1 /* Profile counter container type.
2    Copyright (C) 2017-2019 Free Software Foundation, Inc.
3    Contributed by Jan Hubicka
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #ifndef GCC_PROFILE_COUNT_H
22 #define GCC_PROFILE_COUNT_H
23 
24 struct function;
25 class profile_count;
26 
27 /* Quality of the profile count.  Because gengtype does not support enums
28    inside of classes, this is in global namespace.  */
29 enum profile_quality {
30   /* Uninitialized value.  */
31   profile_uninitialized,
32   /* Profile is based on static branch prediction heuristics and may
33      or may not match reality.  It is local to function and cannot be compared
34      inter-procedurally.  Never used by probabilities (they are always local).
35    */
36   profile_guessed_local,
37   /* Profile was read by feedback and was 0, we used local heuristics to guess
38      better.  This is the case of functions not run in profile fedback.
39      Never used by probabilities.  */
40   profile_guessed_global0,
41 
42   /* Same as profile_guessed_global0 but global count is adjusted 0.  */
43   profile_guessed_global0adjusted,
44 
45   /* Profile is based on static branch prediction heuristics.  It may or may
46      not reflect the reality but it can be compared interprocedurally
47      (for example, we inlined function w/o profile feedback into function
48       with feedback and propagated from that).
49      Never used by probablities.  */
50   profile_guessed,
51   /* Profile was determined by autofdo.  */
52   profile_afdo,
53   /* Profile was originally based on feedback but it was adjusted
54      by code duplicating optimization.  It may not precisely reflect the
55      particular code path.  */
56   profile_adjusted,
57   /* Profile was read from profile feedback or determined by accurate static
58      method.  */
59   profile_precise
60 };
61 
62 extern const char *profile_quality_as_string (enum profile_quality);
63 
64 /* The base value for branch probability notes and edge probabilities.  */
65 #define REG_BR_PROB_BASE  10000
66 
67 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
68 
69 bool slow_safe_scale_64bit (uint64_t a, uint64_t b, uint64_t c, uint64_t *res);
70 
71 /* Compute RES=(a*b + c/2)/c capping and return false if overflow happened.  */
72 
73 inline bool
safe_scale_64bit(uint64_t a,uint64_t b,uint64_t c,uint64_t * res)74 safe_scale_64bit (uint64_t a, uint64_t b, uint64_t c, uint64_t *res)
75 {
76 #if (GCC_VERSION >= 5000)
77   uint64_t tmp;
78   if (!__builtin_mul_overflow (a, b, &tmp)
79       && !__builtin_add_overflow (tmp, c/2, &tmp))
80     {
81       *res = tmp / c;
82       return true;
83     }
84   if (c == 1)
85     {
86       *res = (uint64_t) -1;
87       return false;
88     }
89 #else
90   if (a < ((uint64_t)1 << 31)
91       && b < ((uint64_t)1 << 31)
92       && c < ((uint64_t)1 << 31))
93     {
94       *res = (a * b + (c / 2)) / c;
95       return true;
96     }
97 #endif
98   return slow_safe_scale_64bit (a, b, c, res);
99 }
100 
101 /* Data type to hold probabilities.  It implements fixed point arithmetics
102    with capping so probability is always in range [0,1] and scaling requiring
103    values greater than 1 needs to be represented otherwise.
104 
105    In addition to actual value the quality of profile is tracked and propagated
106    through all operations.  Special value UNINITIALIZED is used for probabilities
107    that has not been determined yet (for example bacause of
108    -fno-guess-branch-probability)
109 
110    Typically probabilities are derived from profile feedback (via
111    probability_in_gcov_type), autoFDO or guessed statically and then propagated
112    thorough the compilation.
113 
114    Named probabilities are available:
115      - never           (0 probability)
116      - guessed_never
117      - very_unlikely   (1/2000 probability)
118      - unlikely        (1/5 probablity)
119      - even            (1/2 probability)
120      - likely          (4/5 probability)
121      - very_likely     (1999/2000 probability)
122      - guessed_always
123      - always
124 
125    Named probabilities except for never/always are assumed to be statically
126    guessed and thus not necessarily accurate.  The difference between never
127    and guessed_never is that the first one should be used only in case that
128    well behaving program will very likely not execute the "never" path.
129    For example if the path is going to abort () call or it exception handling.
130 
131    Always and guessed_always probabilities are symmetric.
132 
133    For legacy code we support conversion to/from REG_BR_PROB_BASE based fixpoint
134    integer arithmetics. Once the code is converted to branch probabilities,
135    these conversions will probably go away because they are lossy.
