1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 // Main internal TSan header file.
11 //
12 // Ground rules:
13 //   - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
14 //     function-scope locals)
15 //   - All functions/classes/etc reside in namespace __tsan, except for those
16 //     declared in tsan_interface.h.
17 //   - Platform-specific files should be used instead of ifdefs (*).
18 //   - No system headers included in header files (*).
19 //   - Platform specific headres included only into platform-specific files (*).
20 //
21 //  (*) Except when inlining is critical for performance.
22 //===----------------------------------------------------------------------===//
23 
24 #ifndef TSAN_RTL_H
25 #define TSAN_RTL_H
26 
27 #include "sanitizer_common/sanitizer_allocator.h"
28 #include "sanitizer_common/sanitizer_allocator_internal.h"
29 #include "sanitizer_common/sanitizer_asm.h"
30 #include "sanitizer_common/sanitizer_common.h"
31 #include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
32 #include "sanitizer_common/sanitizer_libignore.h"
33 #include "sanitizer_common/sanitizer_suppressions.h"
34 #include "sanitizer_common/sanitizer_thread_registry.h"
35 #include "sanitizer_common/sanitizer_vector.h"
36 #include "tsan_clock.h"
37 #include "tsan_defs.h"
38 #include "tsan_flags.h"
39 #include "tsan_mman.h"
40 #include "tsan_sync.h"
41 #include "tsan_trace.h"
42 #include "tsan_report.h"
43 #include "tsan_platform.h"
44 #include "tsan_mutexset.h"
45 #include "tsan_ignoreset.h"
46 #include "tsan_stack_trace.h"
47 
48 #if SANITIZER_WORDSIZE != 64
49 # error "ThreadSanitizer is supported only on 64-bit platforms"
50 #endif
51 
52 namespace __tsan {
53 
54 #if !SANITIZER_GO
55 struct MapUnmapCallback;
56 #if defined(__mips64) || defined(__aarch64__) || defined(__powerpc__)
57 static const uptr kAllocatorRegionSizeLog = 20;
58 static const uptr kAllocatorNumRegions =
59     SANITIZER_MMAP_RANGE_SIZE >> kAllocatorRegionSizeLog;
60 typedef TwoLevelByteMap<(kAllocatorNumRegions >> 12), 1 << 12,
61     MapUnmapCallback> ByteMap;
62 struct AP32 {
63   static const uptr kSpaceBeg = 0;
64   static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
65   static const uptr kMetadataSize = 0;
66   typedef __sanitizer::CompactSizeClassMap SizeClassMap;
67   static const uptr kRegionSizeLog = kAllocatorRegionSizeLog;
68   typedef __tsan::ByteMap ByteMap;
69   typedef __tsan::MapUnmapCallback MapUnmapCallback;
70   static const uptr kFlags = 0;
71 };
72 typedef SizeClassAllocator32<AP32> PrimaryAllocator;
73 #else
74 struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
75   static const uptr kSpaceBeg = Mapping::kHeapMemBeg;
76   static const uptr kSpaceSize = Mapping::kHeapMemEnd - Mapping::kHeapMemBeg;
77   static const uptr kMetadataSize = 0;
78   typedef DefaultSizeClassMap SizeClassMap;
79   typedef __tsan::MapUnmapCallback MapUnmapCallback;
80   static const uptr kFlags = 0;
81 };
82 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
83 #endif
84 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
85 typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator;
86 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
87     SecondaryAllocator> Allocator;
88 Allocator *allocator();
89 #endif
90 
91 void TsanCheckFailed(const char *file, int line, const char *cond,
92                      u64 v1, u64 v2);
93 
94 const u64 kShadowRodata = (u64)-1;  // .rodata shadow marker
95 
96 // FastState (from most significant bit):
97 //   ignore          : 1
98 //   tid             : kTidBits
99 //   unused          : -
100 //   history_size    : 3
101 //   epoch           : kClkBits
102 class FastState {
103  public:
FastState(u64 tid,u64 epoch)104   FastState(u64 tid, u64 epoch) {
105     x_ = tid << kTidShift;
106     x_ |= epoch;
107     DCHECK_EQ(tid, this->tid());
108     DCHECK_EQ(epoch, this->epoch());
109     DCHECK_EQ(GetIgnoreBit(), false);
110   }
111 
FastState(u64 x)112   explicit FastState(u64 x)
