1 //=-- lsan_common.cc ------------------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of LeakSanitizer.
9 // Implementation of common leak checking functionality.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "lsan_common.h"
14 
15 #include "sanitizer_common/sanitizer_common.h"
16 #include "sanitizer_common/sanitizer_flag_parser.h"
17 #include "sanitizer_common/sanitizer_flags.h"
18 #include "sanitizer_common/sanitizer_placement_new.h"
19 #include "sanitizer_common/sanitizer_procmaps.h"
20 #include "sanitizer_common/sanitizer_report_decorator.h"
21 #include "sanitizer_common/sanitizer_stackdepot.h"
22 #include "sanitizer_common/sanitizer_stacktrace.h"
23 #include "sanitizer_common/sanitizer_suppressions.h"
24 #include "sanitizer_common/sanitizer_thread_registry.h"
25 #include "sanitizer_common/sanitizer_tls_get_addr.h"
26 
27 #if CAN_SANITIZE_LEAKS
28 namespace __lsan {
29 
30 // This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
31 // also to protect the global list of root regions.
32 BlockingMutex global_mutex(LINKER_INITIALIZED);
33 
34 Flags lsan_flags;
35 
DisableCounterUnderflow()36 void DisableCounterUnderflow() {
37   if (common_flags()->detect_leaks) {
38     Report("Unmatched call to __lsan_enable().\n");
39     Die();
40   }
41 }
42 
SetDefaults()43 void Flags::SetDefaults() {
44 #define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
45 #include "lsan_flags.inc"
46 #undef LSAN_FLAG
47 }
48 
RegisterLsanFlags(FlagParser * parser,Flags * f)49 void RegisterLsanFlags(FlagParser *parser, Flags *f) {
50 #define LSAN_FLAG(Type, Name, DefaultValue, Description) \
51   RegisterFlag(parser, #Name, Description, &f->Name);
52 #include "lsan_flags.inc"
53 #undef LSAN_FLAG
54 }
55 
56 #define LOG_POINTERS(...)                           \
57   do {                                              \
58     if (flags()->log_pointers) Report(__VA_ARGS__); \
59   } while (0)
60 
61 #define LOG_THREADS(...)                           \
62   do {                                             \
63     if (flags()->log_threads) Report(__VA_ARGS__); \
64   } while (0)
65 
66 ALIGNED(64) static char suppression_placeholder[sizeof(SuppressionContext)];
67 static SuppressionContext *suppression_ctx = nullptr;
68 static const char kSuppressionLeak[] = "leak";
69 static const char *kSuppressionTypes[] = { kSuppressionLeak };
70 static const char kStdSuppressions[] =
71 #if SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
72   // For more details refer to the SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
73   // definition.
74   "leak:*pthread_exit*\n"
75 #endif  // SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
76 #if SANITIZER_MAC
77   // For Darwin and os_log/os_trace: https://reviews.llvm.org/D35173
78   "leak:*_os_trace*\n"
79 #endif
80   // TLS leak in some glibc versions, described in
81   // https://sourceware.org/bugzilla/show_bug.cgi?id=12650.
82   "leak:*tls_get_addr*\n";
83 
InitializeSuppressions()84 void InitializeSuppressions() {
85   CHECK_EQ(nullptr, suppression_ctx);
86   suppression_ctx = new (suppression_placeholder) // NOLINT
87       SuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
88   suppression_ctx->ParseFromFile(flags()->suppressions);
89   if (&__lsan_default_suppressions)
90     suppression_ctx->Parse(__lsan_default_suppressions());
91   suppression_ctx->Parse(kStdSuppressions);
92 }
93 
GetSuppressionContext()94 static SuppressionContext *GetSuppressionContext() {
95   CHECK(suppression_ctx);
96   return suppression_ctx;
97 }
98 
99 static InternalMmapVector<RootRegion> *root_regions;
100 
GetRootRegions()101 InternalMmapVector<RootRegion> const *GetRootRegions() { return root_regions; }
102 
InitializeRootRegions()103 void InitializeRootRegions() {
104   CHECK(!root_regions);
105   ALIGNED(64) static char placeholder[sizeof(InternalMmapVector<RootRegion>)];
106   root_regions = new (placeholder) InternalMmapVector<RootRegion>();  // NOLINT
107 }
108 
MaybeCallLsanDefaultOptions()109 const char *MaybeCallLsanDefaultOptions() {
110   return (&__lsan_default_options) ? __lsan_default_options() : "";
111 }
112 
InitCommonLsan()113 void InitCommonLsan() {
114   InitializeRootRegions();
115   if (common_flags()->detect_leaks) {
116     // Initialization which can fail or print warnings should only be done if
117     // LSan is actually enabled.
