1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package template
6
7import (
8	"bytes"
9	"fmt"
10	"internal/fmtsort"
11	"io"
12	"reflect"
13	"runtime"
14	"strings"
15	"text/template/parse"
16)
17
18// maxExecDepth specifies the maximum stack depth of templates within
19// templates. This limit is only practically reached by accidentally
20// recursive template invocations. This limit allows us to return
21// an error instead of triggering a stack overflow.
22var maxExecDepth = initMaxExecDepth()
23
24func initMaxExecDepth() int {
25	// For gccgo we make this 1000 rather than 100000 to avoid
26	// stack overflow on non-split-stack systems.
27	if runtime.GOARCH == "wasm" || runtime.Compiler == "gccgo" {
28		return 1000
29	}
30	return 100000
31}
32
33// state represents the state of an execution. It's not part of the
34// template so that multiple executions of the same template
35// can execute in parallel.
36type state struct {
37	tmpl  *Template
38	wr    io.Writer
39	node  parse.Node // current node, for errors
40	vars  []variable // push-down stack of variable values.
41	depth int        // the height of the stack of executing templates.
42}
43
44// variable holds the dynamic value of a variable such as $, $x etc.
45type variable struct {
46	name  string
47	value reflect.Value
48}
49
50// push pushes a new variable on the stack.
51func (s *state) push(name string, value reflect.Value) {
52	s.vars = append(s.vars, variable{name, value})
53}
54
55// mark returns the length of the variable stack.
56func (s *state) mark() int {
57	return len(s.vars)
58}
59
60// pop pops the variable stack up to the mark.
61func (s *state) pop(mark int) {
62	s.vars = s.vars[0:mark]
63}
64
65// setVar overwrites the last declared variable with the given name.
66// Used by variable assignments.
67func (s *state) setVar(name string, value reflect.Value) {
68	for i := s.mark() - 1; i >= 0; i-- {
69		if s.vars[i].name == name {
70			s.vars[i].value = value
71			return
72		}
73	}
74	s.errorf("undefined variable: %s", name)
75}
76
77// setTopVar overwrites the top-nth variable on the stack. Used by range iterations.
78func (s *state) setTopVar(n int, value reflect.Value) {
79	s.vars[len(s.vars)-n].value = value
80}
81
82// varValue returns the value of the named variable.
83func (s *state) varValue(name string) reflect.Value {
84	for i := s.mark() - 1; i >= 0; i-- {
85		if s.vars[i].name == name {
86			return s.vars[i].value
87		}
88	}
89	s.errorf("undefined variable: %s", name)
90	return zero
91}
92
93var zero reflect.Value
94
95type missingValType struct{}
96
97var missingVal = reflect.ValueOf(missingValType{})
98
99// at marks the state to be on node n, for error reporting.
100func (s *state) at(node parse.Node) {
101	s.node = node
102}
103
104// doublePercent returns the string with %'s replaced by %%, if necessary,
105// so it can be used safely inside a Printf format string.
106func doublePercent(str string) string {
107	return strings.ReplaceAll(str, "%", "%%")
108}
109
110// TODO: It would be nice if ExecError was more broken down, but
111// the way ErrorContext embeds the template name makes the
112// processing too clumsy.
113
114// ExecError is the custom error type returned when Execute has an
115// error evaluating its template. (If a write error occurs, the actual
116// error is returned; it will not be of type ExecError.)
117type ExecError struct {
118	Name string // Name of template.
119	Err  error  // Pre-formatted error.
120}
121
122func (e ExecError) Error() string {
123	return e.Err.Error()
124}
125
126// errorf records an ExecError and terminates processing.
127func (s *state) errorf(format string, args ...interface{}) {
128	name := doublePercent(s.tmpl.Name())
129	if s.node == nil {
130		format = fmt.Sprintf("template: %s: %s", name, format)
131	} else {
132		location, context := s.tmpl.ErrorContext(s.node)
133		format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format)
134	}
135	panic(ExecError{
136		Name: s.tmpl.Name(),
137		Err:  fmt.Errorf(format, args...),
138	})
139}
140
141// writeError is the wrapper type used internally when Execute has an
142// error writing to its output. We strip the wrapper in errRecover.
143// Note that this is not an implementation of error, so it cannot escape
144// from the package as an error value.
145type writeError struct {
146	Err error // Original error.
147}
148
149func (s *state) writeError(err error) {
150	panic(writeError{
151		Err: err,
152	})
153}
154
155// errRecover is the handler that turns panics into returns from the top
156// level of Parse.
