1 /* Definitions of target machine for GNU compiler for Renesas / SuperH SH.
2    Copyright (C) 1993-2019 Free Software Foundation, Inc.
3    Contributed by Steve Chamberlain (sac@cygnus.com).
4    Improved by Jim Wilson (wilson@cygnus.com).
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12 
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #ifndef GCC_SH_H
23 #define GCC_SH_H
24 
25 #include "config/vxworks-dummy.h"
26 
27 /* Unfortunately, insn-attrtab.c doesn't include insn-codes.h.  We can't
28    include it here, because bconfig.h is also included by gencodes.c .  */
29 /* ??? No longer true.  */
30 extern int code_for_indirect_jump_scratch;
31 
32 #define TARGET_CPU_CPP_BUILTINS() sh_cpu_cpp_builtins (pfile)
33 
34 /* Value should be nonzero if functions must have frame pointers.
35    Zero means the frame pointer need not be set up (and parms may be accessed
36    via the stack pointer) in functions that seem suitable.  */
37 
38 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
39 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
40 #endif
41 
42 
43 /* Nonzero if this is an ELF target - compile time only */
44 #define TARGET_ELF 0
45 
46 /* Nonzero if we should generate code using type 2E insns.  */
47 #define TARGET_SH2E (TARGET_SH2 && TARGET_SH_E)
48 
49 /* Nonzero if we should generate code using type 2A insns.  */
50 #define TARGET_SH2A TARGET_HARD_SH2A
51 /* Nonzero if we should generate code using type 2A SF insns.  */
52 #define TARGET_SH2A_SINGLE (TARGET_SH2A && TARGET_SH2E)
53 /* Nonzero if we should generate code using type 2A DF insns.  */
54 #define TARGET_SH2A_DOUBLE (TARGET_HARD_SH2A_DOUBLE && TARGET_SH2A)
55 
56 /* Nonzero if we should generate code using type 3E insns.  */
57 #define TARGET_SH3E (TARGET_SH3 && TARGET_SH_E)
58 
59 /* Nonzero if we schedule for a superscalar implementation.  */
60 #define TARGET_SUPERSCALAR (TARGET_HARD_SH4 || TARGET_SH2A)
61 
62 /* Nonzero if a double-precision FPU is available.  */
63 #define TARGET_FPU_DOUBLE (TARGET_SH4 || TARGET_SH2A_DOUBLE)
64 
65 /* Nonzero if an FPU is available.  */
66 #define TARGET_FPU_ANY (TARGET_SH2E || TARGET_FPU_DOUBLE)
67 
68 /* Nonzero if we're generating code for SH4a, unless the use of the
69    FPU is disabled (which makes it compatible with SH4al-dsp).  */
70 #define TARGET_SH4A_FP (TARGET_SH4A && TARGET_FPU_ANY)
71 
72 
73 /* This is not used by the SH2E calling convention  */
74 #define TARGET_VARARGS_PRETEND_ARGS(FUN_DECL) \
75   (! TARGET_SH2E \
76    && ! (TARGET_HITACHI || sh_attr_renesas_p (FUN_DECL)))
77 
78 #ifndef TARGET_CPU_DEFAULT
79 #define TARGET_CPU_DEFAULT SELECT_SH1
80 #define SUPPORT_SH1 1
81 #define SUPPORT_SH2E 1
82 #define SUPPORT_SH4 1
83 #define SUPPORT_SH4_SINGLE 1
84 #define SUPPORT_SH2A 1
85 #define SUPPORT_SH2A_SINGLE 1
86 #endif
87 
88 #define TARGET_DIVIDE_CALL_DIV1 (sh_div_strategy == SH_DIV_CALL_DIV1)
89 #define TARGET_DIVIDE_CALL_FP (sh_div_strategy == SH_DIV_CALL_FP)
90 #define TARGET_DIVIDE_CALL_TABLE (sh_div_strategy == SH_DIV_CALL_TABLE)
91 
92 #define SELECT_SH1		 (MASK_SH1)
93 #define SELECT_SH2		 (MASK_SH2 | SELECT_SH1)
94 #define SELECT_SH2E		 (MASK_SH_E | MASK_SH2 | MASK_SH1 \
95 				  | MASK_FPU_SINGLE)
96 #define SELECT_SH2A		 (MASK_SH_E | MASK_HARD_SH2A \
97 				  | MASK_HARD_SH2A_DOUBLE \
98 				  | MASK_SH2 | MASK_SH1)
99 #define SELECT_SH2A_NOFPU	 (MASK_HARD_SH2A | MASK_SH2 | MASK_SH1)
100 #define SELECT_SH2A_SINGLE_ONLY  (MASK_SH_E | MASK_HARD_SH2A | MASK_SH2 \
101 				  | MASK_SH1 | MASK_FPU_SINGLE \
102 				  | MASK_FPU_SINGLE_ONLY)
103 #define SELECT_SH2A_SINGLE	 (MASK_SH_E | MASK_HARD_SH2A \
104 				  | MASK_FPU_SINGLE | MASK_HARD_SH2A_DOUBLE \
105 				  | MASK_SH2 | MASK_SH1)
106 #define SELECT_SH3		 (MASK_SH3 | SELECT_SH2)
107 #define SELECT_SH3E		 (MASK_SH_E | MASK_FPU_SINGLE | SELECT_SH3)
108 #define SELECT_SH4_NOFPU	 (MASK_HARD_SH4 | SELECT_SH3)
109 #define SELECT_SH4_SINGLE_ONLY	 (MASK_HARD_SH4 | SELECT_SH3E \
110 				  | MASK_FPU_SINGLE_ONLY)
111 #define SELECT_SH4		 (MASK_SH4 | MASK_SH_E | MASK_HARD_SH4 \
112 				  | SELECT_SH3)
113 #define SELECT_SH4_SINGLE	 (MASK_FPU_SINGLE | SELECT_SH4)
114 #define SELECT_SH4A_NOFPU	 (MASK_SH4A | SELECT_SH4_NOFPU)
115 #define SELECT_SH4A_SINGLE_ONLY  (MASK_SH4A | SELECT_SH4_SINGLE_ONLY)
116 #define SELECT_SH4A		 (MASK_SH4A | SELECT_SH4)
117 #define SELECT_SH4A_SINGLE	 (MASK_SH4A | SELECT_SH4_SINGLE)
118 
119 #if SUPPORT_SH1
120 #define SUPPORT_SH2 1
121 #endif
122 #if SUPPORT_SH2
123 #define SUPPORT_SH3 1
124 #define SUPPORT_SH2A_NOFPU 1
125 #endif
126 #if SUPPORT_SH3
127 #define SUPPORT_SH4_NOFPU 1
128 #endif
129 #if SUPPORT_SH4_NOFPU
130 #define SUPPORT_SH4A_NOFPU 1
131 #define SUPPORT_SH4AL 1
132 #endif
133 
134 #if SUPPORT_SH2E
135 #define SUPPORT_SH3E 1
136 #define SUPPORT_SH2A_SINGLE_ONLY 1
137 #endif
138 #if SUPPORT_SH3E
139 #define SUPPORT_SH4_SINGLE_ONLY 1
140 #endif
141 #if SUPPORT_SH4_SINGLE_ONLY
142 #define SUPPORT_SH4A_SINGLE_ONLY 1
143 #endif
144 
145 #if SUPPORT_SH4
146 #define SUPPORT_SH4A 1
147 #endif
148 
149 #if SUPPORT_SH4_SINGLE
150 #define SUPPORT_SH4A_SINGLE 1
151 #endif
152 
153 /* Reset all target-selection flags.  */
154 #define MASK_ARCH (MASK_SH1 | MASK_SH2 | MASK_SH3 | MASK_SH_E | MASK_SH4 \
155 		   | MASK_HARD_SH2A | MASK_HARD_SH2A_DOUBLE | MASK_SH4A \
156 		   | MASK_HARD_SH4 | MASK_FPU_SINGLE \
157 		   | MASK_FPU_SINGLE_ONLY)
158 
159 /* This defaults us to big-endian.  */
160 #ifndef TARGET_ENDIAN_DEFAULT
161 #define TARGET_ENDIAN_DEFAULT 0
162 #endif
163 
164 #ifndef TARGET_OPT_DEFAULT
165 #define TARGET_OPT_DEFAULT  0
166 #endif
167 
168 #define TARGET_DEFAULT \
169   (TARGET_CPU_DEFAULT | TARGET_ENDIAN_DEFAULT | TARGET_OPT_DEFAULT)
170 
171 #ifndef SH_MULTILIB_CPU_DEFAULT
172 #define SH_MULTILIB_CPU_DEFAULT "m1"
173 #endif
174 
175 #if TARGET_ENDIAN_DEFAULT
176 #define MULTILIB_DEFAULTS { "ml", SH_MULTILIB_CPU_DEFAULT }
177 #else
178 #define MULTILIB_DEFAULTS { "mb", SH_MULTILIB_CPU_DEFAULT }
179 #endif
180 
181 #define CPP_SPEC " %(subtarget_cpp_spec) "
182 
183 #ifndef SUBTARGET_CPP_SPEC
184 #define SUBTARGET_CPP_SPEC ""
185 #endif
186 
187 #ifndef SUBTARGET_EXTRA_SPECS
188 #define SUBTARGET_EXTRA_SPECS
189 #endif
190 
191 #define EXTRA_SPECS						\
192   { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },			\
193   { "link_emul_prefix", LINK_EMUL_PREFIX },			\
194   { "link_default_cpu_emul", LINK_DEFAULT_CPU_EMUL },		\
195   { "subtarget_link_emul_suffix", SUBTARGET_LINK_EMUL_SUFFIX },	\
196   { "subtarget_link_spec", SUBTARGET_LINK_SPEC },		\
197   { "subtarget_asm_endian_spec", SUBTARGET_ASM_ENDIAN_SPEC },	\
198   { "subtarget_asm_relax_spec", SUBTARGET_ASM_RELAX_SPEC },	\
199   { "subtarget_asm_isa_spec", SUBTARGET_ASM_ISA_SPEC },		\
200   { "subtarget_asm_spec", SUBTARGET_ASM_SPEC },			\
201   SUBTARGET_EXTRA_SPECS
202 
203 #if TARGET_CPU_DEFAULT & MASK_HARD_SH4
204 #define SUBTARGET_ASM_RELAX_SPEC "%{!m1:%{!m2:%{!m3*:-isa=sh4-up}}}"
205 #else
206 #define SUBTARGET_ASM_RELAX_SPEC "%{m4*:-isa=sh4-up}"
207 #endif
208 
209 /* Define which ISA type to pass to the assembler.
