gsi = gsi_last_bb (new_bb);
406 
407   /* Any blocks dominated by the GIMPLE_SWITCH, but that are not successors
408      of NEW_BB, are still immediately dominated by SWITCH_BB.  Make it so.  */
409   if (update_dom)
410     {
411       vec<basic_block> dom_bbs;
412       basic_block dom_son;
413 
414       dom_bbs = get_dominated_by (CDI_DOMINATORS, new_bb);
415       FOR_EACH_VEC_ELT (dom_bbs, i, dom_son)
416 	{
417 	  edge e = find_edge (new_bb, dom_son);
418 	  if (e && single_pred_p (e->dest))
419 	    continue;
420 	  set_immediate_dominator (CDI_DOMINATORS, dom_son, switch_bb);
421 	  bbs_to_fix_dom.safe_push (dom_son);
422 	}
423       dom_bbs.release ();
424     }
425 
426   /* csui = (1 << (word_mode) idx) */
427   csui = make_ssa_name (word_type_node);
428   tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
429 		     fold_convert (word_type_node, idx));
430   tmp = force_gimple_operand_gsi (&gsi, tmp,
431 				  /*simple=*/false, NULL_TREE,
432 				  /*before=*/true, GSI_SAME_STMT);
433   shift_stmt = gimple_build_assign (csui, tmp);
434   gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
435   update_stmt (shift_stmt);
436 
437   /* for each unique set of cases:
438         if (const & csui) goto target  */
439   for (k = 0; k < count; k++)
440     {
441       tmp = wide_int_to_tree (word_type_node, test[k].mask);
442       tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
443       tmp = force_gimple_operand_gsi (&gsi, tmp,
444 				      /*simple=*/true, NULL_TREE,
445 				      /*before=*/true, GSI_SAME_STMT);
446       tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
447       new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_edge,
448 					      update_dom);
449       if (update_dom)
450 	bbs_to_fix_dom.safe_push (new_bb);
451       gcc_assert (gimple_bb (swtch) == new_bb);
452       gsi = gsi_last_bb (new_bb);
453     }
454 
455   /* We should have removed all edges now.  */
456   gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
457 
458   /* If nothing matched, go to the default label.  */
459   make_edge (gsi_bb (gsi), new_default_bb, EDGE_FALLTHRU);
460 
461   /* The GIMPLE_SWITCH is now redundant.  */
462   gsi_remove (&gsi, true);
463 
464   if (update_dom)
465     {
466       /* Fix up the dominator tree.  */
467       iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
468       bbs_to_fix_dom.release ();
469     }
470 }
471 
472 /*
473      Switch initialization conversion
474 
475 The following pass changes simple initializations of scalars in a switch
476 statement into initializations from a static array.  Obviously, the values
477 must be constant and known at compile time and a default branch must be
478 provided.  For example, the following code:
479 
480         int a,b;
481 
482         switch (argc)
483 	{
484          case 1:
485          case 2:
486                 a_1 = 8;
487                 b_1 = 6;
488                 break;
489          case 3:
490                 a_2 = 9;
491                 b_2 = 5;
492                 break;
493          case 12:
494                 a_3 = 10;
495                 b_3 = 4;
496                 break;
497          default:
498                 a_4 = 16;
499                 b_4 = 1;
500 		break;
501         }
502 	a_5 = PHI <a_1, a_2, a_3, a_4>
503 	b_5 = PHI <b_1, b_2, b_3, b_4>
504 
505 
506 is changed into:
507 
508         static const int = CSWTCH01[] = {6, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 4};
509         static const int = CSWTCH02[] = {8, 8, 9, 16, 16, 16, 16, 16, 16, 16,
510                                  16, 16, 10};
511 
512         if (((unsigned) argc) - 1 < 11)
513           {
514 	    a_6 = CSWTCH02[argc - 1];
515             b_6 = CSWTCH01[argc - 1];
516 	  }
517 	else
518 	  {
519 	    a_7 = 16;
520 	    b_7 = 1;
521           }
522 	a_5 = PHI <a_6, a_7>
523 	b_b = PHI <b_6, b_7>
524 
525 There are further constraints.  Specifically, the range of values across all
526 case labels must not be bigger than SWITCH_CONVERSION_BRANCH_RATIO (default
527 eight) times the number of the actual switch branches.