118     InitializeSuppressions();
119     InitializePlatformSpecificModules();
120   }
121 }
122 
123 class Decorator: public __sanitizer::SanitizerCommonDecorator {
124  public:
Decorator()125   Decorator() : SanitizerCommonDecorator() { }
Error()126   const char *Error() { return Red(); }
Leak()127   const char *Leak() { return Blue(); }
128 };
129 
CanBeAHeapPointer(uptr p)130 static inline bool CanBeAHeapPointer(uptr p) {
131   // Since our heap is located in mmap-ed memory, we can assume a sensible lower
132   // bound on heap addresses.
133   const uptr kMinAddress = 4 * 4096;
134   if (p < kMinAddress) return false;
135 #if defined(__x86_64__)
136   // Accept only canonical form user-space addresses.
137   return ((p >> 47) == 0);
138 #elif defined(__mips64)
139   return ((p >> 40) == 0);
140 #elif defined(__aarch64__)
141   unsigned runtimeVMA =
142     (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
143   return ((p >> runtimeVMA) == 0);
144 #else
145   return true;
146 #endif
147 }
148 
149 // Scans the memory range, looking for byte patterns that point into allocator
150 // chunks. Marks those chunks with |tag| and adds them to |frontier|.
151 // There are two usage modes for this function: finding reachable chunks
152 // (|tag| = kReachable) and finding indirectly leaked chunks
153 // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
154 // so |frontier| = 0.
ScanRangeForPointers(uptr begin,uptr end,Frontier * frontier,const char * region_type,ChunkTag tag)155 void ScanRangeForPointers(uptr begin, uptr end,
156                           Frontier *frontier,
157                           const char *region_type, ChunkTag tag) {
158   CHECK(tag == kReachable || tag == kIndirectlyLeaked);
159   const uptr alignment = flags()->pointer_alignment();
160   LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, begin, end);
161   uptr pp = begin;
162   if (pp % alignment)
163     pp = pp + alignment - pp % alignment;
164   for (; pp + sizeof(void *) <= end; pp += alignment) {  // NOLINT
165     void *p = *reinterpret_cast<void **>(pp);
166     if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
167     uptr chunk = PointsIntoChunk(p);
168     if (!chunk) continue;
169     // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
170     if (chunk == begin) continue;
171     LsanMetadata m(chunk);
172     if (m.tag() == kReachable || m.tag() == kIgnored) continue;
173 
174     // Do this check relatively late so we can log only the interesting cases.
175     if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
176       LOG_POINTERS(
177           "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
178           "%zu.\n",
179           pp, p, chunk, chunk + m.requested_size(), m.requested_size());
180       continue;
181     }
182 
183     m.set_tag(tag);
184     LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
185                  chunk, chunk + m.requested_size(), m.requested_size());
186     if (frontier)
187       frontier->push_back(chunk);
188   }
189 }
190 
191 // Scans a global range for pointers
ScanGlobalRange(uptr begin,uptr end,Frontier * frontier)192 void ScanGlobalRange(uptr begin, uptr end, Frontier *frontier) {
193   uptr allocator_begin = 0, allocator_end = 0;
194   GetAllocatorGlobalRange(&allocator_begin, &allocator_end);
195   if (begin <= allocator_begin && allocator_begin < end) {
196     CHECK_LE(allocator_begin, allocator_end);
197     CHECK_LE(allocator_end, end);
198     if (begin < allocator_begin)
199       ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL",
200                            kReachable);
201     if (allocator_end < end)
202       ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL", kReachable);
203   } else {
204     ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable);
205   }
206 }
207 
ForEachExtraStackRangeCb(uptr begin,uptr end,void * arg)208 void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) {
209   Frontier *frontier = reinterpret_cast<Frontier *>(arg);
210   ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable);
211 }
212 
213 // Scans thread data (stacks and TLS) for heap pointers.
