1 /* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2    Copyright (C) 2001-2019 Free Software Foundation, Inc.
3    Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* Get Xtensa configuration settings */
22 #include "xtensa-config.h"
23 
24 /* External variables defined in xtensa.c.  */
25 
26 /* Macros used in the machine description to select various Xtensa
27    configuration options.  */
28 #ifndef XCHAL_HAVE_MUL32_HIGH
29 #define XCHAL_HAVE_MUL32_HIGH 0
30 #endif
31 #ifndef XCHAL_HAVE_RELEASE_SYNC
32 #define XCHAL_HAVE_RELEASE_SYNC 0
33 #endif
34 #ifndef XCHAL_HAVE_S32C1I
35 #define XCHAL_HAVE_S32C1I 0
36 #endif
37 #ifndef XCHAL_HAVE_THREADPTR
38 #define XCHAL_HAVE_THREADPTR 0
39 #endif
40 #ifndef XCHAL_HAVE_FP_POSTINC
41 #define XCHAL_HAVE_FP_POSTINC 0
42 #endif
43 #define TARGET_BIG_ENDIAN	XCHAL_HAVE_BE
44 #define TARGET_DENSITY		XCHAL_HAVE_DENSITY
45 #define TARGET_MAC16		XCHAL_HAVE_MAC16
46 #define TARGET_MUL16		XCHAL_HAVE_MUL16
47 #define TARGET_MUL32		XCHAL_HAVE_MUL32
48 #define TARGET_MUL32_HIGH	XCHAL_HAVE_MUL32_HIGH
49 #define TARGET_DIV32		XCHAL_HAVE_DIV32
50 #define TARGET_NSA		XCHAL_HAVE_NSA
51 #define TARGET_MINMAX		XCHAL_HAVE_MINMAX
52 #define TARGET_SEXT		XCHAL_HAVE_SEXT
53 #define TARGET_BOOLEANS		XCHAL_HAVE_BOOLEANS
54 #define TARGET_HARD_FLOAT	XCHAL_HAVE_FP
55 #define TARGET_HARD_FLOAT_DIV	XCHAL_HAVE_FP_DIV
56 #define TARGET_HARD_FLOAT_RECIP	XCHAL_HAVE_FP_RECIP
57 #define TARGET_HARD_FLOAT_SQRT	XCHAL_HAVE_FP_SQRT
58 #define TARGET_HARD_FLOAT_RSQRT	XCHAL_HAVE_FP_RSQRT
59 #define TARGET_HARD_FLOAT_POSTINC XCHAL_HAVE_FP_POSTINC
60 #define TARGET_ABS		XCHAL_HAVE_ABS
61 #define TARGET_ADDX		XCHAL_HAVE_ADDX
62 #define TARGET_RELEASE_SYNC	XCHAL_HAVE_RELEASE_SYNC
63 #define TARGET_S32C1I		XCHAL_HAVE_S32C1I
64 #define TARGET_ABSOLUTE_LITERALS XSHAL_USE_ABSOLUTE_LITERALS
65 #define TARGET_THREADPTR	XCHAL_HAVE_THREADPTR
66 #define TARGET_LOOPS	        XCHAL_HAVE_LOOPS
67 #define TARGET_WINDOWED_ABI	(XSHAL_ABI == XTHAL_ABI_WINDOWED)
68 #define TARGET_DEBUG		XCHAL_HAVE_DEBUG
69 #define TARGET_L32R		XCHAL_HAVE_L32R
70 
71 #define TARGET_DEFAULT (MASK_SERIALIZE_VOLATILE)
72 
73 #ifndef HAVE_AS_TLS
74 #define HAVE_AS_TLS 0
75 #endif
76 
77 
78 /* Target CPU builtins.  */
79 #define TARGET_CPU_CPP_BUILTINS()					\
80   do {									\
81     builtin_assert ("cpu=xtensa");					\
82     builtin_assert ("machine=xtensa");					\
83     builtin_define ("__xtensa__");					\
84     builtin_define ("__XTENSA__");					\
85     builtin_define (TARGET_WINDOWED_ABI ?				\
86 		    "__XTENSA_WINDOWED_ABI__" : "__XTENSA_CALL0_ABI__");\
87     builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
88     if (!TARGET_HARD_FLOAT)						\
89       builtin_define ("__XTENSA_SOFT_FLOAT__");				\
90   } while (0)
91 
92 #define CPP_SPEC " %(subtarget_cpp_spec) "
93 
94 #ifndef SUBTARGET_CPP_SPEC
95 #define SUBTARGET_CPP_SPEC ""
96 #endif
97 
98 #define EXTRA_SPECS							\
99   { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
100 
101 /* Target machine storage layout */
102 
103 /* Define this if most significant bit is lowest numbered
104    in instructions that operate on numbered bit-fields.  */
105 #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
106 
107 /* Define this if most significant byte of a word is the lowest numbered.  */