528 
529 This transformation was contributed by Martin Jambor, see this e-mail:
530    http://gcc.gnu.org/ml/gcc-patches/2008-07/msg00011.html  */
531 
532 /* The main structure of the pass.  */
533 struct switch_conv_info
534 {
535   /* The expression used to decide the switch branch.  */
536   tree index_expr;
537 
538   /* The following integer constants store the minimum and maximum value
539      covered by the case labels.  */
540   tree range_min;
541   tree range_max;
542 
543   /* The difference between the above two numbers.  Stored here because it
544      is used in all the conversion heuristics, as well as for some of the
545      transformation, and it is expensive to re-compute it all the time.  */
546   tree range_size;
547 
548   /* Basic block that contains the actual GIMPLE_SWITCH.  */
549   basic_block switch_bb;
550 
551   /* Basic block that is the target of the default case.  */
552   basic_block default_bb;
553 
554   /* The single successor block of all branches out of the GIMPLE_SWITCH,
555      if such a block exists.  Otherwise NULL.  */
556   basic_block final_bb;
557 
558   /* The probability of the default edge in the replaced switch.  */
559   int default_prob;
560 
561   /* The count of the default edge in the replaced switch.  */
562   gcov_type default_count;
563 
564   /* Combined count of all other (non-default) edges in the replaced switch.  */
565   gcov_type other_count;
566 
567   /* Number of phi nodes in the final bb (that we'll be replacing).  */
568   int phi_count;
569 
570   /* Array of default values, in the same order as phi nodes.  */
571   tree *default_values;
572 
573   /* Constructors of new static arrays.  */
574   vec<constructor_elt, va_gc> **constructors;
575 
576   /* Array of ssa names that are initialized with a value from a new static
577      array.  */
578   tree *target_inbound_names;
579 
580   /* Array of ssa names that are initialized with the default value if the
581      switch expression is out of range.  */
582   tree *target_outbound_names;
583 
584   /* The first load statement that loads a temporary from a new static array.
585    */
586   gimple *arr_ref_first;
587 
588   /* The last load statement that loads a temporary from a new static array.  */
589   gimple *arr_ref_last;
590 
591   /* String reason why the case wasn't a good candidate that is written to the
592      dump file, if there is one.  */
593   const char *reason;
594 
595   /* Parameters for expand_switch_using_bit_tests.  Should be computed
596      the same way as in expand_case.  */
597   unsigned int uniq;
598   unsigned int count;
599 };
600 
601 /* Collect information about GIMPLE_SWITCH statement SWTCH into INFO.  */
602 
603 static void
collect_switch_conv_info(gswitch * swtch,struct switch_conv_info * info)604 collect_switch_conv_info (gswitch *swtch, struct switch_conv_info *info)
605 {
606   unsigned int branch_num = gimple_switch_num_labels (swtch);
607   tree min_case, max_case;
608   unsigned int count, i;
609   edge e, e_default;
610   edge_iterator ei;
611 
612   memset (info, 0, sizeof (*info));
613 
614   /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
615      is a default label which is the first in the vector.
616      Collect the bits we can deduce from the CFG.  */
617   info->index_expr = gimple_switch_index (swtch);
618   info->switch_bb = gimple_bb (swtch);
619   info->default_bb =
620     label_to_block (CASE_LABEL (gimple_switch_default_label (swtch)));
621   e_default = find_edge (info->switch_bb, info->default_bb);
622   info->default_prob = e_default->probability;
623   info->default_count = e_default->count;
624   FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
625     if (e != e_default)
626       info->other_count += e->count;
627 
628   /* See if there is one common successor block for all branch
629      targets.  If it exists, record it in FINAL_BB.
630      Start with the destination of the default case as guess
631      or its destination in case it is a forwarder block.  */
632   if (! single_pred_p (e_default->dest))
633     info->final_bb = e_default->dest;
634   else if (single_succ_p (e_default->dest)
635 	   && ! single_pred_p (single_succ (e_default->dest)))
636     info->final_bb = single_succ (e_default->dest);
637   /* Require that all switch destinations are either that common
638      FINAL_BB or a forwarder to it.  */
639   if (info->final_bb)
640     FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
641       {
642 	if (e->dest == info->final_bb)
643 	  continue;
644 
645 	if (single_pred_p (e->dest)
646 	    && single_succ_p (e->dest)
647 	    && single_succ (e->dest) == info->final_bb)
648 	  continue;
649 
650 	info->final_bb = NULL;
651 	break;
652       }
653 
654   /* Get upper and lower bounds of case values, and the covered range.  */
655   min_case = gimple_switch_label (swtch, 1);
656   max_case = gimple_switch_label (swtch, branch_num - 1);
657 
658   info->range_min = CASE_LOW (min_case);
659   if (CASE_HIGH (max_case) != NULL_TREE)
660     info->range_max = CASE_HIGH (max_case);
661   else
662     info->range_max = CASE_LOW (max_case);
663 
664   info->range_size =
665     int_const_binop (MINUS_EXPR, info->range_max, info->range_min);
666 