157func errRecover(errp *error) {
158	e := recover()
159	if e != nil {
160		switch err := e.(type) {
161		case runtime.Error:
162			panic(e)
163		case writeError:
164			*errp = err.Err // Strip the wrapper.
165		case ExecError:
166			*errp = err // Keep the wrapper.
167		default:
168			panic(e)
169		}
170	}
171}
172
173// ExecuteTemplate applies the template associated with t that has the given name
174// to the specified data object and writes the output to wr.
175// If an error occurs executing the template or writing its output,
176// execution stops, but partial results may already have been written to
177// the output writer.
178// A template may be executed safely in parallel, although if parallel
179// executions share a Writer the output may be interleaved.
180func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error {
181	var tmpl *Template
182	if t.common != nil {
183		tmpl = t.tmpl[name]
184	}
185	if tmpl == nil {
186		return fmt.Errorf("template: no template %q associated with template %q", name, t.name)
187	}
188	return tmpl.Execute(wr, data)
189}
190
191// Execute applies a parsed template to the specified data object,
192// and writes the output to wr.
193// If an error occurs executing the template or writing its output,
194// execution stops, but partial results may already have been written to
195// the output writer.
196// A template may be executed safely in parallel, although if parallel
197// executions share a Writer the output may be interleaved.
198//
199// If data is a reflect.Value, the template applies to the concrete
200// value that the reflect.Value holds, as in fmt.Print.
201func (t *Template) Execute(wr io.Writer, data interface{}) error {
202	return t.execute(wr, data)
203}
204
205func (t *Template) execute(wr io.Writer, data interface{}) (err error) {
206	defer errRecover(&err)
207	value, ok := data.(reflect.Value)
208	if !ok {
209		value = reflect.ValueOf(data)
210	}
211	state := &state{
212		tmpl: t,
213		wr:   wr,
214		vars: []variable{{"$", value}},
215	}
216	if t.Tree == nil || t.Root == nil {
217		state.errorf("%q is an incomplete or empty template", t.Name())
218	}
219	state.walk(value, t.Root)
220	return
221}
222
223// DefinedTemplates returns a string listing the defined templates,
224// prefixed by the string "; defined templates are: ". If there are none,
225// it returns the empty string. For generating an error message here
226// and in html/template.
227func (t *Template) DefinedTemplates() string {
228	if t.common == nil {
229		return ""
230	}
231	var b bytes.Buffer
232	for name, tmpl := range t.tmpl {
233		if tmpl.Tree == nil || tmpl.Root == nil {
234			continue
235		}
236		if b.Len() > 0 {
237			b.WriteString(", ")
238		}
239		fmt.Fprintf(&b, "%q", name)
240	}
241	var s string
242	if b.Len() > 0 {
243		s = "; defined templates are: " + b.String()
244	}
245	return s
246}
247
248// Walk functions step through the major pieces of the template structure,
249// generating output as they go.
250func (s *state) walk(dot reflect.Value, node parse.Node) {
251	s.at(node)
252	switch node := node.(type) {
253	case *parse.ActionNode:
254		// Do not pop variables so they persist until next end.
255		// Also, if the action declares variables, don't print the result.
256		val := s.evalPipeline(dot, node.Pipe)
257		if len(node.Pipe.Decl) == 0 {
258			s.printValue(node, val)
259		}
260	case *parse.IfNode:
261		s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList)
262	case *parse.ListNode:
263		for _, node := range node.Nodes {
264			s.walk(dot, node)
265		}
266	case *parse.RangeNode:
267		s.walkRange(dot, node)
268	case *parse.TemplateNode:
269		s.walkTemplate(dot, node)
270	case *parse.TextNode:
271		if _, err := s.wr.Write(node.Text); err != nil {
272			s.writeError(err)
273		}
274	case *parse.WithNode:
275		s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList)
276	default:
277		s.errorf("unknown node: %s", node)
278	}
279}
280
281// walkIfOrWith walks an 'if' or 'with' node. The two control structures
282// are identical in behavior except that 'with' sets dot.