108 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
109 
110 /* Define this if most significant word of a multiword number is the lowest.  */
111 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
112 
113 #define MAX_BITS_PER_WORD 32
114 
115 /* Width of a word, in units (bytes).  */
116 #define UNITS_PER_WORD 4
117 #define MIN_UNITS_PER_WORD 4
118 
119 /* Width of a floating point register.  */
120 #define UNITS_PER_FPREG 4
121 
122 /* Size in bits of various types on the target machine.  */
123 #define INT_TYPE_SIZE 32
124 #define SHORT_TYPE_SIZE 16
125 #define LONG_TYPE_SIZE 32
126 #define LONG_LONG_TYPE_SIZE 64
127 #define FLOAT_TYPE_SIZE 32
128 #define DOUBLE_TYPE_SIZE 64
129 #define LONG_DOUBLE_TYPE_SIZE 64
130 
131 /* Allocation boundary (in *bits*) for storing pointers in memory.  */
132 #define POINTER_BOUNDARY 32
133 
134 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
135 #define PARM_BOUNDARY 32
136 
137 /* Allocation boundary (in *bits*) for the code of a function.  */
138 #define FUNCTION_BOUNDARY 32
139 
140 /* Alignment of field after 'int : 0' in a structure.  */
141 #define EMPTY_FIELD_BOUNDARY 32
142 
143 /* Every structure's size must be a multiple of this.  */
144 #define STRUCTURE_SIZE_BOUNDARY 8
145 
146 /* There is no point aligning anything to a rounder boundary than this.  */
147 #define BIGGEST_ALIGNMENT 128
148 
149 /* Set this nonzero if move instructions will actually fail to work
150    when given unaligned data.  */
151 #define STRICT_ALIGNMENT 1
152 
153 /* Promote integer modes smaller than a word to SImode.  Set UNSIGNEDP
154    for QImode, because there is no 8-bit load from memory with sign
155    extension.  Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
156    loads both with and without sign extension.  */
157 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)				\
158   do {									\
159     if (GET_MODE_CLASS (MODE) == MODE_INT				\
160 	&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD)			\
161       {									\
162 	if ((MODE) == QImode)						\
163 	  (UNSIGNEDP) = 1;						\
164 	(MODE) = SImode;						\
165       }									\
166   } while (0)
167 
168 /* Imitate the way many other C compilers handle alignment of
169    bitfields and the structures that contain them.  */
170 #define PCC_BITFIELD_TYPE_MATTERS 1
171 
172 /* Align arrays, unions and records to at least a word boundary.
173    One use of this macro is to increase alignment of medium-size
174    data to make it all fit in fewer cache lines.  Another is to
175    cause character arrays to be word-aligned so that 'strcpy' calls
176    that copy constants to character arrays can be done inline.  */
177 #undef DATA_ALIGNMENT
178 #define DATA_ALIGNMENT(TYPE, ALIGN)					\
179   (!optimize_size && (((ALIGN) < BITS_PER_WORD)				\
180     && (TREE_CODE (TYPE) == ARRAY_TYPE					\
181 	|| TREE_CODE (TYPE) == UNION_TYPE				\
182 	|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
183 
184 /* Operations between registers always perform the operation
185    on the full register even if a narrower mode is specified.  */
186 #define WORD_REGISTER_OPERATIONS 1
187 
188 /* Xtensa loads are zero-extended by default.  */
189 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
190 
191 /* Standard register usage.  */
192 
193 /* Number of actual hardware registers.