667   /* Get a count of the number of case labels.  Single-valued case labels
668      simply count as one, but a case range counts double, since it may
669      require two compares if it gets lowered as a branching tree.  */
670   count = 0;
671   for (i = 1; i < branch_num; i++)
672     {
673       tree elt = gimple_switch_label (swtch, i);
674       count++;
675       if (CASE_HIGH (elt)
676 	  && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
677 	count++;
678     }
679   info->count = count;
680 
681   /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
682      block.  Assume a CFG cleanup would have already removed degenerate
683      switch statements, this allows us to just use EDGE_COUNT.  */
684   info->uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
685 }
686 
687 /* Checks whether the range given by individual case statements of the SWTCH
688    switch statement isn't too big and whether the number of branches actually
689    satisfies the size of the new array.  */
690 
691 static bool
check_range(struct switch_conv_info * info)692 check_range (struct switch_conv_info *info)
693 {
694   gcc_assert (info->range_size);
695   if (!tree_fits_uhwi_p (info->range_size))
696     {
697       info->reason = "index range way too large or otherwise unusable";
698       return false;
699     }
700 
701   if (tree_to_uhwi (info->range_size)
702       > ((unsigned) info->count * SWITCH_CONVERSION_BRANCH_RATIO))
703     {
704       info->reason = "the maximum range-branch ratio exceeded";
705       return false;
706     }
707 
708   return true;
709 }
710 
711 /* Checks whether all but the FINAL_BB basic blocks are empty.  */
712 
713 static bool
check_all_empty_except_final(struct switch_conv_info * info)714 check_all_empty_except_final (struct switch_conv_info *info)
715 {
716   edge e;
717   edge_iterator ei;
718 
719   FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
720     {
721       if (e->dest == info->final_bb)
722 	continue;
723 
724       if (!empty_block_p (e->dest))
725 	{
726 	  info->reason = "bad case - a non-final BB not empty";
727 	  return false;
728 	}
729     }
730 
731   return true;
732 }
733 
734 /* This function checks whether all required values in phi nodes in final_bb
735    are constants.  Required values are those that correspond to a basic block
736    which is a part of the examined switch statement.  It returns true if the
737    phi nodes are OK, otherwise false.  */
738 
739 static bool
check_final_bb(struct switch_conv_info * info)740 check_final_bb (struct switch_conv_info *info)
741 {
742   gphi_iterator gsi;
743 
744   info->phi_count = 0;
745   for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
746     {
747       gphi *phi = gsi.phi ();
748       unsigned int i;
749 
750       info->phi_count++;
751 
752       for (i = 0; i < gimple_phi_num_args (phi); i++)
753 	{
754 	  basic_block bb = gimple_phi_arg_edge (phi, i)->src;
755 
756 	  if (bb == info->switch_bb
757 	      || (single_pred_p (bb) && single_pred (bb) == info->switch_bb))
758 	    {
759 	      tree reloc, val;
760 
761 	      val = gimple_phi_arg_def (phi, i);
762 	      if (!is_gimple_ip_invariant (val))
763 		{
764 		  info->reason = "non-invariant value from a case";
765 		  return false; /* Non-invariant argument.  */
766 		}
767 	      reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
768 	      if ((flag_pic && reloc != null_pointer_node)
769 		  || (!flag_pic && reloc == NULL_TREE))
770 		{
771 		  if (reloc)
772 		    info->reason
773 		      = "value from a case would need runtime relocations";
774 		  else
775 		    info->reason
776 		      = "value from a case is not a valid initializer";
777 		  return false;
778 		}
779 	    }
780 	}
781     }
782 
783   return true;
784 }
785 
786 /* The following function allocates default_values, target_{in,out}_names and
787    constructors arrays.  The last one is also populated with pointers to
788    vectors that will become constructors of new arrays.  */
789 
790 static void
create_temp_arrays(struct switch_conv_info * info)791 create_temp_arrays (struct switch_conv_info *info)
792 {
793   int i;
794 
795   info->default_values = XCNEWVEC (tree, info->phi_count * 3);
796   /* ??? Macros do not support multi argument templates in their
797      argument list.  We create a typedef to work around that problem.  */
798   typedef vec<constructor_elt, va_gc> *vec_constructor_elt_gc;
799   info->constructors = XCNEWVEC (vec_constructor_elt_gc, info->phi_count);
800   info->target_inbound_names = info->default_values + info->phi_count;
801   info->target_outbound_names = info->target_inbound_names + info->phi_count;
802   for (i = 0; i < info->phi_count; i++)
803     vec_alloc (info->constructors[i], tree_to_uhwi (info->range_size) + 1);
804 }
805 
806 /* Free the arrays created by create_temp_arrays().  The vectors that are
807    created by that function are not freed here, however, because they have
808    already become constructors and must be preserved.  */
809 
810 static void
free_temp_arrays(struct switch_conv_info * info)811 free_temp_arrays (struct switch_conv_info *info)
812 {
813   XDELETEVEC (info->constructors);
814   XDELETEVEC (info->default_values);
815 }
816 
817 /* Populate the array of default values in the order of phi nodes.