283func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) {
284	defer s.pop(s.mark())
285	val := s.evalPipeline(dot, pipe)
286	truth, ok := isTrue(val)
287	if !ok {
288		s.errorf("if/with can't use %v", val)
289	}
290	if truth {
291		if typ == parse.NodeWith {
292			s.walk(val, list)
293		} else {
294			s.walk(dot, list)
295		}
296	} else if elseList != nil {
297		s.walk(dot, elseList)
298	}
299}
300
301// IsTrue reports whether the value is 'true', in the sense of not the zero of its type,
302// and whether the value has a meaningful truth value. This is the definition of
303// truth used by if and other such actions.
304func IsTrue(val interface{}) (truth, ok bool) {
305	return isTrue(reflect.ValueOf(val))
306}
307
308func isTrue(val reflect.Value) (truth, ok bool) {
309	if !val.IsValid() {
310		// Something like var x interface{}, never set. It's a form of nil.
311		return false, true
312	}
313	switch val.Kind() {
314	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
315		truth = val.Len() > 0
316	case reflect.Bool:
317		truth = val.Bool()
318	case reflect.Complex64, reflect.Complex128:
319		truth = val.Complex() != 0
320	case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface:
321		truth = !val.IsNil()
322	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
323		truth = val.Int() != 0
324	case reflect.Float32, reflect.Float64:
325		truth = val.Float() != 0
326	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
327		truth = val.Uint() != 0
328	case reflect.Struct:
329		truth = true // Struct values are always true.
330	default:
331		return
332	}
333	return truth, true
334}
335
336func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) {
337	s.at(r)
338	defer s.pop(s.mark())
339	val, _ := indirect(s.evalPipeline(dot, r.Pipe))
340	// mark top of stack before any variables in the body are pushed.
341	mark := s.mark()
342	oneIteration := func(index, elem reflect.Value) {
343		// Set top var (lexically the second if there are two) to the element.
344		if len(r.Pipe.Decl) > 0 {
345			s.setTopVar(1, elem)
346		}
347		// Set next var (lexically the first if there are two) to the index.
348		if len(r.Pipe.Decl) > 1 {
349			s.setTopVar(2, index)
350		}
351		s.walk(elem, r.List)
352		s.pop(mark)
353	}
354	switch val.Kind() {
355	case reflect.Array, reflect.Slice:
356		if val.Len() == 0 {
357			break
358		}
359		for i := 0; i < val.Len(); i++ {
360			oneIteration(reflect.ValueOf(i), val.Index(i))
361		}
362		return
363	case reflect.Map:
364		if val.Len() == 0 {
365			break
366		}
367		om := fmtsort.Sort(val)
368		for i, key := range om.Key {
369			oneIteration(key, om.Value[i])
370		}
371		return
372	case reflect.Chan:
373		if val.IsNil() {
374			break
375		}
376		i := 0
377		for ; ; i++ {
378			elem, ok := val.Recv()
379			if !ok {
380				break
381			}
382			oneIteration(reflect.ValueOf(i), elem)
383		}
384		if i == 0 {
385			break
386		}
387		return
388	case reflect.Invalid:
389		break // An invalid value is likely a nil map, etc. and acts like an empty map.
390	default:
391		s.errorf("range can't iterate over %v", val)
392	}
393	if r.ElseList != nil {
394		s.walk(dot, r.ElseList)
395	}
396}
397
398func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) {
399	s.at(t)
400	tmpl := s.tmpl.tmpl[t.Name]
401	if tmpl == nil {
402		s.errorf("template %q not defined", t.Name)
403	}
404	if s.depth == maxExecDepth {
405		s.errorf("exceeded maximum template depth (%v)", maxExecDepth)
406	}
407	// Variables declared by the pipeline persist.
408	dot = s.evalPipeline(dot, t.Pipe)
409	newState := *s
410	newState.depth++
411	newState.tmpl = tmpl
412	// No dynamic scoping: template invocations inherit no variables.
413	newState.vars = []variable{{"$", dot}}
414	newState.walk(dot, tmpl.Root)
415}
416
417// Eval functions evaluate pipelines, commands, and their elements and extract
418// values from the data structure by examining fields, calling methods, and so on.
419// The printing of those values happens only through walk functions.
420
421// evalPipeline returns the value acquired by evaluating a pipeline. If the
422// pipeline has a variable declaration, the variable will be pushed on the
423// stack. Callers should therefore pop the stack after they are finished
424// executing commands depending on the pipeline value.
425func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) {
426	if pipe == nil {
427		return
428	}
429	s.at(pipe)
430	value = missingVal
431	for _, cmd := range pipe.Cmds {
432		value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg.