210    For SH4 we pass SH4A to allow using some instructions that are available
211    on some SH4 variants, but officially are part of the SH4A ISA.  */
212 #define SH_ASM_SPEC \
213  "%(subtarget_asm_endian_spec) %{mrelax:-relax %(subtarget_asm_relax_spec)} \
214 %(subtarget_asm_isa_spec) %(subtarget_asm_spec) \
215 %{m1:--isa=sh} \
216 %{m2:--isa=sh2} \
217 %{m2e:--isa=sh2e} \
218 %{m3:--isa=sh3} \
219 %{m3e:--isa=sh3e} \
220 %{m4:--isa=sh4a} \
221 %{m4-single:--isa=sh4a} \
222 %{m4-single-only:--isa=sh4a} \
223 %{m4-nofpu:--isa=sh4a-nofpu} \
224 %{m4a:--isa=sh4a} \
225 %{m4a-single:--isa=sh4a} \
226 %{m4a-single-only:--isa=sh4a} \
227 %{m4a-nofpu:--isa=sh4a-nofpu} \
228 %{m2a:--isa=sh2a} \
229 %{m2a-single:--isa=sh2a} \
230 %{m2a-single-only:--isa=sh2a} \
231 %{m2a-nofpu:--isa=sh2a-nofpu} \
232 %{m4al:-dsp}"
233 
234 #define ASM_SPEC SH_ASM_SPEC
235 
236 #ifndef SUBTARGET_ASM_ENDIAN_SPEC
237 #if TARGET_ENDIAN_DEFAULT == MASK_LITTLE_ENDIAN
238 #define SUBTARGET_ASM_ENDIAN_SPEC "%{mb:-big} %{!mb:-little}"
239 #else
240 #define SUBTARGET_ASM_ENDIAN_SPEC "%{ml:-little} %{!ml:-big}"
241 #endif
242 #endif
243 
244 #if STRICT_NOFPU == 1
245 /* Strict nofpu means that the compiler should tell the assembler
246    to reject FPU instructions. E.g. from ASM inserts.  */
247 #if TARGET_CPU_DEFAULT & MASK_HARD_SH4 && !(TARGET_CPU_DEFAULT & MASK_SH_E)
248 #define SUBTARGET_ASM_ISA_SPEC "%{!m1:%{!m2:%{!m3*:%{m4-nofpu|!m4*:-isa=sh4-nofpu}}}}"
249 #else
250 
251 #define SUBTARGET_ASM_ISA_SPEC \
252  "%{m4-nofpu:-isa=sh4-nofpu} " ASM_ISA_DEFAULT_SPEC
253 #endif
254 #else /* ! STRICT_NOFPU */
255 #define SUBTARGET_ASM_ISA_SPEC ASM_ISA_DEFAULT_SPEC
256 #endif
257 
258 #ifndef SUBTARGET_ASM_SPEC
259 #define SUBTARGET_ASM_SPEC "%{mfdpic:--fdpic}"
260 #endif
261 
262 #if TARGET_ENDIAN_DEFAULT == MASK_LITTLE_ENDIAN
263 #define LINK_EMUL_PREFIX "sh%{!mb:l}"
264 #else
265 #define LINK_EMUL_PREFIX "sh%{ml:l}"
266 #endif
267 
268 #define LINK_DEFAULT_CPU_EMUL ""
269 #define ASM_ISA_DEFAULT_SPEC ""
270 
271 #define SUBTARGET_LINK_EMUL_SUFFIX "%{mfdpic:_fd}"
272 #define SUBTARGET_LINK_SPEC ""
273 
274 /* Go via SH_LINK_SPEC to avoid code replication.  */
275 #define LINK_SPEC SH_LINK_SPEC
276 
277 #define SH_LINK_SPEC "\
278 -m %(link_emul_prefix)\
279 %{!m1:%{!m2:%{!m3*:%{!m4*:%(link_default_cpu_emul)}}}}\
280 %(subtarget_link_emul_suffix) \
281 %{mrelax:-relax} %(subtarget_link_spec)"
282 
283 #ifndef SH_DIV_STR_FOR_SIZE
284 #define SH_DIV_STR_FOR_SIZE "call"
285 #endif
286 
287 /* SH2A does not support little-endian.  Catch such combinations
288    taking into account the default configuration.  */
289 #if TARGET_ENDIAN_DEFAULT == MASK_BIG_ENDIAN
290 #define IS_LITTLE_ENDIAN_OPTION "%{ml:"
291 #else
292 #define IS_LITTLE_ENDIAN_OPTION "%{!mb:"
293 #endif
294 
295 #if TARGET_CPU_DEFAULT & MASK_HARD_SH2A
296 #define UNSUPPORTED_SH2A IS_LITTLE_ENDIAN_OPTION \
297 "%{m2a*|!m1:%{!m2*:%{!m3*:%{!m4*:%eSH2a does not support little-endian}}}}}"
298 #else
299 #define UNSUPPORTED_SH2A IS_LITTLE_ENDIAN_OPTION \
300 "%{m2a*:%eSH2a does not support little-endian}}"
301 #endif
302 
303 #ifdef FDPIC_DEFAULT
304 #define FDPIC_SELF_SPECS "%{!mno-fdpic:-mfdpic}"
305 #else
306 #define FDPIC_SELF_SPECS
307 #endif
308 
309 #undef DRIVER_SELF_SPECS
310 #define DRIVER_SELF_SPECS UNSUPPORTED_SH2A SUBTARGET_DRIVER_SELF_SPECS \
311   FDPIC_SELF_SPECS
312 
313 #undef SUBTARGET_DRIVER_SELF_SPECS
314 #define SUBTARGET_DRIVER_SELF_SPECS
315 
316 #define ASSEMBLER_DIALECT assembler_dialect
317 
318 extern int assembler_dialect;
319 
320 enum sh_divide_strategy_e {
321   /* SH1 .. SH4 strategies.  Because of the small number of registers
322      available, the compiler uses knowledge of the actual set of registers
323      being clobbered by the different functions called.  */
324   SH_DIV_CALL_DIV1, /* No FPU, medium size, highest latency.  */
325   SH_DIV_CALL_FP,     /* FPU needed, small size, high latency.  */
326   SH_DIV_CALL_TABLE,  /* No FPU, large size, medium latency. */
327   SH_DIV_INTRINSIC
328 };
329 
330 extern enum sh_divide_strategy_e sh_div_strategy;
331 
332 #ifndef SH_DIV_STRATEGY_DEFAULT
333 #define SH_DIV_STRATEGY_DEFAULT SH_DIV_CALL_DIV1
334 #endif
335 
336 #ifdef __cplusplus
337 
338 /* Atomic model.  */
339 struct sh_atomic_model
340 {
341   enum enum_type
342   {
343     none = 0,
344     soft_gusa,
345     hard_llcs,
346     soft_tcb,
347     soft_imask,
348 
349     num_models
350   };
351 
352   /*  If strict is set, disallow mixing of different models, as it would
353       happen on SH4A.  */
354   bool strict;
355   enum_type type;
356 
357   /* Name string as it was specified on the command line.  */
358   const char* name;
359 
360   /* Name string as it is used in C/C++ defines.  */
361   const char* cdef_name;
362 
363   /* GBR offset variable for TCB model.  */
364   int tcb_gbr_offset;
365 };
366 
367 extern const sh_atomic_model& selected_atomic_model (void);
368 
369 /* Shortcuts to check the currently selected atomic model.  */
370 #define TARGET_ATOMIC_ANY \
371   (selected_atomic_model ().type != sh_atomic_model::none)
372 
373 #define TARGET_ATOMIC_STRICT \
374   (selected_atomic_model ().strict)
375 
376 #define TARGET_ATOMIC_SOFT_GUSA \
377   (selected_atomic_model ().type == sh_atomic_model::soft_gusa)
378 
379 #define TARGET_ATOMIC_HARD_LLCS \
380   (selected_atomic_model ().type == sh_atomic_model::hard_llcs)
381 
382 #define TARGET_ATOMIC_SOFT_TCB \
383   (selected_atomic_model ().type == sh_atomic_model::soft_tcb)
384 
385 #define TARGET_ATOMIC_SOFT_TCB_GBR_OFFSET_RTX \
386   GEN_INT (selected_atomic_model ().tcb_gbr_offset)
387 
388 #define TARGET_ATOMIC_SOFT_IMASK \
389   (selected_atomic_model ().type == sh_atomic_model::soft_imask)
390 
391 #endif // __cplusplus
392 
393 #define SUBTARGET_OVERRIDE_OPTIONS (void) 0
394 
395 
396 /* Target machine storage layout.  */
397 
398 #define TARGET_BIG_ENDIAN (!TARGET_LITTLE_ENDIAN)
399 
400 #define SH_REG_MSW_OFFSET (TARGET_LITTLE_ENDIAN ? 1 : 0)
401 #define SH_REG_LSW_OFFSET (TARGET_LITTLE_ENDIAN ? 0 : 1)
402 
403 /* Define this if most significant bit is lowest numbered
404    in instructions that operate on numbered bit-fields.  */
405 #define BITS_BIG_ENDIAN  0
406 
407 /* Define this if most significant byte of a word is the lowest numbered.  */
408 #define BYTES_BIG_ENDIAN TARGET_BIG_ENDIAN
409 
410 /* Define this if most significant word of a multiword number is the lowest
411    numbered.  */
412 #define WORDS_BIG_ENDIAN TARGET_BIG_ENDIAN
413 
414 #define MAX_BITS_PER_WORD 64
415 
416 /* Width in bits of an `int'.  We want just 32-bits, even if words are
417    longer.  */
418 #define INT_TYPE_SIZE 32
419 
420 /* Width in bits of a `long'.  */
421 #define LONG_TYPE_SIZE (32)
422 
423 /* Width in bits of a `long long'.  */
424 #define LONG_LONG_TYPE_SIZE 64
425 
426 /* Width in bits of a `long double'.  */
427 #define LONG_DOUBLE_TYPE_SIZE 64
428 
429 /* Width of a word, in units (bytes).  */
430 #define UNITS_PER_WORD	(4)
431 #define MIN_UNITS_PER_WORD 4
432 
433 /* Scaling factor for Dwarf data offsets for CFI information.
434    The dwarf2out.c default would use -UNITS_PER_WORD.  */
435 #define DWARF_CIE_DATA_ALIGNMENT -4
436 
437 /* Width in bits of a pointer.
438    See also the macro `Pmode' defined below.  */
439 #define POINTER_SIZE  (32)
440 
441 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
442 #define PARM_BOUNDARY  	(32)
