1 // random number generation -*- C++ -*-
2 
3 // Copyright (C) 2009-2019 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /**
26  * @file tr1/random.h
27  *  This is an internal header file, included by other library headers.
28  *  Do not attempt to use it directly. @headername{tr1/random}
29  */
30 
31 #ifndef _GLIBCXX_TR1_RANDOM_H
32 #define _GLIBCXX_TR1_RANDOM_H 1
33 
34 #pragma GCC system_header
35 
_GLIBCXX_VISIBILITY(default)36 namespace std _GLIBCXX_VISIBILITY(default)
37 {
38 _GLIBCXX_BEGIN_NAMESPACE_VERSION
39 
40 namespace tr1
41 {
42   // [5.1] Random number generation
43 
44   /**
45    * @addtogroup tr1_random Random Number Generation
46    * A facility for generating random numbers on selected distributions.
47    * @{
48    */
49 
50   /*
51    * Implementation-space details.
52    */
53   namespace __detail
54   {
55     template<typename _UIntType, int __w,
56 	     bool = __w < std::numeric_limits<_UIntType>::digits>
57       struct _Shift
58       { static const _UIntType __value = 0; };
59 
60     template<typename _UIntType, int __w>
61       struct _Shift<_UIntType, __w, true>
62       { static const _UIntType __value = _UIntType(1) << __w; };
63 
64     template<typename _Tp, _Tp __a, _Tp __c, _Tp __m, bool>
65       struct _Mod;
66 
67     // Dispatch based on modulus value to prevent divide-by-zero compile-time
68     // errors when m == 0.
69     template<typename _Tp, _Tp __a, _Tp __c, _Tp __m>
70       inline _Tp
71       __mod(_Tp __x)
72       { return _Mod<_Tp, __a, __c, __m, __m == 0>::__calc(__x); }
73 
74     typedef __gnu_cxx::__conditional_type<(sizeof(unsigned) == 4),
75 		    unsigned, unsigned long>::__type _UInt32Type;
76 
77     /*
78      * An adaptor class for converting the output of any Generator into
79      * the input for a specific Distribution.
80      */
81     template<typename _Engine, typename _Distribution>
82       struct _Adaptor
83       {
84 	typedef typename remove_reference<_Engine>::type _BEngine;
85 	typedef typename _BEngine::result_type           _Engine_result_type;
86 	typedef typename _Distribution::input_type       result_type;
87 
88       public:
89 	_Adaptor(const _Engine& __g)
90 	: _M_g(__g) { }
91 
92 	result_type
93 	min() const
94 	{
95 	  result_type __return_value;
96 	  if (is_integral<_Engine_result_type>::value
97 	      && is_integral<result_type>::value)
98 	    __return_value = _M_g.min();
99 	  else
100 	    __return_value = result_type(0);
101 	  return __return_value;
102 	}
103 
104 	result_type
105 	max() const
106 	{
107 	  result_type __return_value;
108 	  if (is_integral<_Engine_result_type>::value
109 	      && is_integral<result_type>::value)
110 	    __return_value = _M_g.max();
111 	  else if (!is_integral<result_type>::value)
112 	    __return_value = result_type(1);
113 	  else
114 	    __return_value = std::numeric_limits<result_type>::max() - 1;
115 	  return __return_value;
116 	}
117 
118 	/*
119 	 * Converts a value generated by the adapted random number generator
120 	 * into a value in the input domain for the dependent random number
121 	 * distribution.
122 	 *
123 	 * Because the type traits are compile time constants only the
124 	 * appropriate clause of the if statements will actually be emitted
125 	 * by the compiler.
126 	 */
127 	result_type
128 	operator()()
129 	{
130 	  result_type __return_value;
131 	  if (is_integral<_Engine_result_type>::value
132 	      && is_integral<result_type>::value)
133 	    __return_value = _M_g();
134 	  else if (!is_integral<_Engine_result_type>::value
135 		   && !is_integral<result_type>::value)
136 	    __return_value = result_type(_M_g() - _M_g.min())
137 	      / result_type(_M_g.max() - _M_g.min());
138 	  else if (is_integral<_Engine_result_type>::value
139 		   && !is_integral<result_type>::value)
140 	    __return_value = result_type(_M_g() - _M_g.min())
141 	      / result_type(_M_g.max() - _M_g.min() + result_type(1));
142 	  else
143 	    __return_value = (((_M_g() - _M_g.min())
144 			       / (_M_g.max() - _M_g.min()))
145 			      * std::numeric_limits<result_type>::max());
146 	  return __return_value;
147 	}
148 
149       private:
150 	_Engine _M_g;
151       };
152 
153     // Specialization for _Engine*.
154     template<typename _Engine, typename _Distribution>
155       struct _Adaptor<_Engine*, _Distribution>
156       {
157 	typedef typename _Engine::result_type      _Engine_result_type;
158 	typedef typename _Distribution::input_type result_type;
159 
160       public:
161 	_Adaptor(_Engine* __g)
162 	: _M_g(__g) { }
163 
164 	result_type
165 	min() const
166 	{
167 	  result_type __return_value;
168 	  if (is_integral<_Engine_result_type>::value
169 	      && is_integral<result_type>::value)
170 	    __return_value = _M_g->min();
171 	  else
172 	    __return_value = result_type(0);
173 	  return __return_value;
174 	}
175 
176 	result_type
177 	max() const
178 	{
179 	  result_type __return_value;
180 	  if (is_integral<_Engine_result_type>::value
181 	      && is_integral<result_type>::value)
182 	    __return_value = _M_g->max();
183 	  else if (!is_integral<result_type>::value)
184 	    __return_value = result_type(1);
185 	  else
186 	    __return_value = std::numeric_limits<result_type>::max() - 1;
187 	  return __return_value;
188 	}
189 
190 	result_type
191 	operator()()
192 	{
193 	  result_type __return_value;
194 	  if (is_integral<_Engine_result_type>::value
195 	      && is_integral<result_type>::value)
196 	    __return_value = (*_M_g)();
197 	  else if (!is_integral<_Engine_result_type>::value
198 		   && !is_integral<result_type>::value)
199 	    __return_value = result_type((*_M_g)() - _M_g->min())
200 	      / result_type(_M_g->max() - _M_g->min());
201 	  else if (is_integral<_Engine_result_type>::value
202 		   && !is_integral<result_type>::value)
203 	    __return_value = result_type((*_M_g)() - _M_g->min())
204 	      / result_type(_M_g->max() - _M_g->min() + result_type(1));
205 	  else
206 	    __return_value = ((((*_M_g)() - _M_g->min())
207 			       / (_M_g->max() - _M_g->min()))
208 			      * std::numeric_limits<result_type>::max());
209 	  return __return_value;
210 	}
211 
212       private:
213 	_Engine* _M_g;
214       };
215   } // namespace __detail
216 
217   /**
218    * Produces random numbers on a given distribution function using a
219    * non-uniform random number generation engine.
220    *
221    * @todo the engine_value_type needs to be studied more carefully.
222    */
223   template<typename _Engine, typename _Dist>
224     class variate_generator
225     {
226       // Concept requirements.
227       __glibcxx_class_requires(_Engine, _CopyConstructibleConcept)
228       //  __glibcxx_class_requires(_Engine, _EngineConcept)
229       //  __glibcxx_class_requires(_Dist, _EngineConcept)
230 
231     public:
232       typedef _Engine                                engine_type;
233       typedef __detail::_Adaptor<_Engine, _Dist>     engine_value_type;
234       typedef _Dist                                  distribution_type;
235       typedef typename _Dist::result_type            result_type;
236 
237       // tr1:5.1.1 table 5.1 requirement
238       typedef typename __gnu_cxx::__enable_if<
239 	is_arithmetic<result_type>::value, result_type>::__type _IsValidType;
240 
241       /**
242        * Constructs a variate generator with the uniform random number
243        * generator @p __eng for the random distribution @p __dist.
244        *
245        * @throws Any exceptions which may thrown by the copy constructors of
246        * the @p _Engine or @p _Dist objects.
247        */
248       variate_generator(engine_type __eng, distribution_type __dist)
249       : _M_engine(__eng), _M_dist(__dist) { }
250 
251       /**
252        * Gets the next generated value on the distribution.
253        */
254       result_type
255       operator()()
256       { return _M_dist(_M_engine); }
257 
258       /**
259        * WTF?
260        */
261       template<typename _Tp>
262         result_type
263         operator()(_Tp __value)
264         { return _M_dist(_M_engine, __value); }
265 
266       /**
267        * Gets a reference to the underlying uniform random number generator
268        * object.
269        */
270       engine_value_type&
271       engine()
272       { return _M_engine; }
273 
274       /**
275        * Gets a const reference to the underlying uniform random number
276        * generator object.
277        */
278       const engine_value_type&
279       engine() const
280       { return _M_engine; }
281 
282       /**
283        * Gets a reference to the underlying random distribution.
284        */
285       distribution_type&
286       distribution()
287       { return _M_dist; }
288 
289       /**
290        * Gets a const reference to the underlying random distribution.
291        */
292       const distribution_type&
293       distribution() const
294       { return _M_dist; }
295 
296       /**
297        * Gets the closed lower bound of the distribution interval.
298        */
299       result_type
300       min() const
301       { return this->distribution().min(); }
302 
303       /**
304        * Gets the closed upper bound of the distribution interval.
305        */
306       result_type
307       max() const
308       { return this->distribution().max(); }
309 
310     private:
311       engine_value_type _M_engine;
312       distribution_type _M_dist;
313     };
314 
315 
316   /**
317    * @addtogroup tr1_random_generators Random Number Generators
318    * @ingroup tr1_random
319    *
320    * These classes define objects which provide random or pseudorandom
321    * numbers, either from a discrete or a continuous interval.  The
322    * random number generator supplied as a part of this library are
323    * all uniform random number generators which provide a sequence of
324    * random number uniformly distributed over their range.
325    *
326    * A number generator is a function object with an operator() that
327    * takes zero arguments and returns a number.