ProcessThreads(SuspendedThreadsList const & suspended_threads,Frontier * frontier)214 static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
215                            Frontier *frontier) {
216   InternalMmapVector<uptr> registers(suspended_threads.RegisterCount());
217   uptr registers_begin = reinterpret_cast<uptr>(registers.data());
218   uptr registers_end =
219       reinterpret_cast<uptr>(registers.data() + registers.size());
220   for (uptr i = 0; i < suspended_threads.ThreadCount(); i++) {
221     tid_t os_id = static_cast<tid_t>(suspended_threads.GetThreadID(i));
222     LOG_THREADS("Processing thread %d.\n", os_id);
223     uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
224     DTLS *dtls;
225     bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
226                                               &tls_begin, &tls_end,
227                                               &cache_begin, &cache_end, &dtls);
228     if (!thread_found) {
229       // If a thread can't be found in the thread registry, it's probably in the
230       // process of destruction. Log this event and move on.
231       LOG_THREADS("Thread %d not found in registry.\n", os_id);
232       continue;
233     }
234     uptr sp;
235     PtraceRegistersStatus have_registers =
236         suspended_threads.GetRegistersAndSP(i, registers.data(), &sp);
237     if (have_registers != REGISTERS_AVAILABLE) {
238       Report("Unable to get registers from thread %d.\n", os_id);
239       // If unable to get SP, consider the entire stack to be reachable unless
240       // GetRegistersAndSP failed with ESRCH.
241       if (have_registers == REGISTERS_UNAVAILABLE_FATAL) continue;
242       sp = stack_begin;
243     }
244 
245     if (flags()->use_registers && have_registers)
246       ScanRangeForPointers(registers_begin, registers_end, frontier,
247                            "REGISTERS", kReachable);
248 
249     if (flags()->use_stacks) {
250       LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin, stack_end, sp);
251       if (sp < stack_begin || sp >= stack_end) {
252         // SP is outside the recorded stack range (e.g. the thread is running a
253         // signal handler on alternate stack, or swapcontext was used).
254         // Again, consider the entire stack range to be reachable.
255         LOG_THREADS("WARNING: stack pointer not in stack range.\n");
256         uptr page_size = GetPageSizeCached();
257         int skipped = 0;
258         while (stack_begin < stack_end &&
259                !IsAccessibleMemoryRange(stack_begin, 1)) {
260           skipped++;
261           stack_begin += page_size;
262         }
263         LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n",
264                     skipped, stack_begin, stack_end);
265       } else {
266         // Shrink the stack range to ignore out-of-scope values.
267         stack_begin = sp;
268       }
269       ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
270                            kReachable);
271       ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier);
272     }
273 
274     if (flags()->use_tls) {
275       if (tls_begin) {
276         LOG_THREADS("TLS at %p-%p.\n", tls_begin, tls_end);
277         // If the tls and cache ranges don't overlap, scan full tls range,
278         // otherwise, only scan the non-overlapping portions
279         if (cache_begin == cache_end || tls_end < cache_begin ||
280             tls_begin > cache_end) {
281           ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
282         } else {
283           if (tls_begin < cache_begin)
284             ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
285                                  kReachable);
286           if (tls_end > cache_end)
287             ScanRangeForPointers(cache_end, tls_end, frontier, "TLS",
288                                  kReachable);
289         }
290       }
291       if (dtls && !DTLSInDestruction(dtls)) {
292         for (uptr j = 0; j < dtls->dtv_size; ++j) {
293           uptr dtls_beg = dtls->dtv[j].beg;
294           uptr dtls_end = dtls_beg + dtls->dtv[j].size;
295           if (dtls_beg < dtls_end) {
296             LOG_THREADS("DTLS %zu at %p-%p.\n", j, dtls_beg, dtls_end);
297             ScanRangeForPointers(dtls_beg, dtls_end, frontier, "DTLS",
298                                  kReachable);
299           }
300         }
301       } else {
302         // We are handling a thread with DTLS under destruction. Log about
303         // this and continue.