818    DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch.  */
819 
820 static void
gather_default_values(tree default_case,struct switch_conv_info * info)821 gather_default_values (tree default_case, struct switch_conv_info *info)
822 {
823   gphi_iterator gsi;
824   basic_block bb = label_to_block (CASE_LABEL (default_case));
825   edge e;
826   int i = 0;
827 
828   gcc_assert (CASE_LOW (default_case) == NULL_TREE);
829 
830   if (bb == info->final_bb)
831     e = find_edge (info->switch_bb, bb);
832   else
833     e = single_succ_edge (bb);
834 
835   for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
836     {
837       gphi *phi = gsi.phi ();
838       tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
839       gcc_assert (val);
840       info->default_values[i++] = val;
841     }
842 }
843 
844 /* The following function populates the vectors in the constructors array with
845    future contents of the static arrays.  The vectors are populated in the
846    order of phi nodes.  SWTCH is the switch statement being converted.  */
847 
848 static void
build_constructors(gswitch * swtch,struct switch_conv_info * info)849 build_constructors (gswitch *swtch, struct switch_conv_info *info)
850 {
851   unsigned i, branch_num = gimple_switch_num_labels (swtch);
852   tree pos = info->range_min;
853 
854   for (i = 1; i < branch_num; i++)
855     {
856       tree cs = gimple_switch_label (swtch, i);
857       basic_block bb = label_to_block (CASE_LABEL (cs));
858       edge e;
859       tree high;
860       gphi_iterator gsi;
861       int j;
862 
863       if (bb == info->final_bb)
864 	e = find_edge (info->switch_bb, bb);
865       else
866 	e = single_succ_edge (bb);
867       gcc_assert (e);
868 
869       while (tree_int_cst_lt (pos, CASE_LOW (cs)))
870 	{
871 	  int k;
872 	  for (k = 0; k < info->phi_count; k++)
873 	    {
874 	      constructor_elt elt;
875 
876 	      elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
877 	      elt.value
878 		= unshare_expr_without_location (info->default_values[k]);
879 	      info->constructors[k]->quick_push (elt);
880 	    }
881 
882 	  pos = int_const_binop (PLUS_EXPR, pos,
883 				 build_int_cst (TREE_TYPE (pos), 1));
884 	}
885       gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
886 
887       j = 0;
888       if (CASE_HIGH (cs))
889 	high = CASE_HIGH (cs);
890       else
891 	high = CASE_LOW (cs);
892       for (gsi = gsi_start_phis (info->final_bb);
893 	   !gsi_end_p (gsi); gsi_next (&gsi))
894 	{
895 	  gphi *phi = gsi.phi ();
896 	  tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
897 	  tree low = CASE_LOW (cs);
898 	  pos = CASE_LOW (cs);
899 
900 	  do
901 	    {
902 	      constructor_elt elt;
903 
904 	      elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
905 	      elt.value = unshare_expr_without_location (val);
906 	      info->constructors[j]->quick_push (elt);
907 
908 	      pos = int_const_binop (PLUS_EXPR, pos,
909 				     build_int_cst (TREE_TYPE (pos), 1));
910 	    } while (!tree_int_cst_lt (high, pos)
911 		     && tree_int_cst_lt (low, pos));
912 	  j++;
913 	}
914     }
915 }
916 
917 /* If all values in the constructor vector are the same, return the value.
918    Otherwise return NULL_TREE.  Not supposed to be called for empty
919    vectors.  */
920 
921 static tree
constructor_contains_same_values_p(vec<constructor_elt,va_gc> * vec)922 constructor_contains_same_values_p (vec<constructor_elt, va_gc> *vec)
923 {
924   unsigned int i;
925   tree prev = NULL_TREE;
926   constructor_elt *elt;
927 
928   FOR_EACH_VEC_SAFE_ELT (vec, i, elt)
929     {
930       if (!prev)
931 	prev = elt->value;
932       else if (!operand_equal_p (elt->value, prev, OEP_ONLY_CONST))
933 	return NULL_TREE;
934     }
935   return prev;
936 }
937 
938 /* Return type which should be used for array elements, either TYPE,
939    or for integral type some smaller integral type that can still hold
940    all the constants.  */
941 
942 static tree
array_value_type(gswitch * swtch,tree type,int num,struct switch_conv_info * info)943 array_value_type (gswitch *swtch, tree type, int num,
944 		  struct switch_conv_info *info)
945 {
946   unsigned int i, len = vec_safe_length (info->constructors[num]);
947   constructor_elt *elt;
948   machine_mode mode;
949   int sign = 0;
950   tree smaller_type;
951 
952   if (!INTEGRAL_TYPE_P (type))
953     return type;
954 
955   mode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (TYPE_MODE (type)));
956   if (GET_MODE_SIZE (TYPE_MODE (type)) <= GET_MODE_SIZE (mode))
957     return type;
958 
959   if (len < (optimize_bb_for_size_p (gimple_bb (swtch)) ? 2 : 32))
