1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             S E M _ A T T R                              --
6--                                                                          --
7--                                 S p e c                                  --
8--                                                                          --
9--          Copyright (C) 1992-2019, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- You should have received a copy of the GNU General Public License along  --
19-- with this program; see file COPYING3.  If not see                        --
20-- <http://www.gnu.org/licenses/>.                                          --
21--                                                                          --
22-- GNAT was originally developed  by the GNAT team at  New York University. --
23-- Extensive contributions were provided by Ada Core Technologies Inc.      --
24--                                                                          --
25------------------------------------------------------------------------------
26
27--  Attribute handling is isolated in a separate package to ease the addition
28--  of implementation defined attributes. Logically this processing belongs
29--  in chapter 4. See Sem_Ch4 for a description of the relation of the
30--  Analyze and Resolve routines for expression components.
31
32--  This spec also documents all GNAT implementation defined pragmas
33
34with Exp_Tss; use Exp_Tss;
35with Namet;   use Namet;
36with Snames;  use Snames;
37with Types;   use Types;
38
39package Sem_Attr is
40
41   -----------------------------------------
42   -- Implementation Dependent Attributes --
43   -----------------------------------------
44
45   --  This section describes the implementation dependent attributes provided
46   --  in GNAT, as well as constructing an array of flags indicating which
47   --  attributes these are.
48
49   Attribute_Impl_Def : constant Attribute_Class_Array :=
50     Attribute_Class_Array'(
51
52      ------------------
53      -- Abort_Signal --
54      ------------------
55
56      Attribute_Abort_Signal => True,
57      --  Standard'Abort_Signal (Standard is the only allowed prefix) provides
58      --  the entity for the special exception used to signal task abort or
59      --  asynchronous transfer of control. Normally this attribute should only
60      --  be used in the tasking runtime (it is highly peculiar, and completely
61      --  outside the normal semantics of Ada, for a user program to intercept
62      --  the abort exception).
63
64      ------------------
65      -- Address_Size --
66      ------------------
67
68      Attribute_Address_Size => True,
69      --  Standard'Address_Size (Standard is the only allowed prefix) is
70      --  a static constant giving the number of bits in an Address. It
71      --  is used primarily for constructing the definition of Memory_Size
72      --  in package Standard, but may be freely used in user programs.
73      --  This is a static attribute.
74
75      ---------------
76      -- Asm_Input --
77      ---------------
78
79      Attribute_Asm_Input => True,
80      --  Used only in conjunction with the Asm subprograms in package
81      --  Machine_Code to construct machine instructions. See documentation
82      --  in package Machine_Code in file s-maccod.ads.
83
84      ----------------
85      -- Asm_Output --
86      ----------------
87
88      Attribute_Asm_Output => True,
89      --  Used only in conjunction with the Asm subprograms in package
90      --  Machine_Code to construct machine instructions. See documentation
91      --  in package Machine_Code in file s-maccod.ads.
92
93      ---------
94      -- Bit --
95      ---------
96
97      Attribute_Bit => True,
98      --  Obj'Bit, where Obj is any object, yields the bit offset within the
99      --  storage unit (byte) that contains the first bit of storage allocated
100      --  for the object. The attribute value is of type Universal_Integer,
101      --  and is always a non-negative number not exceeding the value of
102      --  System.Storage_Unit.
103      --
104      --  For an object that is a variable or a constant allocated in a
105      --  register, the value is zero. (The use of this attribute does not
106      --  force the allocation of a variable to memory).
107      --
108      --  For an object that is a formal parameter, this attribute applies to
109      --  either the matching actual parameter or to a copy of the matching
110      --  actual parameter.
111      --
112      --  For an access object the value is zero. Note that Obj.all'Bit is
113      --  subject to an Access_Check for the designated object. Similarly
114      --  for a record component X.C'Bit is subject to a discriminant check
115      --  and X(I).Bit and X(I1..I2)'Bit are subject to index checks.
