1 /* Generic routines for manipulating SSA_NAME expressions
2    Copyright (C) 2003-2019 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10 
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "tree-pass.h"
27 #include "ssa.h"
28 #include "gimple-iterator.h"
29 #include "stor-layout.h"
30 #include "tree-into-ssa.h"
31 #include "tree-ssa.h"
32 #include "cfgloop.h"
33 #include "tree-scalar-evolution.h"
34 
35 /* Rewriting a function into SSA form can create a huge number of SSA_NAMEs,
36    many of which may be thrown away shortly after their creation if jumps
37    were threaded through PHI nodes.
38 
39    While our garbage collection mechanisms will handle this situation, it
40    is extremely wasteful to create nodes and throw them away, especially
41    when the nodes can be reused.
42 
43    For PR 8361, we can significantly reduce the number of nodes allocated
44    and thus the total amount of memory allocated by managing SSA_NAMEs a
45    little.  This additionally helps reduce the amount of work done by the
46    garbage collector.  Similar results have been seen on a wider variety
47    of tests (such as the compiler itself).
48 
49    Right now we maintain our free list on a per-function basis.  It may
50    or may not make sense to maintain the free list for the duration of
51    a compilation unit.
52 
53    External code should rely solely upon HIGHEST_SSA_VERSION and the
54    externally defined functions.  External code should not know about
55    the details of the free list management.
56 
57    External code should also not assume the version number on nodes is
58    monotonically increasing.  We reuse the version number when we
59    reuse an SSA_NAME expression.  This helps keep arrays and bitmaps
60    more compact.  */
61 
62 
63 /* Version numbers with special meanings.  We start allocating new version
64    numbers after the special ones.  */
65 #define UNUSED_NAME_VERSION 0
66 
67 unsigned int ssa_name_nodes_reused;
68 unsigned int ssa_name_nodes_created;
69 
70 #define FREE_SSANAMES(fun) (fun)->gimple_df->free_ssanames
71 #define FREE_SSANAMES_QUEUE(fun) (fun)->gimple_df->free_ssanames_queue
72 
73 
74 /* Initialize management of SSA_NAMEs to default SIZE.  If SIZE is
75    zero use default.  */
76 
77 void
init_ssanames(struct function * fn,int size)78 init_ssanames (struct function *fn, int size)
79 {
80   if (size < 50)
81     size = 50;
82 
83   vec_alloc (SSANAMES (fn), size);
84 
85   /* Version 0 is special, so reserve the first slot in the table.  Though
86      currently unused, we may use version 0 in alias analysis as part of
87      the heuristics used to group aliases when the alias sets are too
88      large.
89 
90      We use vec::quick_push here because we know that SSA_NAMES has at
91      least 50 elements reserved in it.  */
92   SSANAMES (fn)->quick_push (NULL_TREE);
93   FREE_SSANAMES (fn) = NULL;
94   FREE_SSANAMES_QUEUE (fn) = NULL;
95 
96   fn->gimple_df->ssa_renaming_needed = 0;
97   fn->gimple_df->rename_vops = 0;
98 }
99 
100 /* Finalize management of SSA_NAMEs.  */
101 
102 void
fini_ssanames(struct function * fn)103 fini_ssanames (struct function *fn)
104 {
105   vec_free (SSANAMES (fn));
106   vec_free (FREE_SSANAMES (fn));
107   vec_free (FREE_SSANAMES_QUEUE (fn));
108 }
109 
110 /* Dump some simple statistics regarding the re-use of SSA_NAME nodes.  */
111 
112 void
ssanames_print_statistics(void)113 ssanames_print_statistics (void)
114 {
115   fprintf (stderr, "%-32s" PRsa (11) "\n", "SSA_NAME nodes allocated:",
116 	   SIZE_AMOUNT (ssa_name_nodes_created));
117   fprintf (stderr, "%-32s" PRsa (11) "\n", "SSA_NAME nodes reused:",
118 	   SIZE_AMOUNT (ssa_name_nodes_reused));
119 }
120 
121 /* Verify the state of the SSA_NAME lists.
