1 /* RTL-based forward propagation pass for GNU compiler.
2    Copyright (C) 2005-2019 Free Software Foundation, Inc.
3    Contributed by Paolo Bonzini and Steven Bosscher.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "emit-rtl.h"
33 #include "recog.h"
34 
35 #include "sparseset.h"
36 #include "cfgrtl.h"
37 #include "cfgcleanup.h"
38 #include "cfgloop.h"
39 #include "tree-pass.h"
40 #include "domwalk.h"
41 #include "rtl-iter.h"
42 
43 
44 /* This pass does simple forward propagation and simplification when an
45    operand of an insn can only come from a single def.  This pass uses
46    df.c, so it is global.  However, we only do limited analysis of
47    available expressions.
48 
49    1) The pass tries to propagate the source of the def into the use,
50    and checks if the result is independent of the substituted value.
51    For example, the high word of a (zero_extend:DI (reg:SI M)) is always
52    zero, independent of the source register.
53 
54    In particular, we propagate constants into the use site.  Sometimes
55    RTL expansion did not put the constant in the same insn on purpose,
56    to satisfy a predicate, and the result will fail to be recognized;
57    but this happens rarely and in this case we can still create a
58    REG_EQUAL note.  For multi-word operations, this
59 
60       (set (subreg:SI (reg:DI 120) 0) (const_int 0))
61       (set (subreg:SI (reg:DI 120) 4) (const_int -1))
62       (set (subreg:SI (reg:DI 122) 0)
63          (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
64       (set (subreg:SI (reg:DI 122) 4)
65          (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
66 
67    can be simplified to the much simpler
68 
69       (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
70       (set (subreg:SI (reg:DI 122) 4) (const_int -1))
71 
72    This particular propagation is also effective at putting together
73    complex addressing modes.  We are more aggressive inside MEMs, in
74    that all definitions are propagated if the use is in a MEM; if the
75    result is a valid memory address we check address_cost to decide
76    whether the substitution is worthwhile.
77 
78    2) The pass propagates register copies.  This is not as effective as
79    the copy propagation done by CSE's canon_reg, which works by walking
80    the instruction chain, it can help the other transformations.
81 
82    We should consider removing this optimization, and instead reorder the
83    RTL passes, because GCSE does this transformation too.  With some luck,
84    the CSE pass at the end of rest_of_handle_gcse could also go away.
85 
86    3) The pass looks for paradoxical subregs that are actually unnecessary.
87    Things like this:
88 
89      (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
90      (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
91      (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
92                                 (subreg:SI (reg:QI 121) 0)))
93 
94    are very common on machines that can only do word-sized operations.
95    For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
96    if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
97    we can replace the paradoxical subreg with simply (reg:WIDE M).  The
98    above will simplify this to
99 
100      (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
101      (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
102      (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
103 
104    where the first two insns are now dead.
105 
106    We used to use reaching definitions to find which uses have a
107    single reaching definition (sounds obvious...), but this is too
108    complex a problem in nasty testcases like PR33928.  Now we use the
109    multiple definitions problem in df-problems.c.  The similarity
110    between that problem and SSA form creation is taken further, in
111    that fwprop does a dominator walk to create its chains; however,
112    instead of creating a PHI function where multiple definitions meet
113    I just punt and record only singleton use-def chains, which is
114    all that is needed by fwprop.  */
115 
116 
117 static int num_changes;
118 
119 static vec<df_ref> use_def_ref;
120 static vec<df_ref> reg_defs;
121 static vec<df_ref> reg_defs_stack;
122 
123 /* The maximum number of propagations that are still allowed.  If we do
124    more propagations than originally we had uses, we must have ended up
125    in a propagation loop, as in PR79405.  Until the algorithm fwprop
126    uses can obviously not get into such loops we need a workaround like
127    this.  */
128 static int propagations_left;
129 
130 /* The MD bitmaps are trimmed to include only live registers to cut
131    memory usage on testcases like insn-recog.c.  Track live registers
132    in the basic block and do not perform forward propagation if the
133    destination is a dead pseudo occurring in a note.  */
134 static bitmap local_md;
135 static bitmap local_lr;
136 
137 /* Return the only def in USE's use-def chain, or NULL if there is
138    more than one def in the chain.  */
139 
140 static inline df_ref
get_def_for_use(df_ref use)141 get_def_for_use (df_ref use)
142 {
143   return use_def_ref[DF_REF_ID (use)];
144 }
145 
146 
147 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
148    TOP_FLAG says which artificials uses should be used, when DEF_REC
149    is an artificial def vector.  LOCAL_MD is modified as after a
150    df_md_simulate_* function; we do more or less the same processing
151    done there, so we do not use those functions.  */
152 
153 #define DF_MD_GEN_FLAGS \
154 	(DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
155 
156 static void
process_defs(df_ref def,int top_flag)157 process_defs (df_ref def, int top_flag)
158 {
159   for (; def; def = DF_REF_NEXT_LOC (def))
160     {
161       df_ref curr_def = reg_defs[DF_REF_REGNO (def)];
162       unsigned int dregno;
163 
164       if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
165 	continue;
166 
167       dregno = DF_REF_REGNO (def);
168       if (curr_def)
169 	reg_defs_stack.safe_push (curr_def);
170       else
171 	{
172 	  /* Do not store anything if "transitioning" from NULL to NULL.  But
173              otherwise, push a special entry on the stack to tell the
174 	     leave_block callback that the entry in reg_defs was NULL.  */
175 	  if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
176 	    ;
177 	  else
178 	    reg_defs_stack.safe_push (def);
179 	}
180 
181       if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
182 	{
183 	  bitmap_set_bit (local_md, dregno);
184 	  reg_defs[dregno] = NULL;
185 	}
186       else
187 	{
188 	  bitmap_clear_bit (local_md, dregno);
189 	  reg_defs[dregno] = def;
190 	}
191     }
192 }
193 
194 
195 /* Fill the use_def_ref vector with values for the uses in USE_REC,
196    taking reaching definitions info from LOCAL_MD and REG_DEFS.