328    *
329    * A compliant random number generator must satisfy the following
330    * requirements.  <table border=1 cellpadding=10 cellspacing=0>
331    * <caption align=top>Random Number Generator Requirements</caption>
332    * <tr><td>To be documented.</td></tr> </table>
333    *
334    * @{
335    */
336 
337   /**
338    * @brief A model of a linear congruential random number generator.
339    *
340    * A random number generator that produces pseudorandom numbers using the
341    * linear function @f$x_{i+1}\leftarrow(ax_{i} + c) \bmod m @f$.
342    *
343    * The template parameter @p _UIntType must be an unsigned integral type
344    * large enough to store values up to (__m-1). If the template parameter
345    * @p __m is 0, the modulus @p __m used is
346    * std::numeric_limits<_UIntType>::max() plus 1. Otherwise, the template
347    * parameters @p __a and @p __c must be less than @p __m.
348    *
349    * The size of the state is @f$ 1 @f$.
350    */
351   template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
352     class linear_congruential
353     {
354       __glibcxx_class_requires(_UIntType, _UnsignedIntegerConcept)
355       //  __glibcpp_class_requires(__a < __m && __c < __m)
356 
357     public:
358       /** The type of the generated random value. */
359       typedef _UIntType result_type;
360 
361       /** The multiplier. */
362       static const _UIntType multiplier = __a;
363       /** An increment. */
364       static const _UIntType increment = __c;
365       /** The modulus. */
366       static const _UIntType modulus = __m;
367 
368       /**
369        * Constructs a %linear_congruential random number generator engine with
370        * seed @p __s.  The default seed value is 1.
371        *
372        * @param __s The initial seed value.
373        */
374       explicit
375       linear_congruential(unsigned long __x0 = 1)
376       { this->seed(__x0); }
377 
378       /**
379        * Constructs a %linear_congruential random number generator engine
380        * seeded from the generator function @p __g.
381        *
382        * @param __g The seed generator function.
383        */
384       template<class _Gen>
385         linear_congruential(_Gen& __g)
386         { this->seed(__g); }
387 
388       /**
389        * Reseeds the %linear_congruential random number generator engine
390        * sequence to the seed @g __s.
391        *
392        * @param __s The new seed.
393        */
394       void
395       seed(unsigned long __s = 1);
396 
397       /**
398        * Reseeds the %linear_congruential random number generator engine
399        * sequence using values from the generator function @p __g.
400        *
401        * @param __g the seed generator function.
402        */
403       template<class _Gen>
404         void
405         seed(_Gen& __g)
406         { seed(__g, typename is_fundamental<_Gen>::type()); }
407 
408       /**
409        * Gets the smallest possible value in the output range.
410        *
411        * The minimum depends on the @p __c parameter: if it is zero, the
412        * minimum generated must be > 0, otherwise 0 is allowed.
413        */
414       result_type
415       min() const
416       { return (__detail::__mod<_UIntType, 1, 0, __m>(__c) == 0) ? 1 : 0; }
417 
418       /**
419        * Gets the largest possible value in the output range.
420        */
421       result_type
422       max() const
423       { return __m - 1; }
424 
425       /**
426        * Gets the next random number in the sequence.
427        */
428       result_type
429       operator()();
430 
431       /**
432        * Compares two linear congruential random number generator
433        * objects of the same type for equality.
434        *
435        * @param __lhs A linear congruential random number generator object.
436        * @param __rhs Another linear congruential random number generator obj.
437        *
438        * @returns true if the two objects are equal, false otherwise.
439        */
440       friend bool
441       operator==(const linear_congruential& __lhs,
442 		 const linear_congruential& __rhs)
443       { return __lhs._M_x == __rhs._M_x; }
444 
445       /**
446        * Compares two linear congruential random number generator
447        * objects of the same type for inequality.
448        *
449        * @param __lhs A linear congruential random number generator object.
450        * @param __rhs Another linear congruential random number generator obj.
451        *
452        * @returns true if the two objects are not equal, false otherwise.
453        */
454       friend bool
455       operator!=(const linear_congruential& __lhs,
456 		 const linear_congruential& __rhs)
457       { return !(__lhs == __rhs); }
458 
459       /**
460        * Writes the textual representation of the state x(i) of x to @p __os.
461        *
462        * @param __os  The output stream.
463        * @param __lcr A % linear_congruential random number generator.
464        * @returns __os.
465        */
466       template<class _UIntType1, _UIntType1 __a1, _UIntType1 __c1,
467 	       _UIntType1 __m1,
468 	       typename _CharT, typename _Traits>
469         friend std::basic_ostream<_CharT, _Traits>&
470         operator<<(std::basic_ostream<_CharT, _Traits>& __os,
471 		   const linear_congruential<_UIntType1, __a1, __c1,
472 		   __m1>& __lcr);
473 
474       /**
475        * Sets the state of the engine by reading its textual
476        * representation from @p __is.
477        *
478        * The textual representation must have been previously written using an
479        * output stream whose imbued locale and whose type's template
480        * specialization arguments _CharT and _Traits were the same as those of
481        * @p __is.
482        *
483        * @param __is  The input stream.
484        * @param __lcr A % linear_congruential random number generator.
485        * @returns __is.
486        */
487       template<class _UIntType1, _UIntType1 __a1, _UIntType1 __c1,
488 	       _UIntType1 __m1,
489 	       typename _CharT, typename _Traits>
490         friend std::basic_istream<_CharT, _Traits>&
491         operator>>(std::basic_istream<_CharT, _Traits>& __is,
492 		   linear_congruential<_UIntType1, __a1, __c1, __m1>& __lcr);
493 
494     private:
495       template<class _Gen>
496         void
497         seed(_Gen& __g, true_type)
498         { return seed(static_cast<unsigned long>(__g)); }
499 
500       template<class _Gen>
501         void
502         seed(_Gen& __g, false_type);
503 
504       _UIntType _M_x;
505     };
506 
507   /**
508    * The classic Minimum Standard rand0 of Lewis, Goodman, and Miller.
509    */
510   typedef linear_congruential<unsigned long, 16807, 0, 2147483647> minstd_rand0;
511 
512   /**
513    * An alternative LCR (Lehmer Generator function) .
514    */
515   typedef linear_congruential<unsigned long, 48271, 0, 2147483647> minstd_rand;
516 
517 
518   /**
519    * A generalized feedback shift register discrete random number generator.
520    *
521    * This algorithm avoids multiplication and division and is designed to be
522    * friendly to a pipelined architecture.  If the parameters are chosen
523    * correctly, this generator will produce numbers with a very long period and
524    * fairly good apparent entropy, although still not cryptographically strong.
525    *
526    * The best way to use this generator is with the predefined mt19937 class.
527    *
528    * This algorithm was originally invented by Makoto Matsumoto and
529    * Takuji Nishimura.
530    *
531    * @var word_size   The number of bits in each element of the state vector.
532    * @var state_size  The degree of recursion.
533    * @var shift_size  The period parameter.
534    * @var mask_bits   The separation point bit index.
535    * @var parameter_a The last row of the twist matrix.
536    * @var output_u    The first right-shift tempering matrix parameter.
537    * @var output_s    The first left-shift tempering matrix parameter.
538    * @var output_b    The first left-shift tempering matrix mask.
539    * @var output_t    The second left-shift tempering matrix parameter.
540    * @var output_c    The second left-shift tempering matrix mask.
541    * @var output_l    The second right-shift tempering matrix parameter.
542    */
543   template<class _UIntType, int __w, int __n, int __m, int __r,
544 	   _UIntType __a, int __u, int __s, _UIntType __b, int __t,
545 	   _UIntType __c, int __l>
546     class mersenne_twister
547     {
548       __glibcxx_class_requires(_UIntType, _UnsignedIntegerConcept)
549 
550     public:
551       // types
552       typedef _UIntType result_type;
553 
554       // parameter values
555       static const int       word_size   = __w;
556       static const int       state_size  = __n;
557       static const int       shift_size  = __m;
558       static const int       mask_bits   = __r;
559       static const _UIntType parameter_a = __a;
560       static const int       output_u    = __u;
561       static const int       output_s    = __s;
562       static const _UIntType output_b    = __b;
563       static const int       output_t    = __t;
564       static const _UIntType output_c    = __c;
565       static const int       output_l    = __l;
566 
567       // constructors and member function
568       mersenne_twister()
569       { seed(); }
570 
571       explicit
572       mersenne_twister(unsigned long __value)
573       { seed(__value); }
574 
575       template<class _Gen>
576         mersenne_twister(_Gen& __g)
577         { seed(__g); }
578 
579       void
580       seed()
581       { seed(5489UL); }
582 
583       void
584       seed(unsigned long __value);
585 
586       template<class _Gen>
587         void
588         seed(_Gen& __g)
589         { seed(__g, typename is_fundamental<_Gen>::type()); }
590 
591       result_type
592       min() const
593       { return 0; }
594 
595       result_type
596       max() const
597       { return __detail::_Shift<_UIntType, __w>::__value - 1; }
598 
599       result_type
600       operator()();
601 
602       /**
603        * Compares two % mersenne_twister random number generator objects of
604        * the same type for equality.
605        *
606        * @param __lhs A % mersenne_twister random number generator object.
607        * @param __rhs Another % mersenne_twister random number generator
608        *              object.
609        *
610        * @returns true if the two objects are equal, false otherwise.
611        */
612       friend bool
613       operator==(const mersenne_twister& __lhs,
614 		 const mersenne_twister& __rhs)
615       { return std::equal(__lhs._M_x, __lhs._M_x + state_size, __rhs._M_x); }
616 
617       /**
618        * Compares two % mersenne_twister random number generator objects of
619        * the same type for inequality.
620        *
621        * @param __lhs A % mersenne_twister random number generator object.
622        * @param __rhs Another % mersenne_twister random number generator
623        *              object.
624        *
625        * @returns true if the two objects are not equal, false otherwise.