122 
123    There must be no duplicates on the free list.
124    Every name on the free list must be marked as on the free list.
125    Any name on the free list must not appear in the IL.
126    No names can be leaked.  */
127 
128 DEBUG_FUNCTION void
verify_ssaname_freelists(struct function * fun)129 verify_ssaname_freelists (struct function *fun)
130 {
131   if (!gimple_in_ssa_p (fun))
132     return;
133 
134   auto_bitmap names_in_il;
135 
136   /* Walk the entire IL noting every SSA_NAME we see.  */
137   basic_block bb;
138   FOR_EACH_BB_FN (bb, fun)
139     {
140       tree t;
141       /* First note the result and arguments of PHI nodes.  */
142       for (gphi_iterator gsi = gsi_start_phis (bb);
143 	   !gsi_end_p (gsi);
144 	   gsi_next (&gsi))
145 	{
146 	  gphi *phi = gsi.phi ();
147 	  t = gimple_phi_result (phi);
148 	  bitmap_set_bit (names_in_il, SSA_NAME_VERSION (t));
149 
150 	  for (unsigned int i = 0; i < gimple_phi_num_args (phi); i++)
151 	    {
152 	      t = gimple_phi_arg_def (phi, i);
153 	      if (TREE_CODE (t) == SSA_NAME)
154 		bitmap_set_bit (names_in_il, SSA_NAME_VERSION (t));
155 	    }
156 	}
157 
158       /* Then note the operands of each statement.  */
159       for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
160 	   !gsi_end_p (gsi);
161 	   gsi_next (&gsi))
162 	{
163 	  ssa_op_iter iter;
164 	  gimple *stmt = gsi_stmt (gsi);
165 	  FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, SSA_OP_ALL_OPERANDS)
166 	    bitmap_set_bit (names_in_il, SSA_NAME_VERSION (t));
167 	}
168     }
169 
170   /* Now walk the free list noting what we find there and verifying
171      there are no duplicates.  */
172   auto_bitmap names_in_freelists;
173   if (FREE_SSANAMES (fun))
174     {
175       for (unsigned int i = 0; i < FREE_SSANAMES (fun)->length (); i++)
176 	{
177 	  tree t = (*FREE_SSANAMES (fun))[i];
178 
179 	  /* Verify that the name is marked as being in the free list.  */
180 	  gcc_assert (SSA_NAME_IN_FREE_LIST (t));
181 
182 	  /* Verify the name has not already appeared in the free list and
183 	     note it in the list of names found in the free list.  */
184 	  gcc_assert (!bitmap_bit_p (names_in_freelists, SSA_NAME_VERSION (t)));
185 	  bitmap_set_bit (names_in_freelists, SSA_NAME_VERSION (t));
186 	}
187     }
188 
189   /* Similarly for the names in the pending free list.  */
190   if (FREE_SSANAMES_QUEUE (fun))
191     {
192       for (unsigned int i = 0; i < FREE_SSANAMES_QUEUE (fun)->length (); i++)
193 	{
194 	  tree t = (*FREE_SSANAMES_QUEUE (fun))[i];
195 
196 	  /* Verify that the name is marked as being in the free list.  */
197 	  gcc_assert (SSA_NAME_IN_FREE_LIST (t));
198 
199 	  /* Verify the name has not already appeared in the free list and
200 	     note it in the list of names found in the free list.  */
201 	  gcc_assert (!bitmap_bit_p (names_in_freelists, SSA_NAME_VERSION (t)));
202 	  bitmap_set_bit (names_in_freelists, SSA_NAME_VERSION (t));
203 	}
204     }
205 
206   /* If any name appears in both the IL and the freelists, then
207      something horrible has happened.  */
208   bool intersect_p = bitmap_intersect_p (names_in_il, names_in_freelists);
209   gcc_assert (!intersect_p);
210 
211   /* Names can be queued up for release if there is an ssa update
212      pending.  Pretend we saw them in the IL.  */
213   if (names_to_release)
214     bitmap_ior_into (names_in_il, names_to_release);
215 
216   /* Function splitting can "lose" SSA_NAMEs in an effort to ensure that
217      debug/non-debug compilations have the same SSA_NAMEs.  So for each
218      lost SSA_NAME, see if it's likely one from that wart.  These will always
219      be marked as default definitions.  So we loosely assume that anything
220      marked as a default definition isn't leaked by pretending they are
221      in the IL.  */
222   for (unsigned int i = UNUSED_NAME_VERSION + 1; i < num_ssa_names; i++)
223     if (ssa_name (i) && SSA_NAME_IS_DEFAULT_DEF (ssa_name (i)))
224       bitmap_set_bit (names_in_il, i);
225 
226   unsigned int i;
227   bitmap_iterator bi;
228   auto_bitmap all_names;
229   bitmap_set_range (all_names, UNUSED_NAME_VERSION + 1, num_ssa_names - 1);
230   bitmap_ior_into (names_in_il, names_in_freelists);
231 
232   /* Any name not mentioned in the IL and not in the feelists
233      has been leaked.  */
234   EXECUTE_IF_AND_COMPL_IN_BITMAP(all_names, names_in_il,
235 				 UNUSED_NAME_VERSION + 1, i, bi)
236     gcc_assert (!ssa_name (i));
237 }
238 
239 /* Move all SSA_NAMEs from FREE_SSA_NAMES_QUEUE to FREE_SSA_NAMES.