116      --
117      --  This attribute is designed to be compatible with the DEC Ada
118      --  definition and implementation of the Bit attribute.
119
120      ------------------
121      -- Code_Address --
122      ------------------
123
124      Attribute_Code_Address => True,
125      --  The reference subp'Code_Address, where subp is a subprogram entity,
126      --  gives the address of the first generated instruction for the sub-
127      --  program. This is often, but not always the same as the 'Address
128      --  value, which is the address to be used in a call. The differences
129      --  occur in the case of a nested procedure (where Address yields the
130      --  address of the trampoline code used to load the static link), and on
131      --  some systems which use procedure descriptors (in which case Address
132      --  yields the address of the descriptor).
133
134      -----------------------
135      -- Default_Bit_Order --
136      -----------------------
137
138      Attribute_Default_Bit_Order => True,
139      --  Standard'Default_Bit_Order (Standard is the only permissible prefix)
140      --  provides the value System.Default_Bit_Order as a Pos value (0 for
141      --  High_Order_First, 1 for Low_Order_First). This is used to construct
142      --  the definition of Default_Bit_Order in package System. This is a
143      --  static attribute.
144
145      ----------------------------------
146      -- Default_Scalar_Storage_Order --
147      ----------------------------------
148
149      Attribute_Default_Scalar_Storage_Order => True,
150      --  Standard'Default_Scalar_Storage_Order (Standard is the
151      --  only permissible prefix) provides the current value of the
152      --  default scalar storage order (as specified using pragma
153      --  Default_Scalar_Storage_Order, or equal to Default_Bit_Order if
154      --  unspecified) as a System.Bit_Order value. This is a static attribute.
155
156      -----------
157      -- Deref --
158      -----------
159
160      Attribute_Deref => True,
161      --  typ'Deref (expr) is valid only if expr is of type System'Address.
162      --  The result is an object of type typ that is obtained by treating the
163      --  address as an access-to-typ value that points to the result. It is
164      --  basically equivalent to (atyp!expr).all where atyp is an access type
165      --  for the type.
166
167      ---------------
168      -- Elab_Body --
169      ---------------
170
171      Attribute_Elab_Body => True,
172      --  This attribute can only be applied to a program unit name. It
173      --  returns the entity for the corresponding elaboration procedure for
174      --  elaborating the body of the referenced unit. This is used in the main
175      --  generated elaboration procedure by the binder, and is not normally
176      --  used in any other context, but there may be specialized situations in
177      --  which it is useful to be able to call this elaboration procedure from
178      --  Ada code, e.g. if it is necessary to do selective reelaboration to
179      --  fix some error.
180
181      --------------------
182      -- Elab_Subp_Body --
183      --------------------
184
185      Attribute_Elab_Subp_Body => True,
186      --  This attribute can only be applied to a library level subprogram
187      --  name and is only relevant in CodePeer mode. It returns the entity
188      --  for the corresponding elaboration procedure for elaborating the body
189      --  of the referenced subprogram unit. This is used in the main generated
190      --  elaboration procedure by the binder in CodePeer mode only.
191
192      ---------------
193      -- Elab_Spec --
194      ---------------
195
196      Attribute_Elab_Spec => True,
197      --  This attribute can only be applied to a program unit name. It
198      --  returns the entity for the corresponding elaboration procedure for
199      --  elaborating the spec of the referenced unit. This is used in the main
200      --  generated elaboration procedure by the binder, and is not normally
201      --  used in any other context, but there may be specialized situations in
202      --  which it is useful to be able to call this elaboration procedure from
203      --  Ada code, e.g. if it is necessary to do selective reelaboration to
204      --  fix some error.
205
206      ----------------
207      -- Elaborated --
208      ----------------
209
210      Attribute_Elaborated => True,
211      --  Lunit'Elaborated, where Lunit is a library unit, yields a boolean
212      --  value indicating whether or not the body of the designated library
213      --  unit has been elaborated yet.