197    TOP_FLAG says which artificials uses should be used, when USE_REC
198    is an artificial use vector.  */
199 
200 static void
process_uses(df_ref use,int top_flag)201 process_uses (df_ref use, int top_flag)
202 {
203   for (; use; use = DF_REF_NEXT_LOC (use))
204     if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
205       {
206         unsigned int uregno = DF_REF_REGNO (use);
207         if (reg_defs[uregno]
208 	    && !bitmap_bit_p (local_md, uregno)
209 	    && bitmap_bit_p (local_lr, uregno))
210 	  use_def_ref[DF_REF_ID (use)] = reg_defs[uregno];
211       }
212 }
213 
214 class single_def_use_dom_walker : public dom_walker
215 {
216 public:
single_def_use_dom_walker(cdi_direction direction)217   single_def_use_dom_walker (cdi_direction direction)
218     : dom_walker (direction) {}
219   virtual edge before_dom_children (basic_block);
220   virtual void after_dom_children (basic_block);
221 };
222 
223 edge
before_dom_children(basic_block bb)224 single_def_use_dom_walker::before_dom_children (basic_block bb)
225 {
226   int bb_index = bb->index;
227   struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
228   struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
229   rtx_insn *insn;
230 
231   bitmap_copy (local_md, &md_bb_info->in);
232   bitmap_copy (local_lr, &lr_bb_info->in);
233 
234   /* Push a marker for the leave_block callback.  */
235   reg_defs_stack.safe_push (NULL);
236 
237   process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
238   process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
239 
240   /* We don't call df_simulate_initialize_forwards, as it may overestimate
241      the live registers if there are unused artificial defs.  We prefer
242      liveness to be underestimated.  */
243 
244   FOR_BB_INSNS (bb, insn)
245     if (INSN_P (insn))
246       {
247         unsigned int uid = INSN_UID (insn);
248         process_uses (DF_INSN_UID_USES (uid), 0);
249         process_uses (DF_INSN_UID_EQ_USES (uid), 0);
250         process_defs (DF_INSN_UID_DEFS (uid), 0);
251 	df_simulate_one_insn_forwards (bb, insn, local_lr);
252       }
253 
254   process_uses (df_get_artificial_uses (bb_index), 0);
255   process_defs (df_get_artificial_defs (bb_index), 0);
256 
257   return NULL;
258 }
259 
260 /* Pop the definitions created in this basic block when leaving its
261    dominated parts.  */
262 
263 void
after_dom_children(basic_block bb ATTRIBUTE_UNUSED)264 single_def_use_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
265 {
266   df_ref saved_def;
267   while ((saved_def = reg_defs_stack.pop ()) != NULL)
268     {
269       unsigned int dregno = DF_REF_REGNO (saved_def);
270 
271       /* See also process_defs.  */
272       if (saved_def == reg_defs[dregno])
273 	reg_defs[dregno] = NULL;
274       else
275 	reg_defs[dregno] = saved_def;
276     }
277 }
278 
279 
280 /* Build a vector holding the reaching definitions of uses reached by a
281    single dominating definition.  */
282 
283 static void
build_single_def_use_links(void)284 build_single_def_use_links (void)
285 {
286   /* We use the multiple definitions problem to compute our restricted
287      use-def chains.  */
288   df_set_flags (DF_EQ_NOTES);
289   df_md_add_problem ();
290   df_note_add_problem ();
291   df_analyze ();
292   df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
293 
294   use_def_ref.create (DF_USES_TABLE_SIZE ());
295   use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ());
296 
297   reg_defs.create (max_reg_num ());
298   reg_defs.safe_grow_cleared (max_reg_num ());
299 
300   reg_defs_stack.create (n_basic_blocks_for_fn (cfun) * 10);
301   local_md = BITMAP_ALLOC (NULL);
302   local_lr = BITMAP_ALLOC (NULL);
303 
304   /* Walk the dominator tree looking for single reaching definitions
305      dominating the uses.  This is similar to how SSA form is built.  */
306   single_def_use_dom_walker (CDI_DOMINATORS)
307     .walk (cfun->cfg->x_entry_block_ptr);
308 
309   BITMAP_FREE (local_lr);
310   BITMAP_FREE (local_md);
311   reg_defs.release ();
312   reg_defs_stack.release ();
313 }
314 
315 
316 /* Do not try to replace constant addresses or addresses of local and
317    argument slots.  These MEM expressions are made only once and inserted
318    in many instructions, as well as being used to control symbol table
319    output.  It is not safe to clobber them.
320 
321    There are some uncommon cases where the address is already in a register
322    for some reason, but we cannot take advantage of that because we have
323    no easy way to unshare the MEM.  In addition, looking up all stack
324    addresses is costly.  */
325 
326 static bool
can_simplify_addr(rtx addr)327 can_simplify_addr (rtx addr)
328 {
329   rtx reg;
330 
331   if (CONSTANT_ADDRESS_P (addr))
332     return false;
333 
334   if (GET_CODE (addr) == PLUS)
335     reg = XEXP (addr, 0);
336   else
337     reg = addr;
338 
339   return (!REG_P (reg)
340 	  || (REGNO (reg) != FRAME_POINTER_REGNUM
341 	      && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
342 	      && REGNO (reg) != ARG_POINTER_REGNUM));
343 }
344 
345 /* Returns a canonical version of X for the address, from the point of view,
346    that all multiplications are represented as MULT instead of the multiply
347    by a power of 2 being represented as ASHIFT.
348 
349    Every ASHIFT we find has been made by simplify_gen_binary and was not
350    there before, so it is not shared.  So we can do this in place.  */
351 
352 static void
canonicalize_address(rtx x)353 canonicalize_address (rtx x)
354 {
355   for (;;)
356     switch (GET_CODE (x))
357       {
358       case ASHIFT:
359         if (CONST_INT_P (XEXP (x, 1))
360 	    && INTVAL (XEXP (x, 1)) < GET_MODE_UNIT_BITSIZE (GET_MODE (x))
361 	    && INTVAL (XEXP (x, 1)) >= 0)
362 	  {
363 	    HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
364 	    PUT_CODE (x, MULT);
365 	    XEXP (x, 1) = gen_int_mode (HOST_WIDE_INT_1 << shift,
366 					GET_MODE (x));
367 	  }
368 
369 	x = XEXP (x, 0);
370         break;
371 
372       case PLUS:
373         if (GET_CODE (XEXP (x, 0)) == PLUS
374 	    || GET_CODE (XEXP (x, 0)) == ASHIFT
375 	    || GET_CODE (XEXP (x, 0)) == CONST)
376 	  canonicalize_address (XEXP (x, 0));
377 
378 	x = XEXP (x, 1);
379         break;
380 
381       case CONST:
382 	x = XEXP (x, 0);
383         break;
384 
385       default:
386         return;
387       }
388 }
389 
390 /* OLD is a memory address.  Return whether it is good to use NEW instead,
391    for a memory access in the given MODE.  */
392 
393 static bool
should_replace_address(rtx old_rtx,rtx new_rtx,machine_mode mode,addr_space_t as,bool speed)394 should_replace_address (rtx old_rtx, rtx new_rtx, machine_mode mode,
395 			addr_space_t as, bool speed)
396 {
397   int gain;
398 
399   if (rtx_equal_p (old_rtx, new_rtx)
400       || !memory_address_addr_space_p (mode, new_rtx, as))
401     return false;
402 
403   /* Copy propagation is always ok.  */
404   if (REG_P (old_rtx) && REG_P (new_rtx))
405     return true;
406 
407   /* Prefer the new address if it is less expensive.  */
408   gain = (address_cost (old_rtx, mode, as, speed)
409 	  - address_cost (new_rtx, mode, as, speed));
410 
411   /* If the addresses have equivalent cost, prefer the new address
412      if it has the highest `set_src_cost'.  That has the potential of
413      eliminating the most insns without additional costs, and it
414      is the same that cse.c used to do.  */
415   if (gain == 0)
416     gain = (set_src_cost (new_rtx, VOIDmode, speed)
417 	    - set_src_cost (old_rtx, VOIDmode, speed));
418 
419   return (gain > 0);
420 }
421 
422 
423 /* Flags for the last parameter of propagate_rtx_1.  */
424 
425 enum {
426   /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
427      if it is false, propagate_rtx_1 returns false if, for at least
428      one occurrence OLD, it failed to collapse the result to a constant.