433		// If the object has type interface{}, dig down one level to the thing inside.
434		if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 {
435			value = reflect.ValueOf(value.Interface()) // lovely!
436		}
437	}
438	for _, variable := range pipe.Decl {
439		if pipe.IsAssign {
440			s.setVar(variable.Ident[0], value)
441		} else {
442			s.push(variable.Ident[0], value)
443		}
444	}
445	return value
446}
447
448func (s *state) notAFunction(args []parse.Node, final reflect.Value) {
449	if len(args) > 1 || final != missingVal {
450		s.errorf("can't give argument to non-function %s", args[0])
451	}
452}
453
454func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value {
455	firstWord := cmd.Args[0]
456	switch n := firstWord.(type) {
457	case *parse.FieldNode:
458		return s.evalFieldNode(dot, n, cmd.Args, final)
459	case *parse.ChainNode:
460		return s.evalChainNode(dot, n, cmd.Args, final)
461	case *parse.IdentifierNode:
462		// Must be a function.
463		return s.evalFunction(dot, n, cmd, cmd.Args, final)
464	case *parse.PipeNode:
465		// Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored.
466		return s.evalPipeline(dot, n)
467	case *parse.VariableNode:
468		return s.evalVariableNode(dot, n, cmd.Args, final)
469	}
470	s.at(firstWord)
471	s.notAFunction(cmd.Args, final)
472	switch word := firstWord.(type) {
473	case *parse.BoolNode:
474		return reflect.ValueOf(word.True)
475	case *parse.DotNode:
476		return dot
477	case *parse.NilNode:
478		s.errorf("nil is not a command")
479	case *parse.NumberNode:
480		return s.idealConstant(word)
481	case *parse.StringNode:
482		return reflect.ValueOf(word.Text)
483	}
484	s.errorf("can't evaluate command %q", firstWord)
485	panic("not reached")
486}
487
488// idealConstant is called to return the value of a number in a context where
489// we don't know the type. In that case, the syntax of the number tells us
490// its type, and we use Go rules to resolve. Note there is no such thing as
491// a uint ideal constant in this situation - the value must be of int type.
492func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value {
493	// These are ideal constants but we don't know the type
494	// and we have no context.  (If it was a method argument,
495	// we'd know what we need.) The syntax guides us to some extent.
496	s.at(constant)
497	switch {
498	case constant.IsComplex:
499		return reflect.ValueOf(constant.Complex128) // incontrovertible.
500	case constant.IsFloat && !isHexConstant(constant.Text) && strings.ContainsAny(constant.Text, ".eE"):
501		return reflect.ValueOf(constant.Float64)
502	case constant.IsInt:
503		n := int(constant.Int64)
504		if int64(n) != constant.Int64 {
505			s.errorf("%s overflows int", constant.Text)
506		}
507		return reflect.ValueOf(n)
508	case constant.IsUint:
509		s.errorf("%s overflows int", constant.Text)
510	}
511	return zero
512}
513
514func isHexConstant(s string) bool {
515	return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')
516}
517
518func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value {
519	s.at(field)
520	return s.evalFieldChain(dot, dot, field, field.Ident, args, final)
521}
522
523func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value {
524	s.at(chain)
525	if len(chain.Field) == 0 {
526		s.errorf("internal error: no fields in evalChainNode")
527	}
528	if chain.Node.Type() == parse.NodeNil {
529		s.errorf("indirection through explicit nil in %s", chain)
530	}
531	// (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields.
532	pipe := s.evalArg(dot, nil, chain.Node)
533	return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final)
534}
535
536func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value {
537	// $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields.
538	s.at(variable)
539	value := s.varValue(variable.Ident[0])
540	if len(variable.Ident) == 1 {
541		s.notAFunction(args, final)
542		return value
543	}
544	return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final)
545}
546
547// evalFieldChain evaluates .X.Y.Z possibly followed by arguments.
548// dot is the environment in which to evaluate arguments, while
549// receiver is the value being walked along the chain.
550func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value {
551	n := len(ident)
552	for i := 0; i < n-1; i++ {
553		receiver = s.evalField(dot, ident[i], node, nil, missingVal, receiver)
554	}
555	// Now if it's a method, it gets the arguments.