113       : x_(x) {
114   }
115 
raw()116   u64 raw() const {
117     return x_;
118   }
119 
tid()120   u64 tid() const {
121     u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
122     return res;
123   }
124 
TidWithIgnore()125   u64 TidWithIgnore() const {
126     u64 res = x_ >> kTidShift;
127     return res;
128   }
129 
epoch()130   u64 epoch() const {
131     u64 res = x_ & ((1ull << kClkBits) - 1);
132     return res;
133   }
134 
IncrementEpoch()135   void IncrementEpoch() {
136     u64 old_epoch = epoch();
137     x_ += 1;
138     DCHECK_EQ(old_epoch + 1, epoch());
139     (void)old_epoch;
140   }
141 
SetIgnoreBit()142   void SetIgnoreBit() { x_ |= kIgnoreBit; }
ClearIgnoreBit()143   void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
GetIgnoreBit()144   bool GetIgnoreBit() const { return (s64)x_ < 0; }
145 
SetHistorySize(int hs)146   void SetHistorySize(int hs) {
147     CHECK_GE(hs, 0);
148     CHECK_LE(hs, 7);
149     x_ = (x_ & ~(kHistoryMask << kHistoryShift)) | (u64(hs) << kHistoryShift);
150   }
151 
152   ALWAYS_INLINE
GetHistorySize()153   int GetHistorySize() const {
154     return (int)((x_ >> kHistoryShift) & kHistoryMask);
155   }
156 
ClearHistorySize()157   void ClearHistorySize() {
158     SetHistorySize(0);
159   }
160 
161   ALWAYS_INLINE
GetTracePos()162   u64 GetTracePos() const {
163     const int hs = GetHistorySize();
164     // When hs == 0, the trace consists of 2 parts.
165     const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
166     return epoch() & mask;
167   }
168 
169  private:
170   friend class Shadow;
171   static const int kTidShift = 64 - kTidBits - 1;
172   static const u64 kIgnoreBit = 1ull << 63;
173   static const u64 kFreedBit = 1ull << 63;
174   static const u64 kHistoryShift = kClkBits;
175   static const u64 kHistoryMask = 7;
176   u64 x_;
177 };
178 
179 // Shadow (from most significant bit):
180 //   freed           : 1
181 //   tid             : kTidBits
182 //   is_atomic       : 1
183 //   is_read         : 1
184 //   size_log        : 2
185 //   addr0           : 3
186 //   epoch           : kClkBits
187 class Shadow : public FastState {
188  public:
Shadow(u64 x)189   explicit Shadow(u64 x)
190       : FastState(x) {
191   }
192 
Shadow(const FastState & s)193   explicit Shadow(const FastState &s)
194       : FastState(s.x_) {
195     ClearHistorySize();
196   }
197 
SetAddr0AndSizeLog(u64 addr0,unsigned kAccessSizeLog)198   void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
199     DCHECK_EQ((x_ >> kClkBits) & 31, 0);
200     DCHECK_LE(addr0, 7);
201     DCHECK_LE(kAccessSizeLog, 3);
202     x_ |= ((kAccessSizeLog << 3) | addr0) << kClkBits;
203     DCHECK_EQ(kAccessSizeLog, size_log());
204     DCHECK_EQ(addr0, this->addr0());
205   }
206 
SetWrite(unsigned kAccessIsWrite)207   void SetWrite(unsigned kAccessIsWrite) {
208     DCHECK_EQ(x_ & kReadBit, 0);
209     if (!kAccessIsWrite)
210       x_ |= kReadBit;
211     DCHECK_EQ(kAccessIsWrite, IsWrite());
212   }
213 
SetAtomic(bool kIsAtomic)214   void SetAtomic(bool kIsAtomic) {
215     DCHECK(!IsAtomic());
216     if (kIsAtomic)
217       x_ |= kAtomicBit;
218     DCHECK_EQ(IsAtomic(), kIsAtomic);
219   }
220 
IsAtomic()221   bool IsAtomic() const {
222     return x_ & kAtomicBit;
223   }
224 
IsZero()225   bool IsZero() const {
226     return x_ == 0;
227   }
228 
TidsAreEqual(const Shadow s1,const Shadow s2)229   static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
230     u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
231     DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
232     return shifted_xor == 0;
233   }
234 
235   static ALWAYS_INLINE
Addr0AndSizeAreEqual(const Shadow s1,const Shadow s2)236   bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
237     u64 masked_xor = ((s1.x_ ^ s2.x_) >> kClkBits) & 31;
238     return masked_xor == 0;
239   }
240 
TwoRangesIntersect(Shadow s1,Shadow s2,unsigned kS2AccessSize)241   static ALWAYS_INLINE bool TwoRangesIntersect(Shadow s1, Shadow s2,