443 
444 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
445 #define STACK_BOUNDARY  BIGGEST_ALIGNMENT
446 
447 /* The log (base 2) of the cache line size, in bytes.  Processors prior to
448    SH2 have no actual cache, but they fetch code in chunks of 4 bytes.
449    The SH2/3 have 16 byte cache lines, and the SH4 has a 32 byte cache line */
450 #define CACHE_LOG (TARGET_HARD_SH4 ? 5 : TARGET_SH2 ? 4 : 2)
451 
452 /* ABI given & required minimum allocation boundary (in *bits*) for the
453    code of a function.  */
454 #define FUNCTION_BOUNDARY (16)
455 
456 /* Alignment of field after `int : 0' in a structure.  */
457 #define EMPTY_FIELD_BOUNDARY  32
458 
459 /* No data type wants to be aligned rounder than this.  */
460 #define BIGGEST_ALIGNMENT  (TARGET_ALIGN_DOUBLE ? 64 : 32)
461 
462 /* The best alignment to use in cases where we have a choice.  */
463 #define FASTEST_ALIGNMENT (32)
464 
465 /* get_mode_alignment assumes complex values are always held in multiple
466    registers, but that is not the case on the SH; CQImode and CHImode are
467    held in a single integer register.  */
468 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
469   ((GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_INT \
470     || GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_FLOAT) \
471    ? (unsigned) MIN (BIGGEST_ALIGNMENT, \
472 		     GET_MODE_BITSIZE (as_a <fixed_size_mode> \
473 				       (TYPE_MODE (TYPE)))) \
474    : (unsigned) DATA_ALIGNMENT(TYPE, ALIGN))
475 
476 /* Make arrays of chars word-aligned for the same reasons.  */
477 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
478   (TREE_CODE (TYPE) == ARRAY_TYPE		\
479    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
480    && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
481 
482 /* Number of bits which any structure or union's size must be a
483    multiple of.  Each structure or union's size is rounded up to a
484    multiple of this.  */
485 #define STRUCTURE_SIZE_BOUNDARY (TARGET_PADSTRUCT ? 32 : 8)
486 
487 /* Set this nonzero if move instructions will actually fail to work
488    when given unaligned data.  */
489 #define STRICT_ALIGNMENT 1
490 
491 /* If LABEL_AFTER_BARRIER demands an alignment, return its base 2 logarithm.  */
492 #define LABEL_ALIGN_AFTER_BARRIER(LABEL_AFTER_BARRIER) \
493   barrier_align (LABEL_AFTER_BARRIER)
494 
495 #define LOOP_ALIGN(A_LABEL) sh_loop_align (A_LABEL)
496 
497 #define LABEL_ALIGN(A_LABEL) \
498 (									\
499   (PREV_INSN (A_LABEL)							\
500    && NONJUMP_INSN_P (PREV_INSN (A_LABEL))				\
501    && GET_CODE (PATTERN (PREV_INSN (A_LABEL))) == UNSPEC_VOLATILE	\
502    && XINT (PATTERN (PREV_INSN (A_LABEL)), 1) == UNSPECV_ALIGN)		\
503    /* explicit alignment insn in constant tables.  */			\
504   ? INTVAL (XVECEXP (PATTERN (PREV_INSN (A_LABEL)), 0, 0))		\
505   : 0)
506 
507 /* Jump tables must be 32 bit aligned, no matter the size of the element.  */
508 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
509 
510 /* The base two logarithm of the known minimum alignment of an insn length.  */
511 #define INSN_LENGTH_ALIGNMENT(A_INSN)		\
512   (NONJUMP_INSN_P (A_INSN)			\
513    ? 1						\
514    : JUMP_P (A_INSN) || CALL_P (A_INSN)		\
515    ? 1						\
516    : CACHE_LOG)
517 
518 /* Standard register usage.  */
519 
520 /* Register allocation for the Renesas calling convention:
521 
522 	r0		arg return
523 	r1..r3		scratch
524 	r4..r7		args in
525 	r8..r13		call saved
526 	r14		frame pointer/call saved
527 	r15		stack pointer
528 	ap		arg pointer (doesn't really exist, always eliminated)
529 	pr		subroutine return address
530 	t		t bit
531 	mach		multiply/accumulate result, high part
532 	macl		multiply/accumulate result, low part.
533 	fpul		fp/int communication register
534 	rap		return address pointer register
535 	fr0		fp arg return
536 	fr1..fr3	scratch floating point registers
537 	fr4..fr11	fp args in
538 	fr12..fr15	call saved floating point registers  */
539 
540 #define MAX_REGISTER_NAME_LENGTH 6
541 extern char sh_register_names[][MAX_REGISTER_NAME_LENGTH + 1];
542 
543 #define SH_REGISTER_NAMES_INITIALIZER					\
544 {									\
545   "r0",   "r1",   "r2",   "r3",   "r4",   "r5",   "r6",   "r7", 	\
546   "r8",   "r9",   "r10",  "r11",  "r12",  "r13",  "r14",  "r15",	\
547   "r16",  "r17",  "r18",  "r19",  "r20",  "r21",  "r22",  "r23",	\
548   "r24",  "r25",  "r26",  "r27",  "r28",  "r29",  "r30",  "r31",	\
549   "r32",  "r33",  "r34",  "r35",  "r36",  "r37",  "r38",  "r39", 	\
550   "r40",  "r41",  "r42",  "r43",  "r44",  "r45",  "r46",  "r47",	\
551   "r48",  "r49",  "r50",  "r51",  "r52",  "r53",  "r54",  "r55",	\
552   "r56",  "r57",  "r58",  "r59",  "r60",  "r61",  "r62",  "r63",	\
553   "fr0",  "fr1",  "fr2",  "fr3",  "fr4",  "fr5",  "fr6",  "fr7", 	\
554   "fr8",  "fr9",  "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",	\
555   "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",	\
556   "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",	\
557   "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", 	\
558   "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",	\
559   "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",	\
560   "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",	\
561   "tr0",  "tr1",  "tr2",  "tr3",  "tr4",  "tr5",  "tr6",  "tr7", 	\
562   "xd0",  "xd2",  "xd4",  "xd6",  "xd8",  "xd10", "xd12", "xd14",	\
563   "gbr",  "ap",	  "pr",   "t",    "mach", "macl", "fpul", "fpscr",	\
564   "rap",  "sfp", "fpscr0", "fpscr1"					\
565 }
566 
567 #define REGNAMES_ARR_INDEX_1(index) \
568   (sh_register_names[index])
569 #define REGNAMES_ARR_INDEX_2(index) \
570   REGNAMES_ARR_INDEX_1 ((index)), REGNAMES_ARR_INDEX_1 ((index)+1)
571 #define REGNAMES_ARR_INDEX_4(index) \
572   REGNAMES_ARR_INDEX_2 ((index)), REGNAMES_ARR_INDEX_2 ((index)+2)
573 #define REGNAMES_ARR_INDEX_8(index) \
574   REGNAMES_ARR_INDEX_4 ((index)), REGNAMES_ARR_INDEX_4 ((index)+4)
575 #define REGNAMES_ARR_INDEX_16(index) \
576   REGNAMES_ARR_INDEX_8 ((index)), REGNAMES_ARR_INDEX_8 ((index)+8)
577 #define REGNAMES_ARR_INDEX_32(index) \
578   REGNAMES_ARR_INDEX_16 ((index)), REGNAMES_ARR_INDEX_16 ((index)+16)
579 #define REGNAMES_ARR_INDEX_64(index) \
580   REGNAMES_ARR_INDEX_32 ((index)), REGNAMES_ARR_INDEX_32 ((index)+32)
581 
582 #define REGISTER_NAMES \
583 { \
584   REGNAMES_ARR_INDEX_64 (0), \
585   REGNAMES_ARR_INDEX_64 (64), \
586   REGNAMES_ARR_INDEX_8 (128), \
587   REGNAMES_ARR_INDEX_8 (136), \
588   REGNAMES_ARR_INDEX_8 (144), \
589   REGNAMES_ARR_INDEX_4 (152) \
590 }
591 
592 #define ADDREGNAMES_SIZE 32
593 #define MAX_ADDITIONAL_REGISTER_NAME_LENGTH 4
594 extern char sh_additional_register_names[ADDREGNAMES_SIZE] \
595   [MAX_ADDITIONAL_REGISTER_NAME_LENGTH + 1];
596 
597 #define SH_ADDITIONAL_REGISTER_NAMES_INITIALIZER			\
598 {									\
599   "dr0",  "dr2",  "dr4",  "dr6",  "dr8",  "dr10", "dr12", "dr14",	\
600   "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",	\
601   "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",	\
602   "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62"	\
603 }
604 
605 #define ADDREGNAMES_REGNO(index) \
606   ((index < 32) ? (FIRST_FP_REG + (index) * 2) \
607    : (-1))
608 
609 #define ADDREGNAMES_ARR_INDEX_1(index) \
610   { (sh_additional_register_names[index]), ADDREGNAMES_REGNO (index) }
611 #define ADDREGNAMES_ARR_INDEX_2(index) \
612   ADDREGNAMES_ARR_INDEX_1 ((index)), ADDREGNAMES_ARR_INDEX_1 ((index)+1)
613 #define ADDREGNAMES_ARR_INDEX_4(index) \
614   ADDREGNAMES_ARR_INDEX_2 ((index)), ADDREGNAMES_ARR_INDEX_2 ((index)+2)
615 #define ADDREGNAMES_ARR_INDEX_8(index) \
616   ADDREGNAMES_ARR_INDEX_4 ((index)), ADDREGNAMES_ARR_INDEX_4 ((index)+4)
617 #define ADDREGNAMES_ARR_INDEX_16(index) \
618   ADDREGNAMES_ARR_INDEX_8 ((index)), ADDREGNAMES_ARR_INDEX_8 ((index)+8)
619 #define ADDREGNAMES_ARR_INDEX_32(index) \
620   ADDREGNAMES_ARR_INDEX_16 ((index)), ADDREGNAMES_ARR_INDEX_16 ((index)+16)
621 
622 #define ADDITIONAL_REGISTER_NAMES \
623 {					\
624   ADDREGNAMES_ARR_INDEX_32 (0)		\
625 }
626 
627 /* Number of actual hardware registers.
628    The hardware registers are assigned numbers for the compiler
629    from 0 to just below FIRST_PSEUDO_REGISTER.
630    All registers that the compiler knows about must be given numbers,
631    even those that are not normally considered general registers.  */
632 
633 /* There are many other relevant definitions in sh.md's md_constants.  */
634 
635 #define FIRST_GENERAL_REG R0_REG
636 #define LAST_GENERAL_REG (FIRST_GENERAL_REG + (15))
637 #define FIRST_FP_REG DR0_REG
638 #define LAST_FP_REG  (FIRST_FP_REG + (TARGET_SH2E ? 15 : -1))
639 #define FIRST_XD_REG XD0_REG
640 #define LAST_XD_REG  (FIRST_XD_REG + ((TARGET_SH4 && TARGET_FMOVD) ? 7 : -1))
641 
642 /* Registers that can be accessed through bank0 or bank1 depending on sr.md.  */
643 #define FIRST_BANKED_REG R0_REG
644 #define LAST_BANKED_REG R7_REG
645 
646 #define BANKED_REGISTER_P(REGNO) \
647   IN_RANGE ((REGNO), \
648 	    (unsigned HOST_WIDE_INT) FIRST_BANKED_REG, \
649 	    (unsigned HOST_WIDE_INT) LAST_BANKED_REG)
650 
651 #define GENERAL_REGISTER_P(REGNO) \
652   IN_RANGE ((REGNO), \
653 	    (unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \
654 	    (unsigned HOST_WIDE_INT) LAST_GENERAL_REG)
655 
656 #define GENERAL_OR_AP_REGISTER_P(REGNO) \
657   (GENERAL_REGISTER_P (REGNO) || ((REGNO) == AP_REG) \
658    || ((REGNO) == FRAME_POINTER_REGNUM))
659 
660 #define FP_REGISTER_P(REGNO) \
661   ((int) (REGNO) >= FIRST_FP_REG && (int) (REGNO) <= LAST_FP_REG)
662 
663 #define XD_REGISTER_P(REGNO) \
664   ((int) (REGNO) >= FIRST_XD_REG && (int) (REGNO) <= LAST_XD_REG)
665 
666 #define FP_OR_XD_REGISTER_P(REGNO) \
667   (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO))
668 
669 #define FP_ANY_REGISTER_P(REGNO) \
670   (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) || (REGNO) == FPUL_REG)
671 
672 #define SPECIAL_REGISTER_P(REGNO) \
673   ((REGNO) == GBR_REG || (REGNO) == T_REG \
674    || (REGNO) == MACH_REG || (REGNO) == MACL_REG \
675    || (REGNO) == FPSCR_MODES_REG || (REGNO) == FPSCR_STAT_REG)
676 
677 #define VALID_REGISTER_P(REGNO) \
678   (GENERAL_REGISTER_P (REGNO) || FP_REGISTER_P (REGNO) \
679    || XD_REGISTER_P (REGNO) \
680    || (REGNO) == AP_REG || (REGNO) == RAP_REG \
681    || (REGNO) == FRAME_POINTER_REGNUM \
682    || ((SPECIAL_REGISTER_P (REGNO) || (REGNO) == PR_REG)) \
683    || (TARGET_SH2E && (REGNO) == FPUL_REG))
684 
685 /* The mode that should be generally used to store a register by
686    itself in the stack, or to load it back.  */
687 #define REGISTER_NATURAL_MODE(REGNO) \
688   (FP_REGISTER_P (REGNO) ? E_SFmode \
689    : XD_REGISTER_P (REGNO) ? E_DFmode : E_SImode)
690 
691 
692 #define FIRST_PSEUDO_REGISTER 156
693 
694 /* Don't count soft frame pointer.  */
695 #define DWARF_FRAME_REGISTERS (153)
696 
697 /* 1 for registers that have pervasive standard uses
698    and are not available for the register allocator.