240 
241    We do not, but should have a mode to verify the state of the SSA_NAMEs
242    lists.  In particular at this point every name must be in the IL,
243    on the free list or in the queue.  Anything else is an error.  */
244 
245 void
flush_ssaname_freelist(void)246 flush_ssaname_freelist (void)
247 {
248   /* If there were any SSA names released reset the SCEV cache.  */
249   if (! vec_safe_is_empty (FREE_SSANAMES_QUEUE (cfun)))
250     scev_reset_htab ();
251   vec_safe_splice (FREE_SSANAMES (cfun), FREE_SSANAMES_QUEUE (cfun));
252   vec_safe_truncate (FREE_SSANAMES_QUEUE (cfun), 0);
253 }
254 
255 /* Return an SSA_NAME node for variable VAR defined in statement STMT
256    in function FN.  STMT may be an empty statement for artificial
257    references (e.g., default definitions created when a variable is
258    used without a preceding definition).  If VERISON is not zero then
259    allocate the SSA name with that version.  */
260 
261 tree
make_ssa_name_fn(struct function * fn,tree var,gimple * stmt,unsigned int version)262 make_ssa_name_fn (struct function *fn, tree var, gimple *stmt,
263 		  unsigned int version)
264 {
265   tree t;
266   use_operand_p imm;
267 
268   gcc_assert (VAR_P (var)
269 	      || TREE_CODE (var) == PARM_DECL
270 	      || TREE_CODE (var) == RESULT_DECL
271 	      || (TYPE_P (var) && is_gimple_reg_type (var)));
272 
273   /* Get the specified SSA name version.  */
274   if (version != 0)
275     {
276       t = make_node (SSA_NAME);
277       SSA_NAME_VERSION (t) = version;
278       if (version >= SSANAMES (fn)->length ())
279 	vec_safe_grow_cleared (SSANAMES (fn), version + 1);
280       gcc_assert ((*SSANAMES (fn))[version] == NULL);
281       (*SSANAMES (fn))[version] = t;
282       ssa_name_nodes_created++;
283     }
284   /* If our free list has an element, then use it.  */
285   else if (!vec_safe_is_empty (FREE_SSANAMES (fn)))
286     {
287       t = FREE_SSANAMES (fn)->pop ();
288       ssa_name_nodes_reused++;
289 
290       /* The node was cleared out when we put it on the free list, so
291 	 there is no need to do so again here.  */
292       gcc_assert ((*SSANAMES (fn))[SSA_NAME_VERSION (t)] == NULL);
293       (*SSANAMES (fn))[SSA_NAME_VERSION (t)] = t;
294     }
295   else
296     {
297       t = make_node (SSA_NAME);
298       SSA_NAME_VERSION (t) = SSANAMES (fn)->length ();
299       vec_safe_push (SSANAMES (fn), t);
300       ssa_name_nodes_created++;
301     }
302 
303   if (TYPE_P (var))
304     {
305       TREE_TYPE (t) = TYPE_MAIN_VARIANT (var);
306       SET_SSA_NAME_VAR_OR_IDENTIFIER (t, NULL_TREE);
307     }
308   else
309     {
310       TREE_TYPE (t) = TREE_TYPE (var);
311       SET_SSA_NAME_VAR_OR_IDENTIFIER (t, var);
312     }
313   SSA_NAME_DEF_STMT (t) = stmt;
314   if (POINTER_TYPE_P (TREE_TYPE (t)))
315     SSA_NAME_PTR_INFO (t) = NULL;
316   else
317     SSA_NAME_RANGE_INFO (t) = NULL;
318 
319   SSA_NAME_IN_FREE_LIST (t) = 0;
320   SSA_NAME_IS_DEFAULT_DEF (t) = 0;
321   imm = &(SSA_NAME_IMM_USE_NODE (t));
322   imm->use = NULL;
323   imm->prev = imm;
324   imm->next = imm;
325   imm->loc.ssa_name = t;
326 
327   return t;
328 }
329 
330 /* Helper function for set_range_info.