242       unsigned kS2AccessSize) {
243     bool res = false;
244     u64 diff = s1.addr0() - s2.addr0();
245     if ((s64)diff < 0) {  // s1.addr0 < s2.addr0  // NOLINT
246       // if (s1.addr0() + size1) > s2.addr0()) return true;
247       if (s1.size() > -diff)
248         res = true;
249     } else {
250       // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
251       if (kS2AccessSize > diff)
252         res = true;
253     }
254     DCHECK_EQ(res, TwoRangesIntersectSlow(s1, s2));
255     DCHECK_EQ(res, TwoRangesIntersectSlow(s2, s1));
256     return res;
257   }
258 
addr0()259   u64 ALWAYS_INLINE addr0() const { return (x_ >> kClkBits) & 7; }
size()260   u64 ALWAYS_INLINE size() const { return 1ull << size_log(); }
IsWrite()261   bool ALWAYS_INLINE IsWrite() const { return !IsRead(); }
IsRead()262   bool ALWAYS_INLINE IsRead() const { return x_ & kReadBit; }
263 
264   // The idea behind the freed bit is as follows.
265   // When the memory is freed (or otherwise unaccessible) we write to the shadow
266   // values with tid/epoch related to the free and the freed bit set.
267   // During memory accesses processing the freed bit is considered
268   // as msb of tid. So any access races with shadow with freed bit set
269   // (it is as if write from a thread with which we never synchronized before).
270   // This allows us to detect accesses to freed memory w/o additional
271   // overheads in memory access processing and at the same time restore
272   // tid/epoch of free.
MarkAsFreed()273   void MarkAsFreed() {
274      x_ |= kFreedBit;
275   }
276 
IsFreed()277   bool IsFreed() const {
278     return x_ & kFreedBit;
279   }
280 
GetFreedAndReset()281   bool GetFreedAndReset() {
282     bool res = x_ & kFreedBit;
283     x_ &= ~kFreedBit;
284     return res;
285   }
286 
IsBothReadsOrAtomic(bool kIsWrite,bool kIsAtomic)287   bool ALWAYS_INLINE IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
288     bool v = x_ & ((u64(kIsWrite ^ 1) << kReadShift)
289         | (u64(kIsAtomic) << kAtomicShift));
290     DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
291     return v;
292   }
293 
IsRWNotWeaker(bool kIsWrite,bool kIsAtomic)294   bool ALWAYS_INLINE IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
295     bool v = ((x_ >> kReadShift) & 3)
296         <= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
297     DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
298         (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
299     return v;
300   }
301 
IsRWWeakerOrEqual(bool kIsWrite,bool kIsAtomic)302   bool ALWAYS_INLINE IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
303     bool v = ((x_ >> kReadShift) & 3)
304         >= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
305     DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
306         (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
307     return v;
308   }
309 
310  private:
311   static const u64 kReadShift   = 5 + kClkBits;
312   static const u64 kReadBit     = 1ull << kReadShift;
313   static const u64 kAtomicShift = 6 + kClkBits;
314   static const u64 kAtomicBit   = 1ull << kAtomicShift;
315 
size_log()316   u64 size_log() const { return (x_ >> (3 + kClkBits)) & 3; }
317 
TwoRangesIntersectSlow(const Shadow s1,const Shadow s2)318   static bool TwoRangesIntersectSlow(const Shadow s1, const Shadow s2) {
319     if (s1.addr0() == s2.addr0()) return true;
320     if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
321       return true;
322     if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
323       return true;
324     return false;
325   }
326 };
327 
328 struct ThreadSignalContext;
329 
330 struct JmpBuf {
331   uptr sp;
332   uptr mangled_sp;
333   int int_signal_send;
334   bool in_blocking_func;
335   uptr in_signal_handler;
336   uptr *shadow_stack_pos;
337 };
338 
339 // A Processor represents a physical thread, or a P for Go.