304         LOG_THREADS("Thread %d has DTLS under destruction.\n", os_id);
305       }
306     }
307   }
308 }
309 
ScanRootRegion(Frontier * frontier,const RootRegion & root_region,uptr region_begin,uptr region_end,bool is_readable)310 void ScanRootRegion(Frontier *frontier, const RootRegion &root_region,
311                     uptr region_begin, uptr region_end, bool is_readable) {
312   uptr intersection_begin = Max(root_region.begin, region_begin);
313   uptr intersection_end = Min(region_end, root_region.begin + root_region.size);
314   if (intersection_begin >= intersection_end) return;
315   LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n",
316                root_region.begin, root_region.begin + root_region.size,
317                region_begin, region_end,
318                is_readable ? "readable" : "unreadable");
319   if (is_readable)
320     ScanRangeForPointers(intersection_begin, intersection_end, frontier, "ROOT",
321                          kReachable);
322 }
323 
ProcessRootRegion(Frontier * frontier,const RootRegion & root_region)324 static void ProcessRootRegion(Frontier *frontier,
325                               const RootRegion &root_region) {
326   MemoryMappingLayout proc_maps(/*cache_enabled*/ true);
327   MemoryMappedSegment segment;
328   while (proc_maps.Next(&segment)) {
329     ScanRootRegion(frontier, root_region, segment.start, segment.end,
330                    segment.IsReadable());
331   }
332 }
333 
334 // Scans root regions for heap pointers.
ProcessRootRegions(Frontier * frontier)335 static void ProcessRootRegions(Frontier *frontier) {
336   if (!flags()->use_root_regions) return;
337   CHECK(root_regions);
338   for (uptr i = 0; i < root_regions->size(); i++) {
339     ProcessRootRegion(frontier, (*root_regions)[i]);
340   }
341 }
342 
FloodFillTag(Frontier * frontier,ChunkTag tag)343 static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
344   while (frontier->size()) {
345     uptr next_chunk = frontier->back();
346     frontier->pop_back();
347     LsanMetadata m(next_chunk);
348     ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
349                          "HEAP", tag);
350   }
351 }
352 
353 // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
354 // which are reachable from it as indirectly leaked.
MarkIndirectlyLeakedCb(uptr chunk,void * arg)355 static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
356   chunk = GetUserBegin(chunk);
357   LsanMetadata m(chunk);
358   if (m.allocated() && m.tag() != kReachable) {
359     ScanRangeForPointers(chunk, chunk + m.requested_size(),
360                          /* frontier */ nullptr, "HEAP", kIndirectlyLeaked);
361   }
362 }
363 
364 // ForEachChunk callback. If chunk is marked as ignored, adds its address to
365 // frontier.
CollectIgnoredCb(uptr chunk,void * arg)366 static void CollectIgnoredCb(uptr chunk, void *arg) {
367   CHECK(arg);
368   chunk = GetUserBegin(chunk);
369   LsanMetadata m(chunk);
370   if (m.allocated() && m.tag() == kIgnored) {
371     LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n",
372                  chunk, chunk + m.requested_size(), m.requested_size());
373     reinterpret_cast<Frontier *>(arg)->push_back(chunk);
374   }
375 }
376 
GetCallerPC(u32 stack_id,StackDepotReverseMap * map)377 static uptr GetCallerPC(u32 stack_id, StackDepotReverseMap *map) {
378   CHECK(stack_id);
379   StackTrace stack = map->Get(stack_id);
380   // The top frame is our malloc/calloc/etc. The next frame is the caller.
381   if (stack.size >= 2)
382     return stack.trace[1];
383   return 0;
384 }
385 
386 struct InvalidPCParam {
387   Frontier *frontier;
388   StackDepotReverseMap *stack_depot_reverse_map;
389   bool skip_linker_allocations;
390 };
391 
392 // ForEachChunk callback. If the caller pc is invalid or is within the linker,
393 // mark as reachable. Called by ProcessPlatformSpecificAllocations.
MarkInvalidPCCb(uptr chunk,void * arg)394 static void MarkInvalidPCCb(uptr chunk, void *arg) {
395   CHECK(arg);
396   InvalidPCParam *param = reinterpret_cast<InvalidPCParam *>(arg);
397   chunk = GetUserBegin(chunk);
398   LsanMetadata m(chunk);
399   if (m.allocated() && m.tag() != kReachable && m.tag() != kIgnored) {
400     u32 stack_id = m.stack_trace_id();
401     uptr caller_pc = 0;
402     if (stack_id > 0)
403       caller_pc = GetCallerPC(stack_id, param->stack_depot_reverse_map);
404     // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
405     // it as reachable, as we can't properly report its allocation stack anyway.