556	return s.evalField(dot, ident[n-1], node, args, final, receiver)
557}
558
559func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value {
560	s.at(node)
561	name := node.Ident
562	function, ok := findFunction(name, s.tmpl)
563	if !ok {
564		s.errorf("%q is not a defined function", name)
565	}
566	return s.evalCall(dot, function, cmd, name, args, final)
567}
568
569// evalField evaluates an expression like (.Field) or (.Field arg1 arg2).
570// The 'final' argument represents the return value from the preceding
571// value of the pipeline, if any.
572func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value {
573	if !receiver.IsValid() {
574		if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key.
575			s.errorf("nil data; no entry for key %q", fieldName)
576		}
577		return zero
578	}
579	typ := receiver.Type()
580	receiver, isNil := indirect(receiver)
581	if receiver.Kind() == reflect.Interface && isNil {
582		// Calling a method on a nil interface can't work. The
583		// MethodByName method call below would panic.
584		s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
585		return zero
586	}
587
588	// Unless it's an interface, need to get to a value of type *T to guarantee
589	// we see all methods of T and *T.
590	ptr := receiver
591	if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Ptr && ptr.CanAddr() {
592		ptr = ptr.Addr()
593	}
594	if method := ptr.MethodByName(fieldName); method.IsValid() {
595		return s.evalCall(dot, method, node, fieldName, args, final)
596	}
597	hasArgs := len(args) > 1 || final != missingVal
598	// It's not a method; must be a field of a struct or an element of a map.
599	switch receiver.Kind() {
600	case reflect.Struct:
601		tField, ok := receiver.Type().FieldByName(fieldName)
602		if ok {
603			if isNil {
604				s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
605			}
606			field := receiver.FieldByIndex(tField.Index)
607			if tField.PkgPath != "" { // field is unexported
608				s.errorf("%s is an unexported field of struct type %s", fieldName, typ)
609			}
610			// If it's a function, we must call it.
611			if hasArgs {
612				s.errorf("%s has arguments but cannot be invoked as function", fieldName)
613			}
614			return field
615		}
616	case reflect.Map:
617		if isNil {
618			s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
619		}
620		// If it's a map, attempt to use the field name as a key.
621		nameVal := reflect.ValueOf(fieldName)
622		if nameVal.Type().AssignableTo(receiver.Type().Key()) {
623			if hasArgs {
624				s.errorf("%s is not a method but has arguments", fieldName)
625			}
626			result := receiver.MapIndex(nameVal)
627			if !result.IsValid() {
628				switch s.tmpl.option.missingKey {
629				case mapInvalid:
630					// Just use the invalid value.
631				case mapZeroValue:
632					result = reflect.Zero(receiver.Type().Elem())
633				case mapError:
634					s.errorf("map has no entry for key %q", fieldName)
635				}
636			}
637			return result
638		}
639	}
640	s.errorf("can't evaluate field %s in type %s", fieldName, typ)
641	panic("not reached")
642}
643
644var (
645	errorType        = reflect.TypeOf((*error)(nil)).Elem()
646	fmtStringerType  = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
647	reflectValueType = reflect.TypeOf((*reflect.Value)(nil)).Elem()
648)
649
650// evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so
651// it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0]
652// as the function itself.
653func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value {
654	if args != nil {
655		args = args[1:] // Zeroth arg is function name/node; not passed to function.
656	}
657	typ := fun.Type()
658	numIn := len(args)
659	if final != missingVal {
660		numIn++
661	}
662	numFixed := len(args)
663	if typ.IsVariadic() {
664		numFixed = typ.NumIn() - 1 // last arg is the variadic one.
665		if numIn < numFixed {
666			s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args))
667		}
668	} else if numIn != typ.NumIn() {
669		s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), numIn)
670	}
671	if !goodFunc(typ) {
672		// TODO: This could still be a confusing error; maybe goodFunc should provide info.
673		s.errorf("can't call method/function %q with %d results", name, typ.NumOut())
674	}
675	// Build the arg list.
676	argv := make([]reflect.Value, numIn)
677	// Args must be evaluated. Fixed args first.
678	i := 0
679	for ; i < numFixed && i < len(args); i++ {
680		argv[i] = s.evalArg(dot, typ.In(i), args[i])
681	}
682	// Now the ... args.
683	if typ.IsVariadic() {
684		argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice.
685		for ; i < len(args); i++ {
686			argv[i] = s.evalArg(dot, argType, args[i])
687		}
688	}
689	// Add final value if necessary.