340 // It is used to store internal resources like allocate cache, and does not
341 // participate in race-detection logic (invisible to end user).
342 // In C++ it is tied to an OS thread just like ThreadState, however ideally
343 // it should be tied to a CPU (this way we will have fewer allocator caches).
344 // In Go it is tied to a P, so there are significantly fewer Processor's than
345 // ThreadState's (which are tied to Gs).
346 // A ThreadState must be wired with a Processor to handle events.
347 struct Processor {
348   ThreadState *thr; // currently wired thread, or nullptr
349 #if !SANITIZER_GO
350   AllocatorCache alloc_cache;
351   InternalAllocatorCache internal_alloc_cache;
352 #endif
353   DenseSlabAllocCache block_cache;
354   DenseSlabAllocCache sync_cache;
355   DenseSlabAllocCache clock_cache;
356   DDPhysicalThread *dd_pt;
357 };
358 
359 #if !SANITIZER_GO
360 // ScopedGlobalProcessor temporary setups a global processor for the current
361 // thread, if it does not have one. Intended for interceptors that can run
362 // at the very thread end, when we already destroyed the thread processor.
363 struct ScopedGlobalProcessor {
364   ScopedGlobalProcessor();
365   ~ScopedGlobalProcessor();
366 };
367 #endif
368 
369 // This struct is stored in TLS.
370 struct ThreadState {
371   FastState fast_state;
372   // Synch epoch represents the threads's epoch before the last synchronization
373   // action. It allows to reduce number of shadow state updates.
374   // For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
375   // if we are processing write to X from the same thread at epoch=200,
376   // we do nothing, because both writes happen in the same 'synch epoch'.
377   // That is, if another memory access does not race with the former write,
378   // it does not race with the latter as well.
379   // QUESTION: can we can squeeze this into ThreadState::Fast?
380   // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
381   // taken by epoch between synchs.
382   // This way we can save one load from tls.
383   u64 fast_synch_epoch;
384   // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
385   // We do not distinguish beteween ignoring reads and writes
386   // for better performance.
387   int ignore_reads_and_writes;
388   int ignore_sync;
389   int suppress_reports;
390   // Go does not support ignores.
391 #if !SANITIZER_GO
392   IgnoreSet mop_ignore_set;
393   IgnoreSet sync_ignore_set;
394 #endif
395   // C/C++ uses fixed size shadow stack embed into Trace.
396   // Go uses malloc-allocated shadow stack with dynamic size.
397   uptr *shadow_stack;
398   uptr *shadow_stack_end;
399   uptr *shadow_stack_pos;
400   u64 *racy_shadow_addr;
401   u64 racy_state[2];
402   MutexSet mset;
403   ThreadClock clock;
404 #if !SANITIZER_GO
405   Vector<JmpBuf> jmp_bufs;
406   int ignore_interceptors;
407 #endif
408 #if TSAN_COLLECT_STATS
409   u64 stat[StatCnt];
410 #endif
411   const int tid;
412   const int unique_id;
413   bool in_symbolizer;
414   bool in_ignored_lib;
415   bool is_inited;
416   bool is_dead;
417   bool is_freeing;
418   bool is_vptr_access;
419   const uptr stk_addr;
420   const uptr stk_size;
421   const uptr tls_addr;
422   const uptr tls_size;
423   ThreadContext *tctx;
424 
425 #if SANITIZER_DEBUG && !SANITIZER_GO
426   InternalDeadlockDetector internal_deadlock_detector;
427 #endif
428   DDLogicalThread *dd_lt;
429 
430   // Current wired Processor, or nullptr. Required to handle any events.