626        */
627       friend bool
628       operator!=(const mersenne_twister& __lhs,
629 		 const mersenne_twister& __rhs)
630       { return !(__lhs == __rhs); }
631 
632       /**
633        * Inserts the current state of a % mersenne_twister random number
634        * generator engine @p __x into the output stream @p __os.
635        *
636        * @param __os An output stream.
637        * @param __x  A % mersenne_twister random number generator engine.
638        *
639        * @returns The output stream with the state of @p __x inserted or in
640        * an error state.
641        */
642       template<class _UIntType1, int __w1, int __n1, int __m1, int __r1,
643 	       _UIntType1 __a1, int __u1, int __s1, _UIntType1 __b1, int __t1,
644 	       _UIntType1 __c1, int __l1,
645 	       typename _CharT, typename _Traits>
646         friend std::basic_ostream<_CharT, _Traits>&
647         operator<<(std::basic_ostream<_CharT, _Traits>& __os,
648 		   const mersenne_twister<_UIntType1, __w1, __n1, __m1, __r1,
649 		   __a1, __u1, __s1, __b1, __t1, __c1, __l1>& __x);
650 
651       /**
652        * Extracts the current state of a % mersenne_twister random number
653        * generator engine @p __x from the input stream @p __is.
654        *
655        * @param __is An input stream.
656        * @param __x  A % mersenne_twister random number generator engine.
657        *
658        * @returns The input stream with the state of @p __x extracted or in
659        * an error state.
660        */
661       template<class _UIntType1, int __w1, int __n1, int __m1, int __r1,
662 	       _UIntType1 __a1, int __u1, int __s1, _UIntType1 __b1, int __t1,
663 	       _UIntType1 __c1, int __l1,
664 	       typename _CharT, typename _Traits>
665         friend std::basic_istream<_CharT, _Traits>&
666         operator>>(std::basic_istream<_CharT, _Traits>& __is,
667 		   mersenne_twister<_UIntType1, __w1, __n1, __m1, __r1,
668 		   __a1, __u1, __s1, __b1, __t1, __c1, __l1>& __x);
669 
670     private:
671       template<class _Gen>
672         void
673         seed(_Gen& __g, true_type)
674         { return seed(static_cast<unsigned long>(__g)); }
675 
676       template<class _Gen>
677         void
678         seed(_Gen& __g, false_type);
679 
680       _UIntType _M_x[state_size];
681       int       _M_p;
682     };
683 
684   /**
685    * The classic Mersenne Twister.
686    *
687    * Reference:
688    * M. Matsumoto and T. Nishimura, Mersenne Twister: A 623-Dimensionally
689    * Equidistributed Uniform Pseudo-Random Number Generator, ACM Transactions
690    * on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30.
691    */
692   typedef mersenne_twister<
693     unsigned long, 32, 624, 397, 31,
694     0x9908b0dful, 11, 7,
695     0x9d2c5680ul, 15,
696     0xefc60000ul, 18
697     > mt19937;
698 
699 
700   /**
701    * @brief The Marsaglia-Zaman generator.
702    *
703    * This is a model of a Generalized Fibonacci discrete random number
704    * generator, sometimes referred to as the SWC generator.
705    *
706    * A discrete random number generator that produces pseudorandom
707    * numbers using @f$x_{i}\leftarrow(x_{i - s} - x_{i - r} -
708    * carry_{i-1}) \bmod m @f$.
709    *
710    * The size of the state is @f$ r @f$
711    * and the maximum period of the generator is @f$ m^r - m^s -1 @f$.
712    *
713    * N1688[4.13] says <em>the template parameter _IntType shall denote
714    * an integral type large enough to store values up to m</em>.
715    *
716    * @var _M_x     The state of the generator.  This is a ring buffer.
717    * @var _M_carry The carry.
718    * @var _M_p     Current index of x(i - r).
719    */
720   template<typename _IntType, _IntType __m, int __s, int __r>
721     class subtract_with_carry
722     {
723       __glibcxx_class_requires(_IntType, _IntegerConcept)
724 
725     public:
726       /** The type of the generated random value. */
727       typedef _IntType result_type;
728 
729       // parameter values
730       static const _IntType modulus   = __m;
731       static const int      long_lag  = __r;
732       static const int      short_lag = __s;
733 
734       /**
735        * Constructs a default-initialized % subtract_with_carry random number
736        * generator.
737        */
738       subtract_with_carry()
739       { this->seed(); }
740 
741       /**
742        * Constructs an explicitly seeded % subtract_with_carry random number
743        * generator.
744        */
745       explicit
746       subtract_with_carry(unsigned long __value)
747       { this->seed(__value); }
748 
749       /**
750        * Constructs a %subtract_with_carry random number generator engine
751        * seeded from the generator function @p __g.
752        *
753        * @param __g The seed generator function.
754        */
755       template<class _Gen>
756         subtract_with_carry(_Gen& __g)
757         { this->seed(__g); }
758 
759       /**
760        * Seeds the initial state @f$ x_0 @f$ of the random number generator.
761        *
762        * N1688[4.19] modifies this as follows.  If @p __value == 0,
763        * sets value to 19780503.  In any case, with a linear
764        * congruential generator lcg(i) having parameters @f$ m_{lcg} =
765        * 2147483563, a_{lcg} = 40014, c_{lcg} = 0, and lcg(0) = value
766        * @f$, sets @f$ x_{-r} \dots x_{-1} @f$ to @f$ lcg(1) \bmod m
767        * \dots lcg(r) \bmod m @f$ respectively.  If @f$ x_{-1} = 0 @f$
768        * set carry to 1, otherwise sets carry to 0.
769        */
770       void
771       seed(unsigned long __value = 19780503);
772 
773       /**
774        * Seeds the initial state @f$ x_0 @f$ of the % subtract_with_carry
775        * random number generator.
776        */
777       template<class _Gen>
778         void
779         seed(_Gen& __g)
780         { seed(__g, typename is_fundamental<_Gen>::type()); }
781 
782       /**
783        * Gets the inclusive minimum value of the range of random integers
784        * returned by this generator.
785        */
786       result_type
787       min() const
788       { return 0; }
789 
790       /**
791        * Gets the inclusive maximum value of the range of random integers
792        * returned by this generator.
793        */
794       result_type
795       max() const
796       { return this->modulus - 1; }
797 
798       /**
799        * Gets the next random number in the sequence.
800        */
801       result_type
802       operator()();
803 
804       /**
805        * Compares two % subtract_with_carry random number generator objects of
806        * the same type for equality.
807        *
808        * @param __lhs A % subtract_with_carry random number generator object.
809        * @param __rhs Another % subtract_with_carry random number generator
810        *              object.
811        *
812        * @returns true if the two objects are equal, false otherwise.
813        */
814       friend bool
815       operator==(const subtract_with_carry& __lhs,
816 		 const subtract_with_carry& __rhs)
817       { return std::equal(__lhs._M_x, __lhs._M_x + long_lag, __rhs._M_x); }
818 
819       /**
820        * Compares two % subtract_with_carry random number generator objects of
821        * the same type for inequality.
822        *
823        * @param __lhs A % subtract_with_carry random number generator object.
824        * @param __rhs Another % subtract_with_carry random number generator
825        *              object.
826        *
827        * @returns true if the two objects are not equal, false otherwise.
828        */
829       friend bool
830       operator!=(const subtract_with_carry& __lhs,
831 		 const subtract_with_carry& __rhs)
832       { return !(__lhs == __rhs); }
833 
834       /**
835        * Inserts the current state of a % subtract_with_carry random number
836        * generator engine @p __x into the output stream @p __os.
837        *
838        * @param __os An output stream.
839        * @param __x  A % subtract_with_carry random number generator engine.
840        *
841        * @returns The output stream with the state of @p __x inserted or in
842        * an error state.
843        */
844       template<typename _IntType1, _IntType1 __m1, int __s1, int __r1,
845 	       typename _CharT, typename _Traits>
846         friend std::basic_ostream<_CharT, _Traits>&
847         operator<<(std::basic_ostream<_CharT, _Traits>& __os,
848 		   const subtract_with_carry<_IntType1, __m1, __s1,
849 		   __r1>& __x);
850 
851       /**
852        * Extracts the current state of a % subtract_with_carry random number
853        * generator engine @p __x from the input stream @p __is.
854        *
855        * @param __is An input stream.
856        * @param __x  A % subtract_with_carry random number generator engine.
857        *
858        * @returns The input stream with the state of @p __x extracted or in
859        * an error state.
860        */
861       template<typename _IntType1, _IntType1 __m1, int __s1, int __r1,
862 	       typename _CharT, typename _Traits>
863         friend std::basic_istream<_CharT, _Traits>&
864         operator>>(std::basic_istream<_CharT, _Traits>& __is,
865 		   subtract_with_carry<_IntType1, __m1, __s1, __r1>& __x);
866 
867     private:
868       template<class _Gen>
869         void
870         seed(_Gen& __g, true_type)
871         { return seed(static_cast<unsigned long>(__g)); }
872 
873       template<class _Gen>
874         void
875         seed(_Gen& __g, false_type);
876 
877       typedef typename __gnu_cxx::__add_unsigned<_IntType>::__type _UIntType;
878 
879       _UIntType  _M_x[long_lag];
880       _UIntType  _M_carry;
881       int        _M_p;
882     };
883 
884 
885   /**
886    * @brief The Marsaglia-Zaman generator (floats version).
887    *
888    * @var _M_x     The state of the generator.  This is a ring buffer.
889    * @var _M_carry The carry.
890    * @var _M_p     Current index of x(i - r).
891    * @var _M_npows Precomputed negative powers of 2.
892    */
893   template<typename _RealType, int __w, int __s, int __r>
894     class subtract_with_carry_01
895     {
896     public:
897       /** The type of the generated random value. */
898       typedef _RealType result_type;
899 
900       // parameter values
901       static const int      word_size = __w;
902       static const int      long_lag  = __r;
903       static const int      short_lag = __s;
904 
905       /**
906        * Constructs a default-initialized % subtract_with_carry_01 random
907        * number generator.