136 */
137 
class(user)138 class GTY((user)) profile_probability
139 {
140   static const int n_bits = 29;
141   /* We can technically use ((uint32_t) 1 << (n_bits - 1)) - 2 but that
142      will lead to harder multiplication sequences.  */
143   static const uint32_t max_probability = (uint32_t) 1 << (n_bits - 2);
144   static const uint32_t uninitialized_probability
145 		 = ((uint32_t) 1 << (n_bits - 1)) - 1;
146 
147   uint32_t m_val : 29;
148   enum profile_quality m_quality : 3;
149 
150   friend class profile_count;
151 public:
152 
153   /* Named probabilities.  */
154   static profile_probability never ()
155     {
156       profile_probability ret;
157       ret.m_val = 0;
158       ret.m_quality = profile_precise;
159       return ret;
160     }
161   static profile_probability guessed_never ()
162     {
163       profile_probability ret;
164       ret.m_val = 0;
165       ret.m_quality = profile_guessed;
166       return ret;
167     }
168   static profile_probability very_unlikely ()
169     {
170       /* Be consistent with PROB_VERY_UNLIKELY in predict.h.  */
171       profile_probability r
172 	 = profile_probability::guessed_always ().apply_scale (1, 2000);
173       r.m_val--;
174       return r;
175     }
176   static profile_probability unlikely ()
177     {
178       /* Be consistent with PROB_VERY_LIKELY in predict.h.  */
179       profile_probability r
180 	 = profile_probability::guessed_always ().apply_scale (1, 5);
181       r.m_val--;
182       return r;
183     }
184   static profile_probability even ()
185     {
186       return profile_probability::guessed_always ().apply_scale (1, 2);
187     }
188   static profile_probability very_likely ()
189     {
190       return profile_probability::always () - very_unlikely ();
191     }
192   static profile_probability likely ()
193     {
194       return profile_probability::always () - unlikely ();
195     }
196   static profile_probability guessed_always ()
197     {
198       profile_probability ret;
199       ret.m_val = max_probability;
200       ret.m_quality = profile_guessed;
201       return ret;
202     }
203   static profile_probability always ()
204     {
205       profile_probability ret;
206       ret.m_val = max_probability;
207       ret.m_quality = profile_precise;
208       return ret;
209     }
210   /* Probabilities which has not been initialized. Either because
211      initialization did not happen yet or because profile is unknown.  */
212   static profile_probability uninitialized ()
213     {
214       profile_probability c;
215       c.m_val = uninitialized_probability;
216       c.m_quality = profile_guessed;
217       return c;
218     }
219 
220 
221   /* Return true if value has been initialized.  */
222   bool initialized_p () const
223     {
224       return m_val != uninitialized_probability;
225     }
226   /* Return true if value can be trusted.  */
227   bool reliable_p () const
228     {
229       return m_quality >= profile_adjusted;
230     }
231 
232   /* Conversion from and to REG_BR_PROB_BASE integer fixpoint arithmetics.
233      this is mostly to support legacy code and should go away.  */
234   static profile_probability from_reg_br_prob_base (int v)
235     {
236       profile_probability ret;
237       gcc_checking_assert (v >= 0 && v <= REG_BR_PROB_BASE);
238       ret.m_val = RDIV (v * (uint64_t) max_probability, REG_BR_PROB_BASE);
239       ret.m_quality = profile_guessed;
240       return ret;
241     }
242   int to_reg_br_prob_base () const
243     {
244       gcc_checking_assert (initialized_p ());
245       return RDIV (m_val * (uint64_t) REG_BR_PROB_BASE, max_probability);
246     }
247 
248   /* Conversion to and from RTL representation of profile probabilities.  */
249   static profile_probability from_reg_br_prob_note (int v)
250     {
251       profile_probability ret;
252       ret.m_val = ((unsigned int)v) / 8;
253       ret.m_quality = (enum profile_quality)(v & 7);
254       return ret;
255     }
256   int to_reg_br_prob_note () const
257     {
258       gcc_checking_assert (initialized_p ());
259       int ret = m_val * 8 + m_quality;
260       gcc_checking_assert (profile_probability::from_reg_br_prob_note (ret)
261 			   == *this);
262       return ret;
263     }
264 
265   /* Return VAL1/VAL2.  */
266   static profile_probability probability_in_gcov_type
267 				 (gcov_type val1, gcov_type val2)
268     {
269       profile_probability ret;
270       gcc_checking_assert (val1 >= 0 && val2 > 0);
271       if (val1 > val2)
272 	ret.m_val = max_probability;
273       else
274 	{
275 	  uint64_t tmp;
276 	  safe_scale_64bit (val1, max_probability, val2, &tmp);
277 	  gcc_checking_assert (tmp <= max_probability);
278 	  ret.m_val = tmp;
279 	}
280       ret.m_quality = profile_precise;
281       return ret;
282     }
283 
284   /* Basic operations.  */
285   bool operator== (const profile_probability &other) const
286     {
287       return m_val == other.m_val && m_quality == other.m_quality;
288     }
289   profile_probability operator+ (const profile_probability &other) const
290     {
291       if (other == profile_probability::never ())
292 	return *this;
293       if (*this == profile_probability::never ())
294 	return other;
295       if (!initialized_p () || !other.initialized_p ())
296 	return profile_probability::uninitialized ();
297 
298       profile_probability ret;
299       ret.m_val = MIN ((uint32_t)(m_val + other.m_val), max_probability);
300       ret.m_quality = MIN (m_quality, other.m_quality);
301       return ret;
302     }