194    The hardware registers are assigned numbers for the compiler
195    from 0 to just below FIRST_PSEUDO_REGISTER.
196    All registers that the compiler knows about must be given numbers,
197    even those that are not normally considered general registers.
198 
199    The fake frame pointer and argument pointer will never appear in
200    the generated code, since they will always be eliminated and replaced
201    by either the stack pointer or the hard frame pointer.
202 
203    0 - 15	AR[0] - AR[15]
204    16		FRAME_POINTER (fake = initial sp)
205    17		ARG_POINTER (fake = initial sp + framesize)
206    18		BR[0] for floating-point CC
207    19 - 34	FR[0] - FR[15]
208    35		MAC16 accumulator */
209 
210 #define FIRST_PSEUDO_REGISTER 36
211 
212 /* Return the stabs register number to use for REGNO.  */
213 #define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
214 
215 /* 1 for registers that have pervasive standard uses
216    and are not available for the register allocator.  */
217 #define FIXED_REGISTERS							\
218 {									\
219   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
220   1, 1, 0,								\
221   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
222   0,									\
223 }
224 
225 /* 1 for registers not available across function calls.
226    These must include the FIXED_REGISTERS and also any
227    registers that can be used without being saved.
228    The latter must include the registers where values are returned
229    and the register where structure-value addresses are passed.
230    Aside from that, you can include as many other registers as you like.
231 
232    The value encoding is the following:
233    1: register is used by all ABIs;
234    bit 1 is set: register is used by windowed ABI;
235    bit 2 is set: register is used by call0 ABI.
236 
237    Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.  */
238 
239 #define CALL_USED_REGISTERS						\
240 {									\
241   1, 1, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 2, 2, 2, 2,			\
242   1, 1, 1,								\
243   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
244   1,									\
245 }
246 
247 /* For non-leaf procedures on Xtensa processors, the allocation order
248    is as specified below by REG_ALLOC_ORDER.  For leaf procedures, we
249    want to use the lowest numbered registers first to minimize
250    register window overflows.  However, local-alloc is not smart
251    enough to consider conflicts with incoming arguments.  If an
252    incoming argument in a2 is live throughout the function and
253    local-alloc decides to use a2, then the incoming argument must
254    either be spilled or copied to another register.  To get around
255    this, we define ADJUST_REG_ALLOC_ORDER to redefine
256    reg_alloc_order for leaf functions such that lowest numbered
257    registers are used first with the exception that the incoming
258    argument registers are not used until after other register choices
259    have been exhausted.  */
260 
261 #define REG_ALLOC_ORDER \
262 {  8,  9, 10, 11, 12, 13, 14, 15,  7,  6,  5,  4,  3,  2, \
263   18, \
264   19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
265    0,  1, 16, 17, \
266   35, \
267 }
268 
269 #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
270 
271 /* For Xtensa, the only point of this is to prevent GCC from otherwise
272    giving preference to call-used registers.  To minimize window
273    overflows for the AR registers, we want to give preference to the
274    lower-numbered AR registers.  For other register files, which are
275    not windowed, we still prefer call-used registers, if there are any.  */
276 extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
277 #define LEAF_REGISTERS xtensa_leaf_regs
278 
279 /* For Xtensa, no remapping is necessary, but this macro must be
280    defined if LEAF_REGISTERS is defined.  */
281 #define LEAF_REG_REMAP(REGNO) (REGNO)
282 
283 /* This must be declared if LEAF_REGISTERS is set.  */
284 extern int leaf_function;
285 
286 /* Internal macros to classify a register number.  */
287 
288 /* 16 address registers + fake registers */
289 #define GP_REG_FIRST 0
290 #define GP_REG_LAST  17
291 #define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
292 
293 /* Coprocessor registers */
294 #define BR_REG_FIRST 18
295 #define BR_REG_LAST  18
296 #define BR_REG_NUM   (BR_REG_LAST - BR_REG_FIRST + 1)
297 
298 /* 16 floating-point registers */
299 #define FP_REG_FIRST 19
300 #define FP_REG_LAST  34
301 #define FP_REG_NUM   (FP_REG_LAST - FP_REG_FIRST + 1)
302 
303 /* MAC16 accumulator */
304 #define ACC_REG_FIRST 35
305 #define ACC_REG_LAST 35
306 #define ACC_REG_NUM  (ACC_REG_LAST - ACC_REG_FIRST + 1)
307 
308 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
309 #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
310 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
311 #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
312 
313 /* Register to use for pushing function arguments.  */
314 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
315 
316 /* Base register for access to local variables of the function.  */
317 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + \
318 				   (TARGET_WINDOWED_ABI ? 7 : 15))
319 
320 /* The register number of the frame pointer register, which is used to
321    access automatic variables in the stack frame.  For Xtensa, this
322    register never appears in the output.  It is always eliminated to
323    either the stack pointer or the hard frame pointer.  */
324 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
325 
326 /* Base register for access to arguments of the function.  */
327 #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
328 
329 /* Hard frame pointer is neither frame nor arg pointer.