429      For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
430      collapse to zero if replacing (reg:M B) with (reg:M A).
431 
432      PR_CAN_APPEAR is disregarded inside MEMs: in that case,
433      propagate_rtx_1 just tries to make cheaper and valid memory
434      addresses.  */
435   PR_CAN_APPEAR = 1,
436 
437   /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
438      outside memory addresses.  This is needed because propagate_rtx_1 does
439      not do any analysis on memory; thus it is very conservative and in general
440      it will fail if non-read-only MEMs are found in the source expression.
441 
442      PR_HANDLE_MEM is set when the source of the propagation was not
443      another MEM.  Then, it is safe not to treat non-read-only MEMs as
444      ``opaque'' objects.  */
445   PR_HANDLE_MEM = 2,
446 
447   /* Set when costs should be optimized for speed.  */
448   PR_OPTIMIZE_FOR_SPEED = 4
449 };
450 
451 
452 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
453    resulting expression.  Replace *PX with a new RTL expression if an
454    occurrence of OLD was found.
455 
456    This is only a wrapper around simplify-rtx.c: do not add any pattern
457    matching code here.  (The sole exception is the handling of LO_SUM, but
458    that is because there is no simplify_gen_* function for LO_SUM).  */
459 
460 static bool
propagate_rtx_1(rtx * px,rtx old_rtx,rtx new_rtx,int flags)461 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
462 {
463   rtx x = *px, tem = NULL_RTX, op0, op1, op2;
464   enum rtx_code code = GET_CODE (x);
465   machine_mode mode = GET_MODE (x);
466   machine_mode op_mode;
467   bool can_appear = (flags & PR_CAN_APPEAR) != 0;
468   bool valid_ops = true;
469 
470   if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
471     {
472       /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
473 	 they have side effects or not).  */
474       *px = (side_effects_p (x)
475 	     ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
476 	     : gen_rtx_SCRATCH (GET_MODE (x)));
477       return false;
478     }
479 
480   /* If X is OLD_RTX, return NEW_RTX.  But not if replacing only within an
481      address, and we are *not* inside one.  */
482   if (x == old_rtx)
483     {
484       *px = new_rtx;
485       return can_appear;
486     }
487 
488   /* If this is an expression, try recursive substitution.  */
489   switch (GET_RTX_CLASS (code))
490     {
491     case RTX_UNARY:
492       op0 = XEXP (x, 0);
493       op_mode = GET_MODE (op0);
494       valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
495       if (op0 == XEXP (x, 0))
496 	return true;
497       tem = simplify_gen_unary (code, mode, op0, op_mode);
498       break;
499 
500     case RTX_BIN_ARITH:
501     case RTX_COMM_ARITH:
502       op0 = XEXP (x, 0);
503       op1 = XEXP (x, 1);
504       valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
505       valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
506       if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
507 	return true;
508       tem = simplify_gen_binary (code, mode, op0, op1);
509       break;
510 
511     case RTX_COMPARE:
512     case RTX_COMM_COMPARE:
513       op0 = XEXP (x, 0);
514       op1 = XEXP (x, 1);
515       op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
516       valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
517       valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
518       if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
519 	return true;
520       tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
521       break;
522 
523     case RTX_TERNARY:
524     case RTX_BITFIELD_OPS:
525       op0 = XEXP (x, 0);
526       op1 = XEXP (x, 1);
527       op2 = XEXP (x, 2);
528       op_mode = GET_MODE (op0);
529       valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
530       valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
531       valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
532       if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
533 	return true;
534       if (op_mode == VOIDmode)
535 	op_mode = GET_MODE (op0);
536       tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
537       break;
538 
539     case RTX_EXTRA:
540       /* The only case we try to handle is a SUBREG.  */
541       if (code == SUBREG)
542 	{
543           op0 = XEXP (x, 0);
544 	  valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
545           if (op0 == XEXP (x, 0))
546 	    return true;
547 	  tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
548 				     SUBREG_BYTE (x));
549 	}
550       break;
551 
552     case RTX_OBJ:
553       if (code == MEM && x != new_rtx)
554 	{
555 	  rtx new_op0;
556 	  op0 = XEXP (x, 0);
557 
558 	  /* There are some addresses that we cannot work on.  */
559 	  if (!can_simplify_addr (op0))
560 	    return true;
561 
562 	  op0 = new_op0 = targetm.delegitimize_address (op0);
563 	  valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
564 					flags | PR_CAN_APPEAR);
565 
566 	  /* Dismiss transformation that we do not want to carry on.  */
567 	  if (!valid_ops
568 	      || new_op0 == op0
569 	      || !(GET_MODE (new_op0) == GET_MODE (op0)
570 		   || GET_MODE (new_op0) == VOIDmode))
571 	    return true;
572 
573 	  canonicalize_address (new_op0);
574 
575 	  /* Copy propagations are always ok.  Otherwise check the costs.  */
576 	  if (!(REG_P (old_rtx) && REG_P (new_rtx))
577 	      && !should_replace_address (op0, new_op0, GET_MODE (x),
578 					  MEM_ADDR_SPACE (x),
579 	      			 	  flags & PR_OPTIMIZE_FOR_SPEED))
580 	    return true;
581 
582 	  tem = replace_equiv_address_nv (x, new_op0);
583 	}
584 
585       else if (code == LO_SUM)
586 	{
587           op0 = XEXP (x, 0);
588           op1 = XEXP (x, 1);
589 
590 	  /* The only simplification we do attempts to remove references to op0
591 	     or make it constant -- in both cases, op0's invalidity will not
592 	     make the result invalid.  */
593 	  propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
594 	  valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
595           if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
596 	    return true;
597 
598 	  /* (lo_sum (high x) x) -> x  */
599 	  if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
600 	    tem = op1;
601 	  else
602 	    tem = gen_rtx_LO_SUM (mode, op0, op1);
603 
604 	  /* OP1 is likely not a legitimate address, otherwise there would have
605 	     been no LO_SUM.  We want it to disappear if it is invalid, return
606 	     false in that case.  */
607 	  return memory_address_p (mode, tem);
608 	}
609 
610       else if (code == REG)
611 	{
612 	  if (rtx_equal_p (x, old_rtx))
613 	    {
614               *px = new_rtx;
615               return can_appear;
616 	    }
617 	}
618       break;
619 
620     default:
621       break;
622     }
623 
624   /* No change, no trouble.  */
625   if (tem == NULL_RTX)
626     return true;
627 
628   *px = tem;
629 
630   /* Allow replacements that simplify operations on a vector or complex
631      value to a component.  The most prominent case is
632      (subreg ([vec_]concat ...)).   */
633   if (REG_P (tem) && !HARD_REGISTER_P (tem)
634       && (VECTOR_MODE_P (GET_MODE (new_rtx))
635 	  || COMPLEX_MODE_P (GET_MODE (new_rtx)))
636       && GET_MODE (tem) == GET_MODE_INNER (GET_MODE (new_rtx)))
637     return true;
638 
639   /* The replacement we made so far is valid, if all of the recursive
640      replacements were valid, or we could simplify everything to
641      a constant.  */
642   return valid_ops || can_appear || CONSTANT_P (tem);
643 }
644 
645 
646 /* Return true if X constains a non-constant mem.  */
647 
648 static bool
varying_mem_p(const_rtx x)649 varying_mem_p (const_rtx x)
650 {
651   subrtx_iterator::array_type array;
652   FOR_EACH_SUBRTX (iter, array, x, NONCONST)
653     if (MEM_P (*iter) && !MEM_READONLY_P (*iter))
654       return true;
655   return false;
656 }
657 
658 
659 /* Replace all occurrences of OLD in X with NEW and try to simplify the
660    resulting expression (in mode MODE).  Return a new expression if it is
661    a constant, otherwise X.