303   profile_probability &operator+= (const profile_probability &other)
304     {
305       if (other == profile_probability::never ())
306 	return *this;
307       if (*this == profile_probability::never ())
308 	{
309 	  *this = other;
310 	  return *this;
311 	}
312       if (!initialized_p () || !other.initialized_p ())
313 	return *this = profile_probability::uninitialized ();
314       else
315 	{
316 	  m_val = MIN ((uint32_t)(m_val + other.m_val), max_probability);
317 	  m_quality = MIN (m_quality, other.m_quality);
318 	}
319       return *this;
320     }
321   profile_probability operator- (const profile_probability &other) const
322     {
323       if (*this == profile_probability::never ()
324 	  || other == profile_probability::never ())
325 	return *this;
326       if (!initialized_p () || !other.initialized_p ())
327 	return profile_probability::uninitialized ();
328       profile_probability ret;
329       ret.m_val = m_val >= other.m_val ? m_val - other.m_val : 0;
330       ret.m_quality = MIN (m_quality, other.m_quality);
331       return ret;
332     }
333   profile_probability &operator-= (const profile_probability &other)
334     {
335       if (*this == profile_probability::never ()
336 	  || other == profile_probability::never ())
337 	return *this;
338       if (!initialized_p () || !other.initialized_p ())
339 	return *this = profile_probability::uninitialized ();
340       else
341 	{
342 	  m_val = m_val >= other.m_val ? m_val - other.m_val : 0;
343 	  m_quality = MIN (m_quality, other.m_quality);
344 	}
345       return *this;
346     }
347   profile_probability operator* (const profile_probability &other) const
348     {
349       if (*this == profile_probability::never ()
350 	  || other == profile_probability::never ())
351 	return profile_probability::never ();
352       if (!initialized_p () || !other.initialized_p ())
353 	return profile_probability::uninitialized ();
354       profile_probability ret;
355       ret.m_val = RDIV ((uint64_t)m_val * other.m_val, max_probability);
356       ret.m_quality = MIN (MIN (m_quality, other.m_quality), profile_adjusted);
357       return ret;
358     }
359   profile_probability &operator*= (const profile_probability &other)
360     {
361       if (*this == profile_probability::never ()
362 	  || other == profile_probability::never ())
363 	return *this = profile_probability::never ();
364       if (!initialized_p () || !other.initialized_p ())
365 	return *this = profile_probability::uninitialized ();
366       else
367 	{
368 	  m_val = RDIV ((uint64_t)m_val * other.m_val, max_probability);
369 	  m_quality = MIN (MIN (m_quality, other.m_quality), profile_adjusted);
370 	}
371       return *this;
372     }
373   profile_probability operator/ (const profile_probability &other) const
374     {
375       if (*this == profile_probability::never ())
376 	return profile_probability::never ();
377       if (!initialized_p () || !other.initialized_p ())
378 	return profile_probability::uninitialized ();
379       profile_probability ret;
380       /* If we get probability above 1, mark it as unreliable and return 1. */
381       if (m_val >= other.m_val)
382 	{
383 	  ret.m_val = max_probability;
384           ret.m_quality = MIN (MIN (m_quality, other.m_quality),
385 			       profile_guessed);
386 	  return ret;
387 	}
388       else if (!m_val)
389 	ret.m_val = 0;
390       else
391 	{
392 	  gcc_checking_assert (other.m_val);
393 	  ret.m_val = MIN (RDIV ((uint64_t)m_val * max_probability,
394 				 other.m_val),
395 			   max_probability);
396 	}
397       ret.m_quality = MIN (MIN (m_quality, other.m_quality), profile_adjusted);
398       return ret;
399     }
400   profile_probability &operator/= (const profile_probability &other)
401     {
402       if (*this == profile_probability::never ())
403 	return *this = profile_probability::never ();
404       if (!initialized_p () || !other.initialized_p ())
405 	return *this = profile_probability::uninitialized ();
406       else
407 	{
408           /* If we get probability above 1, mark it as unreliable
409 	     and return 1. */
410 	  if (m_val > other.m_val)
411 	    {
412 	      m_val = max_probability;
413               m_quality = MIN (MIN (m_quality, other.m_quality),
414 			       profile_guessed);
415 	      return *this;
416 	    }
417 	  else if (!m_val)
418 	    ;
419 	  else
420 	    {
421 	      gcc_checking_assert (other.m_val);
422 	      m_val = MIN (RDIV ((uint64_t)m_val * max_probability,
423 				 other.m_val),
424 			   max_probability);
425 	    }
426 	  m_quality = MIN (MIN (m_quality, other.m_quality), profile_adjusted);
427 	}
428       return *this;
429     }
430 
431   /* Split *THIS (ORIG) probability into 2 probabilities, such that
432      the returned one (FIRST) is *THIS * CPROB and *THIS is
433      adjusted (SECOND) so that FIRST + FIRST.invert () * SECOND
434      == ORIG.  This is useful e.g. when splitting a conditional
435      branch like:
436      if (cond)
437        goto lab; // ORIG probability
438      into
439      if (cond1)
440        goto lab; // FIRST = ORIG * CPROB probability
441      if (cond2)
442        goto lab; // SECOND probability
443      such that the overall probability of jumping to lab remains
444      the same.  CPROB gives the relative probability between the
445      branches.  */
446   profile_probability split (const profile_probability &cprob)
447     {
448       profile_probability ret = *this * cprob;
449       /* The following is equivalent to:
450          *this = cprob.invert () * *this / ret.invert ();