330    The definitions are here because actual hard frame pointer register
331    definition is not a preprocessor constant.  */
332 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
333 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
334 
335 /* For now we don't try to use the full set of boolean registers.  Without
336    software pipelining of FP operations, there's not much to gain and it's
337    a real pain to get them reloaded.  */
338 #define FPCC_REGNUM (BR_REG_FIRST + 0)
339 
340 /* It is as good or better to call a constant function address than to
341    call an address kept in a register.  */
342 #define NO_FUNCTION_CSE 1
343 
344 /* Xtensa processors have "register windows".  GCC does not currently
345    take advantage of the possibility for variable-sized windows; instead,
346    we use a fixed window size of 8.  */
347 
348 #define INCOMING_REGNO(OUT)						\
349   (TARGET_WINDOWED_ABI ?						\
350    ((GP_REG_P (OUT) &&							\
351      ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ?		\
352     (OUT) - WINDOW_SIZE : (OUT)) : (OUT))
353 
354 #define OUTGOING_REGNO(IN)						\
355   (TARGET_WINDOWED_ABI ?						\
356    ((GP_REG_P (IN) &&							\
357      ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ?		\
358     (IN) + WINDOW_SIZE : (IN)) : (IN))
359 
360 
361 /* Define the classes of registers for register constraints in the
362    machine description.  */
363 enum reg_class
364 {
365   NO_REGS,			/* no registers in set */
366   BR_REGS,			/* coprocessor boolean registers */
367   FP_REGS,			/* floating point registers */
368   ACC_REG,			/* MAC16 accumulator */
369   SP_REG,			/* sp register (aka a1) */
370   RL_REGS,			/* preferred reload regs (not sp or fp) */
371   GR_REGS,			/* integer registers except sp */
372   AR_REGS,			/* all integer registers */
373   ALL_REGS,			/* all registers */
374   LIM_REG_CLASSES		/* max value + 1 */
375 };
376 
377 #define N_REG_CLASSES (int) LIM_REG_CLASSES
378 
379 #define GENERAL_REGS AR_REGS
380 
381 /* An initializer containing the names of the register classes as C
382    string constants.  These names are used in writing some of the
383    debugging dumps.  */
384 #define REG_CLASS_NAMES							\
385 {									\
386   "NO_REGS",								\
387   "BR_REGS",								\
388   "FP_REGS",								\
389   "ACC_REG",								\
390   "SP_REG",								\
391   "RL_REGS",								\
392   "GR_REGS",								\
393   "AR_REGS",								\
394   "ALL_REGS"								\
395 }
396 
397 /* Contents of the register classes.  The Nth integer specifies the
398    contents of class N.  The way the integer MASK is interpreted is
399    that register R is in the class if 'MASK & (1 << R)' is 1.  */
400 #define REG_CLASS_CONTENTS \
401 { \
402   { 0x00000000, 0x00000000 }, /* no registers */ \
403   { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
404   { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
405   { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
406   { 0x00000002, 0x00000000 }, /* stack pointer register */ \
407   { 0x0000fffd, 0x00000000 }, /* preferred reload registers */ \
408   { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
409   { 0x0003ffff, 0x00000000 }, /* integer registers */ \
410   { 0xffffffff, 0x0000000f }  /* all registers */ \
411 }
412 
413 /* A C expression whose value is a register class containing hard
414    register REGNO.  In general there is more that one such class;
415    choose a class which is "minimal", meaning that no smaller class
416    also contains the register.  */
417 #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class (REGNO)
418 
419 /* Use the Xtensa AR register file for base registers.