960     return type;
961 
962   FOR_EACH_VEC_SAFE_ELT (info->constructors[num], i, elt)
963     {
964       wide_int cst;
965 
966       if (TREE_CODE (elt->value) != INTEGER_CST)
967 	return type;
968 
969       cst = elt->value;
970       while (1)
971 	{
972 	  unsigned int prec = GET_MODE_BITSIZE (mode);
973 	  if (prec > HOST_BITS_PER_WIDE_INT)
974 	    return type;
975 
976 	  if (sign >= 0 && cst == wi::zext (cst, prec))
977 	    {
978 	      if (sign == 0 && cst == wi::sext (cst, prec))
979 		break;
980 	      sign = 1;
981 	      break;
982 	    }
983 	  if (sign <= 0 && cst == wi::sext (cst, prec))
984 	    {
985 	      sign = -1;
986 	      break;
987 	    }
988 
989 	  if (sign == 1)
990 	    sign = 0;
991 
992 	  mode = GET_MODE_WIDER_MODE (mode);
993 	  if (mode == VOIDmode
994 	      || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (TYPE_MODE (type)))
995 	    return type;
996 	}
997     }
998 
999   if (sign == 0)
1000     sign = TYPE_UNSIGNED (type) ? 1 : -1;
1001   smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
1002   if (GET_MODE_SIZE (TYPE_MODE (type))
1003       <= GET_MODE_SIZE (TYPE_MODE (smaller_type)))
1004     return type;
1005 
1006   return smaller_type;
1007 }
1008 
1009 /* Create an appropriate array type and declaration and assemble a static array
1010    variable.  Also create a load statement that initializes the variable in
1011    question with a value from the static array.  SWTCH is the switch statement
1012    being converted, NUM is the index to arrays of constructors, default values
1013    and target SSA names for this particular array.  ARR_INDEX_TYPE is the type
1014    of the index of the new array, PHI is the phi node of the final BB that
1015    corresponds to the value that will be loaded from the created array.  TIDX
1016    is an ssa name of a temporary variable holding the index for loads from the
1017    new array.  */
1018 
1019 static void
build_one_array(gswitch * swtch,int num,tree arr_index_type,gphi * phi,tree tidx,struct switch_conv_info * info)1020 build_one_array (gswitch *swtch, int num, tree arr_index_type,
1021 		 gphi *phi, tree tidx, struct switch_conv_info *info)
1022 {
1023   tree name, cst;
1024   gimple *load;
1025   gimple_stmt_iterator gsi = gsi_for_stmt (swtch);
1026   location_t loc = gimple_location (swtch);
1027 
1028   gcc_assert (info->default_values[num]);
1029 
1030   name = copy_ssa_name (PHI_RESULT (phi));
1031   info->target_inbound_names[num] = name;
1032 
1033   cst = constructor_contains_same_values_p (info->constructors[num]);
1034   if (cst)
1035     load = gimple_build_assign (name, cst);
1036   else
1037     {
1038       tree array_type, ctor, decl, value_type, fetch, default_type;
1039 
1040       default_type = TREE_TYPE (info->default_values[num]);
1041       value_type = array_value_type (swtch, default_type, num, info);
1042       array_type = build_array_type (value_type, arr_index_type);
1043       if (default_type != value_type)
1044 	{
1045 	  unsigned int i;
1046 	  constructor_elt *elt;
1047 
1048 	  FOR_EACH_VEC_SAFE_ELT (info->constructors[num], i, elt)
1049 	    elt->value = fold_convert (value_type, elt->value);
1050 	}
1051       ctor = build_constructor (array_type, info->constructors[num]);
1052       TREE_CONSTANT (ctor) = true;
1053       TREE_STATIC (ctor) = true;
1054 
1055       decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
1056       TREE_STATIC (decl) = 1;
1057       DECL_INITIAL (decl) = ctor;
1058 
1059       DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
1060       DECL_ARTIFICIAL (decl) = 1;
1061       DECL_IGNORED_P (decl) = 1;
1062       TREE_CONSTANT (decl) = 1;
1063       TREE_READONLY (decl) = 1;
1064       DECL_IGNORED_P (decl) = 1;
1065       varpool_node::finalize_decl (decl);
1066 
1067       fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
1068 		      NULL_TREE);
1069       if (default_type != value_type)
1070 	{
1071 	  fetch = fold_convert (default_type, fetch);
1072 	  fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
1073 					    true, GSI_SAME_STMT);
1074 	}
1075       load = gimple_build_assign (name, fetch);
1076     }
1077 
1078   gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1079   update_stmt (load);
1080   info->arr_ref_last = load;
1081 }
1082 
1083 /* Builds and initializes static arrays initialized with values gathered from
1084    the SWTCH switch statement.  Also creates statements that load values from
1085    them.  */
1086 
1087 static void
build_arrays(gswitch * swtch,struct switch_conv_info * info)1088 build_arrays (gswitch *swtch, struct switch_conv_info *info)