451 	 Avoid scaling when overall outcome is supposed to be always.
452 	 Without knowing that one is inverse of toher, the result would be
453 	 conservative.  */
454       if (!(*this == profile_probability::always ()))
455         *this = (*this - ret) / ret.invert ();
456       return ret;
457     }
458 
459   gcov_type apply (gcov_type val) const
460     {
461       if (*this == profile_probability::uninitialized ())
462 	return val / 2;
463       return RDIV (val * m_val, max_probability);
464     }
465 
466   /* Return 1-*THIS.  */
467   profile_probability invert () const
468     {
469       return profile_probability::always() - *this;
470     }
471 
472   /* Return THIS with quality dropped to GUESSED.  */
473   profile_probability guessed () const
474     {
475       profile_probability ret = *this;
476       ret.m_quality = profile_guessed;
477       return ret;
478     }
479 
480   /* Return THIS with quality dropped to AFDO.  */
481   profile_probability afdo () const
482     {
483       profile_probability ret = *this;
484       ret.m_quality = profile_afdo;
485       return ret;
486     }
487 
488   /* Return *THIS * NUM / DEN.  */
489   profile_probability apply_scale (int64_t num, int64_t den) const
490     {
491       if (*this == profile_probability::never ())
492 	return *this;
493       if (!initialized_p ())
494 	return profile_probability::uninitialized ();
495       profile_probability ret;
496       uint64_t tmp;
497       safe_scale_64bit (m_val, num, den, &tmp);
498       ret.m_val = MIN (tmp, max_probability);
499       ret.m_quality = MIN (m_quality, profile_adjusted);
500       return ret;
501     }
502 
503   /* Return true when the probability of edge is reliable.
504 
505      The profile guessing code is good at predicting branch outcome (ie.
506      taken/not taken), that is predicted right slightly over 75% of time.
507      It is however notoriously poor on predicting the probability itself.
508      In general the profile appear a lot flatter (with probabilities closer
509      to 50%) than the reality so it is bad idea to use it to drive optimization
510      such as those disabling dynamic branch prediction for well predictable
511      branches.
512 
513      There are two exceptions - edges leading to noreturn edges and edges
514      predicted by number of iterations heuristics are predicted well.  This macro
515      should be able to distinguish those, but at the moment it simply check for
516      noreturn heuristic that is only one giving probability over 99% or bellow
517      1%.  In future we might want to propagate reliability information across the
518      CFG if we find this information useful on multiple places.   */
519 
520   bool probably_reliable_p () const
521     {
522       if (m_quality >= profile_adjusted)
523 	return true;
524       if (!initialized_p ())
525 	return false;
526       return m_val < max_probability / 100
527 	     || m_val > max_probability - max_probability / 100;
528     }
529 
530   /* Return false if profile_probability is bogus.  */
531   bool verify () const
532     {
533       gcc_checking_assert (m_quality != profile_uninitialized);
534       if (m_val == uninitialized_probability)
535 	return m_quality == profile_guessed;
536       else if (m_quality < profile_guessed)
537 	return false;
538       return m_val <= max_probability;
539     }
540 
541   /* Comparsions are three-state and conservative.  False is returned if
542      the inequality cannot be decided.  */
543   bool operator< (const profile_probability &other) const
544     {
545       return initialized_p () && other.initialized_p () && m_val < other.m_val;
546     }
547   bool operator> (const profile_probability &other) const
548     {
549       return initialized_p () && other.initialized_p () && m_val > other.m_val;
550     }
551 
552   bool operator<= (const profile_probability &other) const
553     {
554       return initialized_p () && other.initialized_p () && m_val <= other.m_val;
555     }
556   bool operator>= (const profile_probability &other) const
557     {
558       return initialized_p () && other.initialized_p () && m_val >= other.m_val;
559     }
560 
561   /* Output THIS to F.  */
562   void dump (FILE *f) const;
563 
564   /* Print THIS to stderr.  */
565   void debug () const;
566 
567   /* Return true if THIS is known to differ significantly from OTHER.  */
568   bool differs_from_p (profile_probability other) const;
569   /* Return if difference is greater than 50%.  */
570   bool differs_lot_from_p (profile_probability other) const;
571   /* COUNT1 times event happens with *THIS probability, COUNT2 times OTHER
572      happens with COUNT2 probablity. Return probablity that either *THIS or
573      OTHER happens.  */
574   profile_probability combine_with_count (profile_count count1,
575 					  profile_probability other,
576 					  profile_count count2) const;
577 
578   /* LTO streaming support.  */
579   static profile_probability stream_in (struct lto_input_block *);
580   void stream_out (struct output_block *);
581   void stream_out (struct lto_output_stream *);
582 };
583 
584 /* Main data type to hold profile counters in GCC. Profile counts originate
585    either from profile feedback, static profile estimation or both.  We do not
586    perform whole program profile propagation and thus profile estimation
587    counters are often local to function, while counters from profile feedback
588    (or special cases of profile estimation) can be used inter-procedurally.