699 
700    Mach register is fixed 'cause it's only 10 bits wide for SH1.
701    It is 32 bits wide for SH2.  */
702 #define FIXED_REGISTERS							\
703 {									\
704 /* Regular registers.  */						\
705   0,      0,      0,      0,      0,      0,      0,      0,		\
706   0,      0,      0,      0,      0,      0,      0,      1,		\
707   /* r16 is reserved, r18 is the former pr.  */				\
708   1,      0,      0,      0,      0,      0,      0,      0,		\
709   /* r24 is reserved for the OS; r25, for the assembler or linker.  */	\
710   /* r26 is a global variable data pointer; r27 is for constants.  */	\
711   1,      1,      1,      1,      0,      0,      0,      0,		\
712   0,      0,      0,      0,      0,      0,      0,      0,		\
713   0,      0,      0,      0,      0,      0,      0,      0,		\
714   0,      0,      0,      0,      0,      0,      0,      0,		\
715   0,      0,      0,      0,      0,      0,      0,      1,		\
716 /* FP registers.  */							\
717   0,      0,      0,      0,      0,      0,      0,      0,		\
718   0,      0,      0,      0,      0,      0,      0,      0,		\
719   0,      0,      0,      0,      0,      0,      0,      0,		\
720   0,      0,      0,      0,      0,      0,      0,      0,		\
721   0,      0,      0,      0,      0,      0,      0,      0,		\
722   0,      0,      0,      0,      0,      0,      0,      0,		\
723   0,      0,      0,      0,      0,      0,      0,      0,		\
724   0,      0,      0,      0,      0,      0,      0,      0,		\
725 /* Branch target registers.  */						\
726   0,      0,      0,      0,      0,      0,      0,      0,		\
727 /* XD registers.  */							\
728   0,      0,      0,      0,      0,      0,      0,      0,		\
729 /*"gbr",  "ap",	  "pr",   "t",    "mach", "macl", "fpul", "fpscr", */	\
730   1,      1,      1,      1,      1,      1,      0,      1,		\
731 /*"rap",  "sfp","fpscr0","fpscr1"  */					\
732   1,      1,      1,      1,						\
733 }
734 
735 /* 1 for registers not available across function calls.
736    These must include the FIXED_REGISTERS and also any
737    registers that can be used without being saved.
738    The latter must include the registers where values are returned
739    and the register where structure-value addresses are passed.
740    Aside from that, you can include as many other registers as you like.  */
741 #define CALL_USED_REGISTERS						\
742 {									\
743 /* Regular registers.  */						\
744   1,      1,      1,      1,      1,      1,      1,      1,		\
745   /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs.	\
746      Only the lower 32bits of R10-R14 are guaranteed to be preserved	\
747      across SH5 function calls.  */					\
748   0,      0,      0,      0,      0,      0,      0,      1,		\
749   1,      1,      1,      1,      1,      1,      1,      1,		\
750   1,      1,      1,      1,      0,      0,      0,      0,		\
751   0,      0,      0,      0,      1,      1,      1,      1,		\
752   1,      1,      1,      1,      0,      0,      0,      0,		\
753   0,      0,      0,      0,      0,      0,      0,      0,		\
754   0,      0,      0,      0,      1,      1,      1,      1,		\
755 /* FP registers.  */							\
756   1,      1,      1,      1,      1,      1,      1,      1,		\
757   1,      1,      1,      1,      0,      0,      0,      0,		\
758   1,      1,      1,      1,      1,      1,      1,      1,		\
759   1,      1,      1,      1,      1,      1,      1,      1,		\
760   1,      1,      1,      1,      0,      0,      0,      0,		\
761   0,      0,      0,      0,      0,      0,      0,      0,		\
762   0,      0,      0,      0,      0,      0,      0,      0,		\
763   0,      0,      0,      0,      0,      0,      0,      0,		\
764 /* Branch target registers.  */						\
765   1,      1,      1,      1,      1,      0,      0,      0,		\
766 /* XD registers.  */							\
767   1,      1,      1,      1,      1,      1,      0,      0,		\
768 /*"gbr",  "ap",	  "pr",   "t",    "mach", "macl", "fpul", "fpscr", */	\
769   1,      1,      1,      1,      1,      1,      1,      1,		\
770 /*"rap",  "sfp","fpscr0","fpscr1"  */					\
771   1,      1,      1,      1,						\
772 }
773 
774 /* CALL_REALLY_USED_REGISTERS is used as a default setting, which is then
775    overridden by -fcall-saved-* and -fcall-used-* options and then by
776    TARGET_CONDITIONAL_REGISTER_USAGE.  There we might want to make a
777    register call-used, yet fixed, like PIC_OFFSET_TABLE_REGNUM.  */
778 #define CALL_REALLY_USED_REGISTERS 					\
779 {									\
780 /* Regular registers.  */						\
781   1,      1,      1,      1,      1,      1,      1,      1,		\
782   /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs.	\
783      Only the lower 32bits of R10-R14 are guaranteed to be preserved	\
784      across SH5 function calls.  */					\
785   0,      0,      0,      0,      0,      0,      0,      1,		\
786   1,      1,      1,      1,      1,      1,      1,      1,		\
787   1,      1,      1,      1,      0,      0,      0,      0,		\
788   0,      0,      0,      0,      1,      1,      1,      1,		\
789   1,      1,      1,      1,      0,      0,      0,      0,		\
790   0,      0,      0,      0,      0,      0,      0,      0,		\
791   0,      0,      0,      0,      1,      1,      1,      1,		\
792 /* FP registers.  */							\
793   1,      1,      1,      1,      1,      1,      1,      1,		\
794   1,      1,      1,      1,      0,      0,      0,      0,		\
795   1,      1,      1,      1,      1,      1,      1,      1,		\
796   1,      1,      1,      1,      1,      1,      1,      1,		\
797   1,      1,      1,      1,      0,      0,      0,      0,		\
798   0,      0,      0,      0,      0,      0,      0,      0,		\
799   0,      0,      0,      0,      0,      0,      0,      0,		\
800   0,      0,      0,      0,      0,      0,      0,      0,		\
801 /* Branch target registers.  */						\
802   1,      1,      1,      1,      1,      0,      0,      0,		\
803 /* XD registers.  */							\
804   1,      1,      1,      1,      1,      1,      0,      0,		\
805 /*"gbr",  "ap",	  "pr",   "t",    "mach", "macl", "fpul", "fpscr", */	\
806   0,      1,      1,      1,      1,      1,      1,      1,		\
807 /*"rap",  "sfp","fpscr0","fpscr1"  */					\
808   1,      1,      0,      0,						\
809 }
810 
811 /* Specify the modes required to caller save a given hard regno.  */
812 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)	\
813   sh_hard_regno_caller_save_mode ((REGNO), (NREGS), (MODE))
814 
815 /* A C expression that is nonzero if hard register NEW_REG can be
816    considered for use as a rename register for OLD_REG register */
817 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
818    sh_hard_regno_rename_ok (OLD_REG, NEW_REG)
819 
820 /* Specify the registers used for certain standard purposes.
821    The values of these macros are register numbers.  */
822 
823 /* Define this if the program counter is overloaded on a register.  */
824 /* #define PC_REGNUM		15*/
825 
826 /* Register to use for pushing function arguments.  */
827 #define STACK_POINTER_REGNUM	SP_REG
828 
829 /* Base register for access to local variables of the function.  */
830 #define HARD_FRAME_POINTER_REGNUM	FP_REG
831 
832 /* Base register for access to local variables of the function.  */
833 #define FRAME_POINTER_REGNUM	153
834 
835 /* Fake register that holds the address on the stack of the
836    current function's return address.  */
837 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG
838 
839 /* Register to hold the addressing base for position independent
840    code access to data items.  */
841 #define PIC_OFFSET_TABLE_REGNUM	(flag_pic ? PIC_REG : INVALID_REGNUM)
842 
843 /* For FDPIC, the FDPIC register is call-clobbered (otherwise PLT
844    entries would need to handle saving and restoring it).  */
845 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED TARGET_FDPIC
846 
847 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
848 
849 /* Definitions for register eliminations.
850 
851    We have three registers that can be eliminated on the SH.  First, the
852    frame pointer register can often be eliminated in favor of the stack
853    pointer register.  Secondly, the argument pointer register can always be
854    eliminated; it is replaced with either the stack or frame pointer.
855    Third, there is the return address pointer, which can also be replaced
856    with either the stack or the frame pointer.
857 
858    This is an array of structures.  Each structure initializes one pair
859    of eliminable registers.  The "from" register number is given first,
860    followed by "to".  Eliminations of the same "from" register are listed
861    in order of preference.
862 
863    If you add any registers here that are not actually hard registers,
864    and that have any alternative of elimination that doesn't always
865    apply, you need to amend calc_live_regs to exclude it, because
866    reload spills all eliminable registers where it sees an
867    can_eliminate == 0 entry, thus making them 'live' .
868    If you add any hard registers that can be eliminated in different
869    ways, you have to patch reload to spill them only when all alternatives
870    of elimination fail.  */
871 #define ELIMINABLE_REGS						\
872 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
873  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},			\
874  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},		\
875  { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
876  { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
877  { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},			\
878  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},}
879 
880 /* Define the offset between two registers, one to be eliminated, and the other
881    its replacement, at the start of a routine.  */
882 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
883   OFFSET = initial_elimination_offset ((FROM), (TO))
884 
885 /* Base register for access to arguments of the function.  */
886 #define ARG_POINTER_REGNUM	AP_REG
887 
888 /* Register in which the static-chain is passed to a function.  */
889 #define STATIC_CHAIN_REGNUM	(3)
890 
891 /* Don't default to pcc-struct-return, because we have already specified
892    exactly how to return structures in the TARGET_RETURN_IN_MEMORY
893    target hook.  */
894 #define DEFAULT_PCC_STRUCT_RETURN 0
895 
896 
897 /* Define the classes of registers for register constraints in the
898    machine description.  Also define ranges of constants.
899 
900    One of the classes must always be named ALL_REGS and include all hard regs.
901    If there is more than one class, another class must be named NO_REGS
902    and contain no registers.
903 
904    The name GENERAL_REGS must be the name of a class (or an alias for
905    another name such as ALL_REGS).  This is the class of registers
906    that is allowed by "g" or "r" in a register constraint.
907    Also, registers outside this class are allocated only when
908    instructions express preferences for them.
909 
910    The classes must be numbered in nondecreasing order; that is,
911    a larger-numbered class must never be contained completely
912    in a smaller-numbered class.
913 
914    For any two classes, it is very desirable that there be another
915    class that represents their union.
916 
917    The SH has two sorts of general registers, R0 and the rest.  R0 can
918    be used as the destination of some of the arithmetic ops. There are
919    also some special purpose registers; the T bit register, the
920    Procedure Return Register and the Multiply Accumulate Registers.
921 
922    Place GENERAL_REGS after FPUL_REGS so that it will be preferred by
923    reg_class_subunion.  We don't want to have an actual union class
924    of these, because it would only be used when both classes are calculated
925    to give the same cost, but there is only one FPUL register.