690	if final != missingVal {
691		t := typ.In(typ.NumIn() - 1)
692		if typ.IsVariadic() {
693			if numIn-1 < numFixed {
694				// The added final argument corresponds to a fixed parameter of the function.
695				// Validate against the type of the actual parameter.
696				t = typ.In(numIn - 1)
697			} else {
698				// The added final argument corresponds to the variadic part.
699				// Validate against the type of the elements of the variadic slice.
700				t = t.Elem()
701			}
702		}
703		argv[i] = s.validateType(final, t)
704	}
705	v, err := safeCall(fun, argv)
706	// If we have an error that is not nil, stop execution and return that
707	// error to the caller.
708	if err != nil {
709		s.at(node)
710		s.errorf("error calling %s: %v", name, err)
711	}
712	if v.Type() == reflectValueType {
713		v = v.Interface().(reflect.Value)
714	}
715	return v
716}
717
718// canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero.
719func canBeNil(typ reflect.Type) bool {
720	switch typ.Kind() {
721	case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
722		return true
723	case reflect.Struct:
724		return typ == reflectValueType
725	}
726	return false
727}
728
729// validateType guarantees that the value is valid and assignable to the type.
730func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value {
731	if !value.IsValid() {
732		if typ == nil {
733			// An untyped nil interface{}. Accept as a proper nil value.
734			return reflect.ValueOf(nil)
735		}
736		if canBeNil(typ) {
737			// Like above, but use the zero value of the non-nil type.
738			return reflect.Zero(typ)
739		}
740		s.errorf("invalid value; expected %s", typ)
741	}
742	if typ == reflectValueType && value.Type() != typ {
743		return reflect.ValueOf(value)
744	}
745	if typ != nil && !value.Type().AssignableTo(typ) {
746		if value.Kind() == reflect.Interface && !value.IsNil() {
747			value = value.Elem()
748			if value.Type().AssignableTo(typ) {
749				return value
750			}
751			// fallthrough
752		}
753		// Does one dereference or indirection work? We could do more, as we
754		// do with method receivers, but that gets messy and method receivers
755		// are much more constrained, so it makes more sense there than here.
756		// Besides, one is almost always all you need.
757		switch {
758		case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ):
759			value = value.Elem()
760			if !value.IsValid() {
761				s.errorf("dereference of nil pointer of type %s", typ)
762			}
763		case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr():
764			value = value.Addr()
765		default:
766			s.errorf("wrong type for value; expected %s; got %s", typ, value.Type())
767		}
768	}
769	return value
770}
771
772func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value {
773	s.at(n)
774	switch arg := n.(type) {
775	case *parse.DotNode:
776		return s.validateType(dot, typ)
777	case *parse.NilNode:
778		if canBeNil(typ) {
779			return reflect.Zero(typ)
780		}
781		s.errorf("cannot assign nil to %s", typ)
782	case *parse.FieldNode:
783		return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, missingVal), typ)
784	case *parse.VariableNode:
785		return s.validateType(s.evalVariableNode(dot, arg, nil, missingVal), typ)
786	case *parse.PipeNode:
787		return s.validateType(s.evalPipeline(dot, arg), typ)
788	case *parse.IdentifierNode:
789		return s.validateType(s.evalFunction(dot, arg, arg, nil, missingVal), typ)
790	case *parse.ChainNode:
791		return s.validateType(s.evalChainNode(dot, arg, nil, missingVal), typ)
792	}
793	switch typ.Kind() {
794	case reflect.Bool:
795		return s.evalBool(typ, n)
796	case reflect.Complex64, reflect.Complex128:
797		return s.evalComplex(typ, n)
798	case reflect.Float32, reflect.Float64:
799		return s.evalFloat(typ, n)
800	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
801		return s.evalInteger(typ, n)
802	case reflect.Interface:
803		if typ.NumMethod() == 0 {
804			return s.evalEmptyInterface(dot, n)
805		}
806	case reflect.Struct:
807		if typ == reflectValueType {
808			return reflect.ValueOf(s.evalEmptyInterface(dot, n))
809		}
810	case reflect.String:
811		return s.evalString(typ, n)
812	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
813		return s.evalUnsignedInteger(typ, n)
814	}
815	s.errorf("can't handle %s for arg of type %s", n, typ)
816	panic("not reached")
817}
818
819func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value {
820	s.at(n)