908        */
909       subtract_with_carry_01()
910       {
911 	this->seed();
912 	_M_initialize_npows();
913       }
914 
915       /**
916        * Constructs an explicitly seeded % subtract_with_carry_01 random number
917        * generator.
918        */
919       explicit
920       subtract_with_carry_01(unsigned long __value)
921       {
922 	this->seed(__value);
923 	_M_initialize_npows();
924       }
925 
926       /**
927        * Constructs a % subtract_with_carry_01 random number generator engine
928        * seeded from the generator function @p __g.
929        *
930        * @param __g The seed generator function.
931        */
932       template<class _Gen>
933         subtract_with_carry_01(_Gen& __g)
934         {
935 	  this->seed(__g);
936 	  _M_initialize_npows();
937 	}
938 
939       /**
940        * Seeds the initial state @f$ x_0 @f$ of the random number generator.
941        */
942       void
943       seed(unsigned long __value = 19780503);
944 
945       /**
946        * Seeds the initial state @f$ x_0 @f$ of the % subtract_with_carry_01
947        * random number generator.
948        */
949       template<class _Gen>
950         void
951         seed(_Gen& __g)
952         { seed(__g, typename is_fundamental<_Gen>::type()); }
953 
954       /**
955        * Gets the minimum value of the range of random floats
956        * returned by this generator.
957        */
958       result_type
959       min() const
960       { return 0.0; }
961 
962       /**
963        * Gets the maximum value of the range of random floats
964        * returned by this generator.
965        */
966       result_type
967       max() const
968       { return 1.0; }
969 
970       /**
971        * Gets the next random number in the sequence.
972        */
973       result_type
974       operator()();
975 
976       /**
977        * Compares two % subtract_with_carry_01 random number generator objects
978        * of the same type for equality.
979        *
980        * @param __lhs A % subtract_with_carry_01 random number
981        *              generator object.
982        * @param __rhs Another % subtract_with_carry_01 random number generator
983        *              object.
984        *
985        * @returns true if the two objects are equal, false otherwise.
986        */
987       friend bool
988       operator==(const subtract_with_carry_01& __lhs,
989 		 const subtract_with_carry_01& __rhs)
990       {
991 	for (int __i = 0; __i < long_lag; ++__i)
992 	  if (!std::equal(__lhs._M_x[__i], __lhs._M_x[__i] + __n,
993 			  __rhs._M_x[__i]))
994 	    return false;
995 	return true;
996       }
997 
998       /**
999        * Compares two % subtract_with_carry_01 random number generator objects
1000        * of the same type for inequality.
1001        *
1002        * @param __lhs A % subtract_with_carry_01 random number
1003        *              generator object.
1004        *
1005        * @param __rhs Another % subtract_with_carry_01 random number generator
1006        *              object.
1007        *
1008        * @returns true if the two objects are not equal, false otherwise.
1009        */
1010       friend bool
1011       operator!=(const subtract_with_carry_01& __lhs,
1012 		 const subtract_with_carry_01& __rhs)
1013       { return !(__lhs == __rhs); }
1014 
1015       /**
1016        * Inserts the current state of a % subtract_with_carry_01 random number
1017        * generator engine @p __x into the output stream @p __os.
1018        *
1019        * @param __os An output stream.
1020        * @param __x  A % subtract_with_carry_01 random number generator engine.
1021        *
1022        * @returns The output stream with the state of @p __x inserted or in
1023        * an error state.
1024        */
1025       template<typename _RealType1, int __w1, int __s1, int __r1,
1026 	       typename _CharT, typename _Traits>
1027         friend std::basic_ostream<_CharT, _Traits>&
1028         operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1029 		   const subtract_with_carry_01<_RealType1, __w1, __s1,
1030 		   __r1>& __x);
1031 
1032       /**
1033        * Extracts the current state of a % subtract_with_carry_01 random number
1034        * generator engine @p __x from the input stream @p __is.
1035        *
1036        * @param __is An input stream.
1037        * @param __x  A % subtract_with_carry_01 random number generator engine.
1038        *
1039        * @returns The input stream with the state of @p __x extracted or in
1040        * an error state.
1041        */
1042       template<typename _RealType1, int __w1, int __s1, int __r1,
1043 	       typename _CharT, typename _Traits>
1044         friend std::basic_istream<_CharT, _Traits>&
1045         operator>>(std::basic_istream<_CharT, _Traits>& __is,
1046 		   subtract_with_carry_01<_RealType1, __w1, __s1, __r1>& __x);
1047 
1048     private:
1049       template<class _Gen>
1050         void
1051         seed(_Gen& __g, true_type)
1052         { return seed(static_cast<unsigned long>(__g)); }
1053 
1054       template<class _Gen>
1055         void
1056         seed(_Gen& __g, false_type);
1057 
1058       void
1059       _M_initialize_npows();
1060 
1061       static const int __n = (__w + 31) / 32;
1062 
1063       typedef __detail::_UInt32Type _UInt32Type;
1064       _UInt32Type  _M_x[long_lag][__n];
1065       _RealType    _M_npows[__n];
1066       _UInt32Type  _M_carry;
1067       int          _M_p;
1068     };
1069 
1070   typedef subtract_with_carry_01<float, 24, 10, 24>   ranlux_base_01;
1071 
1072   // _GLIBCXX_RESOLVE_LIB_DEFECTS
1073   // 508. Bad parameters for ranlux64_base_01.
1074   typedef subtract_with_carry_01<double, 48, 5, 12> ranlux64_base_01;
1075 
1076 
1077   /**
1078    * Produces random numbers from some base engine by discarding blocks of
1079    * data.
1080    *
1081    * 0 <= @p __r <= @p __p
1082    */
1083   template<class _UniformRandomNumberGenerator, int __p, int __r>
1084     class discard_block
1085     {
1086       // __glibcxx_class_requires(typename base_type::result_type,
1087       //                          ArithmeticTypeConcept)
1088 
1089     public:
1090       /** The type of the underlying generator engine. */
1091       typedef _UniformRandomNumberGenerator   base_type;
1092       /** The type of the generated random value. */
1093       typedef typename base_type::result_type result_type;
1094 
1095       // parameter values
1096       static const int block_size = __p;
1097       static const int used_block = __r;
1098 
1099       /**
1100        * Constructs a default %discard_block engine.
1101        *
1102        * The underlying engine is default constructed as well.
1103        */
1104       discard_block()
1105       : _M_n(0) { }
1106 
1107       /**
1108        * Copy constructs a %discard_block engine.
1109        *
1110        * Copies an existing base class random number generator.
1111        * @param rng An existing (base class) engine object.
1112        */
1113       explicit
1114       discard_block(const base_type& __rng)
1115       : _M_b(__rng), _M_n(0) { }
1116 
1117       /**
1118        * Seed constructs a %discard_block engine.
1119        *
1120        * Constructs the underlying generator engine seeded with @p __s.
1121        * @param __s A seed value for the base class engine.
1122        */
1123       explicit
1124       discard_block(unsigned long __s)
1125       : _M_b(__s), _M_n(0) { }
1126 
1127       /**
1128        * Generator construct a %discard_block engine.
1129        *
1130        * @param __g A seed generator function.
1131        */
1132       template<class _Gen>
1133         discard_block(_Gen& __g)
1134 	: _M_b(__g), _M_n(0) { }
1135 
1136       /**
1137        * Reseeds the %discard_block object with the default seed for the
1138        * underlying base class generator engine.
1139        */
1140       void seed()
1141       {
1142 	_M_b.seed();
1143 	_M_n = 0;
1144       }
1145 
1146       /**
1147        * Reseeds the %discard_block object with the given seed generator
1148        * function.
1149        * @param __g A seed generator function.
1150        */
1151       template<class _Gen>
1152         void seed(_Gen& __g)
1153         {
1154 	  _M_b.seed(__g);
1155 	  _M_n = 0;
1156 	}
1157 
1158       /**
1159        * Gets a const reference to the underlying generator engine object.
1160        */
1161       const base_type&
1162       base() const
1163       { return _M_b; }
1164 
1165       /**
1166        * Gets the minimum value in the generated random number range.
1167        */
1168       result_type
1169       min() const
1170       { return _M_b.min(); }
1171 
1172       /**
1173        * Gets the maximum value in the generated random number range.
1174        */
1175       result_type
1176       max() const
1177       { return _M_b.max(); }
1178 
1179       /**
1180        * Gets the next value in the generated random number sequence.
1181        */
1182       result_type
1183       operator()();
1184 
1185       /**
1186        * Compares two %discard_block random number generator objects of
1187        * the same type for equality.
1188        *
1189        * @param __lhs A %discard_block random number generator object.
1190        * @param __rhs Another %discard_block random number generator
1191        *              object.
1192        *
1193        * @returns true if the two objects are equal, false otherwise.
1194        */
1195       friend bool
1196       operator==(const discard_block& __lhs, const discard_block& __rhs)
1197       { return (__lhs._M_b == __rhs._M_b) && (__lhs._M_n == __rhs._M_n); }
1198 
1199       /**
1200        * Compares two %discard_block random number generator objects of
1201        * the same type for inequality.
1202        *
1203        * @param __lhs A %discard_block random number generator object.
1204        * @param __rhs Another %discard_block random number generator
1205        *              object.
1206        *
1207        * @returns true if the two objects are not equal, false otherwise.
1208        */
1209       friend bool
1210       operator!=(const discard_block& __lhs, const discard_block& __rhs)
1211       { return !(__lhs == __rhs); }
1212 
1213       /**
1214        * Inserts the current state of a %discard_block random number
1215        * generator engine @p __x into the output stream @p __os.
1216        *
1217        * @param __os An output stream.
1218        * @param __x  A %discard_block random number generator engine.
1219        *
1220        * @returns The output stream with the state of @p __x inserted or in
1221        * an error state.