431   Processor *proc1;
432 #if !SANITIZER_GO
procThreadState433   Processor *proc() { return proc1; }
434 #else
435   Processor *proc();
436 #endif
437 
438   atomic_uintptr_t in_signal_handler;
439   ThreadSignalContext *signal_ctx;
440 
441 #if !SANITIZER_GO
442   u32 last_sleep_stack_id;
443   ThreadClock last_sleep_clock;
444 #endif
445 
446   // Set in regions of runtime that must be signal-safe and fork-safe.
447   // If set, malloc must not be called.
448   int nomalloc;
449 
450   const ReportDesc *current_report;
451 
452   explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
453                        unsigned reuse_count,
454                        uptr stk_addr, uptr stk_size,
455                        uptr tls_addr, uptr tls_size);
456 };
457 
458 #if !SANITIZER_GO
459 #if SANITIZER_MAC || SANITIZER_ANDROID
460 ThreadState *cur_thread();
461 void cur_thread_finalize();
462 #else
463 __attribute__((tls_model("initial-exec")))
464 extern THREADLOCAL char cur_thread_placeholder[];
cur_thread()465 INLINE ThreadState *cur_thread() {
466   return reinterpret_cast<ThreadState *>(&cur_thread_placeholder);
467 }
cur_thread_finalize()468 INLINE void cur_thread_finalize() { }
469 #endif  // SANITIZER_MAC || SANITIZER_ANDROID
470 #endif  // SANITIZER_GO
471 
472 class ThreadContext : public ThreadContextBase {
473  public:
474   explicit ThreadContext(int tid);
475   ~ThreadContext();
476   ThreadState *thr;
477   u32 creation_stack_id;
478   SyncClock sync;
479   // Epoch at which the thread had started.
480   // If we see an event from the thread stamped by an older epoch,
481   // the event is from a dead thread that shared tid with this thread.
482   u64 epoch0;
483   u64 epoch1;
484 
485   // Override superclass callbacks.
486   void OnDead() override;
487   void OnJoined(void *arg) override;
488   void OnFinished() override;
489   void OnStarted(void *arg) override;
490   void OnCreated(void *arg) override;
491   void OnReset() override;
492   void OnDetached(void *arg) override;
493 };
494 
495 struct RacyStacks {
496   MD5Hash hash[2];
497   bool operator==(const RacyStacks &other) const {
498     if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
499       return true;
500     if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
501       return true;
502     return false;
503   }
504 };
505 
506 struct RacyAddress {
507   uptr addr_min;
508   uptr addr_max;
509 };
510 
511 struct FiredSuppression {
512   ReportType type;
513   uptr pc_or_addr;
514   Suppression *supp;
515 };
516 
517 struct Context {
518   Context();
519 
520   bool initialized;
521 #if !SANITIZER_GO
522   bool after_multithreaded_fork;
523 #endif
524 
525   MetaMap metamap;
526 
527   Mutex report_mtx;
528   int nreported;
529   int nmissed_expected;
530   atomic_uint64_t last_symbolize_time_ns;
531 
532   void *background_thread;
533   atomic_uint32_t stop_background_thread;
534 
535   ThreadRegistry *thread_registry;
536 
537   Mutex racy_mtx;
538   Vector<RacyStacks> racy_stacks;
539   Vector<RacyAddress> racy_addresses;
540   // Number of fired suppressions may be large enough.
541   Mutex fired_suppressions_mtx;
542   InternalMmapVector<FiredSuppression> fired_suppressions;
543   DDetector *dd;
544 
545   ClockAlloc clock_alloc;
546 
547   Flags flags;
548 
549   u64 stat[StatCnt];
550   u64 int_alloc_cnt[MBlockTypeCount];
551   u64 int_alloc_siz[MBlockTypeCount];
552 };
553 
554 extern Context *ctx;  // The one and the only global runtime context.