214
215      --------------
216      -- Enum_Rep --
217      --------------
218
219      Attribute_Enum_Rep => True,
220      --  For every enumeration subtype S, S'Enum_Rep denotes a function
221      --  with the following specification:
222      --
223      --    function S'Enum_Rep (Arg : S'Base) return universal_integer;
224      --
225      --  The function returns the representation value for the given
226      --  enumeration value. This will be equal to the 'Pos value in the
227      --  absence of an enumeration representation clause. This is a static
228      --  attribute (i.e. the result is static if the argument is static).
229
230      --------------
231      -- Enum_Val --
232      --------------
233
234      Attribute_Enum_Val => True,
235      --  For every enumeration subtype S, S'Enum_Val denotes a function with
236      --  the following specification:
237      --
238      --    function S'Enum_Val (Arg : universal_integer) return S'Base;
239      --
240      --  This function performs the inverse transformation to Enum_Rep. Given
241      --  a representation value for the type, it returns the corresponding
242      --  enumeration value. Constraint_Error is raised if no value of the
243      --  enumeration type corresponds to the given integer value.
244
245      -----------------------
246      -- Finalization_Size --
247      -----------------------
248
249      Attribute_Finalization_Size => True,
250      --  For every object or non-class-wide-type, Finalization_Size returns
251      --  the size of the hidden header used for finalization purposes as if
252      --  the object or type was allocated on the heap. The size of the header
253      --  does take into account any extra padding due to alignment issues.
254
255      -----------------
256      -- Fixed_Value --
257      -----------------
258
259      Attribute_Fixed_Value => True,
260      --  For every fixed-point type S, S'Fixed_Value denotes a function
261      --  with the following specification:
262      --
263      --    function S'Fixed_Value (Arg : universal_integer) return S;
264      --
265      --  The value returned is the fixed-point value V such that
266      --
267      --    V = Arg * S'Small
268      --
269      --  The effect is thus equivalent to first converting the argument to
270      --  the integer type used to represent S, and then doing an unchecked
271      --  conversion to the fixed-point type. This attribute is primarily
272      --  intended for use in implementation of the input-output functions
273      --  for fixed-point values.
274
275      -----------------------
276      -- Has_Discriminants --
277      -----------------------
278
279      Attribute_Has_Discriminants => True,
280      --  Gtyp'Has_Discriminants, where Gtyp is a generic formal type, yields
281      --  a Boolean value indicating whether or not the actual instantiation
282      --  type has discriminants.
283
284      ---------
285      -- Img --
286      ---------
287
288      Attribute_Img => True,
289      --  The 'Img function is defined for any prefix, P, that denotes an
290      --  object of scalar type T. P'Img is equivalent to T'Image (P). This
291      --  is convenient for debugging. For example:
292      --
293      --     Put_Line ("X = " & X'Img);
294      --
295      --  has the same meaning as the more verbose:
296      --
297      --     Put_Line ("X = " & Temperature_Type'Image (X));
298      --
299      --  where Temperature_Type is the subtype of the object X.
300
301      -------------------
302      -- Integer_Value --
303      -------------------
304
305      Attribute_Integer_Value => True,
306      --  For every integer type S, S'Integer_Value denotes a function
307      --  with the following specification:
308      --
309      --    function S'Integer_Value (Arg : universal_fixed) return S;
310      --
311      --  The value returned is the integer value V, such that
312      --
313      --    Arg = V * fixed-type'Small
314      --
315      --  The effect is thus equivalent to first doing an unchecked convert
316      --  from the fixed-point type to its corresponding implementation type,
317      --  and then converting the result to the target integer type. This
318      --  attribute is primarily intended for use in implementation of the
319      --  standard input-output functions for fixed-point values.