926    Besides, regclass fails to notice the different REGISTER_MOVE_COSTS
927    applying to the actual instruction alternative considered.  E.g., the
928    y/r alternative of movsi_ie is considered to have no more cost that
929    the r/r alternative, which is patently untrue.  */
930 enum reg_class
931 {
932   NO_REGS,
933   R0_REGS,
934   PR_REGS,
935   T_REGS,
936   MAC_REGS,
937   FPUL_REGS,
938   SIBCALL_REGS,
939   NON_SP_REGS,
940   GENERAL_REGS,
941   FP0_REGS,
942   FP_REGS,
943   DF_REGS,
944   FPSCR_REGS,
945   GENERAL_FP_REGS,
946   GENERAL_DF_REGS,
947   TARGET_REGS,
948   ALL_REGS,
949   LIM_REG_CLASSES
950 };
951 
952 #define N_REG_CLASSES  (int) LIM_REG_CLASSES
953 
954 /* Give names of register classes as strings for dump file.  */
955 #define REG_CLASS_NAMES	\
956 {			\
957   "NO_REGS",		\
958   "R0_REGS",		\
959   "PR_REGS",		\
960   "T_REGS",		\
961   "MAC_REGS",		\
962   "FPUL_REGS",		\
963   "SIBCALL_REGS",	\
964   "NON_SP_REGS",	\
965   "GENERAL_REGS",	\
966   "FP0_REGS",		\
967   "FP_REGS",		\
968   "DF_REGS",		\
969   "FPSCR_REGS",		\
970   "GENERAL_FP_REGS",	\
971   "GENERAL_DF_REGS",	\
972   "TARGET_REGS",	\
973   "ALL_REGS",		\
974 }
975 
976 /* Define which registers fit in which classes.
977    This is an initializer for a vector of HARD_REG_SET
978    of length N_REG_CLASSES.  */
979 #define REG_CLASS_CONTENTS						\
980 {									\
981 /* NO_REGS:  */								\
982   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	\
983 /* R0_REGS:  */								\
984   { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	\
985 /* PR_REGS:  */								\
986   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00040000 },	\
987 /* T_REGS:  */								\
988   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00080000 },	\
989 /* MAC_REGS:  */							\
990   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00300000 },	\
991 /* FPUL_REGS:  */							\
992   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00400000 },	\
993 /* SIBCALL_REGS: Initialized in TARGET_CONDITIONAL_REGISTER_USAGE.  */	\
994   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	\
995 /* NON_SP_REGS:  */							\
996   { 0xffff7fff, 0xffffffff, 0x00000000, 0x00000000, 0x03020000 },	\
997 /* GENERAL_REGS:  */							\
998   { 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x03020000 },	\
999 /* FP0_REGS:  */							\
1000   { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000 },	\
1001 /* FP_REGS:  */								\
1002   { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 },	\
1003 /* DF_REGS:  */								\
1004   { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 },	\
1005 /* FPSCR_REGS:  */							\
1006   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00800000 },	\
1007 /* GENERAL_FP_REGS:  */							\
1008   { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x03020000 },	\
1009 /* GENERAL_DF_REGS:  */							\
1010   { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0302ff00 },	\
1011 /* TARGET_REGS:  */							\
1012   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000ff },	\
1013 /* ALL_REGS:  */							\
1014   { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0fffffff },	\
1015 }
1016 
1017 /* The same information, inverted:
1018    Return the class number of the smallest class containing
1019    reg number REGNO.  This could be a conditional expression
1020    or could index an array.  */
1021 extern enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER];
1022 #define REGNO_REG_CLASS(REGNO) regno_reg_class[(REGNO)]
1023 
1024 /* When this hook returns true for MODE, the compiler allows
1025    registers explicitly used in the rtl to be used as spill registers
1026    but prevents the compiler from extending the lifetime of these
1027    registers.  */
1028 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1029   sh_small_register_classes_for_mode_p
1030 
1031 /* The order in which register should be allocated.  */
1032 /* Sometimes FP0_REGS becomes the preferred class of a floating point pseudo,
1033    and GENERAL_FP_REGS the alternate class.  Since FP0 is likely to be
1034    spilled or used otherwise, we better have the FP_REGS allocated first.  */
1035 #define REG_ALLOC_ORDER \
1036   {/* Caller-saved FPRs */ \
1037     65, 66, 67, 68, 69, 70, 71, 64, \
1038     72, 73, 74, 75, 80, 81, 82, 83, \
1039     84, 85, 86, 87, 88, 89, 90, 91, \
1040     92, 93, 94, 95, 96, 97, 98, 99, \
1041    /* Callee-saved FPRs */ \
1042     76, 77, 78, 79,100,101,102,103, \
1043    104,105,106,107,108,109,110,111, \
1044    112,113,114,115,116,117,118,119, \
1045    120,121,122,123,124,125,126,127, \
1046    136,137,138,139,140,141,142,143, \
1047    /* FPSCR */ 151, \
1048    /* Caller-saved GPRs (except 8/9 on SH1-4) */ \
1049      1,  2,  3,  7,  6,  5,  4,  0, \
1050      8,  9, 17, 19, 20, 21, 22, 23, \
1051     36, 37, 38, 39, 40, 41, 42, 43, \
1052     60, 61, 62, \
1053    /* SH1-4 callee-saved saved GPRs / SH5 partially-saved GPRs */ \
1054     10, 11, 12, 13, 14, 18, \
1055     /* SH5 callee-saved GPRs */ \
1056     28, 29, 30, 31, 32, 33, 34, 35, \
1057     44, 45, 46, 47, 48, 49, 50, 51, \
1058     52, 53, 54, 55, 56, 57, 58, 59, \
1059    /* FPUL */ 150, \
1060    /* Fixed registers */ \
1061     15, 16, 24, 25, 26, 27, 63,144, \
1062    145,146,147,148,149,152,153,154,155  }
1063 
1064 /* The class value for index registers, and the one for base regs.  */
1065 #define INDEX_REG_CLASS R0_REGS
1066 #define BASE_REG_CLASS GENERAL_REGS
1067 
1068 /* Defines for sh.md and constraints.md.  */
1069 
1070 #define CONST_OK_FOR_I08(VALUE) (((HOST_WIDE_INT)(VALUE))>= -128 \
1071 				 && ((HOST_WIDE_INT)(VALUE)) <= 127)
1072 
1073 #define CONST_OK_FOR_K08(VALUE) (((HOST_WIDE_INT)(VALUE))>= 0 \
1074 				 && ((HOST_WIDE_INT)(VALUE)) <= 255)
1075 
1076 #define ZERO_EXTRACT_ANDMASK(EXTRACT_SZ_RTX, EXTRACT_POS_RTX)\
1077   (((1 << INTVAL (EXTRACT_SZ_RTX)) - 1) << INTVAL (EXTRACT_POS_RTX))
1078 
1079 /* Return the maximum number of consecutive registers
1080    needed to represent mode MODE in a register of class CLASS.
1081 
1082    If TARGET_SHMEDIA, we need two FP registers per word.
1083    Otherwise we will need at most one register per word.  */
1084 #define CLASS_MAX_NREGS(CLASS, MODE) \
1085   ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1086 
1087 /* Stack layout; function entry, exit and calling.  */
1088 
1089 /* Define the number of registers that can hold parameters.
1090    These macros are used only in other macro definitions below.  */
1091 #define NPARM_REGS(MODE) \
1092   (TARGET_FPU_ANY && (MODE) == SFmode \
1093    ? 8 \
1094    : TARGET_FPU_DOUBLE \
1095      && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1096 	 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1097    ? 8 \
1098    : 4)
1099 
1100 #define FIRST_PARM_REG (FIRST_GENERAL_REG + 4)
1101 #define FIRST_RET_REG  (FIRST_GENERAL_REG + 0)
1102 
1103 #define FIRST_FP_PARM_REG (FIRST_FP_REG + 4)
1104 #define FIRST_FP_RET_REG FIRST_FP_REG
1105 
1106 /* Define this if pushing a word on the stack
1107    makes the stack pointer a smaller address.  */
1108 #define STACK_GROWS_DOWNWARD 1
1109 
1110 /*  Define this macro to nonzero if the addresses of local variable slots
1111     are at negative offsets from the frame pointer.  */
1112 #define FRAME_GROWS_DOWNWARD 1
1113 
1114 /* If we generate an insn to push BYTES bytes,
1115    this says how many the stack pointer really advances by.  */
1116 /* Don't define PUSH_ROUNDING, since the hardware doesn't do this.
1117    When PUSH_ROUNDING is not defined, PARM_BOUNDARY will cause gcc to
1118    do correct alignment.  */
1119 #if 0
1120 #define PUSH_ROUNDING(NPUSHED)  (((NPUSHED) + 3) & ~3)
1121 #endif
1122 
1123 /* Offset of first parameter from the argument pointer register value.  */
1124 #define FIRST_PARM_OFFSET(FNDECL)  0
1125 
1126 /* Value is the number of bytes of arguments automatically popped when
1127    calling a subroutine.
1128    CUM is the accumulated argument list.  */
1129 #define CALL_POPS_ARGS(CUM) (0)
1130 
1131 /* Some subroutine macros specific to this machine.  */
1132 
1133 #define BASE_RETURN_VALUE_REG(MODE) \
1134   ((TARGET_FPU_ANY && ((MODE) == SFmode))		\
1135    ? FIRST_FP_RET_REG					\
1136    : TARGET_FPU_ANY && (MODE) == SCmode			\
1137    ? FIRST_FP_RET_REG					\
1138    : (TARGET_FPU_DOUBLE					\
1139       && ((MODE) == DFmode || (MODE) == SFmode		\
1140 	  || (MODE) == DCmode || (MODE) == SCmode ))	\
1141    ? FIRST_FP_RET_REG					\
1142    : FIRST_RET_REG)
1143 
1144 #define BASE_ARG_REG(MODE) \
1145   ((TARGET_SH2E && ((MODE) == SFmode))			\
1146    ? FIRST_FP_PARM_REG					\
1147    : TARGET_FPU_DOUBLE					\
1148      && (GET_MODE_CLASS (MODE) == MODE_FLOAT		\
1149 	 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)\
1150    ? FIRST_FP_PARM_REG					\
1151    : FIRST_PARM_REG)
1152 
1153 /* 1 if N is a possible register number for function argument passing.  */
1154 /* ??? There are some callers that pass REGNO as int, and others that pass
1155    it as unsigned.  We get warnings unless we do casts everywhere.  */
1156 #define FUNCTION_ARG_REGNO_P(REGNO) \
1157   (((unsigned) (REGNO) >= (unsigned) FIRST_PARM_REG			\
1158     && (unsigned) (REGNO) < (unsigned) (FIRST_PARM_REG + NPARM_REGS (SImode)))\
1159    || (TARGET_FPU_ANY							\
1160        && (unsigned) (REGNO) >= (unsigned) FIRST_FP_PARM_REG		\
1161        && (unsigned) (REGNO) < (unsigned) (FIRST_FP_PARM_REG		\
1162 					   + NPARM_REGS (SFmode))))
1163 
1164 #ifdef __cplusplus
1165 
1166 /* Define a data type for recording info about an argument list
1167    during the scan of that argument list.  This data type should
1168    hold all necessary information about the function itself
1169    and about the args processed so far, enough to enable macros
1170    such as FUNCTION_ARG to determine where the next arg should go.
1171 
1172    On SH, this is a single integer, which is a number of words
1173    of arguments scanned so far (including the invisible argument,
1174    if any, which holds the structure-value-address).