1222        */
1223       template<class _UniformRandomNumberGenerator1, int __p1, int __r1,
1224 	       typename _CharT, typename _Traits>
1225         friend std::basic_ostream<_CharT, _Traits>&
1226         operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1227 		   const discard_block<_UniformRandomNumberGenerator1,
1228 		   __p1, __r1>& __x);
1229 
1230       /**
1231        * Extracts the current state of a % subtract_with_carry random number
1232        * generator engine @p __x from the input stream @p __is.
1233        *
1234        * @param __is An input stream.
1235        * @param __x  A %discard_block random number generator engine.
1236        *
1237        * @returns The input stream with the state of @p __x extracted or in
1238        * an error state.
1239        */
1240       template<class _UniformRandomNumberGenerator1, int __p1, int __r1,
1241 	       typename _CharT, typename _Traits>
1242         friend std::basic_istream<_CharT, _Traits>&
1243         operator>>(std::basic_istream<_CharT, _Traits>& __is,
1244 		   discard_block<_UniformRandomNumberGenerator1,
1245 		   __p1, __r1>& __x);
1246 
1247     private:
1248       base_type _M_b;
1249       int       _M_n;
1250     };
1251 
1252 
1253   /**
1254    * James's luxury-level-3 integer adaptation of Luescher's generator.
1255    */
1256   typedef discard_block<
1257     subtract_with_carry<unsigned long, (1UL << 24), 10, 24>,
1258       223,
1259       24
1260       > ranlux3;
1261 
1262   /**
1263    * James's luxury-level-4 integer adaptation of Luescher's generator.
1264    */
1265   typedef discard_block<
1266     subtract_with_carry<unsigned long, (1UL << 24), 10, 24>,
1267       389,
1268       24
1269       > ranlux4;
1270 
1271   typedef discard_block<
1272     subtract_with_carry_01<float, 24, 10, 24>,
1273       223,
1274       24
1275       > ranlux3_01;
1276 
1277   typedef discard_block<
1278     subtract_with_carry_01<float, 24, 10, 24>,
1279       389,
1280       24
1281       > ranlux4_01;
1282 
1283 
1284   /**
1285    * A random number generator adaptor class that combines two random number
1286    * generator engines into a single output sequence.
1287    */
1288   template<class _UniformRandomNumberGenerator1, int __s1,
1289 	   class _UniformRandomNumberGenerator2, int __s2>
1290     class xor_combine
1291     {
1292       // __glibcxx_class_requires(typename _UniformRandomNumberGenerator1::
1293       //                          result_type, ArithmeticTypeConcept)
1294       // __glibcxx_class_requires(typename _UniformRandomNumberGenerator2::
1295       //                          result_type, ArithmeticTypeConcept)
1296 
1297     public:
1298       /** The type of the first underlying generator engine. */
1299       typedef _UniformRandomNumberGenerator1   base1_type;
1300       /** The type of the second underlying generator engine. */
1301       typedef _UniformRandomNumberGenerator2   base2_type;
1302 
1303     private:
1304       typedef typename base1_type::result_type _Result_type1;
1305       typedef typename base2_type::result_type _Result_type2;
1306 
1307     public:
1308       /** The type of the generated random value. */
1309       typedef typename __gnu_cxx::__conditional_type<(sizeof(_Result_type1)
1310 						      > sizeof(_Result_type2)),
1311 	_Result_type1, _Result_type2>::__type result_type;
1312 
1313       // parameter values
1314       static const int shift1 = __s1;
1315       static const int shift2 = __s2;
1316 
1317       // constructors and member function
1318       xor_combine()
1319       : _M_b1(), _M_b2()
1320       { _M_initialize_max(); }
1321 
1322       xor_combine(const base1_type& __rng1, const base2_type& __rng2)
1323       : _M_b1(__rng1), _M_b2(__rng2)
1324       { _M_initialize_max(); }
1325 
1326       xor_combine(unsigned long __s)
1327       : _M_b1(__s), _M_b2(__s + 1)
1328       { _M_initialize_max(); }
1329 
1330       template<class _Gen>
1331         xor_combine(_Gen& __g)
1332 	: _M_b1(__g), _M_b2(__g)
1333         { _M_initialize_max(); }
1334 
1335       void
1336       seed()
1337       {
1338 	_M_b1.seed();
1339 	_M_b2.seed();
1340       }
1341 
1342       template<class _Gen>
1343         void
1344         seed(_Gen& __g)
1345         {
1346 	  _M_b1.seed(__g);
1347 	  _M_b2.seed(__g);
1348 	}
1349 
1350       const base1_type&
1351       base1() const
1352       { return _M_b1; }
1353 
1354       const base2_type&
1355       base2() const
1356       { return _M_b2; }
1357 
1358       result_type
1359       min() const
1360       { return 0; }
1361 
1362       result_type
1363       max() const
1364       { return _M_max; }
1365 
1366       /**
1367        * Gets the next random number in the sequence.
1368        */
1369       // NB: Not exactly the TR1 formula, per N2079 instead.
1370       result_type
1371       operator()()
1372       {
1373 	return ((result_type(_M_b1() - _M_b1.min()) << shift1)
1374 		^ (result_type(_M_b2() - _M_b2.min()) << shift2));
1375       }
1376 
1377       /**
1378        * Compares two %xor_combine random number generator objects of
1379        * the same type for equality.
1380        *
1381        * @param __lhs A %xor_combine random number generator object.
1382        * @param __rhs Another %xor_combine random number generator
1383        *              object.
1384        *
1385        * @returns true if the two objects are equal, false otherwise.
1386        */
1387       friend bool
1388       operator==(const xor_combine& __lhs, const xor_combine& __rhs)
1389       {
1390 	return (__lhs.base1() == __rhs.base1())
1391 	        && (__lhs.base2() == __rhs.base2());
1392       }
1393 
1394       /**
1395        * Compares two %xor_combine random number generator objects of
1396        * the same type for inequality.
1397        *
1398        * @param __lhs A %xor_combine random number generator object.
1399        * @param __rhs Another %xor_combine random number generator
1400        *              object.
1401        *
1402        * @returns true if the two objects are not equal, false otherwise.
1403        */
1404       friend bool
1405       operator!=(const xor_combine& __lhs, const xor_combine& __rhs)
1406       { return !(__lhs == __rhs); }
1407 
1408       /**
1409        * Inserts the current state of a %xor_combine random number
1410        * generator engine @p __x into the output stream @p __os.
1411        *
1412        * @param __os An output stream.
1413        * @param __x  A %xor_combine random number generator engine.
1414        *
1415        * @returns The output stream with the state of @p __x inserted or in
1416        * an error state.
1417        */
1418       template<class _UniformRandomNumberGenerator11, int __s11,
1419 	       class _UniformRandomNumberGenerator21, int __s21,
1420 	       typename _CharT, typename _Traits>
1421         friend std::basic_ostream<_CharT, _Traits>&
1422         operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1423 		   const xor_combine<_UniformRandomNumberGenerator11, __s11,
1424 		   _UniformRandomNumberGenerator21, __s21>& __x);
1425 
1426       /**
1427        * Extracts the current state of a %xor_combine random number
1428        * generator engine @p __x from the input stream @p __is.
1429        *
1430        * @param __is An input stream.
1431        * @param __x  A %xor_combine random number generator engine.
1432        *
1433        * @returns The input stream with the state of @p __x extracted or in
1434        * an error state.
1435        */
1436       template<class _UniformRandomNumberGenerator11, int __s11,
1437 	       class _UniformRandomNumberGenerator21, int __s21,
1438 	       typename _CharT, typename _Traits>
1439         friend std::basic_istream<_CharT, _Traits>&
1440         operator>>(std::basic_istream<_CharT, _Traits>& __is,
1441 		   xor_combine<_UniformRandomNumberGenerator11, __s11,
1442 		   _UniformRandomNumberGenerator21, __s21>& __x);
1443 
1444     private:
1445       void
1446       _M_initialize_max();
1447 
1448       result_type
1449       _M_initialize_max_aux(result_type, result_type, int);
1450 
1451       base1_type  _M_b1;
1452       base2_type  _M_b2;
1453       result_type _M_max;
1454     };
1455 
1456 
1457   /**
1458    * A standard interface to a platform-specific non-deterministic
1459    * random number generator (if any are available).
1460    */
1461   class random_device
1462   {
1463   public:
1464     // types
1465     typedef unsigned int result_type;
1466 
1467     // constructors, destructors and member functions
1468 
1469 #ifdef _GLIBCXX_USE_RANDOM_TR1
1470 
1471     explicit
1472     random_device(const std::string& __token = "/dev/urandom")
1473     {
1474       if ((__token != "/dev/urandom" && __token != "/dev/random")
1475 	  || !(_M_file = std::fopen(__token.c_str(), "rb")))
1476 	std::__throw_runtime_error(__N("random_device::"
1477 				       "random_device(const std::string&)"));
1478     }
1479 
1480     ~random_device()
1481     { std::fclose(_M_file); }
1482 
1483 #else
1484 
1485     explicit
1486     random_device(const std::string& __token = "mt19937")
1487     : _M_mt(_M_strtoul(__token)) { }
1488 
1489   private:
1490     static unsigned long
1491     _M_strtoul(const std::string& __str)
1492     {
1493       unsigned long __ret = 5489UL;
1494       if (__str != "mt19937")
1495 	{
1496 	  const char* __nptr = __str.c_str();
1497 	  char* __endptr;
1498 	  __ret = std::strtoul(__nptr, &__endptr, 0);
1499 	  if (*__nptr == '\0' || *__endptr != '\0')
1500 	    std::__throw_runtime_error(__N("random_device::_M_strtoul"
1501 					   "(const std::string&)"));
1502 	}
1503       return __ret;
1504     }
1505 
1506   public:
1507 
1508 #endif
1509 
1510     result_type
1511     min() const
1512     { return std::numeric_limits<result_type>::min(); }
1513 
1514     result_type
1515     max() const
1516     { return std::numeric_limits<result_type>::max(); }
1517 
1518     double
1519     entropy() const
1520     { return 0.0; }
1521 
1522     result_type
1523     operator()()
1524     {
1525 #ifdef _GLIBCXX_USE_RANDOM_TR1
1526       result_type __ret;
1527       std::fread(reinterpret_cast<void*>(&__ret), sizeof(result_type),
1528 		 1, _M_file);
1529       return __ret;
1530 #else
1531       return _M_mt();
1532 #endif
1533     }
1534 
1535   private:
1536     random_device(const random_device&);
1537     void operator=(const random_device&);
1538 
1539 #ifdef _GLIBCXX_USE_RANDOM_TR1
1540     FILE*        _M_file;
1541 #else
1542     mt19937      _M_mt;
1543 #endif
1544   };
1545 
1546   /* @} */ // group tr1_random_generators
1547 
1548   /**
1549    * @addtogroup tr1_random_distributions Random Number Distributions
1550    * @ingroup tr1_random
1551    * @{
1552    */
1553 
1554   /**
1555    * @addtogroup tr1_random_distributions_discrete Discrete Distributions
1556    * @ingroup tr1_random_distributions
1557    * @{
1558    */
1559 
1560   /**
1561    * @brief Uniform discrete distribution for random numbers.