331 
332    Store range information RANGE_TYPE, MIN, and MAX to tree ssa_name
333    NAME.  */
334 
335 void
set_range_info_raw(tree name,enum value_range_kind range_type,const wide_int_ref & min,const wide_int_ref & max)336 set_range_info_raw (tree name, enum value_range_kind range_type,
337 		    const wide_int_ref &min, const wide_int_ref &max)
338 {
339   gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name)));
340   gcc_assert (range_type == VR_RANGE || range_type == VR_ANTI_RANGE);
341   range_info_def *ri = SSA_NAME_RANGE_INFO (name);
342   unsigned int precision = TYPE_PRECISION (TREE_TYPE (name));
343 
344   /* Allocate if not available.  */
345   if (ri == NULL)
346     {
347       size_t size = (sizeof (range_info_def)
348 		     + trailing_wide_ints <3>::extra_size (precision));
349       ri = static_cast<range_info_def *> (ggc_internal_alloc (size));
350       ri->ints.set_precision (precision);
351       SSA_NAME_RANGE_INFO (name) = ri;
352       ri->set_nonzero_bits (wi::shwi (-1, precision));
353     }
354 
355   /* Record the range type.  */
356   if (SSA_NAME_RANGE_TYPE (name) != range_type)
357     SSA_NAME_ANTI_RANGE_P (name) = (range_type == VR_ANTI_RANGE);
358 
359   /* Set the values.  */
360   ri->set_min (min);
361   ri->set_max (max);
362 
363   /* If it is a range, try to improve nonzero_bits from the min/max.  */
364   if (range_type == VR_RANGE)
365     {
366       wide_int xorv = ri->get_min () ^ ri->get_max ();
367       if (xorv != 0)
368 	xorv = wi::mask (precision - wi::clz (xorv), false, precision);
369       ri->set_nonzero_bits (ri->get_nonzero_bits () & (ri->get_min () | xorv));
370     }
371 }
372 
373 /* Store range information RANGE_TYPE, MIN, and MAX to tree ssa_name
374    NAME while making sure we don't store useless range info.  */
375 
376 void
set_range_info(tree name,enum value_range_kind range_type,const wide_int_ref & min,const wide_int_ref & max)377 set_range_info (tree name, enum value_range_kind range_type,
378 		const wide_int_ref &min, const wide_int_ref &max)
379 {
380   gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name)));
381 
382   /* A range of the entire domain is really no range at all.  */
383   tree type = TREE_TYPE (name);
384   if (min == wi::min_value (TYPE_PRECISION (type), TYPE_SIGN (type))
385       && max == wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type)))
386     {
387       range_info_def *ri = SSA_NAME_RANGE_INFO (name);
388       if (ri == NULL)
389 	return;
390       if (ri->get_nonzero_bits () == -1)
391 	{
392 	  ggc_free (ri);
393 	  SSA_NAME_RANGE_INFO (name) = NULL;
394 	  return;
395 	}
396     }
397 
398   set_range_info_raw (name, range_type, min, max);
399 }
400 
401 /* Store range information for NAME from a value_range.  */
402 
403 void
set_range_info(tree name,const value_range_base & vr)404 set_range_info (tree name, const value_range_base &vr)
405 {
406   wide_int min = wi::to_wide (vr.min ());
407   wide_int max = wi::to_wide (vr.max ());
408   set_range_info (name, vr.kind (), min, max);
409 }
410 
411 /* Gets range information MIN, MAX and returns enum value_range_kind
412    corresponding to tree ssa_name NAME.  enum value_range_kind returned
413    is used to determine if MIN and MAX are valid values.  */
414 
415 enum value_range_kind
get_range_info(const_tree name,wide_int * min,wide_int * max)416 get_range_info (const_tree name, wide_int *min, wide_int *max)
417 {
418   gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name)));
419   gcc_assert (min && max);
420   range_info_def *ri = SSA_NAME_RANGE_INFO (name);
421 
422   /* Return VR_VARYING for SSA_NAMEs with NULL RANGE_INFO or SSA_NAMEs
423      with integral types width > 2 * HOST_BITS_PER_WIDE_INT precision.  */
424   if (!ri || (GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (name)))
425 	      > 2 * HOST_BITS_PER_WIDE_INT))
426     return VR_VARYING;
427 
428   *min = ri->get_min ();
429   *max = ri->get_max ();
430   return SSA_NAME_RANGE_TYPE (name);
431 }
432 
433 /* Gets range information corresponding to ssa_name NAME and stores it
434    in a value_range VR.  Returns the value_range_kind.  */
435 
436 enum value_range_kind
get_range_info(const_tree name,value_range_base & vr)437 get_range_info (const_tree name, value_range_base &vr)
438 {
439   tree min, max;
440   wide_int wmin, wmax;
441   enum value_range_kind kind = get_range_info (name, &wmin, &wmax);
442 
443   if (kind == VR_VARYING || kind == VR_UNDEFINED)
444     min = max = NULL;
445   else
446     {
447       min = wide_int_to_tree (TREE_TYPE (name), wmin);
448       max = wide_int_to_tree (TREE_TYPE (name), wmax);
449     }
450   vr.set (kind, min, max);
451   return kind;
452 }
453 
454 /* Set nonnull attribute to pointer NAME.  */
455 
456 void
set_ptr_nonnull(tree name)457 set_ptr_nonnull (tree name)
458 {
459   gcc_assert (POINTER_TYPE_P (TREE_TYPE (name)));
460   struct ptr_info_def *pi = get_ptr_info (name);
461   pi->pt.null = 0;
462 }
463 
464 /* Return nonnull attribute of pointer NAME.  */
465 bool
get_ptr_nonnull(const_tree name)466 get_ptr_nonnull (const_tree name)
467 {
468   gcc_assert (POINTER_TYPE_P (TREE_TYPE (name)));
469   struct ptr_info_def *pi = SSA_NAME_PTR_INFO (name);
470   if (pi == NULL)
471     return false;
472   /* TODO Now pt->null is conservatively set to true in PTA
473      analysis. vrp is the only pass (including ipa-vrp)
474      that clears pt.null via set_ptr_nonull when it knows
475      for sure. PTA will preserves the pt.null value set by VRP.