420    No index registers.  */
421 #define BASE_REG_CLASS AR_REGS
422 #define INDEX_REG_CLASS NO_REGS
423 
424 /* The small_register_classes_for_mode_p hook must always return true for
425    Xtrnase, because all of the 16 AR registers may be explicitly used in
426    the RTL, as either incoming or outgoing arguments.  */
427 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
428 
429 /* Stack layout; function entry, exit and calling.  */
430 
431 #define STACK_GROWS_DOWNWARD 1
432 
433 #define FRAME_GROWS_DOWNWARD (flag_stack_protect \
434 			      || (flag_sanitize & SANITIZE_ADDRESS) != 0)
435 
436 /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
437    they are eliminated to either the stack pointer or hard frame pointer.  */
438 #define ELIMINABLE_REGS							\
439 {{ ARG_POINTER_REGNUM,		STACK_POINTER_REGNUM},			\
440  { ARG_POINTER_REGNUM,		HARD_FRAME_POINTER_REGNUM},		\
441  { FRAME_POINTER_REGNUM,	STACK_POINTER_REGNUM},			\
442  { FRAME_POINTER_REGNUM,	HARD_FRAME_POINTER_REGNUM}}
443 
444 /* Specify the initial difference between the specified pair of registers.  */
445 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
446   (OFFSET) = xtensa_initial_elimination_offset ((FROM), (TO))
447 
448 /* If defined, the maximum amount of space required for outgoing
449    arguments will be computed and placed into the variable
450    'crtl->outgoing_args_size'.  No space will be pushed
451    onto the stack for each call; instead, the function prologue
452    should increase the stack frame size by this amount.  */
453 #define ACCUMULATE_OUTGOING_ARGS 1
454 
455 /* Offset from the argument pointer register to the first argument's
456    address.  On some machines it may depend on the data type of the
457    function.  If 'ARGS_GROW_DOWNWARD', this is the offset to the
458    location above the first argument's address.  */
459 #define FIRST_PARM_OFFSET(FNDECL) 0
460 
461 /* Align stack frames on 128 bits for Xtensa.  This is necessary for
462    128-bit datatypes defined in TIE (e.g., for Vectra).  */
463 #define STACK_BOUNDARY 128
464 
465 /* Use a fixed register window size of 8.  */
466 #define WINDOW_SIZE (TARGET_WINDOWED_ABI ? 8 : 0)
467 
468 /* Symbolic macros for the registers used to return integer, floating
469    point, and values of coprocessor and user-defined modes.  */
470 #define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
471 #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
472 
473 /* Symbolic macros for the first/last argument registers.  */
474 #define GP_ARG_FIRST (GP_REG_FIRST + 2)
475 #define GP_ARG_LAST  (GP_REG_FIRST + 7)
476 #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
477 #define GP_OUTGOING_ARG_LAST  (GP_REG_FIRST + 7 + WINDOW_SIZE)
478 
479 #define MAX_ARGS_IN_REGISTERS 6
480 
481 /* Don't worry about compatibility with PCC.  */
482 #define DEFAULT_PCC_STRUCT_RETURN 0
483 
484 /* A C expression that is nonzero if REGNO is the number of a hard
485    register in which function arguments are sometimes passed.  This
486    does *not* include implicit arguments such as the static chain and
487    the structure-value address.  On many machines, no registers can be
488    used for this purpose since all function arguments are pushed on
489    the stack.  */
490 #define FUNCTION_ARG_REGNO_P(N)						\
491   ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
492 
493 /* Record the number of argument words seen so far, along with a flag to
494    indicate whether these are incoming arguments.  (FUNCTION_INCOMING_ARG
495    is used for both incoming and outgoing args, so a separate flag is
496    needed.  */
497 typedef struct xtensa_args
498 {
499   int arg_words;
500   int incoming;
501 } CUMULATIVE_ARGS;
502 
503 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
504   init_cumulative_args (&CUM, 0)
505 
506 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME)		\
507   init_cumulative_args (&CUM, 1)
508 
509 /* Profiling Xtensa code is typically done with the built-in profiling
510    feature of Tensilica's instruction set simulator, which does not
511    require any compiler support.  Profiling code on a real (i.e.,
512    non-simulated) Xtensa processor is currently only supported by
513    GNU/Linux with glibc.  The glibc version of _mcount doesn't require
514    counter variables.  The _mcount function needs the current PC and
515    the current return address to identify an arc in the call graph.