406     if (caller_pc == 0 || (param->skip_linker_allocations &&
407                            GetLinker()->containsAddress(caller_pc))) {
408       m.set_tag(kReachable);
409       param->frontier->push_back(chunk);
410     }
411   }
412 }
413 
414 // On Linux, treats all chunks allocated from ld-linux.so as reachable, which
415 // covers dynamically allocated TLS blocks, internal dynamic loader's loaded
416 // modules accounting etc.
417 // Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
418 // They are allocated with a __libc_memalign() call in allocate_and_init()
419 // (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
420 // blocks, but we can make sure they come from our own allocator by intercepting
421 // __libc_memalign(). On top of that, there is no easy way to reach them. Their
422 // addresses are stored in a dynamically allocated array (the DTV) which is
423 // referenced from the static TLS. Unfortunately, we can't just rely on the DTV
424 // being reachable from the static TLS, and the dynamic TLS being reachable from
425 // the DTV. This is because the initial DTV is allocated before our interception
426 // mechanism kicks in, and thus we don't recognize it as allocated memory. We
427 // can't special-case it either, since we don't know its size.
428 // Our solution is to include in the root set all allocations made from
429 // ld-linux.so (which is where allocate_and_init() is implemented). This is
430 // guaranteed to include all dynamic TLS blocks (and possibly other allocations
431 // which we don't care about).
432 // On all other platforms, this simply checks to ensure that the caller pc is
433 // valid before reporting chunks as leaked.
ProcessPC(Frontier * frontier)434 void ProcessPC(Frontier *frontier) {
435   StackDepotReverseMap stack_depot_reverse_map;
436   InvalidPCParam arg;
437   arg.frontier = frontier;
438   arg.stack_depot_reverse_map = &stack_depot_reverse_map;
439   arg.skip_linker_allocations =
440       flags()->use_tls && flags()->use_ld_allocations && GetLinker() != nullptr;
441   ForEachChunk(MarkInvalidPCCb, &arg);
442 }
443 
444 // Sets the appropriate tag on each chunk.
ClassifyAllChunks(SuspendedThreadsList const & suspended_threads)445 static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
446   // Holds the flood fill frontier.
447   Frontier frontier;
448 
449   ForEachChunk(CollectIgnoredCb, &frontier);
450   ProcessGlobalRegions(&frontier);
451   ProcessThreads(suspended_threads, &frontier);
452   ProcessRootRegions(&frontier);
453   FloodFillTag(&frontier, kReachable);
454 
455   CHECK_EQ(0, frontier.size());
456   ProcessPC(&frontier);
457 
458   // The check here is relatively expensive, so we do this in a separate flood
459   // fill. That way we can skip the check for chunks that are reachable
460   // otherwise.
461   LOG_POINTERS("Processing platform-specific allocations.\n");
462   ProcessPlatformSpecificAllocations(&frontier);
463   FloodFillTag(&frontier, kReachable);
464 
465   // Iterate over leaked chunks and mark those that are reachable from other
466   // leaked chunks.
467   LOG_POINTERS("Scanning leaked chunks.\n");
468   ForEachChunk(MarkIndirectlyLeakedCb, nullptr);
469 }
470 
471 // ForEachChunk callback. Resets the tags to pre-leak-check state.
ResetTagsCb(uptr chunk,void * arg)472 static void ResetTagsCb(uptr chunk, void *arg) {
473   (void)arg;
474   chunk = GetUserBegin(chunk);
475   LsanMetadata m(chunk);
476   if (m.allocated() && m.tag() != kIgnored)
477     m.set_tag(kDirectlyLeaked);
478 }
479 
PrintStackTraceById(u32 stack_trace_id)480 static void PrintStackTraceById(u32 stack_trace_id) {
481   CHECK(stack_trace_id);
482   StackDepotGet(stack_trace_id).Print();
483 }
484 
485 // ForEachChunk callback. Aggregates information about unreachable chunks into
486 // a LeakReport.