476 
477      When PTA analysis is improved, pt.anything, pt.nonlocal
478      and pt.escaped may also has to be considered before
479      deciding that pointer cannot point to NULL.  */
480   return !pi->pt.null;
481 }
482 
483 /* Change non-zero bits bitmask of NAME.  */
484 
485 void
set_nonzero_bits(tree name,const wide_int_ref & mask)486 set_nonzero_bits (tree name, const wide_int_ref &mask)
487 {
488   gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name)));
489   if (SSA_NAME_RANGE_INFO (name) == NULL)
490     {
491       if (mask == -1)
492 	return;
493       set_range_info_raw (name, VR_RANGE,
494 			  wi::to_wide (TYPE_MIN_VALUE (TREE_TYPE (name))),
495 			  wi::to_wide (TYPE_MAX_VALUE (TREE_TYPE (name))));
496     }
497   range_info_def *ri = SSA_NAME_RANGE_INFO (name);
498   ri->set_nonzero_bits (mask);
499 }
500 
501 /* Return a widest_int with potentially non-zero bits in SSA_NAME
502    NAME, the constant for INTEGER_CST, or -1 if unknown.  */
503 
504 wide_int
get_nonzero_bits(const_tree name)505 get_nonzero_bits (const_tree name)
506 {
507   if (TREE_CODE (name) == INTEGER_CST)
508     return wi::to_wide (name);
509 
510   /* Use element_precision instead of TYPE_PRECISION so complex and
511      vector types get a non-zero precision.  */
512   unsigned int precision = element_precision (TREE_TYPE (name));
513   if (POINTER_TYPE_P (TREE_TYPE (name)))
514     {
515       struct ptr_info_def *pi = SSA_NAME_PTR_INFO (name);
516       if (pi && pi->align)
517 	return wi::shwi (-(HOST_WIDE_INT) pi->align
518 			 | (HOST_WIDE_INT) pi->misalign, precision);
519       return wi::shwi (-1, precision);
520     }
521 
522   range_info_def *ri = SSA_NAME_RANGE_INFO (name);
523   if (!ri)
524     return wi::shwi (-1, precision);
525 
526   return ri->get_nonzero_bits ();
527 }
528 
529 /* Return TRUE is OP, an SSA_NAME has a range of values [0..1], false
530    otherwise.
531 
532    This can be because it is a boolean type, any unsigned integral
533    type with a single bit of precision, or has known range of [0..1]
534    via VRP analysis.  */
535 
536 bool
ssa_name_has_boolean_range(tree op)537 ssa_name_has_boolean_range (tree op)
538 {
539   gcc_assert (TREE_CODE (op) == SSA_NAME);
540 
541   /* Boolean types always have a range [0..1].  */
542   if (TREE_CODE (TREE_TYPE (op)) == BOOLEAN_TYPE)
543     return true;
544 
545   /* An integral type with a single bit of precision.  */
546   if (INTEGRAL_TYPE_P (TREE_TYPE (op))
547       && TYPE_UNSIGNED (TREE_TYPE (op))
548       && TYPE_PRECISION (TREE_TYPE (op)) == 1)
549     return true;
550 
551   /* An integral type with more precision, but the object
552      only takes on values [0..1] as determined by VRP
553      analysis.  */
554   if (INTEGRAL_TYPE_P (TREE_TYPE (op))
555       && (TYPE_PRECISION (TREE_TYPE (op)) > 1)
556       && wi::eq_p (get_nonzero_bits (op), 1))
557     return true;
558 
559   return false;
560 }
561 
562 /* We no longer need the SSA_NAME expression VAR, release it so that
563    it may be reused.
564 
565    Note it is assumed that no calls to make_ssa_name will be made
566    until all uses of the ssa name are released and that the only
567    use of the SSA_NAME expression is to check its SSA_NAME_VAR.  All
568    other fields must be assumed clobbered.  */
569 
570 void
release_ssa_name_fn(struct function * fn,tree var)571 release_ssa_name_fn (struct function *fn, tree var)
572 {
573   if (!var)
574     return;
575 
576   /* Never release the default definition for a symbol.  It's a
577      special SSA name that should always exist once it's created.  */
578   if (SSA_NAME_IS_DEFAULT_DEF (var))
579     return;
580 
581   /* If VAR has been registered for SSA updating, don't remove it.