516    Pass the current return address as the first argument; the current
517    PC is available as a0 in _mcount's register window.  Both of these
518    values contain window size information in the two most significant
519    bits; we assume that _mcount will mask off those bits.  The call to
520    _mcount uses a window size of 8 to make sure that it doesn't clobber
521    any incoming argument values.  */
522 
523 #define NO_PROFILE_COUNTERS	1
524 
525 #define FUNCTION_PROFILER(FILE, LABELNO) \
526   do {									\
527     fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
528     if (flag_pic)							\
529       {									\
530 	fprintf (FILE, "\tmovi\ta%d, _mcount@PLT\n", WINDOW_SIZE);	\
531 	fprintf (FILE, "\tcallx%d\ta%d\n", WINDOW_SIZE, WINDOW_SIZE);	\
532       }									\
533     else								\
534       fprintf (FILE, "\tcall%d\t_mcount\n", WINDOW_SIZE);		\
535   } while (0)
536 
537 /* Stack pointer value doesn't matter at exit.  */
538 #define EXIT_IGNORE_STACK 1
539 
540 /* Size in bytes of the trampoline, as an integer.  Make sure this is
541    a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings.  */
542 #define TRAMPOLINE_SIZE (TARGET_WINDOWED_ABI ? \
543 			 (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? \
544 			  60 : 52) : \
545 			 (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? \
546 			  32 : 24))
547 
548 /* Alignment required for trampolines, in bits.  */
549 #define TRAMPOLINE_ALIGNMENT 32
550 
551 /* If defined, a C expression that produces the machine-specific code
552    to setup the stack so that arbitrary frames can be accessed.
553 
554    On Xtensa, a stack back-trace must always begin from the stack pointer,
555    so that the register overflow save area can be located.  However, the
556    stack-walking code in GCC always begins from the hard_frame_pointer
557    register, not the stack pointer.  The frame pointer is usually equal
558    to the stack pointer, but the __builtin_return_address and
559    __builtin_frame_address functions will not work if count > 0 and
560    they are called from a routine that uses alloca.  These functions
561    are not guaranteed to work at all if count > 0 so maybe that is OK.
562 
563    A nicer solution would be to allow the architecture-specific files to
564    specify whether to start from the stack pointer or frame pointer.  That
565    would also allow us to skip the machine->accesses_prev_frame stuff that
566    we currently need to ensure that there is a frame pointer when these
567    builtin functions are used.  */
568 
569 #define SETUP_FRAME_ADDRESSES  xtensa_setup_frame_addresses
570 
571 /* A C expression whose value is RTL representing the address in a
572    stack frame where the pointer to the caller's frame is stored.
573    Assume that FRAMEADDR is an RTL expression for the address of the
574    stack frame itself.