589 
590    There are 3 basic types
591      1) local counters which are result of intra-procedural static profile
592         estimation.
593      2) ipa counters which are result of profile feedback or special case
594         of static profile estimation (such as in function main).
595      3) counters which counts as 0 inter-procedurally (beause given function
596         was never run in train feedback) but they hold local static profile
597         estimate.
598 
599    Counters of type 1 and 3 cannot be mixed with counters of different type
600    within operation (because whole function should use one type of counter)
601    with exception that global zero mix in most operations where outcome is
602    well defined.
603 
604    To take local counter and use it inter-procedurally use ipa member function
605    which strips information irelevant at the inter-procedural level.
606 
607    Counters are 61bit integers representing number of executions during the
608    train run or normalized frequency within the function.
609 
610    As the profile is maintained during the compilation, many adjustments are
611    made.  Not all transformations can be made precisely, most importantly
612    when code is being duplicated.  It also may happen that part of CFG has
613    profile counts known while other do not - for example when LTO optimizing
614    partly profiled program or when profile was lost due to COMDAT merging.
615 
616    For this reason profile_count tracks more information than
617    just unsigned integer and it is also ready for profile mismatches.
618    The API of this data type represent operations that are natural
619    on profile counts - sum, difference and operation with scales and
620    probabilities.  All operations are safe by never getting negative counts
621    and they do end up in uninitialized scale if any of the parameters is
622    uninitialized.
623 
624    All comparsions that are three state and handling of probabilities.  Thus
625    a < b is not equal to !(a >= b).
626 
627    The following pre-defined counts are available:
628 
629    profile_count::zero ()  for code that is known to execute zero times at
630       runtime (this can be detected statically i.e. for paths leading to
631       abort ();
632    profile_count::one () for code that is known to execute once (such as
633       main () function
634    profile_count::uninitialized ()  for unknown execution count.
635 
636  */
637 
638 class sreal;
639 
class()640 class GTY(()) profile_count
641 {
642 public:
643   /* Use 62bit to hold basic block counters.  Should be at least
644      64bit.  Although a counter cannot be negative, we use a signed
645      type to hold various extra stages.  */
646 
647   static const int n_bits = 61;
648   static const uint64_t max_count = ((uint64_t) 1 << n_bits) - 2;
649 private:
650   static const uint64_t uninitialized_count = ((uint64_t) 1 << n_bits) - 1;
651 
652 #if defined (__arm__) && (__GNUC__ >= 6 && __GNUC__ <= 8)
653   /* Work-around for PR88469.  A bug in the gcc-6/7/8 PCS layout code
654      incorrectly detects the alignment of a structure where the only
655      64-bit aligned object is a bit-field.  We force the alignment of
656      the entire field to mitigate this.  */
657 #define UINT64_BIT_FIELD_ALIGN __attribute__ ((aligned(8)))
658 #else
659 #define UINT64_BIT_FIELD_ALIGN
660 #endif
661   uint64_t UINT64_BIT_FIELD_ALIGN m_val : n_bits;
662 #undef UINT64_BIT_FIELD_ALIGN
663   enum profile_quality m_quality : 3;
664 
665   /* Return true if both values can meaningfully appear in single function
666      body.  We have either all counters in function local or global, otherwise
667      operations between them are not really defined well.  */
668   bool compatible_p (const profile_count other) const
669     {
670       if (!initialized_p () || !other.initialized_p ())
671 	return true;
672       if (*this == profile_count::zero ()
673 	  || other == profile_count::zero ())
674 	return true;
675       return ipa_p () == other.ipa_p ();
676     }
677 public:
678 
679   /* Used for counters which are expected to be never executed.  */
680   static profile_count zero ()
681     {
682       return from_gcov_type (0);
683     }
684   static profile_count adjusted_zero ()
685     {
686       profile_count c;
687       c.m_val = 0;
688       c.m_quality = profile_adjusted;
689       return c;
690     }
691   static profile_count guessed_zero ()
692     {
693       profile_count c;
694       c.m_val = 0;
695       c.m_quality = profile_guessed;
696       return c;
697     }
698   static profile_count one ()
699     {
700       return from_gcov_type (1);
701     }
702   /* Value of counters which has not been initialized. Either because
703      initialization did not happen yet or because profile is unknown.  */
704   static profile_count uninitialized ()
705     {
706       profile_count c;
707       c.m_val = uninitialized_count;
708       c.m_quality = profile_guessed_local;
709       return c;
710     }
711 
712   /* Conversion to gcov_type is lossy.  */
713   gcov_type to_gcov_type () const
714     {
715       gcc_checking_assert (initialized_p ());
716       return m_val;
717     }
718 
719   /* Return true if value has been initialized.  */
720   bool initialized_p () const
721     {
722       return m_val != uninitialized_count;
723     }
724   /* Return true if value can be trusted.  */
725   bool reliable_p () const
726     {
727       return m_quality >= profile_adjusted;
728     }
729   /* Return true if vlaue can be operated inter-procedurally.  */
730   bool ipa_p () const
731     {
732       return !initialized_p () || m_quality >= profile_guessed_global0;
733     }
734   /* Return true if quality of profile is precise.  */
735   bool precise_p () const
736     {
737       return m_quality == profile_precise;
738     }
739 
740   /* Get the quality of the count.  */
741   enum profile_quality quality () const { return m_quality; }
742 
743   /* When merging basic blocks, the two different profile counts are unified.