555 
flags()556 ALWAYS_INLINE Flags *flags() {
557   return &ctx->flags;
558 }
559 
560 struct ScopedIgnoreInterceptors {
ScopedIgnoreInterceptorsScopedIgnoreInterceptors561   ScopedIgnoreInterceptors() {
562 #if !SANITIZER_GO
563     cur_thread()->ignore_interceptors++;
564 #endif
565   }
566 
~ScopedIgnoreInterceptorsScopedIgnoreInterceptors567   ~ScopedIgnoreInterceptors() {
568 #if !SANITIZER_GO
569     cur_thread()->ignore_interceptors--;
570 #endif
571   }
572 };
573 
574 const char *GetObjectTypeFromTag(uptr tag);
575 const char *GetReportHeaderFromTag(uptr tag);
576 uptr TagFromShadowStackFrame(uptr pc);
577 
578 class ScopedReportBase {
579  public:
580   void AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, StackTrace stack,
581                        const MutexSet *mset);
582   void AddStack(StackTrace stack, bool suppressable = false);
583   void AddThread(const ThreadContext *tctx, bool suppressable = false);
584   void AddThread(int unique_tid, bool suppressable = false);
585   void AddUniqueTid(int unique_tid);
586   void AddMutex(const SyncVar *s);
587   u64 AddMutex(u64 id);
588   void AddLocation(uptr addr, uptr size);
589   void AddSleep(u32 stack_id);
590   void SetCount(int count);
591 
592   const ReportDesc *GetReport() const;
593 
594  protected:
595   ScopedReportBase(ReportType typ, uptr tag);
596   ~ScopedReportBase();
597 
598  private:
599   ReportDesc *rep_;
600   // Symbolizer makes lots of intercepted calls. If we try to process them,
601   // at best it will cause deadlocks on internal mutexes.
602   ScopedIgnoreInterceptors ignore_interceptors_;
603 
604   void AddDeadMutex(u64 id);
605 
606   ScopedReportBase(const ScopedReportBase &) = delete;
607   void operator=(const ScopedReportBase &) = delete;
608 };
609 
610 class ScopedReport : public ScopedReportBase {
611  public:
612   explicit ScopedReport(ReportType typ, uptr tag = kExternalTagNone);
613   ~ScopedReport();
614 
615  private:
616   ScopedErrorReportLock lock_;
617 };
618 
619 ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack);
620 void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk,
621                   MutexSet *mset, uptr *tag = nullptr);
622 
623 // The stack could look like:
624 //   <start> | <main> | <foo> | tag | <bar>
625 // This will extract the tag and keep:
626 //   <start> | <main> | <foo> | <bar>
627 template<typename StackTraceTy>
628 void ExtractTagFromStack(StackTraceTy *stack, uptr *tag = nullptr) {
629   if (stack->size < 2) return;
630   uptr possible_tag_pc = stack->trace[stack->size - 2];
631   uptr possible_tag = TagFromShadowStackFrame(possible_tag_pc);
632   if (possible_tag == kExternalTagNone) return;
633   stack->trace_buffer[stack->size - 2] = stack->trace_buffer[stack->size - 1];
634   stack->size -= 1;
635   if (tag) *tag = possible_tag;
636 }
637 
638 template<typename StackTraceTy>
639 void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack,
640                         uptr *tag = nullptr) {
641   uptr size = thr->shadow_stack_pos - thr->shadow_stack;
642   uptr start = 0;
643   if (size + !!toppc > kStackTraceMax) {
644     start = size + !!toppc - kStackTraceMax;
645     size = kStackTraceMax - !!toppc;
646   }
647   stack->Init(&thr->shadow_stack[start], size, toppc);
648   ExtractTagFromStack(stack, tag);
649 }
650 
651 #define GET_STACK_TRACE_FATAL(thr, pc) \
652   VarSizeStackTrace stack; \
653   ObtainCurrentStack(thr, pc, &stack); \
654   stack.ReverseOrder();
655 
656 #if TSAN_COLLECT_STATS
657 void StatAggregate(u64 *dst, u64 *src);
658 void StatOutput(u64 *stat);
659 #endif
660 
661 void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
662 #if TSAN_COLLECT_STATS
663   thr->stat[typ] += n;
664 #endif
665 }
StatSet(ThreadState * thr,StatType typ,u64 n)666 void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
667 #if TSAN_COLLECT_STATS
668   thr->stat[typ] = n;
669 #endif
670 }
671 
672 void MapShadow(uptr addr, uptr size);
673 void MapThreadTrace(uptr addr, uptr size, const char *name);
674 void DontNeedShadowFor(uptr addr, uptr size);
675 void InitializeShadowMemory();
676 void InitializeInterceptors();
677 void InitializeLibIgnore();
678 void InitializeDynamicAnnotations();
679 
680 void ForkBefore(ThreadState *thr, uptr pc);
681 void ForkParentAfter(ThreadState *thr, uptr pc);