575 
576    For Xtensa, there is no easy way to get the frame pointer if it is
577    not equivalent to the stack pointer.  Moreover, the result of this
578    macro is used for continuing to walk back up the stack, so it must
579    return the stack pointer address.  Thus, there is some inconsistency
580    here in that __builtin_frame_address will return the frame pointer
581    when count == 0 and the stack pointer when count > 0.  */
582 
583 #define DYNAMIC_CHAIN_ADDRESS(frame)					\
584   gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
585 
586 /* Define this if the return address of a particular stack frame is
587    accessed from the frame pointer of the previous stack frame.  */
588 #define RETURN_ADDR_IN_PREVIOUS_FRAME TARGET_WINDOWED_ABI
589 
590 /* A C expression whose value is RTL representing the value of the
591    return address for the frame COUNT steps up from the current
592    frame, after the prologue.  */
593 #define RETURN_ADDR_RTX  xtensa_return_addr
594 
595 /* Addressing modes, and classification of registers for them.  */
596 
597 /* C expressions which are nonzero if register number NUM is suitable
598    for use as a base or index register in operand addresses.  */
599 
600 #define REGNO_OK_FOR_INDEX_P(NUM) 0
601 #define REGNO_OK_FOR_BASE_P(NUM) \
602   (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
603 
604 /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
605    valid for use as a base or index register.  */
606 
607 #ifdef REG_OK_STRICT
608 #define REG_OK_STRICT_FLAG 1
609 #else
610 #define REG_OK_STRICT_FLAG 0
611 #endif
612 
613 #define BASE_REG_P(X, STRICT)						\
614   ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER)			\
615    || REGNO_OK_FOR_BASE_P (REGNO (X)))
616 
617 #define REG_OK_FOR_INDEX_P(X) 0
618 #define REG_OK_FOR_BASE_P(X) BASE_REG_P (X, REG_OK_STRICT_FLAG)
619 
620 /* Maximum number of registers that can appear in a valid memory address.  */
621 #define MAX_REGS_PER_ADDRESS 1
622 
623 /* A C expression that is 1 if the RTX X is a constant which is a
624    valid address.  This is defined to be the same as 'CONSTANT_P (X)',
625    but rejecting CONST_DOUBLE.  */
626 #define CONSTANT_ADDRESS_P(X)						\
627   ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
628     || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH		\
629     || (GET_CODE (X) == CONST)))
630 
631 /* A C expression that is nonzero if X is a legitimate immediate
632    operand on the target machine when generating position independent
633    code.  */
634 #define LEGITIMATE_PIC_OPERAND_P(X)					\
635   ((GET_CODE (X) != SYMBOL_REF						\
636     || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X)))		\
637    && GET_CODE (X) != LABEL_REF						\
638    && GET_CODE (X) != CONST)
639 
640 /* Specify the machine mode that this machine uses
641    for the index in the tablejump instruction.  */
642 #define CASE_VECTOR_MODE (SImode)
643 
644 /* Define this as 1 if 'char' should by default be signed; else as 0.  */
645 #define DEFAULT_SIGNED_CHAR 0
646 
647 /* Max number of bytes we can move from memory to memory
648    in one reasonably fast instruction.  */
649 #define MOVE_MAX 4
650 #define MAX_MOVE_MAX 4
651 
652 /* Prefer word-sized loads.  */
653 #define SLOW_BYTE_ACCESS 1
654 
655 /* Shift instructions ignore all but the low-order few bits.  */
656 #define SHIFT_COUNT_TRUNCATED 1
657 
658 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 32, 1)
659 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = -1, 1)
660 
661 /* Specify the machine mode that pointers have.
662    After generation of rtl, the compiler makes no further distinction
663    between pointers and any other objects of this machine mode.  */
664 #define Pmode SImode
665 
666 /* A function address in a call instruction is a word address (for
667    indexing purposes) so give the MEM rtx a words's mode.  */
668 #define FUNCTION_MODE SImode
669 
670 #define BRANCH_COST(speed_p, predictable_p) 3
671 
672 /* How to refer to registers in assembler output.
673    This sequence is indexed by compiler's hard-register-number (see above).  */
674 #define REGISTER_NAMES							\
675 {									\
676   "a0",   "sp",   "a2",   "a3",   "a4",   "a5",   "a6",   "a7",		\
677   "a8",   "a9",   "a10",  "a11",  "a12",  "a13",  "a14",  "a15",	\
678   "fp",   "argp", "b0",							\
679   "f0",   "f1",   "f2",   "f3",   "f4",   "f5",   "f6",   "f7",		\
680   "f8",   "f9",   "f10",  "f11",  "f12",  "f13",  "f14",  "f15",	\
681   "acc"									\
682 }
683 
684 /* If defined, a C initializer for an array of structures containing a
685    name and a register number.  This macro defines additional names
686    for hard registers, thus allowing the 'asm' option in declarations
687    to refer to registers using alternate names.  */
688 #define ADDITIONAL_REGISTER_NAMES					\
689 {									\
690   { "a1",	 1 + GP_REG_FIRST }					\
691 }
692 
693 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
694 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
695 
696 /* Globalizing directive for a label.  */
697 #define GLOBAL_ASM_OP "\t.global\t"
698 
699 /* Declare an uninitialized external linkage data object.  */
700 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
701   asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
702 
703 /* This is how to output an element of a case-vector that is absolute.  */
704 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)				\
705   fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE),		\
706 	   LOCAL_LABEL_PREFIX, VALUE)
707 
708 /* This is how to output an element of a case-vector that is relative.