662 
663    Simplifications where occurrences of NEW collapse to a constant are always
664    accepted.  All simplifications are accepted if NEW is a pseudo too.
665    Otherwise, we accept simplifications that have a lower or equal cost.  */
666 
667 static rtx
propagate_rtx(rtx x,machine_mode mode,rtx old_rtx,rtx new_rtx,bool speed)668 propagate_rtx (rtx x, machine_mode mode, rtx old_rtx, rtx new_rtx,
669 	       bool speed)
670 {
671   rtx tem;
672   bool collapsed;
673   int flags;
674 
675   if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
676     return NULL_RTX;
677 
678   flags = 0;
679   if (REG_P (new_rtx)
680       || CONSTANT_P (new_rtx)
681       || (GET_CODE (new_rtx) == SUBREG
682 	  && REG_P (SUBREG_REG (new_rtx))
683 	  && !paradoxical_subreg_p (mode, GET_MODE (SUBREG_REG (new_rtx)))))
684     flags |= PR_CAN_APPEAR;
685   if (!varying_mem_p (new_rtx))
686     flags |= PR_HANDLE_MEM;
687 
688   if (speed)
689     flags |= PR_OPTIMIZE_FOR_SPEED;
690 
691   tem = x;
692   collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
693   if (tem == x || !collapsed)
694     return NULL_RTX;
695 
696   /* gen_lowpart_common will not be able to process VOIDmode entities other
697      than CONST_INTs.  */
698   if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
699     return NULL_RTX;
700 
701   if (GET_MODE (tem) == VOIDmode)
702     tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
703   else
704     gcc_assert (GET_MODE (tem) == mode);
705 
706   return tem;
707 }
708 
709 
710 
711 
712 /* Return true if the register from reference REF is killed
713    between FROM to (but not including) TO.  */
714 
715 static bool
local_ref_killed_between_p(df_ref ref,rtx_insn * from,rtx_insn * to)716 local_ref_killed_between_p (df_ref ref, rtx_insn *from, rtx_insn *to)
717 {
718   rtx_insn *insn;
719 
720   for (insn = from; insn != to; insn = NEXT_INSN (insn))
721     {
722       df_ref def;
723       if (!INSN_P (insn))
724 	continue;
725 
726       FOR_EACH_INSN_DEF (def, insn)
727 	if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
728 	  return true;
729     }
730   return false;
731 }
732 
733 
734 /* Check if USE is killed between DEF_INSN and TARGET_INSN.  This would
735    require full computation of available expressions; we check only a few
736    restricted conditions:
737    - if the reg in USE has only one definition, go ahead;
738    - in the same basic block, we check for no definitions killing the use;
739    - if TARGET_INSN's basic block has DEF_INSN's basic block as its sole
740      predecessor, we check if the use is killed after DEF_INSN or before
741      TARGET_INSN insn, in their respective basic blocks.  */
742 
743 static bool
use_killed_between(df_ref use,rtx_insn * def_insn,rtx_insn * target_insn)744 use_killed_between (df_ref use, rtx_insn *def_insn, rtx_insn *target_insn)
745 {
746   basic_block def_bb = BLOCK_FOR_INSN (def_insn);
747   basic_block target_bb = BLOCK_FOR_INSN (target_insn);
748   int regno;
749   df_ref def;
750 
751   /* We used to have a def reaching a use that is _before_ the def,
752      with the def not dominating the use even though the use and def
753      are in the same basic block, when a register may be used
754      uninitialized in a loop.  This should not happen anymore since
755      we do not use reaching definitions, but still we test for such
756      cases and assume that DEF is not available.  */
757   if (def_bb == target_bb
758       ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
759       : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
760     return true;
761 
762   /* Check if the reg in USE has only one definition.  We already
763      know that this definition reaches use, or we wouldn't be here.