744      Return true if this can be done without losing info about profile.
745      The only case we care about here is when first BB contains something
746      that makes it terminate in a way not visible in CFG.  */
747   bool ok_for_merging (profile_count other) const
748     {
749       if (m_quality < profile_adjusted
750 	  || other.m_quality < profile_adjusted)
751 	return true;
752       return !(other < *this);
753     }
754 
755   /* When merging two BBs with different counts, pick common count that looks
756      most representative.  */
757   profile_count merge (profile_count other) const
758     {
759       if (*this == other || !other.initialized_p ()
760 	  || m_quality > other.m_quality)
761 	return *this;
762       if (other.m_quality > m_quality
763 	  || other > *this)
764 	return other;
765       return *this;
766     }
767 
768   /* Basic operations.  */
769   bool operator== (const profile_count &other) const
770     {
771       return m_val == other.m_val && m_quality == other.m_quality;
772     }
773   profile_count operator+ (const profile_count &other) const
774     {
775       if (other == profile_count::zero ())
776 	return *this;
777       if (*this == profile_count::zero ())
778 	return other;
779       if (!initialized_p () || !other.initialized_p ())
780 	return profile_count::uninitialized ();
781 
782       profile_count ret;
783       gcc_checking_assert (compatible_p (other));
784       ret.m_val = m_val + other.m_val;
785       ret.m_quality = MIN (m_quality, other.m_quality);
786       return ret;
787     }
788   profile_count &operator+= (const profile_count &other)
789     {
790       if (other == profile_count::zero ())
791 	return *this;
792       if (*this == profile_count::zero ())
793 	{
794 	  *this = other;
795 	  return *this;
796 	}
797       if (!initialized_p () || !other.initialized_p ())
798 	return *this = profile_count::uninitialized ();
799       else
800 	{
801           gcc_checking_assert (compatible_p (other));
802 	  m_val += other.m_val;
803 	  m_quality = MIN (m_quality, other.m_quality);
804 	}
805       return *this;
806     }
807   profile_count operator- (const profile_count &other) const
808     {
809       if (*this == profile_count::zero () || other == profile_count::zero ())
810 	return *this;
811       if (!initialized_p () || !other.initialized_p ())
812 	return profile_count::uninitialized ();
813       gcc_checking_assert (compatible_p (other));
814       profile_count ret;
815       ret.m_val = m_val >= other.m_val ? m_val - other.m_val : 0;
816       ret.m_quality = MIN (m_quality, other.m_quality);
817       return ret;
818     }
819   profile_count &operator-= (const profile_count &other)
820     {
821       if (*this == profile_count::zero () || other == profile_count::zero ())
822 	return *this;
823       if (!initialized_p () || !other.initialized_p ())
824 	return *this = profile_count::uninitialized ();
825       else
826 	{
827           gcc_checking_assert (compatible_p (other));
828 	  m_val = m_val >= other.m_val ? m_val - other.m_val: 0;
829 	  m_quality = MIN (m_quality, other.m_quality);
830 	}
831       return *this;
832     }
833 
834   /* Return false if profile_count is bogus.  */
835   bool verify () const
836     {
837       gcc_checking_assert (m_quality != profile_uninitialized);
838       return m_val != uninitialized_count || m_quality == profile_guessed_local;
839     }
840 
841   /* Comparsions are three-state and conservative.  False is returned if
842      the inequality cannot be decided.  */
843   bool operator< (const profile_count &other) const
844     {
845       if (!initialized_p () || !other.initialized_p ())
846 	return false;
847       if (*this == profile_count::zero ())
848 	return !(other == profile_count::zero ());
849       if (other == profile_count::zero ())
850 	return false;
851       gcc_checking_assert (compatible_p (other));
852       return m_val < other.m_val;
853     }
854   bool operator> (const profile_count &other) const
855     {
856       if (!initialized_p () || !other.initialized_p ())
857 	return false;
858       if (*this  == profile_count::zero ())
859 	return false;
860       if (other == profile_count::zero ())
861 	return !(*this == profile_count::zero ());
862       gcc_checking_assert (compatible_p (other));
863       return initialized_p () && other.initialized_p () && m_val > other.m_val;
864     }
865   bool operator< (const gcov_type other) const
866     {
867       gcc_checking_assert (ipa_p ());
868       gcc_checking_assert (other >= 0);
869       return initialized_p () && m_val < (uint64_t) other;
870     }
871   bool operator> (const gcov_type other) const
872     {
873       gcc_checking_assert (ipa_p ());
874       gcc_checking_assert (other >= 0);
875       return initialized_p () && m_val > (uint64_t) other;
876     }