1562    * A discrete random distribution on the range @f$[min, max]@f$ with equal
1563    * probability throughout the range.
1564    */
1565   template<typename _IntType = int>
1566     class uniform_int
1567     {
1568       __glibcxx_class_requires(_IntType, _IntegerConcept)
1569 
1570     public:
1571       /** The type of the parameters of the distribution. */
1572       typedef _IntType input_type;
1573       /** The type of the range of the distribution. */
1574       typedef _IntType result_type;
1575 
1576     public:
1577       /**
1578        * Constructs a uniform distribution object.
1579        */
1580       explicit
1581       uniform_int(_IntType __min = 0, _IntType __max = 9)
1582       : _M_min(__min), _M_max(__max)
1583       {
1584 	_GLIBCXX_DEBUG_ASSERT(_M_min <= _M_max);
1585       }
1586 
1587       /**
1588        * Gets the inclusive lower bound of the distribution range.
1589        */
1590       result_type
1591       min() const
1592       { return _M_min; }
1593 
1594       /**
1595        * Gets the inclusive upper bound of the distribution range.
1596        */
1597       result_type
1598       max() const
1599       { return _M_max; }
1600 
1601       /**
1602        * Resets the distribution state.
1603        *
1604        * Does nothing for the uniform integer distribution.
1605        */
1606       void
1607       reset() { }
1608 
1609       /**
1610        * Gets a uniformly distributed random number in the range
1611        * @f$(min, max)@f$.
1612        */
1613       template<typename _UniformRandomNumberGenerator>
1614         result_type
1615         operator()(_UniformRandomNumberGenerator& __urng)
1616         {
1617 	  typedef typename _UniformRandomNumberGenerator::result_type
1618 	    _UResult_type;
1619 	  return _M_call(__urng, _M_min, _M_max,
1620 			 typename is_integral<_UResult_type>::type());
1621 	}
1622 
1623       /**
1624        * Gets a uniform random number in the range @f$[0, n)@f$.
1625        *
1626        * This function is aimed at use with std::random_shuffle.
1627        */
1628       template<typename _UniformRandomNumberGenerator>
1629         result_type
1630         operator()(_UniformRandomNumberGenerator& __urng, result_type __n)
1631         {
1632 	  typedef typename _UniformRandomNumberGenerator::result_type
1633 	    _UResult_type;
1634 	  return _M_call(__urng, 0, __n - 1,
1635 			 typename is_integral<_UResult_type>::type());
1636 	}
1637 
1638       /**
1639        * Inserts a %uniform_int random number distribution @p __x into the
1640        * output stream @p os.
1641        *
1642        * @param __os An output stream.
1643        * @param __x  A %uniform_int random number distribution.
1644        *
1645        * @returns The output stream with the state of @p __x inserted or in
1646        * an error state.
1647        */
1648       template<typename _IntType1, typename _CharT, typename _Traits>
1649         friend std::basic_ostream<_CharT, _Traits>&
1650         operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1651 		   const uniform_int<_IntType1>& __x);
1652 
1653       /**
1654        * Extracts a %uniform_int random number distribution
1655        * @p __x from the input stream @p __is.
1656        *
1657        * @param __is An input stream.
1658        * @param __x  A %uniform_int random number generator engine.
1659        *
1660        * @returns The input stream with @p __x extracted or in an error state.
1661        */
1662       template<typename _IntType1, typename _CharT, typename _Traits>
1663         friend std::basic_istream<_CharT, _Traits>&
1664         operator>>(std::basic_istream<_CharT, _Traits>& __is,
1665 		   uniform_int<_IntType1>& __x);
1666 
1667     private:
1668       template<typename _UniformRandomNumberGenerator>
1669         result_type
1670         _M_call(_UniformRandomNumberGenerator& __urng,
1671 		result_type __min, result_type __max, true_type);
1672 
1673       template<typename _UniformRandomNumberGenerator>
1674         result_type
1675         _M_call(_UniformRandomNumberGenerator& __urng,
1676 		result_type __min, result_type __max, false_type)
1677         {
1678 	  return result_type((__urng() - __urng.min())
1679 			     / (__urng.max() - __urng.min())
1680 			     * (__max - __min + 1)) + __min;
1681 	}
1682 
1683       _IntType _M_min;
1684       _IntType _M_max;
1685     };
1686 
1687 
1688   /**
1689    * @brief A Bernoulli random number distribution.
1690    *
1691    * Generates a sequence of true and false values with likelihood @f$ p @f$
1692    * that true will come up and @f$ (1 - p) @f$ that false will appear.
1693    */
1694   class bernoulli_distribution
1695   {
1696   public:
1697     typedef int  input_type;
1698     typedef bool result_type;
1699 
1700   public:
1701     /**
1702      * Constructs a Bernoulli distribution with likelihood @p p.
1703      *
1704      * @param __p  [IN]  The likelihood of a true result being returned.  Must
1705      * be in the interval @f$ [0, 1] @f$.
1706      */
1707     explicit
1708     bernoulli_distribution(double __p = 0.5)
1709     : _M_p(__p)
1710     {
1711       _GLIBCXX_DEBUG_ASSERT((_M_p >= 0.0) && (_M_p <= 1.0));
1712     }
1713 
1714     /**
1715      * Gets the @p p parameter of the distribution.
1716      */
1717     double
1718     p() const
1719     { return _M_p; }
1720 
1721     /**
1722      * Resets the distribution state.
1723      *
1724      * Does nothing for a Bernoulli distribution.
1725      */
1726     void
1727     reset() { }
1728 
1729     /**
1730      * Gets the next value in the Bernoullian sequence.
1731      */
1732     template<class _UniformRandomNumberGenerator>
1733       result_type
1734       operator()(_UniformRandomNumberGenerator& __urng)
1735       {
1736 	if ((__urng() - __urng.min()) < _M_p * (__urng.max() - __urng.min()))
1737 	  return true;
1738 	return false;
1739       }
1740 
1741     /**
1742      * Inserts a %bernoulli_distribution random number distribution
1743      * @p __x into the output stream @p __os.
1744      *
1745      * @param __os An output stream.
1746      * @param __x  A %bernoulli_distribution random number distribution.
1747      *
1748      * @returns The output stream with the state of @p __x inserted or in
1749      * an error state.
1750      */
1751     template<typename _CharT, typename _Traits>
1752       friend std::basic_ostream<_CharT, _Traits>&
1753       operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1754 		 const bernoulli_distribution& __x);
1755 
1756     /**
1757      * Extracts a %bernoulli_distribution random number distribution
1758      * @p __x from the input stream @p __is.
1759      *
1760      * @param __is An input stream.
1761      * @param __x  A %bernoulli_distribution random number generator engine.
1762      *
1763      * @returns The input stream with @p __x extracted or in an error state.
1764      */
1765     template<typename _CharT, typename _Traits>
1766       friend std::basic_istream<_CharT, _Traits>&
1767       operator>>(std::basic_istream<_CharT, _Traits>& __is,
1768 		 bernoulli_distribution& __x)
1769       { return __is >> __x._M_p; }
1770 
1771   private:
1772     double _M_p;
1773   };
1774 
1775 
1776   /**
1777    * @brief A discrete geometric random number distribution.
1778    *
1779    * The formula for the geometric probability mass function is
1780    * @f$ p(i) = (1 - p)p^{i-1} @f$ where @f$ p @f$ is the parameter of the
1781    * distribution.
1782    */
1783   template<typename _IntType = int, typename _RealType = double>
1784     class geometric_distribution
1785     {
1786     public:
1787       // types
1788       typedef _RealType input_type;
1789       typedef _IntType  result_type;
1790 
1791       // constructors and member function
1792       explicit
1793       geometric_distribution(const _RealType& __p = _RealType(0.5))
1794       : _M_p(__p)
1795       {
1796 	_GLIBCXX_DEBUG_ASSERT((_M_p > 0.0) && (_M_p < 1.0));
1797 	_M_initialize();
1798       }
1799 
1800       /**
1801        * Gets the distribution parameter @p p.
1802        */
1803       _RealType
1804       p() const
1805       { return _M_p; }
1806 
1807       void
1808       reset() { }
1809 
1810       template<class _UniformRandomNumberGenerator>
1811         result_type
1812         operator()(_UniformRandomNumberGenerator& __urng);
1813 
1814       /**
1815        * Inserts a %geometric_distribution random number distribution
1816        * @p __x into the output stream @p __os.
1817        *
1818        * @param __os An output stream.
1819        * @param __x  A %geometric_distribution random number distribution.
1820        *
1821        * @returns The output stream with the state of @p __x inserted or in
1822        * an error state.