682 void ForkChildAfter(ThreadState *thr, uptr pc);
683 
684 void ReportRace(ThreadState *thr);
685 bool OutputReport(ThreadState *thr, const ScopedReport &srep);
686 bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace);
687 bool IsExpectedReport(uptr addr, uptr size);
688 void PrintMatchedBenignRaces();
689 
690 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
691 # define DPrintf Printf
692 #else
693 # define DPrintf(...)
694 #endif
695 
696 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
697 # define DPrintf2 Printf
698 #else
699 # define DPrintf2(...)
700 #endif
701 
702 u32 CurrentStackId(ThreadState *thr, uptr pc);
703 ReportStack *SymbolizeStackId(u32 stack_id);
704 void PrintCurrentStack(ThreadState *thr, uptr pc);
705 void PrintCurrentStackSlow(uptr pc);  // uses libunwind
706 
707 void Initialize(ThreadState *thr);
708 void MaybeSpawnBackgroundThread();
709 int Finalize(ThreadState *thr);
710 
711 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
712 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
713 
714 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
715     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
716 void MemoryAccessImpl(ThreadState *thr, uptr addr,
717     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
718     u64 *shadow_mem, Shadow cur);
719 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
720     uptr size, bool is_write);
721 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
722     uptr size, uptr step, bool is_write);
723 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
724     int size, bool kAccessIsWrite, bool kIsAtomic);
725 
726 const int kSizeLog1 = 0;
727 const int kSizeLog2 = 1;
728 const int kSizeLog4 = 2;
729 const int kSizeLog8 = 3;
730 
MemoryRead(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)731 void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc,
732                                      uptr addr, int kAccessSizeLog) {
733   MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
734 }
735 
MemoryWrite(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)736 void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc,
737                                       uptr addr, int kAccessSizeLog) {
738   MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
739 }
740 
MemoryReadAtomic(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)741 void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
742                                            uptr addr, int kAccessSizeLog) {
743   MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
744 }
745 
MemoryWriteAtomic(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)746 void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
747                                             uptr addr, int kAccessSizeLog) {
748   MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
749 }
750 
751 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
752 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
753 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
754 
755 void ThreadIgnoreBegin(ThreadState *thr, uptr pc, bool save_stack = true);
756 void ThreadIgnoreEnd(ThreadState *thr, uptr pc);
757 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc, bool save_stack = true);
758 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc);
759 
760 void FuncEntry(ThreadState *thr, uptr pc);
761 void FuncExit(ThreadState *thr);
762 
763 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
764 void ThreadStart(ThreadState *thr, int tid, tid_t os_id, bool workerthread);
765 void ThreadFinish(ThreadState *thr);
766 int ThreadTid(ThreadState *thr, uptr pc, uptr uid);
767 void ThreadJoin(ThreadState *thr, uptr pc, int tid);
768 void ThreadDetach(ThreadState *thr, uptr pc, int tid);
769 void ThreadFinalize(ThreadState *thr);
770 void ThreadSetName(ThreadState *thr, const char *name);
771 int ThreadCount(ThreadState *thr);
772 void ProcessPendingSignals(ThreadState *thr);
773 
774 Processor *ProcCreate();
775 void ProcDestroy(Processor *proc);
776 void ProcWire(Processor *proc, ThreadState *thr);
777 void ProcUnwire(Processor *proc, ThreadState *thr);
778 
779 // Note: the parameter is called flagz, because flags is already taken
780 // by the global function that returns flags.