877 
878   bool operator<= (const profile_count &other) const
879     {
880       if (!initialized_p () || !other.initialized_p ())
881 	return false;
882       if (*this == profile_count::zero ())
883 	return true;
884       if (other == profile_count::zero ())
885 	return (*this == profile_count::zero ());
886       gcc_checking_assert (compatible_p (other));
887       return m_val <= other.m_val;
888     }
889   bool operator>= (const profile_count &other) const
890     {
891       if (!initialized_p () || !other.initialized_p ())
892 	return false;
893       if (other == profile_count::zero ())
894 	return true;
895       if (*this == profile_count::zero ())
896 	return (other == profile_count::zero ());
897       gcc_checking_assert (compatible_p (other));
898       return m_val >= other.m_val;
899     }
900   bool operator<= (const gcov_type other) const
901     {
902       gcc_checking_assert (ipa_p ());
903       gcc_checking_assert (other >= 0);
904       return initialized_p () && m_val <= (uint64_t) other;
905     }
906   bool operator>= (const gcov_type other) const
907     {
908       gcc_checking_assert (ipa_p ());
909       gcc_checking_assert (other >= 0);
910       return initialized_p () && m_val >= (uint64_t) other;
911     }
912   /* Return true when value is not zero and can be used for scaling.
913      This is different from *this > 0 because that requires counter to
914      be IPA.  */
915   bool nonzero_p () const
916     {
917       return initialized_p () && m_val != 0;
918     }
919 
920   /* Make counter forcingly nonzero.  */
921   profile_count force_nonzero () const
922     {
923       if (!initialized_p ())
924 	return *this;
925       profile_count ret = *this;
926       if (ret.m_val == 0)
927 	{
928 	  ret.m_val = 1;
929           ret.m_quality = MIN (m_quality, profile_adjusted);
930 	}
931       return ret;
932     }
933 
934   profile_count max (profile_count other) const
935     {
936       if (!initialized_p ())
937 	return other;
938       if (!other.initialized_p ())
939 	return *this;
940       if (*this == profile_count::zero ())
941 	return other;
942       if (other == profile_count::zero ())
943 	return *this;
944       gcc_checking_assert (compatible_p (other));
945       if (m_val < other.m_val || (m_val == other.m_val
946 				  && m_quality < other.m_quality))
947 	return other;
948       return *this;
949     }
950 
951   /* PROB is a probability in scale 0...REG_BR_PROB_BASE.  Scale counter
952      accordingly.  */
953   profile_count apply_probability (int prob) const
954     {
955       gcc_checking_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
956       if (m_val == 0)
957 	return *this;
958       if (!initialized_p ())
959 	return profile_count::uninitialized ();
960       profile_count ret;
961       ret.m_val = RDIV (m_val * prob, REG_BR_PROB_BASE);
962       ret.m_quality = MIN (m_quality, profile_adjusted);
963       return ret;
964     }
965 
966   /* Scale counter according to PROB.  */
967   profile_count apply_probability (profile_probability prob) const
968     {
969       if (*this == profile_count::zero ())
970 	return *this;
971       if (prob == profile_probability::never ())
972 	return profile_count::zero ();
973       if (!initialized_p ())
974 	return profile_count::uninitialized ();
975       profile_count ret;
976       uint64_t tmp;
977       safe_scale_64bit (m_val, prob.m_val, profile_probability::max_probability,
978 			&tmp);
979       ret.m_val = tmp;
980       ret.m_quality = MIN (m_quality, prob.m_quality);
981       return ret;
982     }
983   /* Return *THIS * NUM / DEN.  */
984   profile_count apply_scale (int64_t num, int64_t den) const
985     {
986       if (m_val == 0)
987 	return *this;
988       if (!initialized_p ())
989 	return profile_count::uninitialized ();
990       profile_count ret;
991       uint64_t tmp;
992 
993       gcc_checking_assert (num >= 0 && den > 0);
994       safe_scale_64bit (m_val, num, den, &tmp);
995       ret.m_val = MIN (tmp, max_count);
996       ret.m_quality = MIN (m_quality, profile_adjusted);
997       return ret;
998     }
999   profile_count apply_scale (profile_count num, profile_count den) const
1000     {
1001       if (*this == profile_count::zero ())
1002 	return *this;
1003       if (num == profile_count::zero ())
1004 	return num;
1005       if (!initialized_p () || !num.initialized_p () || !den.initialized_p ())
1006 	return profile_count::uninitialized ();
1007       if (num == den)
1008 	return *this;
1009       gcc_checking_assert (den.m_val);
1010 
1011       profile_count ret;
1012       uint64_t val;
1013       safe_scale_64bit (m_val, num.m_val, den.m_val, &val);
1014       ret.m_val = MIN (val, max_count);
1015       ret.m_quality = MIN (MIN (MIN (m_quality, profile_adjusted),
1016 			        num.m_quality), den.m_quality);