320
321      Attribute_Invalid_Value => True,
322      --  For every scalar type, S'Invalid_Value designates an undefined value
323      --  of the type. If possible this value is an invalid value, and in fact
324      --  is identical to the value that would be set if Initialize_Scalars
325      --  mode were in effect (including the behavior of its value on
326      --  environment variables or binder switches). The intended use is to
327      --  set a value where initialization is required (e.g. as a result of the
328      --  coding standards in use), but logically no initialization is needed,
329      --  and the value should never be accessed.
330
331      Attribute_Loop_Entry => True,
332      --  For every object of a non-limited type, S'Loop_Entry [(Loop_Name)]
333      --  denotes the constant value of prefix S at the point of entry into the
334      --  related loop. The type of the attribute is the type of the prefix.
335
336      ------------------
337      -- Machine_Size --
338      ------------------
339
340      Attribute_Machine_Size => True,
341      --  This attribute is identical to the Object_Size attribute. It is
342      --  provided for compatibility with the DEC attribute of this name.
343
344      -----------------------
345      -- Maximum_Alignment --
346      -----------------------
347
348      Attribute_Maximum_Alignment => True,
349      --  Standard'Maximum_Alignment (Standard is the only permissible prefix)
350      --  provides the maximum useful alignment value for the target. This is a
351      --  static value that can be used to specify the alignment for an object,
352      --  guaranteeing that it is properly aligned in all cases. The time this
353      --  is useful is when an external object is imported and its alignment
354      --  requirements are unknown. This is a static attribute.
355
356      --------------------
357      -- Mechanism_Code --
358      --------------------
359
360      Attribute_Mechanism_Code => True,
361      --  function'Mechanism_Code yields an integer code for the mechanism
362      --  used for the result of function, and subprogram'Mechanism_Code (n)
363      --  yields the mechanism used for formal parameter number n (a static
364      --  integer value, 1 = first parameter). The code returned is:
365      --
366      --     1 = by copy (value)
367      --     2 = by reference
368      --     3 = by descriptor (default descriptor type)
369      --     4 = by descriptor (UBS  unaligned bit string)
370      --     5 = by descriptor (UBSB aligned bit string with arbitrary bounds)
371      --     6 = by descriptor (UBA  unaligned bit array)
372      --     7 = by descriptor (S    string, also scalar access type parameter)
373      --     8 = by descriptor (SB   string with arbitrary bounds)
374      --     9 = by descriptor (A    contiguous array)
375      --    10 = by descriptor (NCA  non-contiguous array)
376
377      --------------------
378      -- Null_Parameter --
379      --------------------
380
381      Attribute_Null_Parameter => True,
382      --  A reference T'Null_Parameter denotes an (imaginary) object of type
383      --  or subtype T allocated at (machine) address zero. The attribute is
384      --  allowed only as the default expression of a formal parameter, or
385      --  as an actual expression of a subprogram call. In either case, the
386      --  subprogram must be imported.
387      --
388      --  The identity of the object is represented by the address zero in
389      --  the argument list, independent of the passing mechanism (explicit
390      --  or default).
391      --
392      --  The reason that this capability is needed is that for a record or
393      --  other composite object passed by reference, there is no other way
394      --  of specifying that a zero address should be passed.
395
396      -----------------
397      -- Object_Size --
398      -----------------
399
400      Attribute_Object_Size => True,
401      --  Type'Object_Size is the same as Type'Size for all types except
402      --  fixed-point types and discrete types. For fixed-point types and
403      --  discrete types, this attribute gives the size used for default
404      --  allocation of objects and components of the size. See section in
405      --  Einfo ("Handling of Type'Size values") for further details.
406
407      -------------------------
408      -- Passed_By_Reference --
409      -------------------------
410
411      Attribute_Passed_By_Reference => True,
412      --  T'Passed_By_Reference for any subtype T returns a boolean value that
413      --  is true if the type is normally passed by reference and false if the
414      --  type is normally passed by copy in calls. For scalar types, the
415      --  result is always False and is static. For non-scalar types, the
416      --  result is non-static (since it is computed by Gigi).