781 void MutexCreate(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
782 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
783 void MutexPreLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
784 void MutexPostLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0,
785     int rec = 1);
786 int  MutexUnlock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
787 void MutexPreReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
788 void MutexPostReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
789 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
790 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
791 void MutexRepair(ThreadState *thr, uptr pc, uptr addr);  // call on EOWNERDEAD
792 void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr);
793 
794 void Acquire(ThreadState *thr, uptr pc, uptr addr);
795 // AcquireGlobal synchronizes the current thread with all other threads.
796 // In terms of happens-before relation, it draws a HB edge from all threads
797 // (where they happen to execute right now) to the current thread. We use it to
798 // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
799 // right before executing finalizers. This provides a coarse, but simple
800 // approximation of the actual required synchronization.
801 void AcquireGlobal(ThreadState *thr, uptr pc);
802 void Release(ThreadState *thr, uptr pc, uptr addr);
803 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
804 void AfterSleep(ThreadState *thr, uptr pc);
805 void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
806 void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
807 void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c);
808 void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
809 
810 // The hacky call uses custom calling convention and an assembly thunk.
811 // It is considerably faster that a normal call for the caller
812 // if it is not executed (it is intended for slow paths from hot functions).
813 // The trick is that the call preserves all registers and the compiler
814 // does not treat it as a call.
815 // If it does not work for you, use normal call.
816 #if !SANITIZER_DEBUG && defined(__x86_64__) && !SANITIZER_MAC
817 // The caller may not create the stack frame for itself at all,
818 // so we create a reserve stack frame for it (1024b must be enough).
819 #define HACKY_CALL(f) \
820   __asm__ __volatile__("sub $1024, %%rsp;" \
821                        CFI_INL_ADJUST_CFA_OFFSET(1024) \
822                        ".hidden " #f "_thunk;" \
823                        "call " #f "_thunk;" \
824                        "add $1024, %%rsp;" \
825                        CFI_INL_ADJUST_CFA_OFFSET(-1024) \
826                        ::: "memory", "cc");
827 #else
828 #define HACKY_CALL(f) f()
829 #endif
830 
831 void TraceSwitch(ThreadState *thr);
832 uptr TraceTopPC(ThreadState *thr);
833 uptr TraceSize();
834 uptr TraceParts();
835 Trace *ThreadTrace(int tid);
836 
837 extern "C" void __tsan_trace_switch();
TraceAddEvent(ThreadState * thr,FastState fs,EventType typ,u64 addr)838 void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs,
839                                         EventType typ, u64 addr) {
840   if (!kCollectHistory)
841     return;
842   DCHECK_GE((int)typ, 0);
843   DCHECK_LE((int)typ, 7);
844   DCHECK_EQ(GetLsb(addr, kEventPCBits), addr);
845   StatInc(thr, StatEvents);
846   u64 pos = fs.GetTracePos();
847   if (UNLIKELY((pos % kTracePartSize) == 0)) {
848 #if !SANITIZER_GO
849     HACKY_CALL(__tsan_trace_switch);
850 #else
851     TraceSwitch(thr);
852 #endif
853   }
854   Event *trace = (Event*)GetThreadTrace(fs.tid());
855   Event *evp = &trace[pos];
856   Event ev = (u64)addr | ((u64)typ << kEventPCBits);
857   *evp = ev;
858 }
859 
860 #if !SANITIZER_GO
HeapEnd()861 uptr ALWAYS_INLINE HeapEnd() {
862   return HeapMemEnd() + PrimaryAllocator::AdditionalSize();
863 }
864 #endif
865 
866 }  // namespace __tsan
867 
868 #endif  // TSAN_RTL_H
869