764      However, this is invalid for hard registers because if they are
765      live at the beginning of the function it does not mean that we
766      have an uninitialized access.  And we have to check for the case
767      where a register may be used uninitialized in a loop as above.  */
768   regno = DF_REF_REGNO (use);
769   def = DF_REG_DEF_CHAIN (regno);
770   if (def
771       && DF_REF_NEXT_REG (def) == NULL
772       && regno >= FIRST_PSEUDO_REGISTER
773       && (BLOCK_FOR_INSN (DF_REF_INSN (def)) == def_bb
774 	  ? DF_INSN_LUID (DF_REF_INSN (def)) < DF_INSN_LUID (def_insn)
775 	  : dominated_by_p (CDI_DOMINATORS,
776 			    def_bb, BLOCK_FOR_INSN (DF_REF_INSN (def)))))
777     return false;
778 
779   /* Check locally if we are in the same basic block.  */
780   if (def_bb == target_bb)
781     return local_ref_killed_between_p (use, def_insn, target_insn);
782 
783   /* Finally, if DEF_BB is the sole predecessor of TARGET_BB.  */
784   if (single_pred_p (target_bb)
785       && single_pred (target_bb) == def_bb)
786     {
787       df_ref x;
788 
789       /* See if USE is killed between DEF_INSN and the last insn in the
790 	 basic block containing DEF_INSN.  */
791       x = df_bb_regno_last_def_find (def_bb, regno);
792       if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
793 	return true;
794 
795       /* See if USE is killed between TARGET_INSN and the first insn in the
796 	 basic block containing TARGET_INSN.  */
797       x = df_bb_regno_first_def_find (target_bb, regno);
798       if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
799 	return true;
800 
801       return false;
802     }
803 
804   /* Otherwise assume the worst case.  */
805   return true;
806 }
807 
808 
809 /* Check if all uses in DEF_INSN can be used in TARGET_INSN.  This
810    would require full computation of available expressions;
811    we check only restricted conditions, see use_killed_between.  */
812 static bool
all_uses_available_at(rtx_insn * def_insn,rtx_insn * target_insn)813 all_uses_available_at (rtx_insn *def_insn, rtx_insn *target_insn)
814 {
815   df_ref use;
816   struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
817   rtx def_set = single_set (def_insn);
818   rtx_insn *next;
819 
820   gcc_assert (def_set);
821 
822   /* If target_insn comes right after def_insn, which is very common
823      for addresses, we can use a quicker test.  Ignore debug insns
824      other than target insns for this.  */
825   next = NEXT_INSN (def_insn);
826   while (next && next != target_insn && DEBUG_INSN_P (next))
827     next = NEXT_INSN (next);
828   if (next == target_insn && REG_P (SET_DEST (def_set)))
829     {
830       rtx def_reg = SET_DEST (def_set);
831 
832       /* If the insn uses the reg that it defines, the substitution is
833          invalid.  */
834       FOR_EACH_INSN_INFO_USE (use, insn_info)
835 	if (rtx_equal_p (DF_REF_REG (use), def_reg))
836 	  return false;
837       FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
838 	if (rtx_equal_p (DF_REF_REG (use), def_reg))
839 	  return false;
840     }
841   else
842     {
843       rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
844 
845       /* Look at all the uses of DEF_INSN, and see if they are not
846 	 killed between DEF_INSN and TARGET_INSN.  */
847       FOR_EACH_INSN_INFO_USE (use, insn_info)
848 	{
849 	  if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
850 	    return false;
851 	  if (use_killed_between (use, def_insn, target_insn))
852 	    return false;
853 	}
854       FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
855 	{
856 	  if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
857 	    return false;
858 	  if (use_killed_between (use, def_insn, target_insn))
859 	    return false;
860 	}
861     }
862 
863   return true;
864 }
865 
866 
867 static df_ref *active_defs;
868 static sparseset active_defs_check;
869 
870 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
871    mentioned in USE_REC.  Register the valid entries in ACTIVE_DEFS_CHECK
872    too, for checking purposes.  */
873 
874 static void
register_active_defs(df_ref use)875 register_active_defs (df_ref use)
876 {
877   for (; use; use = DF_REF_NEXT_LOC (use))
878     {
879       df_ref def = get_def_for_use (use);
880       int regno = DF_REF_REGNO (use);
881 
882       if (flag_checking)
883 	sparseset_set_bit (active_defs_check, regno);
884       active_defs[regno] = def;
885     }
886 }
887 
888 
889 /* Build the use->def links that we use to update the dataflow info
890    for new uses.  Note that building the links is very cheap and if
891    it were done earlier, they could be used to rule out invalid
892    propagations (in addition to what is done in all_uses_available_at).
893    I'm not doing this yet, though.  */
894 
895 static void
update_df_init(rtx_insn * def_insn,rtx_insn * insn)896 update_df_init (rtx_insn *def_insn, rtx_insn *insn)
897 {
898   if (flag_checking)
899     sparseset_clear (active_defs_check);
900   register_active_defs (DF_INSN_USES (def_insn));
901   register_active_defs (DF_INSN_USES (insn));
902   register_active_defs (DF_INSN_EQ_USES (insn));
903 }
904 
905 
906 /* Update the USE_DEF_REF array for the given use, using the active definitions
907    in the ACTIVE_DEFS array to match pseudos to their def. */
908 
909 static inline void
update_uses(df_ref use)910 update_uses (df_ref use)
911 {
912   for (; use; use = DF_REF_NEXT_LOC (use))
913     {
914       int regno = DF_REF_REGNO (use);
915 
916       /* Set up the use-def chain.  */
917       if (DF_REF_ID (use) >= (int) use_def_ref.length ())
918         use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1);
919 
920       if (flag_checking)
921 	gcc_assert (sparseset_bit_p (active_defs_check, regno));
922       use_def_ref[DF_REF_ID (use)] = active_defs[regno];
923     }
924 }
925 
926 
927 /* Update the USE_DEF_REF array for the uses in INSN.  Only update note
928    uses if NOTES_ONLY is true.  */
929 
930 static void
update_df(rtx_insn * insn,rtx note)931 update_df (rtx_insn *insn, rtx note)
932 {
933   struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
934 
935   if (note)
936     {
937       df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
938       df_notes_rescan (insn);
939     }
940   else
941     {
942       df_uses_create (&PATTERN (insn), insn, 0);
943       df_insn_rescan (insn);
944       update_uses (DF_INSN_INFO_USES (insn_info));
945     }
946 
947   update_uses (DF_INSN_INFO_EQ_USES (insn_info));
948 }
949 
950 
951 /* Try substituting NEW into LOC, which originated from forward propagation
952    of USE's value from DEF_INSN.  SET_REG_EQUAL says whether we are
953    substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
954    new insn is not recognized.  Return whether the substitution was
955    performed.  */
956 
957 static bool
try_fwprop_subst(df_ref use,rtx * loc,rtx new_rtx,rtx_insn * def_insn,bool set_reg_equal)958 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx_insn *def_insn,
959 		  bool set_reg_equal)
960 {
961   rtx_insn *insn = DF_REF_INSN (use);
962   rtx set = single_set (insn);
963   rtx note = NULL_RTX;
964   bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
965   int old_cost = 0;