1089 {
1090   tree arr_index_type;
1091   tree tidx, sub, utype;
1092   gimple *stmt;
1093   gimple_stmt_iterator gsi;
1094   gphi_iterator gpi;
1095   int i;
1096   location_t loc = gimple_location (swtch);
1097 
1098   gsi = gsi_for_stmt (swtch);
1099 
1100   /* Make sure we do not generate arithmetics in a subrange.  */
1101   utype = TREE_TYPE (info->index_expr);
1102   if (TREE_TYPE (utype))
1103     utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
1104   else
1105     utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
1106 
1107   arr_index_type = build_index_type (info->range_size);
1108   tidx = make_ssa_name (utype);
1109   sub = fold_build2_loc (loc, MINUS_EXPR, utype,
1110 			 fold_convert_loc (loc, utype, info->index_expr),
1111 			 fold_convert_loc (loc, utype, info->range_min));
1112   sub = force_gimple_operand_gsi (&gsi, sub,
1113 				  false, NULL, true, GSI_SAME_STMT);
1114   stmt = gimple_build_assign (tidx, sub);
1115 
1116   gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1117   update_stmt (stmt);
1118   info->arr_ref_first = stmt;
1119 
1120   for (gpi = gsi_start_phis (info->final_bb), i = 0;
1121        !gsi_end_p (gpi); gsi_next (&gpi), i++)
1122     build_one_array (swtch, i, arr_index_type, gpi.phi (), tidx, info);
1123 }
1124 
1125 /* Generates and appropriately inserts loads of default values at the position
1126    given by BSI.  Returns the last inserted statement.  */
1127 
1128 static gassign *
gen_def_assigns(gimple_stmt_iterator * gsi,struct switch_conv_info * info)1129 gen_def_assigns (gimple_stmt_iterator *gsi, struct switch_conv_info *info)
1130 {
1131   int i;
1132   gassign *assign = NULL;
1133 
1134   for (i = 0; i < info->phi_count; i++)
1135     {
1136       tree name = copy_ssa_name (info->target_inbound_names[i]);
1137       info->target_outbound_names[i] = name;
1138       assign = gimple_build_assign (name, info->default_values[i]);
1139       gsi_insert_before (gsi, assign, GSI_SAME_STMT);
1140       update_stmt (assign);
1141     }
1142   return assign;
1143 }
1144 
1145 /* Deletes the unused bbs and edges that now contain the switch statement and
1146    its empty branch bbs.  BBD is the now dead BB containing the original switch
1147    statement, FINAL is the last BB of the converted switch statement (in terms
1148    of succession).  */
1149 
1150 static void
prune_bbs(basic_block bbd,basic_block final)1151 prune_bbs (basic_block bbd, basic_block final)
1152 {
1153   edge_iterator ei;
1154   edge e;
1155 
1156   for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
1157     {
1158       basic_block bb;
1159       bb = e->dest;
1160       remove_edge (e);
1161       if (bb != final)
1162 	delete_basic_block (bb);
1163     }
1164   delete_basic_block (bbd);
1165 }
1166 
1167 /* Add values to phi nodes in final_bb for the two new edges.  E1F is the edge
1168    from the basic block loading values from an array and E2F from the basic
1169    block loading default values.  BBF is the last switch basic block (see the
1170    bbf description in the comment below).  */
1171 
1172 static void
fix_phi_nodes(edge e1f,edge e2f,basic_block bbf,struct switch_conv_info * info)1173 fix_phi_nodes (edge e1f, edge e2f, basic_block bbf,
1174 	       struct switch_conv_info *info)
1175 {
1176   gphi_iterator gsi;
1177   int i;
1178 
1179   for (gsi = gsi_start_phis (bbf), i = 0;
1180        !gsi_end_p (gsi); gsi_next (&gsi), i++)
1181     {
1182       gphi *phi = gsi.phi ();
1183       add_phi_arg (phi, info->target_inbound_names[i], e1f, UNKNOWN_LOCATION);
1184       add_phi_arg (phi, info->target_outbound_names[i], e2f, UNKNOWN_LOCATION);
1185     }
1186 }
1187 
1188 /* Creates a check whether the switch expression value actually falls into the
1189    range given by all the cases.  If it does not, the temporaries are loaded
1190    with default values instead.  SWTCH is the switch statement being converted.
1191 
1192    bb0 is the bb with the switch statement, however, we'll end it with a
1193        condition instead.
1194 
1195    bb1 is the bb to be used when the range check went ok.  It is derived from
1196        the switch BB
1197 
1198    bb2 is the bb taken when the expression evaluated outside of the range
1199        covered by the created arrays.  It is populated by loads of default
1200        values.
1201 
1202    bbF is a fall through for both bb1 and bb2 and contains exactly what
1203        originally followed the switch statement.
1204 
1205    bbD contains the switch statement (in the end).  It is unreachable but we
1206        still need to strip off its edges.