821	if n, ok := n.(*parse.BoolNode); ok {
822		value := reflect.New(typ).Elem()
823		value.SetBool(n.True)
824		return value
825	}
826	s.errorf("expected bool; found %s", n)
827	panic("not reached")
828}
829
830func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value {
831	s.at(n)
832	if n, ok := n.(*parse.StringNode); ok {
833		value := reflect.New(typ).Elem()
834		value.SetString(n.Text)
835		return value
836	}
837	s.errorf("expected string; found %s", n)
838	panic("not reached")
839}
840
841func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value {
842	s.at(n)
843	if n, ok := n.(*parse.NumberNode); ok && n.IsInt {
844		value := reflect.New(typ).Elem()
845		value.SetInt(n.Int64)
846		return value
847	}
848	s.errorf("expected integer; found %s", n)
849	panic("not reached")
850}
851
852func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value {
853	s.at(n)
854	if n, ok := n.(*parse.NumberNode); ok && n.IsUint {
855		value := reflect.New(typ).Elem()
856		value.SetUint(n.Uint64)
857		return value
858	}
859	s.errorf("expected unsigned integer; found %s", n)
860	panic("not reached")
861}
862
863func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value {
864	s.at(n)
865	if n, ok := n.(*parse.NumberNode); ok && n.IsFloat {
866		value := reflect.New(typ).Elem()
867		value.SetFloat(n.Float64)
868		return value
869	}
870	s.errorf("expected float; found %s", n)
871	panic("not reached")
872}
873
874func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value {
875	if n, ok := n.(*parse.NumberNode); ok && n.IsComplex {
876		value := reflect.New(typ).Elem()
877		value.SetComplex(n.Complex128)
878		return value
879	}
880	s.errorf("expected complex; found %s", n)
881	panic("not reached")
882}
883
884func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value {
885	s.at(n)
886	switch n := n.(type) {
887	case *parse.BoolNode:
888		return reflect.ValueOf(n.True)
889	case *parse.DotNode:
890		return dot
891	case *parse.FieldNode:
892		return s.evalFieldNode(dot, n, nil, missingVal)
893	case *parse.IdentifierNode:
894		return s.evalFunction(dot, n, n, nil, missingVal)
895	case *parse.NilNode:
896		// NilNode is handled in evalArg, the only place that calls here.
897		s.errorf("evalEmptyInterface: nil (can't happen)")
898	case *parse.NumberNode:
899		return s.idealConstant(n)
900	case *parse.StringNode:
901		return reflect.ValueOf(n.Text)
902	case *parse.VariableNode:
903		return s.evalVariableNode(dot, n, nil, missingVal)
904	case *parse.PipeNode:
905		return s.evalPipeline(dot, n)
906	}
907	s.errorf("can't handle assignment of %s to empty interface argument", n)
908	panic("not reached")
909}
910
911// indirect returns the item at the end of indirection, and a bool to indicate if it's nil.
912func indirect(v reflect.Value) (rv reflect.Value, isNil bool) {
913	for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() {
914		if v.IsNil() {
915			return v, true
916		}
917	}
918	return v, false
919}
920
921// indirectInterface returns the concrete value in an interface value,
922// or else the zero reflect.Value.
923// That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x):
924// the fact that x was an interface value is forgotten.
925func indirectInterface(v reflect.Value) reflect.Value {
926	if v.Kind() != reflect.Interface {
927		return v
928	}
929	if v.IsNil() {
930		return reflect.Value{}
931	}
932	return v.Elem()
933}
934
935// printValue writes the textual representation of the value to the output of
936// the template.
937func (s *state) printValue(n parse.Node, v reflect.Value) {
938	s.at(n)
939	iface, ok := printableValue(v)
940	if !ok {
941		s.errorf("can't print %s of type %s", n, v.Type())
942	}
943	_, err := fmt.Fprint(s.wr, iface)
944	if err != nil {
945		s.writeError(err)
946	}
947}
948
949// printableValue returns the, possibly indirected, interface value inside v that
950// is best for a call to formatted printer.
951func printableValue(v reflect.Value) (interface{}, bool) {
952	if v.Kind() == reflect.Ptr {
953		v, _ = indirect(v) // fmt.Fprint handles nil.
954	}
955	if !v.IsValid() {
956		return "<no value>", true
957	}
958
959	if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) {
960		if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) {
961			v = v.Addr()
962		} else {
963			switch v.Kind() {
964			case reflect.Chan, reflect.Func:
965				return nil, false
966			}
967		}
968	}
969	return v.Interface(), true
970}
971