417
418      ------------------
419      -- Range_Length --
420      ------------------
421
422      Attribute_Range_Length => True,
423      --  T'Range_Length for any discrete type T yields the number of values
424      --  represented by the subtype (zero for a null range). The result is
425      --  static for static subtypes. Note that Range_Length applied to the
426      --  index subtype of a one dimensional array always gives the same result
427      --  as Range applied to the array itself. The result is of type universal
428      --  integer.
429
430      ---------
431      -- Ref --
432      ---------
433
434      Attribute_Ref => True,
435      --  System.Address'Ref (Address is the only permissible prefix) is
436      --  equivalent to System'To_Address, provided for compatibility with
437      --  other compilers.
438
439      ------------------
440      -- Storage_Unit --
441      ------------------
442
443      Attribute_Storage_Unit => True,
444      --  Standard'Storage_Unit (Standard is the only permissible prefix)
445      --  provides the value System.Storage_Unit, and is intended primarily
446      --  for constructing this definition in package System (see note above
447      --  in Default_Bit_Order description). The is a static attribute.
448
449      ---------------
450      -- Stub_Type --
451      ---------------
452
453      Attribute_Stub_Type => True,
454      --  The GNAT implementation of remote access-to-classwide types is
455      --  organised as described in AARM E.4(20.t): a value of an RACW type
456      --  (designating a remote object) is represented as a normal access
457      --  value, pointing to a "stub" object which in turn contains the
458      --  necessary information to contact the designated remote object. A
459      --  call on any dispatching operation of such a stub object does the
460      --  remote call, if necessary, using the information in the stub object
461      --  to locate the target partition, etc.
462      --
463      --  For a prefix T that denotes a remote access-to-classwide type,
464      --  T'Stub_Type denotes the type of the corresponding stub objects.
465      --
466      --  By construction, the layout of T'Stub_Type is identical to that of
467      --  System.Partition_Interface.RACW_Stub_Type (see implementation notes
468      --  in body of Exp_Dist).
469
470      -----------------
471      -- Target_Name --
472      -----------------
473
474      Attribute_Target_Name => True,
475      --  Standard'Target_Name yields the string identifying the target for the
476      --  compilation, taken from Sdefault.Target_Name.
477
478      ----------------
479      -- To_Address --
480      ----------------
481
482      Attribute_To_Address => True,
483      --  System'To_Address (System is the only permissible prefix) is a
484      --  function that takes any integer value, and converts it into an
485      --  address value. The semantics is to first convert the integer value to
486      --  type Integer_Address according to normal conversion rules, and then
487      --  to convert this to an address using the same semantics as the
488      --  System.Storage_Elements.To_Address function. The important difference
489      --  is that this is a static attribute so it can be used in
490      --  initializations in preelaborate packages.
491
492      ----------------
493      -- Type_Class --
494      ----------------
495
496      Attribute_Type_Class => True,
497      --  T'Type_Class for any type or subtype T yields the value of the type
498      --  class for the full type of T. If T is a generic formal type, then the
499      --  value is the value for the corresponding actual subtype. The value of
500      --  this attribute is of type System.Aux_DEC.Type_Class, which has the
501      --  following definition:
502      --
503      --    type Type_Class is
504      --      (Type_Class_Enumeration,
505      --       Type_Class_Integer,
506      --       Type_Class_Fixed_Point,
507      --       Type_Class_Floating_Point,
508      --       Type_Class_Array,
509      --       Type_Class_Record,
510      --       Type_Class_Access,
511      --       Type_Class_Task,
512      --       Type_Class_Address);
513      --
514      --  Protected types yield the value Type_Class_Task, which thus applies
515      --  to all concurrent types. This attribute is designed to be compatible
516      --  with the DEC Ada attribute of the same name.