709    This is used for pc-relative code.  */
710 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)		\
711   do {									\
712     fprintf (STREAM, "%s%sL%u-%sL%u\n",	integer_asm_op (4, TRUE),	\
713 	     LOCAL_LABEL_PREFIX, (VALUE),				\
714 	     LOCAL_LABEL_PREFIX, (REL));				\
715   } while (0)
716 
717 /* This is how to output an assembler line that says to advance the
718    location counter to a multiple of 2**LOG bytes.  */
719 #define ASM_OUTPUT_ALIGN(STREAM, LOG)					\
720   do {									\
721     if ((LOG) != 0)							\
722       fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG));			\
723   } while (0)
724 
725 /* Indicate that jump tables go in the text section.  This is
726    necessary when compiling PIC code.  */
727 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
728 
729 
730 /* Define the strings to put out for each section in the object file.  */
731 #define TEXT_SECTION_ASM_OP	"\t.text"
732 #define DATA_SECTION_ASM_OP	"\t.data"
733 #define BSS_SECTION_ASM_OP	"\t.section\t.bss"
734 
735 
736 /* Define output to appear before the constant pool.  */
737 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE)          \
738   do {									\
739     if ((SIZE) > 0 || !TARGET_WINDOWED_ABI)				\
740       {									\
741 	resolve_unique_section ((FUNDECL), 0, flag_function_sections);	\
742 	switch_to_section (function_section (FUNDECL));			\
743 	fprintf (FILE, "\t.literal_position\n");			\
744       }									\
745   } while (0)
746 
747 
748 /* A C statement (with or without semicolon) to output a constant in
749    the constant pool, if it needs special treatment.  */
750 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
751   do {									\
752     xtensa_output_literal (FILE, X, MODE, LABELNO);			\
753     goto JUMPTO;							\
754   } while (0)
755 
756 /* How to start an assembler comment.  */
757 #define ASM_COMMENT_START "#"
758 
759 /* Exception handling.  Xtensa uses much of the standard DWARF2 unwinding
760    machinery, but the variable size register window save areas are too
761    complicated to efficiently describe with CFI entries.  The CFA must
762    still be specified in DWARF so that DW_AT_frame_base is set correctly
763    for debugging.  */
764 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 0)
765 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (0)
766 #define DWARF_ALT_FRAME_RETURN_COLUMN 16
767 #define DWARF_FRAME_REGISTERS (DWARF_ALT_FRAME_RETURN_COLUMN		\
768 			       + (TARGET_WINDOWED_ABI ? 0 : 1))
769 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + 2 : INVALID_REGNUM)
770 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)			\
771   (flag_pic								\
772    ? (((GLOBAL) ? DW_EH_PE_indirect : 0)				\
773       | DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
774    : DW_EH_PE_absptr)
775 
776 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 10)
777 
778 /* Emit a PC-relative relocation.  */
779 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)			\
780   do {									\
781     fputs (integer_asm_op (SIZE, FALSE), FILE);				\
782     assemble_name (FILE, LABEL);					\
783     fputs ("@pcrel", FILE);						\
784   } while (0)
785 
786 /* Xtensa constant pool breaks the devices in crtstuff.c to control
787    section in where code resides.  We have to write it as asm code.  Use
788    a MOVI and let the assembler relax it -- for the .init and .fini
789    sections, the assembler knows to put the literal in the right
790    place.  */
791 #if defined(__XTENSA_WINDOWED_ABI__)
792 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
793     asm (SECTION_OP "\n\
794 	movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
795 	callx8\ta8\n" \
796 	TEXT_SECTION_ASM_OP);
797 #elif defined(__XTENSA_CALL0_ABI__)
798 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
799     asm (SECTION_OP "\n\
800 	movi\ta0, " USER_LABEL_PREFIX #FUNC "\n\
801 	callx0\ta0\n" \
802 	TEXT_SECTION_ASM_OP);
803 #endif
804