CollectLeaksCb(uptr chunk,void * arg)487 static void CollectLeaksCb(uptr chunk, void *arg) {
488   CHECK(arg);
489   LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
490   chunk = GetUserBegin(chunk);
491   LsanMetadata m(chunk);
492   if (!m.allocated()) return;
493   if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
494     u32 resolution = flags()->resolution;
495     u32 stack_trace_id = 0;
496     if (resolution > 0) {
497       StackTrace stack = StackDepotGet(m.stack_trace_id());
498       stack.size = Min(stack.size, resolution);
499       stack_trace_id = StackDepotPut(stack);
500     } else {
501       stack_trace_id = m.stack_trace_id();
502     }
503     leak_report->AddLeakedChunk(chunk, stack_trace_id, m.requested_size(),
504                                 m.tag());
505   }
506 }
507 
PrintMatchedSuppressions()508 static void PrintMatchedSuppressions() {
509   InternalMmapVector<Suppression *> matched;
510   GetSuppressionContext()->GetMatched(&matched);
511   if (!matched.size())
512     return;
513   const char *line = "-----------------------------------------------------";
514   Printf("%s\n", line);
515   Printf("Suppressions used:\n");
516   Printf("  count      bytes template\n");
517   for (uptr i = 0; i < matched.size(); i++)
518     Printf("%7zu %10zu %s\n", static_cast<uptr>(atomic_load_relaxed(
519         &matched[i]->hit_count)), matched[i]->weight, matched[i]->templ);
520   Printf("%s\n\n", line);
521 }
522 
523 struct CheckForLeaksParam {
524   bool success;
525   LeakReport leak_report;
526 };
527 
ReportIfNotSuspended(ThreadContextBase * tctx,void * arg)528 static void ReportIfNotSuspended(ThreadContextBase *tctx, void *arg) {
529   const InternalMmapVector<tid_t> &suspended_threads =
530       *(const InternalMmapVector<tid_t> *)arg;
531   if (tctx->status == ThreadStatusRunning) {
532     uptr i = InternalLowerBound(suspended_threads, 0, suspended_threads.size(),
533                                 tctx->os_id, CompareLess<int>());
534     if (i >= suspended_threads.size() || suspended_threads[i] != tctx->os_id)
535       Report("Running thread %d was not suspended. False leaks are possible.\n",
536              tctx->os_id);
537   };
538 }
539 
ReportUnsuspendedThreads(const SuspendedThreadsList & suspended_threads)540 static void ReportUnsuspendedThreads(
541     const SuspendedThreadsList &suspended_threads) {
542   InternalMmapVector<tid_t> threads(suspended_threads.ThreadCount());
543   for (uptr i = 0; i < suspended_threads.ThreadCount(); ++i)
544     threads[i] = suspended_threads.GetThreadID(i);
545 
546   Sort(threads.data(), threads.size());
547 
548   GetThreadRegistryLocked()->RunCallbackForEachThreadLocked(
549       &ReportIfNotSuspended, &threads);
550 }
551 
CheckForLeaksCallback(const SuspendedThreadsList & suspended_threads,void * arg)552 static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads,
553                                   void *arg) {
554   CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg);
555   CHECK(param);
556   CHECK(!param->success);
557   ReportUnsuspendedThreads(suspended_threads);
558   ClassifyAllChunks(suspended_threads);
559   ForEachChunk(CollectLeaksCb, &param->leak_report);
560   // Clean up for subsequent leak checks. This assumes we did not overwrite any
561   // kIgnored tags.