517      --
518      --  Note: if pragma Extend_System is used to merge the definitions of
519      --  Aux_DEC into System, then the type Type_Class can be referenced
520      --  as an entity within System, as can its enumeration literals.
521
522      ------------------------------
523      -- Universal_Literal_String --
524      ------------------------------
525
526      Attribute_Universal_Literal_String => True,
527      --  The prefix of 'Universal_Literal_String must be a named number.
528      --  The static result is the string consisting of the characters of
529      --  the number as defined in the original source. This allows the
530      --  user program to access the actual text of named numbers without
531      --  intermediate conversions and without the need to enclose the
532      --  strings in quotes (which would preclude their use as numbers).
533
534      -------------------------
535      -- Unrestricted_Access --
536      -------------------------
537
538      Attribute_Unrestricted_Access => True,
539      --  The Unrestricted_Access attribute is similar to Access except that
540      --  all accessibility and aliased view checks are omitted. This is very
541      --  much a user-beware attribute. Basically its status is very similar
542      --  to Address, for which it is a desirable replacement where the value
543      --  desired is an access type. In other words, its effect is identical
544      --  to first taking 'Address and then doing an unchecked conversion to
545      --  a desired access type. Note that in GNAT, but not necessarily in
546      --  other implementations, the use of static chains for inner level
547      --  subprograms means that Unrestricted_Access applied to a subprogram
548      --  yields a value that can be called as long as the subprogram is in
549      --  scope (normal Ada 95 accessibility rules restrict this usage).
550
551      ---------------
552      -- VADS_Size --
553      ---------------
554
555      Attribute_VADS_Size => True,
556      --  Typ'VADS_Size yields the Size value typically yielded by some Ada 83
557      --  compilers. The differences between VADS_Size and Size is that for
558      --  scalar types for which no Size has been specified, VADS_Size yields
559      --  the Object_Size rather than the Value_Size. For example, while
560      --  Natural'Size is typically 31, the value of Natural'VADS_Size is 32.
561      --  For all other types, Size and VADS_Size yield the same value.
562
563      -------------------
564      -- Valid_Scalars --
565      -------------------
566
567      Attribute_Valid_Scalars => True,
568      --  Obj'Valid_Scalars can be applied to any object. The result depends
569      --  on the type of the object:
570      --
571      --    For a scalar type, the result is the same as obj'Valid
572      --
573      --    For an array object, the result is True if the result of applying
574      --    Valid_Scalars to every component is True. For an empty array the
575      --    result is True.
576      --
577      --    For a record object, the result is True if the result of applying
578      --    Valid_Scalars to every component is True. For class-wide types,
579      --    only the components of the base type are checked. For variant
580      --    records, only the components actually present are checked. The
581      --    discriminants, if any, are also checked. If there are no components
582      --    or discriminants, the result is True.
583      --
584      --    For any other type that has discriminants, the result is True if
585      --    the result of applying Valid_Scalars to each discriminant is True.
586      --
587      --    For all other types, the result is always True
588      --
589      --  A warning is given for a trivially True result, when the attribute
590      --  is applied to an object that is not of scalar, array, or record
591      --  type, or in the composite case if no scalar subcomponents exist. For
592      --  a variant record, the warning is given only if none of the variants
593      --  have scalar subcomponents. In addition, the warning is suppressed
594      --  for private types, or generic formal types in an instance.
595
596      ----------------
597      -- Value_Size --
598      ----------------
599
600      Attribute_Value_Size => True,
601      --  Type'Value_Size is the number of bits required to represent value of
602      --  the given subtype. It is the same as Type'Size, but, unlike Size, may
603      --  be set for non-first subtypes. See section in Einfo ("Handling of
604      --  type'Size values") for further details.
605
606      ---------------
607      -- Word_Size --
608      ---------------
609
610      Attribute_Word_Size => True,
611      --  Standard'Word_Size (Standard is the only permissible prefix)
612      --  provides the value System.Word_Size, and is intended primarily
613      --  for constructing this definition in package System (see note above
614      --  in Default_Bit_Order description). This is a static attribute.