966   bool ok;
967 
968   update_df_init (def_insn, insn);
969 
970   /* forward_propagate_subreg may be operating on an instruction with
971      multiple sets.  If so, assume the cost of the new instruction is
972      not greater than the old one.  */
973   if (set)
974     old_cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
975   if (dump_file)
976     {
977       fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
978       print_inline_rtx (dump_file, *loc, 2);
979       fprintf (dump_file, "\n with ");
980       print_inline_rtx (dump_file, new_rtx, 2);
981       fprintf (dump_file, "\n");
982     }
983 
984   validate_unshare_change (insn, loc, new_rtx, true);
985   if (!verify_changes (0))
986     {
987       if (dump_file)
988 	fprintf (dump_file, "Changes to insn %d not recognized\n",
989 		 INSN_UID (insn));
990       ok = false;
991     }
992 
993   else if (DF_REF_TYPE (use) == DF_REF_REG_USE
994 	   && set
995 	   && (set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed)
996 	       > old_cost))
997     {
998       if (dump_file)
999 	fprintf (dump_file, "Changes to insn %d not profitable\n",
1000 		 INSN_UID (insn));
1001       ok = false;
1002     }
1003 
1004   else
1005     {
1006       if (dump_file)
1007 	fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
1008       ok = true;
1009     }
1010 
1011   if (ok)
1012     {
1013       confirm_change_group ();
1014       num_changes++;
1015     }
1016   else
1017     {
1018       cancel_changes (0);
1019 
1020       /* Can also record a simplified value in a REG_EQUAL note,
1021 	 making a new one if one does not already exist.  */
1022       if (set_reg_equal)
1023 	{
1024 	  /* If there are any paradoxical SUBREGs, don't add REG_EQUAL note,
1025 	     because the bits in there can be anything and so might not
1026 	     match the REG_EQUAL note content.  See PR70574.  */
1027 	  subrtx_var_iterator::array_type array;
1028 	  FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
1029 	    {
1030 	      rtx x = *iter;
1031 	      if (SUBREG_P (x) && paradoxical_subreg_p (x))
1032 		{
1033 		  set_reg_equal = false;
1034 		  break;
1035 		}
1036 	    }
1037 
1038 	  if (set_reg_equal)
1039 	    {
1040 	      if (dump_file)
1041 		fprintf (dump_file, " Setting REG_EQUAL note\n");
1042 
1043 	      note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1044 	    }
1045 	}
1046     }
1047 
1048   if ((ok || note) && !CONSTANT_P (new_rtx))
1049     update_df (insn, note);
1050 
1051   return ok;
1052 }
1053 
1054 /* For the given single_set INSN, containing SRC known to be a
1055    ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1056    is redundant due to the register being set by a LOAD_EXTEND_OP
1057    load from memory.  */
1058 
1059 static bool
free_load_extend(rtx src,rtx_insn * insn)1060 free_load_extend (rtx src, rtx_insn *insn)
1061 {
1062   rtx reg;
1063   df_ref def, use;
1064 
1065   reg = XEXP (src, 0);
1066   if (load_extend_op (GET_MODE (reg)) != GET_CODE (src))
1067     return false;
1068 
1069   FOR_EACH_INSN_USE (use, insn)
1070     if (!DF_REF_IS_ARTIFICIAL (use)
1071 	&& DF_REF_TYPE (use) == DF_REF_REG_USE
1072 	&& DF_REF_REG (use) == reg)
1073       break;
1074   if (!use)
1075     return false;
1076 
1077   def = get_def_for_use (use);
1078   if (!def)
1079     return false;
1080 
1081   if (DF_REF_IS_ARTIFICIAL (def))
1082     return false;
1083 
1084   if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1085     {
1086       rtx patt = PATTERN (DF_REF_INSN (def));
1087 
1088       if (GET_CODE (patt) == SET
1089 	  && GET_CODE (SET_SRC (patt)) == MEM
1090 	  && rtx_equal_p (SET_DEST (patt), reg))
1091 	return true;
1092     }
1093   return false;
1094 }
1095 
1096 /* If USE is a subreg, see if it can be replaced by a pseudo.  */
1097 
1098 static bool
forward_propagate_subreg(df_ref use,rtx_insn * def_insn,rtx def_set)1099 forward_propagate_subreg (df_ref use, rtx_insn *def_insn, rtx def_set)
1100 {
1101   rtx use_reg = DF_REF_REG (use);
1102   rtx_insn *use_insn;
1103   rtx src;
1104   scalar_int_mode int_use_mode, src_mode;
1105 
1106   /* Only consider subregs... */
1107   machine_mode use_mode = GET_MODE (use_reg);
1108   if (GET_CODE (use_reg) != SUBREG
1109       || !REG_P (SET_DEST (def_set)))
1110     return false;
1111 
1112   if (paradoxical_subreg_p (use_reg))
1113     {
1114       /* If this is a paradoxical SUBREG, we have no idea what value the
1115 	 extra bits would have.  However, if the operand is equivalent to
1116 	 a SUBREG whose operand is the same as our mode, and all the modes
1117 	 are within a word, we can just use the inner operand because
1118 	 these SUBREGs just say how to treat the register.  */
1119       use_insn = DF_REF_INSN (use);
1120       src = SET_SRC (def_set);
1121       if (GET_CODE (src) == SUBREG
1122 	  && REG_P (SUBREG_REG (src))
1123 	  && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1124 	  && GET_MODE (SUBREG_REG (src)) == use_mode
1125 	  && subreg_lowpart_p (src)
1126 	  && all_uses_available_at (def_insn, use_insn))
1127 	return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1128 				 def_insn, false);
1129     }
1130 
1131   /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1132      is the low part of the reg being extended then just use the inner
1133      operand.  Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1134      be removed due to it matching a LOAD_EXTEND_OP load from memory,
1135      or due to the operation being a no-op when applied to registers.
1136      For example, if we have:
1137 
1138 	 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1139 	 B: (... (subreg:SI (reg:DI X)) ...)
1140 
1141      and mode_rep_extended says that Y is already sign-extended,
1142      the backend will typically allow A to be combined with the
1143      definition of Y or, failing that, allow A to be deleted after
1144      reload through register tying.  Introducing more uses of Y
1145      prevents both optimisations.  */
1146   else if (is_a <scalar_int_mode> (use_mode, &int_use_mode)
1147 	   && subreg_lowpart_p (use_reg))
1148     {
1149       use_insn = DF_REF_INSN (use);
1150       src = SET_SRC (def_set);
1151       if ((GET_CODE (src) == ZERO_EXTEND
1152 	   || GET_CODE (src) == SIGN_EXTEND)
1153 	  && is_a <scalar_int_mode> (GET_MODE (src), &src_mode)
1154 	  && REG_P (XEXP (src, 0))
1155 	  && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1156 	  && GET_MODE (XEXP (src, 0)) == use_mode
1157 	  && !free_load_extend (src, def_insn)
1158 	  && (targetm.mode_rep_extended (int_use_mode, src_mode)
1159 	      != (int) GET_CODE (src))
1160 	  && all_uses_available_at (def_insn, use_insn))
1161 	return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1162 				 def_insn, false);
1163     }
1164 
1165   return false;
1166 }
1167 
1168 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm.  */
1169 
1170 static bool
forward_propagate_asm(df_ref use,rtx_insn * def_insn,rtx def_set,rtx reg)1171 forward_propagate_asm (df_ref use, rtx_insn *def_insn, rtx def_set, rtx reg)
1172 {
1173   rtx_insn *use_insn = DF_REF_INSN (use);
1174   rtx src, use_pat, asm_operands, new_rtx, *loc;
1175   int speed_p, i;
1176   df_ref uses;
1177 