582      After update_ssa has run, the name will be released.  */
583   if (name_registered_for_update_p (var))
584     {
585       release_ssa_name_after_update_ssa (var);
586       return;
587     }
588 
589   /* release_ssa_name can be called multiple times on a single SSA_NAME.
590      However, it should only end up on our free list one time.   We
591      keep a status bit in the SSA_NAME node itself to indicate it has
592      been put on the free list.
593 
594      Note that once on the freelist you cannot reference the SSA_NAME's
595      defining statement.  */
596   if (! SSA_NAME_IN_FREE_LIST (var))
597     {
598       int saved_ssa_name_version = SSA_NAME_VERSION (var);
599       use_operand_p imm = &(SSA_NAME_IMM_USE_NODE (var));
600 
601       if (MAY_HAVE_DEBUG_BIND_STMTS)
602 	insert_debug_temp_for_var_def (NULL, var);
603 
604       if (flag_checking)
605 	verify_imm_links (stderr, var);
606       while (imm->next != imm)
607 	delink_imm_use (imm->next);
608 
609       (*SSANAMES (fn))[SSA_NAME_VERSION (var)] = NULL_TREE;
610       memset (var, 0, tree_size (var));
611 
612       imm->prev = imm;
613       imm->next = imm;
614       imm->loc.ssa_name = var;
615 
616       /* First put back the right tree node so that the tree checking
617 	 macros do not complain.  */
618       TREE_SET_CODE (var, SSA_NAME);
619 
620       /* Restore the version number.  */
621       SSA_NAME_VERSION (var) = saved_ssa_name_version;
622 
623       /* Note this SSA_NAME is now in the first list.  */
624       SSA_NAME_IN_FREE_LIST (var) = 1;
625 
626       /* Put in a non-NULL TREE_TYPE so dumping code will not ICE
627          if it happens to come along a released SSA name and tries
628 	 to inspect its type.  */
629       TREE_TYPE (var) = error_mark_node;
630 
631       /* And finally queue it so that it will be put on the free list.  */
632       vec_safe_push (FREE_SSANAMES_QUEUE (fn), var);
633     }
634 }
635 
636 /* If the alignment of the pointer described by PI is known, return true and
637    store the alignment and the deviation from it into *ALIGNP and *MISALIGNP
638    respectively.  Otherwise return false.  */
639 
640 bool
get_ptr_info_alignment(struct ptr_info_def * pi,unsigned int * alignp,unsigned int * misalignp)641 get_ptr_info_alignment (struct ptr_info_def *pi, unsigned int *alignp,
642 			unsigned int *misalignp)
643 {
644   if (pi->align)
645     {
646       *alignp = pi->align;
647       *misalignp = pi->misalign;
648       return true;
649     }
650   else
651     return false;
652 }
653 
654 /* State that the pointer described by PI has unknown alignment.  */
655 
656 void
mark_ptr_info_alignment_unknown(struct ptr_info_def * pi)657 mark_ptr_info_alignment_unknown (struct ptr_info_def *pi)
658 {
659   pi->align = 0;
660   pi->misalign = 0;
661 }
662 
663 /* Store the power-of-two byte alignment and the deviation from that
664    alignment of pointer described by PI to ALIOGN and MISALIGN
665    respectively.  */
666 
667 void
set_ptr_info_alignment(struct ptr_info_def * pi,unsigned int align,unsigned int misalign)668 set_ptr_info_alignment (struct ptr_info_def *pi, unsigned int align,
669 			    unsigned int misalign)
670 {
671   gcc_checking_assert (align != 0);
672   gcc_assert ((align & (align - 1)) == 0);
673   gcc_assert ((misalign & ~(align - 1)) == 0);
674 
675   pi->align = align;
676   pi->misalign = misalign;
677 }
678 
679 /* If pointer described by PI has known alignment, increase its known
680    misalignment by INCREMENT modulo its current alignment.  */
681 
682 void
adjust_ptr_info_misalignment(struct ptr_info_def * pi,poly_uint64 increment)683 adjust_ptr_info_misalignment (struct ptr_info_def *pi, poly_uint64 increment)
684 {
685   if (pi->align != 0)
686     {
687       increment += pi->misalign;
688       if (!known_misalignment (increment, pi->align, &pi->misalign))
689 	{
690 	  pi->align = known_alignment (increment);
691 	  pi->misalign = 0;
692 	}
693     }
694 }
695 
696 /* Return the alias information associated with pointer T.  It creates a