615
616      others => False);
617
618   --  The following table lists all attributes that yield a result of a
619   --  universal type.
620
621   Universal_Type_Attribute : constant array (Attribute_Id) of Boolean :=
622     (Attribute_Aft                          => True,
623      Attribute_Alignment                    => True,
624      Attribute_Component_Size               => True,
625      Attribute_Count                        => True,
626      Attribute_Delta                        => True,
627      Attribute_Digits                       => True,
628      Attribute_Exponent                     => True,
629      Attribute_First_Bit                    => True,
630      Attribute_Fore                         => True,
631      Attribute_Last_Bit                     => True,
632      Attribute_Length                       => True,
633      Attribute_Machine_Emax                 => True,
634      Attribute_Machine_Emin                 => True,
635      Attribute_Machine_Mantissa             => True,
636      Attribute_Machine_Radix                => True,
637      Attribute_Max_Alignment_For_Allocation => True,
638      Attribute_Max_Size_In_Storage_Elements => True,
639      Attribute_Model_Emin                   => True,
640      Attribute_Model_Epsilon                => True,
641      Attribute_Model_Mantissa               => True,
642      Attribute_Model_Small                  => True,
643      Attribute_Modulus                      => True,
644      Attribute_Pos                          => True,
645      Attribute_Position                     => True,
646      Attribute_Safe_First                   => True,
647      Attribute_Safe_Last                    => True,
648      Attribute_Scale                        => True,
649      Attribute_Size                         => True,
650      Attribute_Small                        => True,
651      Attribute_Wide_Wide_Width              => True,
652      Attribute_Wide_Width                   => True,
653      Attribute_Width                        => True,
654      others                                 => False);
655
656   -----------------
657   -- Subprograms --
658   -----------------
659
660   procedure Analyze_Attribute (N : Node_Id);
661   --  Performs bottom up semantic analysis of an attribute. Note that the
662   --  parser has already checked that type returning attributes appear only
663   --  in appropriate contexts (i.e. in subtype marks, or as prefixes for
664   --  other attributes).
665
666   function Name_Implies_Lvalue_Prefix (Nam : Name_Id) return Boolean;
667   --  Determine whether the name of an attribute reference categorizes its
668   --  prefix as an lvalue. The following attributes fall under this bracket
669   --  by directly or indirectly modifying their prefixes.
670   --     Access
671   --     Address
672   --     Input
673   --     Read
674   --     Unchecked_Access
675   --     Unrestricted_Access
676
677   procedure Resolve_Attribute (N : Node_Id; Typ : Entity_Id);
678   --  Performs type resolution of attribute. If the attribute yields a
679   --  universal value, mark its type as that of the context. On the other
680   --  hand, if the context itself is universal (as in T'Val (T'Pos (X)), mark
681   --  the type as being the largest type of that class that can be used at
682   --  run-time. This is correct since either the value gets folded (in which
683   --  case it doesn't matter what type of the class we give if, since the
684   --  folding uses universal arithmetic anyway) or it doesn't get folded (in
685   --  which case it is going to be dealt with at runtime, and the largest type
686   --  is right).
687
688   function Stream_Attribute_Available
689     (Typ          : Entity_Id;
690      Nam          : TSS_Name_Type;
691      Partial_View : Entity_Id := Empty) return Boolean;
692   --  For a limited type Typ, return True if and only if the given attribute
693   --  is available. For Ada 2005, availability is defined by 13.13.2(36/1).
694   --  For Ada 95, an attribute is considered to be available if it has been
695   --  specified using an attribute definition clause for the type, or for its
696   --  full view, or for an ancestor of either. Parameter Partial_View is used
697   --  only internally, when checking for an attribute definition clause that
698   --  is not visible (Ada 95 only).
699
700end Sem_Attr;
701