1175    Thus NARGREGS or more means all following args should go on the stack.  */
1176 
1177 enum sh_arg_class { SH_ARG_INT = 0, SH_ARG_FLOAT = 1 };
1178 
1179 struct sh_args
1180 {
1181   /* How many SH_ARG_INT and how many SH_ARG_FLOAT args there are.  */
1182   int arg_count[2];
1183 
1184   bool force_mem;
1185 
1186   /* Nonzero if a prototype is available for the function.  */
1187   bool prototype_p;
1188 
1189   /* The number of an odd floating-point register, that should be used
1190      for the next argument of type float.  */
1191   int free_single_fp_reg;
1192 
1193   /* Whether we're processing an outgoing function call.  */
1194   bool outgoing;
1195 
1196   /* This is set to nonzero when the call in question must use the Renesas ABI,
1197      even without the -mrenesas option.  */
1198   bool renesas_abi;
1199 };
1200 
1201 typedef sh_args CUMULATIVE_ARGS;
1202 
1203 /* Set when processing a function with interrupt attribute.  */
1204 extern bool current_function_interrupt;
1205 
1206 #endif // __cplusplus
1207 
1208 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1209    for a call to a function whose data type is FNTYPE.
1210    For a library call, FNTYPE is 0.
1211 
1212    On SH, the offset always starts at 0: the first parm reg is always
1213    the same reg for a given argument class.
1214 
1215    For TARGET_HITACHI, the structure value pointer is passed in memory.  */
1216 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1217   sh_init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL),\
1218 			   (N_NAMED_ARGS), VOIDmode)
1219 
1220 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1221   sh_init_cumulative_args (& (CUM), NULL_TREE, (LIBNAME), NULL_TREE, 0, (MODE))
1222 
1223 /* By accident we got stuck with passing SCmode on SH4 little endian
1224    in two registers that are nominally successive - which is different from
1225    two single SFmode values, where we take endianness translation into
1226    account.  That does not work at all if an odd number of registers is
1227    already in use, so that got fixed, but library functions are still more
1228    likely to use complex numbers without mixing them with SFmode arguments
1229    (which in C would have to be structures), so for the sake of ABI
1230    compatibility the way SCmode values are passed when an even number of
1231    FP registers is in use remains different from a pair of SFmode values for
1232    now.
1233    I.e.:
1234    foo (double); a: fr5,fr4
1235    foo (float a, float b); a: fr5 b: fr4
1236    foo (__complex float a); a.real fr4 a.imag: fr5 - for consistency,
1237 			    this should be the other way round...
1238    foo (float a, __complex float b); a: fr5 b.real: fr4 b.imag: fr7  */
1239 #define FUNCTION_ARG_SCmode_WART 1
1240 
1241 /* Minimum alignment for an argument to be passed by callee-copy
1242    reference.  We need such arguments to be aligned to 8 byte
1243    boundaries, because they'll be loaded using quad loads.  */
1244 #define SH_MIN_ALIGN_FOR_CALLEE_COPY (8 * BITS_PER_UNIT)
1245 
1246 /* Perform any needed actions needed for a function that is receiving a
1247    variable number of arguments.  */
1248 
1249 /* Call the function profiler with a given profile label.
1250    We use two .aligns, so as to make sure that both the .long is aligned
1251    on a 4 byte boundary, and that the .long is a fixed distance (2 bytes)
1252    from the trapa instruction.  */
1253 #define FUNCTION_PROFILER(STREAM,LABELNO)			\
1254 {								\
1255   fprintf((STREAM), "\t.align\t2\n");				\
1256   fprintf((STREAM), "\ttrapa\t#33\n");				\
1257   fprintf((STREAM), "\t.align\t2\n");				\
1258   asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO));	\
1259 }
1260 
1261 /* Define this macro if the code for function profiling should come
1262    before the function prologue.  Normally, the profiling code comes
1263    after.  */
1264 #define PROFILE_BEFORE_PROLOGUE
1265 
1266 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1267    the stack pointer does not matter.  The value is tested only in
1268    functions that have frame pointers.
1269    No definition is equivalent to always zero.  */
1270 #define EXIT_IGNORE_STACK 1
1271 
1272 /*
1273    On the SH, the trampoline looks like
1274    2 0002 D202			mov.l	l2,r2
1275    1 0000 D301			mov.l	l1,r3
1276    3 0004 422B			jmp	@r2
1277    4 0006 0009			nop
1278    5 0008 00000000 	l1:  	.long   area
1279    6 000c 00000000 	l2:	.long   function  */
1280 
1281 /* Length in units of the trampoline for entering a nested function.  */
1282 #define TRAMPOLINE_SIZE (TARGET_FDPIC ? 32 : 16)
1283 
1284 /* Alignment required for a trampoline in bits.  */
1285 #define TRAMPOLINE_ALIGNMENT \
1286   ((CACHE_LOG < 3 \
1287     || (optimize_size && ! (TARGET_HARD_SH4))) ? 32 \
1288    : 64)
1289 
1290 /* A C expression whose value is RTL representing the value of the return
1291    address for the frame COUNT steps up from the current frame.
1292    FRAMEADDR is already the frame pointer of the COUNT frame, so we
1293    can ignore COUNT.  */
1294 #define RETURN_ADDR_RTX(COUNT, FRAME)	\
1295   (((COUNT) == 0) ? sh_get_pr_initial_val () : NULL_RTX)
1296 
1297 /* A C expression whose value is RTL representing the location of the
1298    incoming return address at the beginning of any function, before the
1299    prologue.  This RTL is either a REG, indicating that the return
1300    value is saved in REG, or a MEM representing a location in
1301    the stack.  */
1302 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, PR_REG)
1303 
1304 /* Addressing modes, and classification of registers for them.  */
1305 #define HAVE_POST_INCREMENT  TARGET_SH1
1306 #define HAVE_PRE_DECREMENT   TARGET_SH1
1307 
1308 #define USE_LOAD_POST_INCREMENT(mode) TARGET_SH1
1309 #define USE_LOAD_PRE_DECREMENT(mode) TARGET_SH2A
1310 #define USE_STORE_POST_INCREMENT(mode) TARGET_SH2A
1311 #define USE_STORE_PRE_DECREMENT(mode) TARGET_SH1
1312 
1313 /* If a memory clear move would take CLEAR_RATIO or more simple
1314    move-instruction pairs, we will do a setmem instead.  */
1315 
1316 #define CLEAR_RATIO(speed) ((speed) ? 15 : 3)
1317 
1318 /* Macros to check register numbers against specific register classes.  */
1319 
1320 /* These assume that REGNO is a hard or pseudo reg number.
1321    They give nonzero only if REGNO is a hard reg of the suitable class
1322    or a pseudo reg currently allocated to a suitable hard reg.
1323    Since they use reg_renumber, they are safe only once reg_renumber
1324    has been allocated, which happens in reginfo.c during register
1325    allocation.  */
1326 #define REGNO_OK_FOR_BASE_P(REGNO) \
1327   (GENERAL_OR_AP_REGISTER_P (REGNO) \
1328    || GENERAL_OR_AP_REGISTER_P (reg_renumber[(REGNO)]))
1329 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1330   ((REGNO) == R0_REG || (unsigned) reg_renumber[(REGNO)] == R0_REG)
1331 
1332 /* True if SYMBOL + OFFSET constants must refer to something within
1333    SYMBOL's section.  */
1334 #define SH_OFFSETS_MUST_BE_WITHIN_SECTIONS_P TARGET_FDPIC
1335 
1336 /* Maximum number of registers that can appear in a valid memory
1337    address.  */
1338 #define MAX_REGS_PER_ADDRESS 2
1339 
1340 /* Recognize any constant value that is a valid address.  */
1341 #define CONSTANT_ADDRESS_P(X)	(GET_CODE (X) == LABEL_REF)
1342 
1343 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1344    and check its validity for a certain class.
1345    The suitable hard regs are always accepted and all pseudo regs
1346    are also accepted if STRICT is not set.  */
1347 
1348 /* Nonzero if X is a reg that can be used as a base reg.  */
1349 #define REG_OK_FOR_BASE_P(X, STRICT)			\
1350   (GENERAL_OR_AP_REGISTER_P (REGNO (X))			\
1351    || (!STRICT && REGNO (X) >= FIRST_PSEUDO_REGISTER))
1352 
1353 /* Nonzero if X is a reg that can be used as an index.  */
1354 #define REG_OK_FOR_INDEX_P(X, STRICT)			\
1355   ((REGNO (X) == R0_REG)				\
1356    || (!STRICT && REGNO (X) >= FIRST_PSEUDO_REGISTER))
1357 
1358 /* Nonzero if X/OFFSET is a reg that can be used as an index.  */
1359 #define SUBREG_OK_FOR_INDEX_P(X, OFFSET, STRICT)	\
1360   ((REGNO (X) == R0_REG && OFFSET == 0)			\
1361    || (!STRICT && REGNO (X) >= FIRST_PSEUDO_REGISTER))
1362 
1363 /* Macros for extra constraints.  */
1364 
1365 #define IS_PC_RELATIVE_LOAD_ADDR_P(OP)					\
1366   ((GET_CODE ((OP)) == LABEL_REF)					\
1367    || (GET_CODE ((OP)) == CONST						\
1368        && GET_CODE (XEXP ((OP), 0)) == PLUS				\
1369        && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == LABEL_REF		\
1370        && CONST_INT_P (XEXP (XEXP ((OP), 0), 1))))
1371 
1372 #define IS_NON_EXPLICIT_CONSTANT_P(OP)					\
1373   (CONSTANT_P (OP)							\
1374    && !CONST_INT_P (OP)							\
1375    && GET_CODE (OP) != CONST_DOUBLE					\
1376    && (!flag_pic							\
1377        || (LEGITIMATE_PIC_OPERAND_P (OP)				\
1378 	   && !PIC_ADDR_P (OP)						\
1379 	   && GET_CODE (OP) != LABEL_REF)))
1380 
1381 #define GOT_ENTRY_P(OP) \
1382   (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
1383    && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOT)
1384 
1385 #define GOTPLT_ENTRY_P(OP) \
1386   (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
1387    && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOTPLT)
1388 
1389 #define UNSPEC_GOTOFF_P(OP) \
1390   (GET_CODE (OP) == UNSPEC && XINT ((OP), 1) == UNSPEC_GOTOFF)
1391 
1392 #define GOTOFF_P(OP) \
1393   (GET_CODE (OP) == CONST \
1394    && (UNSPEC_GOTOFF_P (XEXP ((OP), 0)) \
1395        || (GET_CODE (XEXP ((OP), 0)) == PLUS \
1396 	   && UNSPEC_GOTOFF_P (XEXP (XEXP ((OP), 0), 0)) \
1397 	   && CONST_INT_P (XEXP (XEXP ((OP), 0), 1)))))
1398 
1399 #define PIC_ADDR_P(OP) \
1400   (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
1401    && XINT (XEXP ((OP), 0), 1) == UNSPEC_PIC)
1402 
1403 #define PCREL_SYMOFF_P(OP) \
1404   (GET_CODE (OP) == CONST \
1405    && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
1406    && XINT (XEXP ((OP), 0), 1) == UNSPEC_PCREL_SYMOFF)
1407 
1408 #define NON_PIC_REFERENCE_P(OP) \
1409   (GET_CODE (OP) == LABEL_REF || GET_CODE (OP) == SYMBOL_REF \
1410    || (GET_CODE (OP) == CONST \
1411        && (GET_CODE (XEXP ((OP), 0)) == LABEL_REF \
1412 	   || GET_CODE (XEXP ((OP), 0)) == SYMBOL_REF)) \
1413    || (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == PLUS \
1414        && (GET_CODE (XEXP (XEXP ((OP), 0), 0)) == SYMBOL_REF \
1415 	   || GET_CODE (XEXP (XEXP ((OP), 0), 0)) == LABEL_REF) \
1416        && CONST_INT_P (XEXP (XEXP ((OP), 0), 1))))
1417 
1418 #define PIC_REFERENCE_P(OP) \
1419   (GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP) \
1420    || GOTOFF_P (OP) || PIC_ADDR_P (OP))
1421 
1422 #define MAYBE_BASE_REGISTER_RTX_P(X, STRICT)			\
1423   ((REG_P (X) && REG_OK_FOR_BASE_P (X, STRICT))	\
1424    || (GET_CODE (X) == SUBREG					\
1425        && REG_P (SUBREG_REG (X))			\
1426        && REG_OK_FOR_BASE_P (SUBREG_REG (X), STRICT)))
1427 
1428 /* Since this must be r0, which is a single register class, we must check
1429    SUBREGs more carefully, to be sure that we don't accept one that extends
1430    outside the class.  */
1431 #define MAYBE_INDEX_REGISTER_RTX_P(X, STRICT)				\
1432   ((REG_P (X) && REG_OK_FOR_INDEX_P (X, STRICT))	\
1433    || (GET_CODE (X) == SUBREG					\
1434        && REG_P (SUBREG_REG (X))		\
1435        && SUBREG_OK_FOR_INDEX_P (SUBREG_REG (X), SUBREG_BYTE (X), STRICT)))
1436 
1437 #ifdef REG_OK_STRICT
1438 #define BASE_REGISTER_RTX_P(X) MAYBE_BASE_REGISTER_RTX_P(X, true)
1439 #define INDEX_REGISTER_RTX_P(X) MAYBE_INDEX_REGISTER_RTX_P(X, true)
1440 #else
1441 #define BASE_REGISTER_RTX_P(X) MAYBE_BASE_REGISTER_RTX_P(X, false)
1442 #define INDEX_REGISTER_RTX_P(X) MAYBE_INDEX_REGISTER_RTX_P(X, false)
1443 #endif
1444 
1445 
1446 /* A C compound statement that attempts to replace X, which is an address
1447    that needs reloading, with a valid memory address for an operand of
1448    mode MODE.  WIN is a C statement label elsewhere in the code.  */
1449 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	\
1450   do {									\
1451     if (sh_legitimize_reload_address (&(X), (MODE), (OPNUM), (TYPE)))	\
1452       goto WIN;								\
1453   } while (0)
1454 
1455 /* Specify the machine mode that this machine uses
1456    for the index in the tablejump instruction.  */
1457 #define CASE_VECTOR_MODE ((! optimize || TARGET_BIGTABLE) ? SImode : HImode)
1458 
1459 #define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \
1460 ((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 127 \
1461  ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \
1462  : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \
1463  ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \
1464  : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 ? HImode \
1465  : SImode)
1466 
1467 /* Define as C expression which evaluates to nonzero if the tablejump
1468    instruction expects the table to contain offsets from the address of the
1469    table.