697    new instance if none existed.  */
698 
699 struct ptr_info_def *
get_ptr_info(tree t)700 get_ptr_info (tree t)
701 {
702   struct ptr_info_def *pi;
703 
704   gcc_assert (POINTER_TYPE_P (TREE_TYPE (t)));
705 
706   pi = SSA_NAME_PTR_INFO (t);
707   if (pi == NULL)
708     {
709       pi = ggc_cleared_alloc<ptr_info_def> ();
710       pt_solution_reset (&pi->pt);
711       mark_ptr_info_alignment_unknown (pi);
712       SSA_NAME_PTR_INFO (t) = pi;
713     }
714 
715   return pi;
716 }
717 
718 
719 /* Creates a new SSA name using the template NAME tobe defined by
720    statement STMT in function FN.  */
721 
722 tree
copy_ssa_name_fn(struct function * fn,tree name,gimple * stmt)723 copy_ssa_name_fn (struct function *fn, tree name, gimple *stmt)
724 {
725   tree new_name;
726 
727   if (SSA_NAME_VAR (name))
728     new_name = make_ssa_name_fn (fn, SSA_NAME_VAR (name), stmt);
729   else
730     {
731       new_name = make_ssa_name_fn (fn, TREE_TYPE (name), stmt);
732       SET_SSA_NAME_VAR_OR_IDENTIFIER (new_name, SSA_NAME_IDENTIFIER (name));
733     }
734 
735   return new_name;
736 }
737 
738 
739 /* Creates a duplicate of the ptr_info_def at PTR_INFO for use by
740    the SSA name NAME.  */
741 
742 void
duplicate_ssa_name_ptr_info(tree name,struct ptr_info_def * ptr_info)743 duplicate_ssa_name_ptr_info (tree name, struct ptr_info_def *ptr_info)
744 {
745   struct ptr_info_def *new_ptr_info;
746 
747   gcc_assert (POINTER_TYPE_P (TREE_TYPE (name)));
748   gcc_assert (!SSA_NAME_PTR_INFO (name));
749 
750   if (!ptr_info)
751     return;
752 
753   new_ptr_info = ggc_alloc<ptr_info_def> ();
754   *new_ptr_info = *ptr_info;
755 
756   SSA_NAME_PTR_INFO (name) = new_ptr_info;
757 }
758 
759 /* Creates a duplicate of the range_info_def at RANGE_INFO of type
760    RANGE_TYPE for use by the SSA name NAME.  */
761 void
duplicate_ssa_name_range_info(tree name,enum value_range_kind range_type,struct range_info_def * range_info)762 duplicate_ssa_name_range_info (tree name, enum value_range_kind range_type,
763 			       struct range_info_def *range_info)
764 {
765   struct range_info_def *new_range_info;
766 
767   gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name)));
768   gcc_assert (!SSA_NAME_RANGE_INFO (name));
769 
770   if (!range_info)
771     return;
772 
773   unsigned int precision = TYPE_PRECISION (TREE_TYPE (name));
774   size_t size = (sizeof (range_info_def)
775 		 + trailing_wide_ints <3>::extra_size (precision));
776   new_range_info = static_cast<range_info_def *> (ggc_internal_alloc (size));
777   memcpy (new_range_info, range_info, size);
778 
779   gcc_assert (range_type == VR_RANGE || range_type == VR_ANTI_RANGE);
780   SSA_NAME_ANTI_RANGE_P (name) = (range_type == VR_ANTI_RANGE);
781   SSA_NAME_RANGE_INFO (name) = new_range_info;
782 }
783 
784 
785 
786 /* Creates a duplicate of a ssa name NAME tobe defined by statement STMT
787    in function FN.  */
788 
789 tree
duplicate_ssa_name_fn(struct function * fn,tree name,gimple * stmt)790 duplicate_ssa_name_fn (struct function *fn, tree name, gimple *stmt)
791 {
792   tree new_name = copy_ssa_name_fn (fn, name, stmt);
793   if (POINTER_TYPE_P (TREE_TYPE (name)))
794     {
795       struct ptr_info_def *old_ptr_info = SSA_NAME_PTR_INFO (name);
796 
797       if (old_ptr_info)
798 	duplicate_ssa_name_ptr_info (new_name, old_ptr_info);
799     }
800   else
801     {
802       struct range_info_def *old_range_info = SSA_NAME_RANGE_INFO (name);
803 
804       if (old_range_info)
805 	duplicate_ssa_name_range_info (new_name, SSA_NAME_RANGE_TYPE (name),
806 				       old_range_info);
807     }
808 
809   return new_name;
810 }
811 
812 
813 /* Reset all flow sensitive data on NAME such as range-info, nonzero
814    bits and alignment.  */
815 
816 void
reset_flow_sensitive_info(tree name)817 reset_flow_sensitive_info (tree name)
818 {
819   if (POINTER_TYPE_P (TREE_TYPE (name)))
820     {
821       /* points-to info is not flow-sensitive.  */
822       if (SSA_NAME_PTR_INFO (name))