1207 */
1208 
1209 static void
gen_inbound_check(gswitch * swtch,struct switch_conv_info * info)1210 gen_inbound_check (gswitch *swtch, struct switch_conv_info *info)
1211 {
1212   tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
1213   tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
1214   tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
1215   glabel *label1, *label2, *label3;
1216   tree utype, tidx;
1217   tree bound;
1218 
1219   gcond *cond_stmt;
1220 
1221   gassign *last_assign;
1222   gimple_stmt_iterator gsi;
1223   basic_block bb0, bb1, bb2, bbf, bbd;
1224   edge e01, e02, e21, e1d, e1f, e2f;
1225   location_t loc = gimple_location (swtch);
1226 
1227   gcc_assert (info->default_values);
1228 
1229   bb0 = gimple_bb (swtch);
1230 
1231   tidx = gimple_assign_lhs (info->arr_ref_first);
1232   utype = TREE_TYPE (tidx);
1233 
1234   /* (end of) block 0 */
1235   gsi = gsi_for_stmt (info->arr_ref_first);
1236   gsi_next (&gsi);
1237 
1238   bound = fold_convert_loc (loc, utype, info->range_size);
1239   cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
1240   gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
1241   update_stmt (cond_stmt);
1242 
1243   /* block 2 */
1244   label2 = gimple_build_label (label_decl2);
1245   gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
1246   last_assign = gen_def_assigns (&gsi, info);
1247 
1248   /* block 1 */
1249   label1 = gimple_build_label (label_decl1);
1250   gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
1251 
1252   /* block F */
1253   gsi = gsi_start_bb (info->final_bb);
1254   label3 = gimple_build_label (label_decl3);
1255   gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
1256 
1257   /* cfg fix */
1258   e02 = split_block (bb0, cond_stmt);
1259   bb2 = e02->dest;
1260 
1261   e21 = split_block (bb2, last_assign);
1262   bb1 = e21->dest;
1263   remove_edge (e21);
1264 
1265   e1d = split_block (bb1, info->arr_ref_last);
1266   bbd = e1d->dest;
1267   remove_edge (e1d);
1268 
1269   /* flags and profiles of the edge for in-range values */
1270   e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
1271   e01->probability = REG_BR_PROB_BASE - info->default_prob;
1272   e01->count = info->other_count;
1273 
1274   /* flags and profiles of the edge taking care of out-of-range values */
1275   e02->flags &= ~EDGE_FALLTHRU;
1276   e02->flags |= EDGE_FALSE_VALUE;
1277   e02->probability = info->default_prob;
1278   e02->count = info->default_count;
1279 
1280   bbf = info->final_bb;
1281 
1282   e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
1283   e1f->probability = REG_BR_PROB_BASE;
1284   e1f->count = info->other_count;
1285 
1286   e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
1287   e2f->probability = REG_BR_PROB_BASE;
1288   e2f->count = info->default_count;
1289 
1290   /* frequencies of the new BBs */
1291   bb1->frequency = EDGE_FREQUENCY (e01);
1292   bb2->frequency = EDGE_FREQUENCY (e02);
1293   bbf->frequency = EDGE_FREQUENCY (e1f) + EDGE_FREQUENCY (e2f);
1294 
1295   /* Tidy blocks that have become unreachable.  */
1296   prune_bbs (bbd, info->final_bb);
1297 
1298   /* Fixup the PHI nodes in bbF.  */
1299   fix_phi_nodes (e1f, e2f, bbf, info);
1300 
1301   /* Fix the dominator tree, if it is available.  */
1302   if (dom_info_available_p (CDI_DOMINATORS))
1303     {
1304       vec<basic_block> bbs_to_fix_dom;
1305 
1306       set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
1307       set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
1308       if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
1309 	/* If bbD was the immediate dominator ...  */
1310 	set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
1311 
1312       bbs_to_fix_dom.create (4);
1313       bbs_to_fix_dom.quick_push (bb0);
1314       bbs_to_fix_dom.quick_push (bb1);
1315       bbs_to_fix_dom.quick_push (bb2);
1316       bbs_to_fix_dom.quick_push (bbf);
1317 
1318       iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
1319       bbs_to_fix_dom.release ();
1320     }
1321 }
1322 
1323 /* The following function is invoked on every switch statement (the current one
1324    is given in SWTCH) and runs the individual phases of switch conversion on it
1325    one after another until one fails or the conversion is completed.