1470    Do not define this if the table should contain absolute addresses.  */
1471 #define CASE_VECTOR_PC_RELATIVE 1
1472 
1473 /* Define it here, so that it doesn't get bumped to 64-bits on SHmedia.  */
1474 #define FLOAT_TYPE_SIZE 32
1475 
1476 /* Since the SH2e has only `float' support, it is desirable to make all
1477    floating point types equivalent to `float'.  */
1478 #define DOUBLE_TYPE_SIZE (TARGET_FPU_SINGLE_ONLY ? 32 : 64)
1479 
1480 /* 'char' is signed by default.  */
1481 #define DEFAULT_SIGNED_CHAR  1
1482 
1483 /* The type of size_t unsigned int.  */
1484 #define SIZE_TYPE ("unsigned int")
1485 
1486 #undef  PTRDIFF_TYPE
1487 #define PTRDIFF_TYPE ("int")
1488 
1489 #define WCHAR_TYPE "short unsigned int"
1490 #define WCHAR_TYPE_SIZE 16
1491 
1492 #define SH_ELF_WCHAR_TYPE "long int"
1493 
1494 /* Max number of bytes we can move from memory to memory
1495    in one reasonably fast instruction.  */
1496 #define MOVE_MAX (4)
1497 
1498 /* Maximum value possibly taken by MOVE_MAX.  Must be defined whenever
1499    MOVE_MAX is not a compile-time constant.  */
1500 #define MAX_MOVE_MAX 8
1501 
1502 /* Max number of bytes we want move_by_pieces to be able to copy
1503    efficiently.  */
1504 #define MOVE_MAX_PIECES (TARGET_SH4 ? 8 : 4)
1505 
1506 /* Define if operations between registers always perform the operation
1507    on the full register even if a narrower mode is specified.  */
1508 #define WORD_REGISTER_OPERATIONS 1
1509 
1510 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1511    will either zero-extend or sign-extend.  The value of this macro should
1512    be the code that says which one of the two operations is implicitly
1513    done, UNKNOWN if none.  */
1514 #define LOAD_EXTEND_OP(MODE) ((MODE) != SImode ? SIGN_EXTEND : UNKNOWN)
1515 
1516 /* Define if loading short immediate values into registers sign extends.  */
1517 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1518 
1519 /* Nonzero if access to memory by bytes is no faster than for words.  */
1520 #define SLOW_BYTE_ACCESS 1
1521 
1522 /* Nonzero if the target supports dynamic shift instructions
1523    like shad and shld.  */
1524 #define TARGET_DYNSHIFT (TARGET_SH3 || TARGET_SH2A)
1525 
1526 /* The cost of using the dynamic shift insns (shad, shld) are the same
1527    if they are available.  If they are not available a library function will
1528    be emitted instead, which is more expensive.  */
1529 #define SH_DYNAMIC_SHIFT_COST (TARGET_DYNSHIFT ? 1 : 20)
1530 
1531 /* Defining SHIFT_COUNT_TRUNCATED tells the combine pass that code like
1532    (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
1533    This is not generally true when hardware dynamic shifts (shad, shld) are
1534    used, because they check the sign bit _before_ the modulo op.  The sign
1535    bit determines whether it is a left shift or a right shift:
1536      if (Y < 0)
1537        return X << (Y & 31);
1538      else
1539        return X >> (-Y) & 31);
1540 
1541    The dynamic shift library routines in lib1funcs.S do not use the sign bit
1542    like the hardware dynamic shifts and truncate the shift count to 31.
1543    We define SHIFT_COUNT_TRUNCATED to 0 and express the implied shift count
1544    truncation in the library function call patterns, as this gives slightly
1545    more compact code.  */
1546 #define SHIFT_COUNT_TRUNCATED (0)
1547 
1548 /* Define this if addresses of constant functions
1549    shouldn't be put through pseudo regs where they can be cse'd.
1550    Desirable on machines where ordinary constants are expensive
1551    but a CALL with constant address is cheap.  */
1552 /*#define NO_FUNCTION_CSE 1*/
1553 
1554 /* The machine modes of pointers and functions.  */
1555 #define Pmode  (SImode)
1556 #define FUNCTION_MODE  Pmode
1557 
1558 /* The multiply insn on the SH1 and the divide insns on the SH1 and SH2
1559    are actually function calls with some special constraints on arguments
1560    and register usage.
1561 
1562    These macros tell reorg that the references to arguments and
1563    register clobbers for insns of type sfunc do not appear to happen
1564    until after the millicode call.  This allows reorg to put insns
1565    which set the argument registers into the delay slot of the millicode
1566    call -- thus they act more like traditional CALL_INSNs.
1567 
1568    get_attr_is_sfunc will try to recognize the given insn, so make sure to
1569    filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1570    in particular.  */
1571 
1572 #define INSN_SETS_ARE_DELAYED(X) 		\
1573   ((NONJUMP_INSN_P (X)				\
1574     && GET_CODE (PATTERN (X)) != SEQUENCE	\
1575     && GET_CODE (PATTERN (X)) != USE		\
1576     && GET_CODE (PATTERN (X)) != CLOBBER	\
1577     && get_attr_is_sfunc (X)))
1578 
1579 #define INSN_REFERENCES_ARE_DELAYED(X) 		\
1580   ((NONJUMP_INSN_P (X)				\
1581     && GET_CODE (PATTERN (X)) != SEQUENCE	\
1582     && GET_CODE (PATTERN (X)) != USE		\
1583     && GET_CODE (PATTERN (X)) != CLOBBER	\
1584     && get_attr_is_sfunc (X)))
1585 
1586 
1587 /* Position Independent Code.  */
1588 
1589 /* We can't directly access anything that contains a symbol,
1590    nor can we indirect via the constant pool.  */
1591 #define LEGITIMATE_PIC_OPERAND_P(X)				\
1592 	((! nonpic_symbol_mentioned_p (X)			\
1593 	  && (GET_CODE (X) != SYMBOL_REF			\
1594 	      || ! CONSTANT_POOL_ADDRESS_P (X)			\
1595 	      || ! nonpic_symbol_mentioned_p (get_pool_constant (X)))))
1596 
1597 #define SYMBOLIC_CONST_P(X)	\
1598 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF)	\
1599   && nonpic_symbol_mentioned_p (X))
1600 
1601 /* Compute extra cost of moving data between one register class
1602    and another.  */
1603 
1604 /* If SECONDARY*_RELOAD_CLASS says something about the src/dst pair, regclass
1605    uses this information.  Hence, the general register <-> floating point
1606    register information here is not used for SFmode.  */
1607 #define REGCLASS_HAS_GENERAL_REG(CLASS) \
1608   ((CLASS) == GENERAL_REGS || (CLASS) == R0_REGS || (CLASS) == NON_SP_REGS \
1609     || ((CLASS) == SIBCALL_REGS))
1610 
1611 #define REGCLASS_HAS_FP_REG(CLASS) \
1612   ((CLASS) == FP0_REGS || (CLASS) == FP_REGS \
1613    || (CLASS) == DF_REGS)
1614 
1615 /* ??? Perhaps make MEMORY_MOVE_COST depend on compiler option?  This
1616    would be so that people with slow memory systems could generate
1617    different code that does fewer memory accesses.  */
1618 
1619 /* A C expression for the cost of a branch instruction.  A value of 1
1620    is the default; other values are interpreted relative to that.  */
1621 #define BRANCH_COST(speed_p, predictable_p) sh_branch_cost
1622 
1623 /* Assembler output control.  */
1624 
1625 /* A C string constant describing how to begin a comment in the target
1626    assembler language.  The compiler assumes that the comment will end at
1627    the end of the line.  */
1628 #define ASM_COMMENT_START "!"