1178   gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1179 
1180   src = SET_SRC (def_set);
1181   use_pat = PATTERN (use_insn);
1182 
1183   /* In __asm don't replace if src might need more registers than
1184      reg, as that could increase register pressure on the __asm.  */
1185   uses = DF_INSN_USES (def_insn);
1186   if (uses && DF_REF_NEXT_LOC (uses))
1187     return false;
1188 
1189   update_df_init (def_insn, use_insn);
1190   speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1191   asm_operands = NULL_RTX;
1192   switch (GET_CODE (use_pat))
1193     {
1194     case ASM_OPERANDS:
1195       asm_operands = use_pat;
1196       break;
1197     case SET:
1198       if (MEM_P (SET_DEST (use_pat)))
1199 	{
1200 	  loc = &SET_DEST (use_pat);
1201 	  new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1202 	  if (new_rtx)
1203 	    validate_unshare_change (use_insn, loc, new_rtx, true);
1204 	}
1205       asm_operands = SET_SRC (use_pat);
1206       break;
1207     case PARALLEL:
1208       for (i = 0; i < XVECLEN (use_pat, 0); i++)
1209 	if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1210 	  {
1211 	    if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1212 	      {
1213 		loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1214 		new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1215 					 src, speed_p);
1216 		if (new_rtx)
1217 		  validate_unshare_change (use_insn, loc, new_rtx, true);
1218 	      }
1219 	    asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1220 	  }
1221 	else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1222 	  asm_operands = XVECEXP (use_pat, 0, i);
1223       break;
1224     default:
1225       gcc_unreachable ();
1226     }
1227 
1228   gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1229   for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1230     {
1231       loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1232       new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1233       if (new_rtx)
1234 	validate_unshare_change (use_insn, loc, new_rtx, true);
1235     }
1236 
1237   if (num_changes_pending () == 0 || !apply_change_group ())
1238     return false;
1239 
1240   update_df (use_insn, NULL);
1241   num_changes++;
1242   return true;
1243 }
1244 
1245 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1246    result.  */
1247 
1248 static bool
forward_propagate_and_simplify(df_ref use,rtx_insn * def_insn,rtx def_set)1249 forward_propagate_and_simplify (df_ref use, rtx_insn *def_insn, rtx def_set)
1250 {
1251   rtx_insn *use_insn = DF_REF_INSN (use);
1252   rtx use_set = single_set (use_insn);
1253   rtx src, reg, new_rtx, *loc;
1254   bool set_reg_equal;
1255   machine_mode mode;
1256   int asm_use = -1;
1257 
1258   if (INSN_CODE (use_insn) < 0)
1259     asm_use = asm_noperands (PATTERN (use_insn));
1260 
1261   if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1262     return false;
1263 
1264   /* Do not propagate into PC, CC0, etc.  */
1265   if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1266     return false;
1267 
1268   /* If def and use are subreg, check if they match.  */
1269   reg = DF_REF_REG (use);
1270   if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1271     {
1272       if (maybe_ne (SUBREG_BYTE (SET_DEST (def_set)), SUBREG_BYTE (reg)))
1273 	return false;
1274     }
1275   /* Check if the def had a subreg, but the use has the whole reg.  */
1276   else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1277     return false;
1278   /* Check if the use has a subreg, but the def had the whole reg.  Unlike the
1279      previous case, the optimization is possible and often useful indeed.  */
1280   else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1281     reg = SUBREG_REG (reg);
1282 
1283   /* Make sure that we can treat REG as having the same mode as the
1284      source of DEF_SET.  */
1285   if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1286     return false;
1287 
1288   /* Check if the substitution is valid (last, because it's the most
1289      expensive check!).  */
1290   src = SET_SRC (def_set);
1291   if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1292     return false;
1293 
1294   /* Check if the def is loading something from the constant pool; in this
1295      case we would undo optimization such as compress_float_constant.
1296      Still, we can set a REG_EQUAL note.  */
1297   if (MEM_P (src) && MEM_READONLY_P (src))
1298     {
1299       rtx x = avoid_constant_pool_reference (src);
1300       if (x != src && use_set)
1301 	{
1302           rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1303 	  rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1304 	  rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1305 	  if (old_rtx != new_rtx)
1306             set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1307 	}
1308       return false;
1309     }
1310 
1311   if (asm_use >= 0)
1312     return forward_propagate_asm (use, def_insn, def_set, reg);
1313 
1314   /* Else try simplifying.  */
1315 
1316   if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1317     {
1318       loc = &SET_DEST (use_set);
1319       set_reg_equal = false;
1320     }
1321   else if (!use_set)
1322     {
1323       loc = &INSN_VAR_LOCATION_LOC (use_insn);
1324       set_reg_equal = false;
1325     }
1326   else
1327     {
1328       rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1329       if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1330 	loc = &XEXP (note, 0);
1331       else
1332 	loc = &SET_SRC (use_set);
1333 
1334       /* Do not replace an existing REG_EQUAL note if the insn is not
1335 	 recognized.  Either we're already replacing in the note, or we'll
1336 	 separately try plugging the definition in the note and simplifying.
1337 	 And only install a REQ_EQUAL note when the destination is a REG
1338 	 that isn't mentioned in USE_SET, as the note would be invalid
1339 	 otherwise.  We also don't want to install a note if we are merely
1340 	 propagating a pseudo since verifying that this pseudo isn't dead
1341 	 is a pain; moreover such a note won't help anything.
1342 	 If the use is a paradoxical subreg, make sure we don't add a
1343 	 REG_EQUAL note for it, because it is not equivalent, it is one
1344 	 possible value for it, but we can't rely on it holding that value.
1345 	 See PR70574.  */
1346       set_reg_equal = (note == NULL_RTX
1347 		       && REG_P (SET_DEST (use_set))
1348 		       && !REG_P (src)
1349 		       && !(GET_CODE (src) == SUBREG
1350 			    && REG_P (SUBREG_REG (src)))
1351 		       && !reg_mentioned_p (SET_DEST (use_set),
1352 					    SET_SRC (use_set))
1353 		       && !paradoxical_subreg_p (DF_REF_REG (use)));
1354     }
1355 
1356   if (GET_MODE (*loc) == VOIDmode)
1357     mode = GET_MODE (SET_DEST (use_set));
1358   else
1359     mode = GET_MODE (*loc);
1360 
1361   new_rtx = propagate_rtx (*loc, mode, reg, src,
1362   			   optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1363 
1364   if (!new_rtx)
1365     return false;
1366 
1367   return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1368 }
1369 
1370 
1371 /* Given a use USE of an insn, if it has a single reaching
1372    definition, try to forward propagate it into that insn.