1326    Returns NULL on success, or a pointer to a string with the reason why the
1327    conversion failed.  */
1328 
1329 static const char *
process_switch(gswitch * swtch)1330 process_switch (gswitch *swtch)
1331 {
1332   struct switch_conv_info info;
1333 
1334   /* Group case labels so that we get the right results from the heuristics
1335      that decide on the code generation approach for this switch.  */
1336   group_case_labels_stmt (swtch);
1337 
1338   /* If this switch is now a degenerate case with only a default label,
1339      there is nothing left for us to do.   */
1340   if (gimple_switch_num_labels (swtch) < 2)
1341     return "switch is a degenerate case";
1342 
1343   collect_switch_conv_info (swtch, &info);
1344 
1345   /* No error markers should reach here (they should be filtered out
1346      during gimplification).  */
1347   gcc_checking_assert (TREE_TYPE (info.index_expr) != error_mark_node);
1348 
1349   /* A switch on a constant should have been optimized in tree-cfg-cleanup.  */
1350   gcc_checking_assert (! TREE_CONSTANT (info.index_expr));
1351 
1352   if (info.uniq <= MAX_CASE_BIT_TESTS)
1353     {
1354       if (expand_switch_using_bit_tests_p (info.range_size,
1355 					   info.uniq, info.count,
1356 					   optimize_bb_for_speed_p
1357 					     (gimple_bb (swtch))))
1358 	{
1359 	  if (dump_file)
1360 	    fputs ("  expanding as bit test is preferable\n", dump_file);
1361 	  emit_case_bit_tests (swtch, info.index_expr, info.range_min,
1362 			       info.range_size, info.range_max);
1363 	  loops_state_set (LOOPS_NEED_FIXUP);
1364 	  return NULL;
1365 	}
1366 
1367       if (info.uniq <= 2)
1368 	/* This will be expanded as a decision tree in stmt.c:expand_case.  */
1369 	return "  expanding as jumps is preferable";
1370     }
1371 
1372   /* If there is no common successor, we cannot do the transformation.  */
1373   if (! info.final_bb)
1374     return "no common successor to all case label target blocks found";
1375 
1376   /* Check the case label values are within reasonable range:  */
1377   if (!check_range (&info))
1378     {
1379       gcc_assert (info.reason);
1380       return info.reason;
1381     }
1382 
1383   /* For all the cases, see whether they are empty, the assignments they
1384      represent constant and so on...  */
1385   if (! check_all_empty_except_final (&info))
1386     {
1387       gcc_assert (info.reason);
1388       return info.reason;
1389     }
1390   if (!check_final_bb (&info))
1391     {
1392       gcc_assert (info.reason);
1393       return info.reason;
1394     }
1395 
1396   /* At this point all checks have passed and we can proceed with the
1397      transformation.  */
1398 
1399   create_temp_arrays (&info);
1400   gather_default_values (gimple_switch_default_label (swtch), &info);
1401   build_constructors (swtch, &info);
1402 
1403   build_arrays (swtch, &info); /* Build the static arrays and assignments.   */
1404   gen_inbound_check (swtch, &info);	/* Build the bounds check.  */
1405 
1406   /* Cleanup:  */
1407   free_temp_arrays (&info);
1408   return NULL;
1409 }
1410 
1411 /* The main function of the pass scans statements for switches and invokes
1412    process_switch on them.  */
1413 
1414 namespace {
1415 
1416 const pass_data pass_data_convert_switch =
1417 {
1418   GIMPLE_PASS, /* type */
1419   "switchconv", /* name */
1420   OPTGROUP_NONE, /* optinfo_flags */
1421   TV_TREE_SWITCH_CONVERSION, /* tv_id */
1422   ( PROP_cfg | PROP_ssa ), /* properties_required */
1423   0, /* properties_provided */
1424   0, /* properties_destroyed */
1425   0, /* todo_flags_start */
1426   TODO_update_ssa, /* todo_flags_finish */
1427 };
1428 
1429 class pass_convert_switch : public gimple_opt_pass
1430 {
1431 public:
pass_convert_switch(gcc::context * ctxt)1432   pass_convert_switch (gcc::context *ctxt)
1433     : gimple_opt_pass (pass_data_convert_switch, ctxt)
1434   {}
1435 
1436   /* opt_pass methods: */
gate(function *)1437   virtual bool gate (function *) { return flag_tree_switch_conversion != 0; }
1438   virtual unsigned int execute (function *);
1439 
1440 }; // class pass_convert_switch
1441 
1442 unsigned int
execute(function * fun)1443 pass_convert_switch::execute (function *fun)
1444 {
1445   basic_block bb;
1446 
1447   FOR_EACH_BB_FN (bb, fun)
1448   {
1449     const char *failure_reason;
1450     gimple *stmt = last_stmt (bb);
1451     if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1452       {
1453 	if (dump_file)
1454 	  {
1455 	    expanded_location loc = expand_location (gimple_location (stmt));
1456 
1457 	    fprintf (dump_file, "beginning to process the following "
1458 		     "SWITCH statement (%s:%d) : ------- \n",
1459 		     loc.file, loc.line);
1460 	    print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1461 	    putc ('\n', dump_file);
1462 	  }
1463 
1464 	failure_reason = process_switch (as_a <gswitch *> (stmt));
1465 	if (! failure_reason)
1466 	  {
1467 	    if (dump_file)
1468 	      {
1469 		fputs ("Switch converted\n", dump_file);
1470 		fputs ("--------------------------------\n", dump_file);
1471 	      }
1472 
1473 	    /* Make no effort to update the post-dominator tree.  It is actually not
1474 	       that hard for the transformations we have performed, but it is not
1475 	       supported by iterate_fix_dominators.  */
1476 	    free_dominance_info (CDI_POST_DOMINATORS);
1477 	  }
1478 	else
1479 	  {
1480 	    if (dump_file)
1481 	      {
1482 		fputs ("Bailing out - ", dump_file);
1483 		fputs (failure_reason, dump_file);
1484 		fputs ("\n--------------------------------\n", dump_file);
1485 	      }
1486 	  }
1487       }
1488   }
1489 
1490   return 0;
1491 }
1492 
1493 } // anon namespace
1494 
1495 gimple_opt_pass *
make_pass_convert_switch(gcc::context * ctxt)1496 make_pass_convert_switch (gcc::context *ctxt)
1497 {
1498   return new pass_convert_switch (ctxt);
1499 }
1500