1629 
1630 #define ASM_APP_ON  		""
1631 #define ASM_APP_OFF  		""
1632 #define FILE_ASM_OP 		"\t.file\n"
1633 #define SET_ASM_OP		"\t.set\t"
1634 
1635 /* How to change between sections.  */
1636 #define TEXT_SECTION_ASM_OP	"\t.text"
1637 #define DATA_SECTION_ASM_OP	"\t.data"
1638 
1639 #if defined CRT_BEGIN || defined CRT_END
1640 /* Arrange for TEXT_SECTION_ASM_OP to be a compile-time constant.  */
1641 #undef TEXT_SECTION_ASM_OP
1642 #define TEXT_SECTION_ASM_OP "\t.text"
1643 #endif
1644 
1645 #ifndef BSS_SECTION_ASM_OP
1646 #define BSS_SECTION_ASM_OP	"\t.section\t.bss"
1647 #endif
1648 
1649 #ifndef ASM_OUTPUT_ALIGNED_BSS
1650 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1651   asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
1652 #endif
1653 
1654 /* Define this so that jump tables go in same section as the current function,
1655    which could be text or it could be a user defined section.  */
1656 #define JUMP_TABLES_IN_TEXT_SECTION 1
1657 
1658 #undef DO_GLOBAL_CTORS_BODY
1659 #define DO_GLOBAL_CTORS_BODY			\
1660 {						\
1661   typedef void (*pfunc) (void);			\
1662   extern pfunc __ctors[];			\
1663   extern pfunc __ctors_end[];			\
1664   pfunc *p;					\
1665   for (p = __ctors_end; p > __ctors; )		\
1666     {						\
1667       (*--p)();					\
1668     }						\
1669 }
1670 
1671 #undef DO_GLOBAL_DTORS_BODY
1672 #define DO_GLOBAL_DTORS_BODY			\
1673 {						\
1674   typedef void (*pfunc) (void);			\
1675   extern pfunc __dtors[];			\
1676   extern pfunc __dtors_end[];			\
1677   pfunc *p;					\
1678   for (p = __dtors; p < __dtors_end; p++)	\
1679     {						\
1680       (*p)();					\
1681     }						\
1682 }
1683 
1684 #define ASM_OUTPUT_REG_PUSH(file, v) \
1685 {							\
1686   fprintf ((file), "\tmov.l\tr%d,@-r15\n", (v));	\
1687 }
1688 
1689 #define ASM_OUTPUT_REG_POP(file, v) \
1690 {							\
1691   fprintf ((file), "\tmov.l\t@r15+,r%d\n", (v));	\
1692 }
1693 
1694 /* DBX register number for a given compiler register number.  */
1695 /* GDB has FPUL at 23 and FP0 at 25, so we must add one to all FP registers
1696    to match gdb.  */
1697 /* expand_builtin_init_dwarf_reg_sizes uses this to test if a
1698    register exists, so we should return -1 for invalid register numbers.  */
1699 #define DBX_REGISTER_NUMBER(REGNO) SH_DBX_REGISTER_NUMBER (REGNO)
1700 
1701 #define SH_DBX_REGISTER_NUMBER(REGNO) \
1702   (IN_RANGE ((REGNO), \
1703 	     (unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \
1704 	     FIRST_GENERAL_REG + 15U) \
1705    ? ((unsigned) (REGNO) - FIRST_GENERAL_REG) \
1706    : ((int) (REGNO) >= FIRST_FP_REG \
1707      && ((int) (REGNO) \
1708 	 <= (FIRST_FP_REG + (TARGET_SH2E ? 15 : -1)))) \
1709    ? ((unsigned) (REGNO) - FIRST_FP_REG + 25) \
1710    : XD_REGISTER_P (REGNO) \
1711    ? ((unsigned) (REGNO) - FIRST_XD_REG + 87) \
1712    : (REGNO) == PR_REG \
1713    ? (17) \
1714    : (REGNO) == GBR_REG \
1715    ? (18) \
1716    : (REGNO) == MACH_REG \
1717    ? (20) \
1718    : (REGNO) == MACL_REG \
1719    ? (21) \
1720    : (REGNO) == T_REG \
1721    ? (22) \
1722    : (REGNO) == FPUL_REG \
1723    ? (23) \
1724    : (REGNO) == FPSCR_REG \
1725    ? (24) \
1726    : (unsigned) -1)
1727 
1728 /* This is how to output an assembler line
1729    that says to advance the location counter
1730    to a multiple of 2**LOG bytes.  */
1731 
1732 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1733   if ((LOG) != 0)			\
1734     fprintf ((FILE), "\t.align %d\n", (LOG))
1735 
1736 /* Globalizing directive for a label.  */
1737 #define GLOBAL_ASM_OP "\t.global\t"
1738 
1739 /* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE)  */
1740 
1741 /* Output a relative address table.  */
1742 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL)			\
1743   switch (GET_MODE (BODY))						\
1744     {									\
1745     case E_SImode:							\
1746       asm_fprintf ((STREAM), "\t.long\t%LL%d-%LL%d\n", (VALUE),(REL));	\
1747       break;								\
1748     case E_HImode:							\
1749       asm_fprintf ((STREAM), "\t.word\t%LL%d-%LL%d\n", (VALUE),(REL));	\
1750       break;								\
1751     case E_QImode:							\
1752       asm_fprintf ((STREAM), "\t.byte\t%LL%d-%LL%d\n", (VALUE),(REL));	\
1753       break;								\
1754     default:								\
1755       break;								\
1756     }
1757 
1758 /* Output an absolute table element.  */
1759 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
1760   do {									\
1761     if (! optimize || TARGET_BIGTABLE)					\
1762       asm_fprintf ((STREAM), "\t.long\t%LL%d\n", (VALUE)); 		\
1763     else								\
1764       asm_fprintf ((STREAM), "\t.word\t%LL%d\n", (VALUE));		\
1765   } while (0)
1766 
1767 /* A C statement to be executed just prior to the output of
1768    assembler code for INSN, to modify the extracted operands so
1769    they will be output differently.
1770 
1771    Here the argument OPVEC is the vector containing the operands
1772    extracted from INSN, and NOPERANDS is the number of elements of
1773    the vector which contain meaningful data for this insn.
1774    The contents of this vector are what will be used to convert the insn
1775    template into assembler code, so you can change the assembler output
1776    by changing the contents of the vector.  */
1777 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
1778   final_prescan_insn ((INSN), (OPVEC), (NOPERANDS))
1779 
1780 /* Which processor to schedule for.  The elements of the enumeration must
1781    match exactly the cpu attribute in the sh.md file.  */
1782 enum processor_type {
1783   PROCESSOR_SH1,
1784   PROCESSOR_SH2,
1785   PROCESSOR_SH2E,
1786   PROCESSOR_SH2A,
1787   PROCESSOR_SH3,
1788   PROCESSOR_SH3E,
1789   PROCESSOR_SH4,
1790   PROCESSOR_SH4A
1791 };
1792 
1793 #define sh_cpu_attr ((enum attr_cpu)sh_cpu)
1794 extern enum processor_type sh_cpu;
1795 
1796 enum mdep_reorg_phase_e
1797 {
1798   SH_BEFORE_MDEP_REORG,
1799   SH_INSERT_USES_LABELS,
1800   SH_SHORTEN_BRANCHES0,
1801   SH_FIXUP_PCLOAD,
1802   SH_SHORTEN_BRANCHES1,
1803   SH_AFTER_MDEP_REORG
1804 };
1805 
1806 extern enum mdep_reorg_phase_e mdep_reorg_phase;
1807 
1808 /* Handle Renesas compiler's pragmas.  */
1809 #define REGISTER_TARGET_PRAGMAS() do {					\
1810   c_register_pragma (0, "interrupt", sh_pr_interrupt);			\
1811   c_register_pragma (0, "trapa", sh_pr_trapa);				\
1812   c_register_pragma (0, "nosave_low_regs", sh_pr_nosave_low_regs);	\
1813 } while (0)
1814 
1815 extern tree sh_deferred_function_attributes;
1816 extern tree *sh_deferred_function_attributes_tail;
1817 
1818 
1819 
1820 /* Instructions with unfilled delay slots take up an
1821    extra two bytes for the nop in the delay slot.
1822    sh-dsp parallel processing insns are four bytes long.  */
1823 #define ADJUST_INSN_LENGTH(X, LENGTH)				\
1824   (LENGTH) += sh_insn_length_adjustment (X);
1825 
1826 /* Define this macro if it is advisable to hold scalars in registers
1827    in a wider mode than that declared by the program.  In such cases,
1828    the value is constrained to be within the bounds of the declared
1829    type, but kept valid in the wider mode.  The signedness of the
1830    extension may differ from that of the type.
1831 
1832    Leaving the unsignedp unchanged gives better code than always setting it
1833    to 0.  This is despite the fact that we have only signed char and short
1834    load instructions.  */
1835 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1836   if (GET_MODE_CLASS (MODE) == MODE_INT			\
1837       && GET_MODE_SIZE (MODE) < 4/* ! UNITS_PER_WORD */)\
1838     (UNSIGNEDP) = ((MODE) == SImode ? 0 : (UNSIGNEDP)),	(MODE) = SImode;
1839 
1840 #define MAX_FIXED_MODE_SIZE (64)
1841 
1842 /* Better to allocate once the maximum space for outgoing args in the
1843    prologue rather than duplicate around each call.  */
1844 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1845 
1846 #define NUM_MODES_FOR_MODE_SWITCHING { FP_MODE_NONE }
1847 
1848 #define OPTIMIZE_MODE_SWITCHING(ENTITY) (TARGET_FPU_DOUBLE)
1849 
1850 #define ACTUAL_NORMAL_MODE(ENTITY) \
1851   (TARGET_FPU_SINGLE ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
1852 
1853 #define NORMAL_MODE(ENTITY) \
1854   (sh_cfun_interrupt_handler_p () \
1855    ? (TARGET_FMOVD ? FP_MODE_DOUBLE : FP_MODE_NONE) \
1856    : ACTUAL_NORMAL_MODE (ENTITY))
1857 
1858 #define EPILOGUE_USES(REGNO) (TARGET_FPU_ANY && REGNO == FPSCR_REG)
1859 
1860 #define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (PR_REG))
1861 
1862 #define EH_RETURN_DATA_REGNO(N)	((N) < 4 ? (N) + 4U : INVALID_REGNUM)
1863 
1864 #define EH_RETURN_STACKADJ_REGNO STATIC_CHAIN_REGNUM
1865 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
1866 
1867 /* We have to distinguish between code and data, so that we apply
1868    datalabel where and only where appropriate.  Use sdataN for data.  */
1869 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1870   ((TARGET_FDPIC \
1871     ? ((GLOBAL) ? DW_EH_PE_indirect | DW_EH_PE_datarel : DW_EH_PE_pcrel) \
1872     : ((flag_pic && (GLOBAL) ? DW_EH_PE_indirect : 0) \
1873        | (flag_pic ? DW_EH_PE_pcrel : DW_EH_PE_absptr))) \
1874    | ((CODE) ? 0 : DW_EH_PE_sdata4))
1875 
1876 /* Handle special EH pointer encodings.  Absolute, pc-relative, and
1877    indirect are handled automatically.  */
1878 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
1879   do { \
1880     if (((ENCODING) & 0xf) != DW_EH_PE_sdata4 \
1881 	&& ((ENCODING) & 0xf) != DW_EH_PE_sdata8) \
1882       { \
1883 	gcc_assert (GET_CODE (ADDR) == SYMBOL_REF); \
1884 	SYMBOL_REF_FLAGS (ADDR) |= SYMBOL_FLAG_FUNCTION; \
1885 	if (0) goto DONE; \
1886       } \
1887     if (TARGET_FDPIC \
1888 	&& ((ENCODING) & 0xf0) == (DW_EH_PE_indirect | DW_EH_PE_datarel)) \
1889       { \
1890 	fputs ("\t.ualong ", FILE); \
1891 	output_addr_const (FILE, ADDR); \
1892 	if (GET_CODE (ADDR) == SYMBOL_REF && SYMBOL_REF_FUNCTION_P (ADDR)) \
1893 	  fputs ("@GOTFUNCDESC", FILE); \
1894 	else \
1895 	  fputs ("@GOT", FILE); \
1896 	goto DONE; \
1897       } \
1898   } while (0)
1899 
1900 #if (defined CRT_BEGIN || defined CRT_END)
1901 /* SH constant pool breaks the devices in crtstuff.c to control section
1902    in where code resides.  We have to write it as asm code.  */
1903 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
1904    asm (SECTION_OP "\n\
1905 	mov.l	1f,r1\n\
1906 	mova	2f,r0\n\
1907 	braf	r1\n\
1908 	lds	r0,pr\n\
1909 0:	.p2align 2\n\
1910 1:	.long	" USER_LABEL_PREFIX #FUNC " - 0b\n\
1911 2:\n" TEXT_SECTION_ASM_OP);
1912 #endif /* (defined CRT_BEGIN || defined CRT_END) */
1913 
1914 #endif /* ! GCC_SH_H */
1915