823 	mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (name));
824     }
825   else
826     SSA_NAME_RANGE_INFO (name) = NULL;
827 }
828 
829 /* Clear all flow sensitive data from all statements and PHI definitions
830    in BB.  */
831 
832 void
reset_flow_sensitive_info_in_bb(basic_block bb)833 reset_flow_sensitive_info_in_bb (basic_block bb)
834 {
835   for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
836        gsi_next (&gsi))
837     {
838       gimple *stmt = gsi_stmt (gsi);
839       ssa_op_iter i;
840       tree op;
841       FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
842 	reset_flow_sensitive_info (op);
843     }
844 
845   for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
846        gsi_next (&gsi))
847     {
848       tree phi_def = gimple_phi_result (gsi.phi ());
849       reset_flow_sensitive_info (phi_def);
850     }
851 }
852 
853 /* Release all the SSA_NAMEs created by STMT.  */
854 
855 void
release_defs(gimple * stmt)856 release_defs (gimple *stmt)
857 {
858   tree def;
859   ssa_op_iter iter;
860 
861   FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
862     if (TREE_CODE (def) == SSA_NAME)
863       release_ssa_name (def);
864 }
865 
866 
867 /* Replace the symbol associated with SSA_NAME with SYM.  */
868 
869 void
replace_ssa_name_symbol(tree ssa_name,tree sym)870 replace_ssa_name_symbol (tree ssa_name, tree sym)
871 {
872   SET_SSA_NAME_VAR_OR_IDENTIFIER (ssa_name, sym);
873   TREE_TYPE (ssa_name) = TREE_TYPE (sym);
874 }
875 
876 /* Release the vector of free SSA_NAMEs and compact the vector of SSA_NAMEs
877    that are live.  */
878 
879 static void
release_free_names_and_compact_live_names(function * fun)880 release_free_names_and_compact_live_names (function *fun)
881 {
882   unsigned i, j;
883   int n = vec_safe_length (FREE_SSANAMES (fun));
884 
885   /* Now release the freelist.  */
886   vec_free (FREE_SSANAMES (fun));
887 
888   /* And compact the SSA number space.  We make sure to not change the
889      relative order of SSA versions.  */
890   for (i = 1, j = 1; i < fun->gimple_df->ssa_names->length (); ++i)
891     {
892       tree name = ssa_name (i);
893       if (name)
894 	{
895 	  if (i != j)
896 	    {
897 	      SSA_NAME_VERSION (name) = j;
898 	      (*fun->gimple_df->ssa_names)[j] = name;
899 	    }
900 	  j++;
901 	}
902     }
903   fun->gimple_df->ssa_names->truncate (j);
904 
905   statistics_counter_event (fun, "SSA names released", n);
906   statistics_counter_event (fun, "SSA name holes removed", i - j);
907   if (dump_file)
908     fprintf (dump_file, "Released %i names, %.2f%%, removed %i holes\n",
909 	     n, n * 100.0 / num_ssa_names, i - j);
910 }
911 
912 /* Return SSA names that are unused to GGC memory and compact the SSA
913    version namespace.  This is used to keep footprint of compiler during
914    interprocedural optimization.  */
915 
916 namespace {
917 
918 const pass_data pass_data_release_ssa_names =
919 {
920   GIMPLE_PASS, /* type */
921   "release_ssa", /* name */
922   OPTGROUP_NONE, /* optinfo_flags */
923   TV_TREE_SSA_OTHER, /* tv_id */
924   PROP_ssa, /* properties_required */
925   0, /* properties_provided */
926   0, /* properties_destroyed */
927   TODO_remove_unused_locals, /* todo_flags_start */
928   0, /* todo_flags_finish */
929 };
930 
931 class pass_release_ssa_names : public gimple_opt_pass
932 {
933 public:
pass_release_ssa_names(gcc::context * ctxt)934   pass_release_ssa_names (gcc::context *ctxt)
935     : gimple_opt_pass (pass_data_release_ssa_names, ctxt)
936   {}
937 
938   /* opt_pass methods: */
939   virtual unsigned int execute (function *);
940 
941 }; // class pass_release_ssa_names
942 
943 unsigned int
execute(function * fun)944 pass_release_ssa_names::execute (function *fun)
945 {
946   release_free_names_and_compact_live_names (fun);
947   return 0;
948 }
949 
950 } // anon namespace
951 
952 gimple_opt_pass *
make_pass_release_ssa_names(gcc::context * ctxt)953 make_pass_release_ssa_names (gcc::context *ctxt)
954 {
955   return new pass_release_ssa_names (ctxt);
956 }
957