1823        */
1824       template<typename _IntType1, typename _RealType1,
1825 	       typename _CharT, typename _Traits>
1826         friend std::basic_ostream<_CharT, _Traits>&
1827         operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1828 		   const geometric_distribution<_IntType1, _RealType1>& __x);
1829 
1830       /**
1831        * Extracts a %geometric_distribution random number distribution
1832        * @p __x from the input stream @p __is.
1833        *
1834        * @param __is An input stream.
1835        * @param __x  A %geometric_distribution random number generator engine.
1836        *
1837        * @returns The input stream with @p __x extracted or in an error state.
1838        */
1839       template<typename _CharT, typename _Traits>
1840         friend std::basic_istream<_CharT, _Traits>&
1841         operator>>(std::basic_istream<_CharT, _Traits>& __is,
1842 		   geometric_distribution& __x)
1843         {
1844 	  __is >> __x._M_p;
1845 	  __x._M_initialize();
1846 	  return __is;
1847 	}
1848 
1849     private:
1850       void
1851       _M_initialize()
1852       { _M_log_p = std::log(_M_p); }
1853 
1854       _RealType _M_p;
1855       _RealType _M_log_p;
1856     };
1857 
1858 
1859   template<typename _RealType>
1860     class normal_distribution;
1861 
1862   /**
1863    * @brief A discrete Poisson random number distribution.
1864    *
1865    * The formula for the Poisson probability mass function is
1866    * @f$ p(i) = \frac{mean^i}{i!} e^{-mean} @f$ where @f$ mean @f$ is the
1867    * parameter of the distribution.
1868    */
1869   template<typename _IntType = int, typename _RealType = double>
1870     class poisson_distribution
1871     {
1872     public:
1873       // types
1874       typedef _RealType input_type;
1875       typedef _IntType  result_type;
1876 
1877       // constructors and member function
1878       explicit
1879       poisson_distribution(const _RealType& __mean = _RealType(1))
1880       : _M_mean(__mean), _M_nd()
1881       {
1882 	_GLIBCXX_DEBUG_ASSERT(_M_mean > 0.0);
1883 	_M_initialize();
1884       }
1885 
1886       /**
1887        * Gets the distribution parameter @p mean.
1888        */
1889       _RealType
1890       mean() const
1891       { return _M_mean; }
1892 
1893       void
1894       reset()
1895       { _M_nd.reset(); }
1896 
1897       template<class _UniformRandomNumberGenerator>
1898         result_type
1899         operator()(_UniformRandomNumberGenerator& __urng);
1900 
1901       /**
1902        * Inserts a %poisson_distribution random number distribution
1903        * @p __x into the output stream @p __os.
1904        *
1905        * @param __os An output stream.
1906        * @param __x  A %poisson_distribution random number distribution.
1907        *
1908        * @returns The output stream with the state of @p __x inserted or in
1909        * an error state.
1910        */
1911       template<typename _IntType1, typename _RealType1,
1912 	       typename _CharT, typename _Traits>
1913         friend std::basic_ostream<_CharT, _Traits>&
1914         operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1915 		   const poisson_distribution<_IntType1, _RealType1>& __x);
1916 
1917       /**
1918        * Extracts a %poisson_distribution random number distribution
1919        * @p __x from the input stream @p __is.
1920        *
1921        * @param __is An input stream.
1922        * @param __x  A %poisson_distribution random number generator engine.
1923        *
1924        * @returns The input stream with @p __x extracted or in an error state.
1925        */
1926       template<typename _IntType1, typename _RealType1,
1927 	       typename _CharT, typename _Traits>
1928         friend std::basic_istream<_CharT, _Traits>&
1929         operator>>(std::basic_istream<_CharT, _Traits>& __is,
1930 		   poisson_distribution<_IntType1, _RealType1>& __x);
1931 
1932     private:
1933       void
1934       _M_initialize();
1935 
1936       // NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined.
1937       normal_distribution<_RealType> _M_nd;
1938 
1939       _RealType _M_mean;
1940 
1941       // Hosts either log(mean) or the threshold of the simple method.
1942       _RealType _M_lm_thr;
1943 #if _GLIBCXX_USE_C99_MATH_TR1
1944       _RealType _M_lfm, _M_sm, _M_d, _M_scx, _M_1cx, _M_c2b, _M_cb;
1945 #endif
1946     };
1947 
1948 
1949   /**
1950    * @brief A discrete binomial random number distribution.
1951    *
1952    * The formula for the binomial probability mass function is
1953    * @f$ p(i) = \binom{n}{i} p^i (1 - p)^{t - i} @f$ where @f$ t @f$
1954    * and @f$ p @f$ are the parameters of the distribution.
1955    */
1956   template<typename _IntType = int, typename _RealType = double>
1957     class binomial_distribution
1958     {
1959     public:
1960       // types
1961       typedef _RealType input_type;
1962       typedef _IntType  result_type;
1963 
1964       // constructors and member function
1965       explicit
1966       binomial_distribution(_IntType __t = 1,
1967 			    const _RealType& __p = _RealType(0.5))
1968       : _M_t(__t), _M_p(__p), _M_nd()
1969       {
1970 	_GLIBCXX_DEBUG_ASSERT((_M_t >= 0) && (_M_p >= 0.0) && (_M_p <= 1.0));
1971 	_M_initialize();
1972       }
1973 
1974       /**
1975        * Gets the distribution @p t parameter.
1976        */
1977       _IntType
1978       t() const
1979       { return _M_t; }
1980 
1981       /**
1982        * Gets the distribution @p p parameter.
1983        */
1984       _RealType
1985       p() const
1986       { return _M_p; }
1987 
1988       void
1989       reset()
1990       { _M_nd.reset(); }
1991 
1992       template<class _UniformRandomNumberGenerator>
1993         result_type
1994         operator()(_UniformRandomNumberGenerator& __urng);
1995 
1996       /**
1997        * Inserts a %binomial_distribution random number distribution
1998        * @p __x into the output stream @p __os.
1999        *
2000        * @param __os An output stream.
2001        * @param __x  A %binomial_distribution random number distribution.
2002        *
2003        * @returns The output stream with the state of @p __x inserted or in
2004        * an error state.
2005        */
2006       template<typename _IntType1, typename _RealType1,
2007 	       typename _CharT, typename _Traits>
2008         friend std::basic_ostream<_CharT, _Traits>&
2009         operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2010 		   const binomial_distribution<_IntType1, _RealType1>& __x);
2011 
2012       /**
2013        * Extracts a %binomial_distribution random number distribution
2014        * @p __x from the input stream @p __is.
2015        *
2016        * @param __is An input stream.
2017        * @param __x  A %binomial_distribution random number generator engine.
2018        *
2019        * @returns The input stream with @p __x extracted or in an error state.
2020        */
2021       template<typename _IntType1, typename _RealType1,
2022 	       typename _CharT, typename _Traits>
2023         friend std::basic_istream<_CharT, _Traits>&
2024         operator>>(std::basic_istream<_CharT, _Traits>& __is,
2025 		   binomial_distribution<_IntType1, _RealType1>& __x);
2026 
2027     private:
2028       void
2029       _M_initialize();
2030 
2031       template<class _UniformRandomNumberGenerator>
2032         result_type
2033         _M_waiting(_UniformRandomNumberGenerator& __urng, _IntType __t);
2034 
2035       // NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined.
2036       normal_distribution<_RealType> _M_nd;
2037 
2038       _RealType _M_q;
2039 #if _GLIBCXX_USE_C99_MATH_TR1
2040       _RealType _M_d1, _M_d2, _M_s1, _M_s2, _M_c,
2041 	        _M_a1, _M_a123, _M_s, _M_lf, _M_lp1p;
2042 #endif
2043       _RealType _M_p;
2044       _IntType  _M_t;
2045 
2046       bool      _M_easy;
2047     };
2048 
2049   /* @} */ // group tr1_random_distributions_discrete
2050 
2051   /**
2052    * @addtogroup tr1_random_distributions_continuous Continuous Distributions
2053    * @ingroup tr1_random_distributions
2054    * @{
2055    */
2056 
2057   /**
2058    * @brief Uniform continuous distribution for random numbers.
2059    *
2060    * A continuous random distribution on the range [min, max) with equal
2061    * probability throughout the range.  The URNG should be real-valued and
2062    * deliver number in the range [0, 1).
2063    */
2064   template<typename _RealType = double>
2065     class uniform_real
2066     {
2067     public:
2068       // types
2069       typedef _RealType input_type;
2070       typedef _RealType result_type;
2071 
2072     public:
2073       /**
2074        * Constructs a uniform_real object.
2075        *
2076        * @param __min [IN]  The lower bound of the distribution.
2077        * @param __max [IN]  The upper bound of the distribution.
2078        */
2079       explicit
2080       uniform_real(_RealType __min = _RealType(0),
2081 		   _RealType __max = _RealType(1))
2082       : _M_min(__min), _M_max(__max)
2083       {
2084 	_GLIBCXX_DEBUG_ASSERT(_M_min <= _M_max);
2085       }
2086 
2087       result_type
2088       min() const
2089       { return _M_min; }
2090 
2091       result_type
2092       max() const
2093       { return _M_max; }
2094 
2095       void
2096       reset() { }
2097 
2098       template<class _UniformRandomNumberGenerator>
2099         result_type
2100         operator()(_UniformRandomNumberGenerator& __urng)
2101         { return (__urng() * (_M_max - _M_min)) + _M_min; }
2102 
2103       /**
2104        * Inserts a %uniform_real random number distribution @p __x into the
2105        * output stream @p __os.
2106        *
2107        * @param __os An output stream.
2108        * @param __x  A %uniform_real random number distribution.
2109        *
2110        * @returns The output stream with the state of @p __x inserted or in
2111        * an error state.
2112        */
2113       template<typename _RealType1, typename _CharT, typename _Traits>
2114         friend std::basic_ostream<_CharT, _Traits>&
2115         operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2116 		   const uniform_real<_RealType1>& __x);
2117 
2118       /**
2119        * Extracts a %uniform_real random number distribution
2120        * @p __x from the input stream @p __is.