1373    Return true if cfg cleanup will be needed.  */
1374 
1375 static bool
forward_propagate_into(df_ref use)1376 forward_propagate_into (df_ref use)
1377 {
1378   df_ref def;
1379   rtx_insn *def_insn, *use_insn;
1380   rtx def_set;
1381   rtx parent;
1382 
1383   if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1384     return false;
1385   if (DF_REF_IS_ARTIFICIAL (use))
1386     return false;
1387 
1388   /* Only consider uses that have a single definition.  */
1389   def = get_def_for_use (use);
1390   if (!def)
1391     return false;
1392   if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1393     return false;
1394   if (DF_REF_IS_ARTIFICIAL (def))
1395     return false;
1396 
1397   /* Do not propagate loop invariant definitions inside the loop.  */
1398   if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1399     return false;
1400 
1401   /* Check if the use is still present in the insn!  */
1402   use_insn = DF_REF_INSN (use);
1403   if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1404     parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1405   else
1406     parent = PATTERN (use_insn);
1407 
1408   if (!reg_mentioned_p (DF_REF_REG (use), parent))
1409     return false;
1410 
1411   def_insn = DF_REF_INSN (def);
1412   if (multiple_sets (def_insn))
1413     return false;
1414   def_set = single_set (def_insn);
1415   if (!def_set)
1416     return false;
1417 
1418   /* Only try one kind of propagation.  If two are possible, we'll
1419      do it on the following iterations.  */
1420   if (forward_propagate_and_simplify (use, def_insn, def_set)
1421       || forward_propagate_subreg (use, def_insn, def_set))
1422     {
1423       propagations_left--;
1424 
1425       if (cfun->can_throw_non_call_exceptions
1426 	  && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1427 	  && purge_dead_edges (DF_REF_BB (use)))
1428 	return true;
1429     }
1430   return false;
1431 }
1432 
1433 
1434 static void
fwprop_init(void)1435 fwprop_init (void)
1436 {
1437   num_changes = 0;
1438   calculate_dominance_info (CDI_DOMINATORS);
1439 
1440   /* We do not always want to propagate into loops, so we have to find
1441      loops and be careful about them.  Avoid CFG modifications so that
1442      we don't have to update dominance information afterwards for
1443      build_single_def_use_links.  */
1444   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
1445 
1446   build_single_def_use_links ();
1447   df_set_flags (DF_DEFER_INSN_RESCAN);
1448 
1449   active_defs = XNEWVEC (df_ref, max_reg_num ());
1450   if (flag_checking)
1451     active_defs_check = sparseset_alloc (max_reg_num ());
1452 
1453   propagations_left = DF_USES_TABLE_SIZE ();
1454 }
1455 
1456 static void
fwprop_done(void)1457 fwprop_done (void)
1458 {
1459   loop_optimizer_finalize ();
1460 
1461   use_def_ref.release ();
1462   free (active_defs);
1463   if (flag_checking)
1464     sparseset_free (active_defs_check);
1465 
1466   free_dominance_info (CDI_DOMINATORS);
1467   cleanup_cfg (0);
1468   delete_trivially_dead_insns (get_insns (), max_reg_num ());
1469 
1470   if (dump_file)
1471     fprintf (dump_file,
1472 	     "\nNumber of successful forward propagations: %d\n\n",
1473 	     num_changes);
1474 }
1475 
1476 
1477 /* Main entry point.  */
1478 
1479 static bool
gate_fwprop(void)1480 gate_fwprop (void)
1481 {
1482   return optimize > 0 && flag_forward_propagate;
1483 }
1484 
1485 static unsigned int
fwprop(void)1486 fwprop (void)
1487 {
1488   unsigned i;
1489 
1490   fwprop_init ();
1491 
1492   /* Go through all the uses.  df_uses_create will create new ones at the
1493      end, and we'll go through them as well.
1494 
1495      Do not forward propagate addresses into loops until after unrolling.
1496      CSE did so because it was able to fix its own mess, but we are not.  */
1497 
1498   for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1499     {
1500       if (!propagations_left)
1501 	break;
1502 
1503       df_ref use = DF_USES_GET (i);
1504       if (use)
1505 	if (DF_REF_TYPE (use) == DF_REF_REG_USE
1506 	    || DF_REF_BB (use)->loop_father == NULL
1507 	    /* The outer most loop is not really a loop.  */
1508 	    || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1509 	  forward_propagate_into (use);
1510     }
1511 
1512   fwprop_done ();
1513   return 0;
1514 }
1515 
1516 namespace {
1517 
1518 const pass_data pass_data_rtl_fwprop =
1519 {
1520   RTL_PASS, /* type */
1521   "fwprop1", /* name */
1522   OPTGROUP_NONE, /* optinfo_flags */
1523   TV_FWPROP, /* tv_id */
1524   0, /* properties_required */
1525   0, /* properties_provided */
1526   0, /* properties_destroyed */
1527   0, /* todo_flags_start */
1528   TODO_df_finish, /* todo_flags_finish */
1529 };
1530 
1531 class pass_rtl_fwprop : public rtl_opt_pass
1532 {
1533 public:
pass_rtl_fwprop(gcc::context * ctxt)1534   pass_rtl_fwprop (gcc::context *ctxt)
1535     : rtl_opt_pass (pass_data_rtl_fwprop, ctxt)
1536   {}
1537 
1538   /* opt_pass methods: */
gate(function *)1539   virtual bool gate (function *) { return gate_fwprop (); }
execute(function *)1540   virtual unsigned int execute (function *) { return fwprop (); }
1541 
1542 }; // class pass_rtl_fwprop
1543 
1544 } // anon namespace
1545 
1546 rtl_opt_pass *
make_pass_rtl_fwprop(gcc::context * ctxt)1547 make_pass_rtl_fwprop (gcc::context *ctxt)
1548 {
1549   return new pass_rtl_fwprop (ctxt);
1550 }
1551 
1552 static unsigned int
fwprop_addr(void)1553 fwprop_addr (void)
1554 {
1555   unsigned i;
1556 
1557   fwprop_init ();
1558 
1559   /* Go through all the uses.  df_uses_create will create new ones at the
1560      end, and we'll go through them as well.  */
1561   for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1562     {
1563       if (!propagations_left)
1564 	break;
1565 
1566       df_ref use = DF_USES_GET (i);
1567       if (use)
1568 	if (DF_REF_TYPE (use) != DF_REF_REG_USE
1569 	    && DF_REF_BB (use)->loop_father != NULL
1570 	    /* The outer most loop is not really a loop.  */
1571 	    && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1572 	  forward_propagate_into (use);
1573     }
1574 
1575   fwprop_done ();
1576   return 0;
1577 }
1578 
1579 namespace {
1580 
1581 const pass_data pass_data_rtl_fwprop_addr =
1582 {
1583   RTL_PASS, /* type */
1584   "fwprop2", /* name */
1585   OPTGROUP_NONE, /* optinfo_flags */
1586   TV_FWPROP, /* tv_id */
1587   0, /* properties_required */
1588   0, /* properties_provided */
1589   0, /* properties_destroyed */
1590   0, /* todo_flags_start */
1591   TODO_df_finish, /* todo_flags_finish */
1592 };
1593 
1594 class pass_rtl_fwprop_addr : public rtl_opt_pass
1595 {
1596 public:
pass_rtl_fwprop_addr(gcc::context * ctxt)1597   pass_rtl_fwprop_addr (gcc::context *ctxt)
1598     : rtl_opt_pass (pass_data_rtl_fwprop_addr, ctxt)
1599   {}
1600 
1601   /* opt_pass methods: */
gate(function *)1602   virtual bool gate (function *) { return gate_fwprop (); }
execute(function *)1603   virtual unsigned int execute (function *) { return fwprop_addr (); }
1604 
1605 }; // class pass_rtl_fwprop_addr
1606 
1607 } // anon namespace
1608 
1609 rtl_opt_pass *
make_pass_rtl_fwprop_addr(gcc::context * ctxt)1610 make_pass_rtl_fwprop_addr (gcc::context *ctxt)
1611 {
1612   return new pass_rtl_fwprop_addr (ctxt);
1613 }
1614