1017       if (num.ipa_p () && !ret.ipa_p ())
1018 	ret.m_quality = MIN (num.m_quality, profile_guessed);
1019       return ret;
1020     }
1021 
1022   /* Return THIS with quality dropped to GUESSED_LOCAL.  */
1023   profile_count guessed_local () const
1024     {
1025       profile_count ret = *this;
1026       if (!initialized_p ())
1027 	return *this;
1028       ret.m_quality = profile_guessed_local;
1029       return ret;
1030     }
1031 
1032   /* We know that profile is globally 0 but keep local profile if present.  */
1033   profile_count global0 () const
1034     {
1035       profile_count ret = *this;
1036       if (!initialized_p ())
1037 	return *this;
1038       ret.m_quality = profile_guessed_global0;
1039       return ret;
1040     }
1041 
1042   /* We know that profile is globally adjusted 0 but keep local profile
1043      if present.  */
1044   profile_count global0adjusted () const
1045     {
1046       profile_count ret = *this;
1047       if (!initialized_p ())
1048 	return *this;
1049       ret.m_quality = profile_guessed_global0adjusted;
1050       return ret;
1051     }
1052 
1053   /* Return THIS with quality dropped to GUESSED.  */
1054   profile_count guessed () const
1055     {
1056       profile_count ret = *this;
1057       ret.m_quality = MIN (ret.m_quality, profile_guessed);
1058       return ret;
1059     }
1060 
1061   /* Return variant of profile counte which is always safe to compare
1062      acorss functions.  */
1063   profile_count ipa () const
1064     {
1065       if (m_quality > profile_guessed_global0adjusted)
1066 	return *this;
1067       if (m_quality == profile_guessed_global0)
1068 	return profile_count::zero ();
1069       if (m_quality == profile_guessed_global0adjusted)
1070 	return profile_count::adjusted_zero ();
1071       return profile_count::uninitialized ();
1072     }
1073 
1074   /* Return THIS with quality dropped to AFDO.  */
1075   profile_count afdo () const
1076     {
1077       profile_count ret = *this;
1078       ret.m_quality = profile_afdo;
1079       return ret;
1080     }
1081 
1082   /* Return probability of event with counter THIS within event with counter
1083      OVERALL.  */
1084   profile_probability probability_in (const profile_count overall) const
1085     {
1086       if (*this == profile_count::zero ()
1087 	  && !(overall == profile_count::zero ()))
1088 	return profile_probability::never ();
1089       if (!initialized_p () || !overall.initialized_p ()
1090 	  || !overall.m_val)
1091 	return profile_probability::uninitialized ();
1092       if (*this == overall && m_quality == profile_precise)
1093 	return profile_probability::always ();
1094       profile_probability ret;
1095       gcc_checking_assert (compatible_p (overall));
1096 
1097       if (overall.m_val < m_val)
1098 	{
1099 	  ret.m_val = profile_probability::max_probability;
1100 	  ret.m_quality = profile_guessed;
1101 	  return ret;
1102 	}
1103       else
1104 	ret.m_val = RDIV (m_val * profile_probability::max_probability,
1105 			  overall.m_val);
1106       ret.m_quality = MIN (MAX (MIN (m_quality, overall.m_quality),
1107 				profile_guessed), profile_adjusted);
1108       return ret;
1109     }
1110 
1111   int to_frequency (struct function *fun) const;
1112   int to_cgraph_frequency (profile_count entry_bb_count) const;
1113   sreal to_sreal_scale (profile_count in, bool *known = NULL) const;
1114 
1115   /* Output THIS to F.  */
1116   void dump (FILE *f) const;
1117 
1118   /* Print THIS to stderr.  */
1119   void debug () const;
1120 
1121   /* Return true if THIS is known to differ significantly from OTHER.  */
1122   bool differs_from_p (profile_count other) const;
1123 
1124   /* We want to scale profile across function boundary from NUM to DEN.
1125      Take care of the side case when NUM and DEN are zeros of incompatible
1126      kinds.  */
1127   static void adjust_for_ipa_scaling (profile_count *num, profile_count *den);
1128 
1129   /* THIS is a count of bb which is known to be executed IPA times.
1130      Combine this information into bb counter.  This means returning IPA
1131      if it is nonzero, not changing anything if IPA is uninitialized
1132      and if IPA is zero, turning THIS into corresponding local profile with
1133      global0.  */
1134   profile_count combine_with_ipa_count (profile_count ipa);
1135 
1136   /* The profiling runtime uses gcov_type, which is usually 64bit integer.
1137      Conversions back and forth are used to read the coverage and get it
1138      into internal representation.  */
1139   static profile_count from_gcov_type (gcov_type v);
1140 
1141   /* LTO streaming support.  */
1142   static profile_count stream_in (struct lto_input_block *);
1143   void stream_out (struct output_block *);
1144   void stream_out (struct lto_output_stream *);
1145 };
1146 #endif
1147