2121        *
2122        * @param __is An input stream.
2123        * @param __x  A %uniform_real random number generator engine.
2124        *
2125        * @returns The input stream with @p __x extracted or in an error state.
2126        */
2127       template<typename _RealType1, typename _CharT, typename _Traits>
2128         friend std::basic_istream<_CharT, _Traits>&
2129         operator>>(std::basic_istream<_CharT, _Traits>& __is,
2130 		   uniform_real<_RealType1>& __x);
2131 
2132     private:
2133       _RealType _M_min;
2134       _RealType _M_max;
2135     };
2136 
2137 
2138   /**
2139    * @brief An exponential continuous distribution for random numbers.
2140    *
2141    * The formula for the exponential probability mass function is
2142    * @f$ p(x) = \lambda e^{-\lambda x} @f$.
2143    *
2144    * <table border=1 cellpadding=10 cellspacing=0>
2145    * <caption align=top>Distribution Statistics</caption>
2146    * <tr><td>Mean</td><td>@f$ \frac{1}{\lambda} @f$</td></tr>
2147    * <tr><td>Median</td><td>@f$ \frac{\ln 2}{\lambda} @f$</td></tr>
2148    * <tr><td>Mode</td><td>@f$ zero @f$</td></tr>
2149    * <tr><td>Range</td><td>@f$[0, \infty]@f$</td></tr>
2150    * <tr><td>Standard Deviation</td><td>@f$ \frac{1}{\lambda} @f$</td></tr>
2151    * </table>
2152    */
2153   template<typename _RealType = double>
2154     class exponential_distribution
2155     {
2156     public:
2157       // types
2158       typedef _RealType input_type;
2159       typedef _RealType result_type;
2160 
2161     public:
2162       /**
2163        * Constructs an exponential distribution with inverse scale parameter
2164        * @f$ \lambda @f$.
2165        */
2166       explicit
2167       exponential_distribution(const result_type& __lambda = result_type(1))
2168       : _M_lambda(__lambda)
2169       {
2170 	_GLIBCXX_DEBUG_ASSERT(_M_lambda > 0);
2171       }
2172 
2173       /**
2174        * Gets the inverse scale parameter of the distribution.
2175        */
2176       _RealType
2177       lambda() const
2178       { return _M_lambda; }
2179 
2180       /**
2181        * Resets the distribution.
2182        *
2183        * Has no effect on exponential distributions.
2184        */
2185       void
2186       reset() { }
2187 
2188       template<class _UniformRandomNumberGenerator>
2189         result_type
2190         operator()(_UniformRandomNumberGenerator& __urng)
2191         { return -std::log(__urng()) / _M_lambda; }
2192 
2193       /**
2194        * Inserts a %exponential_distribution random number distribution
2195        * @p __x into the output stream @p __os.
2196        *
2197        * @param __os An output stream.
2198        * @param __x  A %exponential_distribution random number distribution.
2199        *
2200        * @returns The output stream with the state of @p __x inserted or in
2201        * an error state.
2202        */
2203       template<typename _RealType1, typename _CharT, typename _Traits>
2204         friend std::basic_ostream<_CharT, _Traits>&
2205         operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2206 		   const exponential_distribution<_RealType1>& __x);
2207 
2208       /**
2209        * Extracts a %exponential_distribution random number distribution
2210        * @p __x from the input stream @p __is.
2211        *
2212        * @param __is An input stream.
2213        * @param __x A %exponential_distribution random number
2214        *            generator engine.
2215        *
2216        * @returns The input stream with @p __x extracted or in an error state.
2217        */
2218       template<typename _CharT, typename _Traits>
2219         friend std::basic_istream<_CharT, _Traits>&
2220         operator>>(std::basic_istream<_CharT, _Traits>& __is,
2221 		   exponential_distribution& __x)
2222         { return __is >> __x._M_lambda; }
2223 
2224     private:
2225       result_type _M_lambda;
2226     };
2227 
2228 
2229   /**
2230    * @brief A normal continuous distribution for random numbers.
2231    *
2232    * The formula for the normal probability mass function is
2233    * @f$ p(x) = \frac{1}{\sigma \sqrt{2 \pi}}
2234    *            e^{- \frac{{x - mean}^ {2}}{2 \sigma ^ {2}} } @f$.
2235    */
2236   template<typename _RealType = double>
2237     class normal_distribution
2238     {
2239     public:
2240       // types
2241       typedef _RealType input_type;
2242       typedef _RealType result_type;
2243 
2244     public:
2245       /**
2246        * Constructs a normal distribution with parameters @f$ mean @f$ and
2247        * @f$ \sigma @f$.
2248        */
2249       explicit
2250       normal_distribution(const result_type& __mean = result_type(0),
2251 			  const result_type& __sigma = result_type(1))
2252       : _M_mean(__mean), _M_sigma(__sigma), _M_saved_available(false)
2253       {
2254 	_GLIBCXX_DEBUG_ASSERT(_M_sigma > 0);
2255       }
2256 
2257       /**
2258        * Gets the mean of the distribution.
2259        */
2260       _RealType
2261       mean() const
2262       { return _M_mean; }
2263 
2264       /**
2265        * Gets the @f$ \sigma @f$ of the distribution.
2266        */
2267       _RealType
2268       sigma() const
2269       { return _M_sigma; }
2270 
2271       /**
2272        * Resets the distribution.
2273        */
2274       void
2275       reset()
2276       { _M_saved_available = false; }
2277 
2278       template<class _UniformRandomNumberGenerator>
2279         result_type
2280         operator()(_UniformRandomNumberGenerator& __urng);
2281 
2282       /**
2283        * Inserts a %normal_distribution random number distribution
2284        * @p __x into the output stream @p __os.
2285        *
2286        * @param __os An output stream.
2287        * @param __x  A %normal_distribution random number distribution.
2288        *
2289        * @returns The output stream with the state of @p __x inserted or in
2290        * an error state.
2291        */
2292       template<typename _RealType1, typename _CharT, typename _Traits>
2293         friend std::basic_ostream<_CharT, _Traits>&
2294         operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2295 		   const normal_distribution<_RealType1>& __x);
2296 
2297       /**
2298        * Extracts a %normal_distribution random number distribution
2299        * @p __x from the input stream @p __is.
2300        *
2301        * @param __is An input stream.
2302        * @param __x  A %normal_distribution random number generator engine.
2303        *
2304        * @returns The input stream with @p __x extracted or in an error state.
2305        */
2306       template<typename _RealType1, typename _CharT, typename _Traits>
2307         friend std::basic_istream<_CharT, _Traits>&
2308         operator>>(std::basic_istream<_CharT, _Traits>& __is,
2309 		   normal_distribution<_RealType1>& __x);
2310 
2311     private:
2312       result_type _M_mean;
2313       result_type _M_sigma;
2314       result_type _M_saved;
2315       bool        _M_saved_available;
2316     };
2317 
2318 
2319   /**
2320    * @brief A gamma continuous distribution for random numbers.
2321    *
2322    * The formula for the gamma probability mass function is
2323    * @f$ p(x) = \frac{1}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x} @f$.
2324    */
2325   template<typename _RealType = double>
2326     class gamma_distribution
2327     {
2328     public:
2329       // types
2330       typedef _RealType input_type;
2331       typedef _RealType result_type;
2332 
2333     public:
2334       /**
2335        * Constructs a gamma distribution with parameters @f$ \alpha @f$.
2336        */
2337       explicit
2338       gamma_distribution(const result_type& __alpha_val = result_type(1))
2339       : _M_alpha(__alpha_val)
2340       {
2341 	_GLIBCXX_DEBUG_ASSERT(_M_alpha > 0);
2342 	_M_initialize();
2343       }
2344 
2345       /**
2346        * Gets the @f$ \alpha @f$ of the distribution.
2347        */
2348       _RealType
2349       alpha() const
2350       { return _M_alpha; }
2351 
2352       /**
2353        * Resets the distribution.
2354        */
2355       void
2356       reset() { }
2357 
2358       template<class _UniformRandomNumberGenerator>
2359         result_type
2360         operator()(_UniformRandomNumberGenerator& __urng);
2361 
2362       /**
2363        * Inserts a %gamma_distribution random number distribution
2364        * @p __x into the output stream @p __os.
2365        *
2366        * @param __os An output stream.
2367        * @param __x  A %gamma_distribution random number distribution.
2368        *
2369        * @returns The output stream with the state of @p __x inserted or in
2370        * an error state.
2371        */
2372       template<typename _RealType1, typename _CharT, typename _Traits>
2373         friend std::basic_ostream<_CharT, _Traits>&
2374         operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2375 		   const gamma_distribution<_RealType1>& __x);
2376 
2377       /**
2378        * Extracts a %gamma_distribution random number distribution
2379        * @p __x from the input stream @p __is.
2380        *
2381        * @param __is An input stream.
2382        * @param __x  A %gamma_distribution random number generator engine.
2383        *
2384        * @returns The input stream with @p __x extracted or in an error state.
2385        */
2386       template<typename _CharT, typename _Traits>
2387         friend std::basic_istream<_CharT, _Traits>&
2388         operator>>(std::basic_istream<_CharT, _Traits>& __is,
2389 		   gamma_distribution& __x)
2390         {
2391 	  __is >> __x._M_alpha;
2392 	  __x._M_initialize();
2393 	  return __is;
2394 	}
2395 
2396     private:
2397       void
2398       _M_initialize();
2399 
2400       result_type _M_alpha;
2401 
2402       // Hosts either lambda of GB or d of modified Vaduva's.
2403       result_type _M_l_d;
2404     };
2405 
2406   /* @} */ // group tr1_random_distributions_continuous
2407   /* @} */ // group tr1_random_distributions
2408   /* @} */ // group tr1_random
2409 }
2410 
2411 _GLIBCXX_END_NAMESPACE_VERSION
2412 }
2413 
2414 #endif // _GLIBCXX_TR1_RANDOM_H
2415