562   ForEachChunk(ResetTagsCb, nullptr);
563   param->success = true;
564 }
565 
CheckForLeaks()566 static bool CheckForLeaks() {
567   if (&__lsan_is_turned_off && __lsan_is_turned_off())
568       return false;
569   EnsureMainThreadIDIsCorrect();
570   CheckForLeaksParam param;
571   param.success = false;
572   LockThreadRegistry();
573   LockAllocator();
574   DoStopTheWorld(CheckForLeaksCallback, &param);
575   UnlockAllocator();
576   UnlockThreadRegistry();
577 
578   if (!param.success) {
579     Report("LeakSanitizer has encountered a fatal error.\n");
580     Report(
581         "HINT: For debugging, try setting environment variable "
582         "LSAN_OPTIONS=verbosity=1:log_threads=1\n");
583     Report(
584         "HINT: LeakSanitizer does not work under ptrace (strace, gdb, etc)\n");
585     Die();
586   }
587   param.leak_report.ApplySuppressions();
588   uptr unsuppressed_count = param.leak_report.UnsuppressedLeakCount();
589   if (unsuppressed_count > 0) {
590     Decorator d;
591     Printf("\n"
592            "================================================================="
593            "\n");
594     Printf("%s", d.Error());
595     Report("ERROR: LeakSanitizer: detected memory leaks\n");
596     Printf("%s", d.Default());
597     param.leak_report.ReportTopLeaks(flags()->max_leaks);
598   }
599   if (common_flags()->print_suppressions)
600     PrintMatchedSuppressions();
601   if (unsuppressed_count > 0) {
602     param.leak_report.PrintSummary();
603     return true;
604   }
605   return false;
606 }
607 
608 static bool has_reported_leaks = false;
HasReportedLeaks()609 bool HasReportedLeaks() { return has_reported_leaks; }
610 
DoLeakCheck()611 void DoLeakCheck() {
612   BlockingMutexLock l(&global_mutex);
613   static bool already_done;
614   if (already_done) return;
615   already_done = true;
616   has_reported_leaks = CheckForLeaks();
617   if (has_reported_leaks) HandleLeaks();
618 }
619 
DoRecoverableLeakCheck()620 static int DoRecoverableLeakCheck() {
621   BlockingMutexLock l(&global_mutex);
622   bool have_leaks = CheckForLeaks();
623   return have_leaks ? 1 : 0;
624 }
625 
DoRecoverableLeakCheckVoid()626 void DoRecoverableLeakCheckVoid() { DoRecoverableLeakCheck(); }
627 
GetSuppressionForAddr(uptr addr)628 static Suppression *GetSuppressionForAddr(uptr addr) {
629   Suppression *s = nullptr;
630 
631   // Suppress by module name.
632   SuppressionContext *suppressions = GetSuppressionContext();
633   if (const char *module_name =
634           Symbolizer::GetOrInit()->GetModuleNameForPc(addr))
635     if (suppressions->Match(module_name, kSuppressionLeak, &s))
636       return s;
637 
638   // Suppress by file or function name.
639   SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr);
640   for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
641     if (suppressions->Match(cur->info.function, kSuppressionLeak, &s) ||
642         suppressions->Match(cur->info.file, kSuppressionLeak, &s)) {
643       break;
644     }
645   }
646   frames->ClearAll();
647   return s;
648 }
649 
GetSuppressionForStack(u32 stack_trace_id)650 static Suppression *GetSuppressionForStack(u32 stack_trace_id) {
651   StackTrace stack = StackDepotGet(stack_trace_id);
652   for (uptr i = 0; i < stack.size; i++) {
653     Suppression *s = GetSuppressionForAddr(
654         StackTrace::GetPreviousInstructionPc(stack.trace[i]));
655     if (s) return s;
656   }
657   return nullptr;
658 }
659 
660 ///// LeakReport implementation. /////
661 
662 // A hard limit on the number of distinct leaks, to avoid quadratic complexity
663 // in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
664 // in real-world applications.
665 // FIXME: Get rid of this limit by changing the implementation of LeakReport to
666 // use a hash table.
667 const uptr kMaxLeaksConsidered = 5000;
668 
AddLeakedChunk(uptr chunk,u32 stack_trace_id,uptr leaked_size,ChunkTag tag)669 void LeakReport::AddLeakedChunk(uptr chunk, u32 stack_trace_id,
670                                 uptr leaked_size, ChunkTag tag) {
671   CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
672   bool is_directly_leaked = (tag == kDirectlyLeaked);
673   uptr i;
674   for (i = 0; i < leaks_.size(); i++) {
675     if (leaks_[i].stack_trace_id == stack_trace_id &&
676         leaks_[i].is_directly_leaked == is_directly_leaked) {
677       leaks_[i].hit_count++;
678       leaks_[i].total_size += leaked_size;
679       break;
680     }
681   }
682   if (i == leaks_.size()) {
683     if (leaks_.size() == kMaxLeaksConsidered) return;
684     Leak leak = { next_id_++, /* hit_count */ 1, leaked_size, stack_trace_id,
685                   is_directly_leaked, /* is_suppressed */ false };
686     leaks_.push_back(leak);
687   }
688   if (flags()->report_objects) {
689     LeakedObject obj = {leaks_[i].id, chunk, leaked_size};
690     leaked_objects_.push_back(obj);
691   }
692 }
693 
LeakComparator(const Leak & leak1,const Leak & leak2)694 static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
695   if (leak1.is_directly_leaked == leak2.is_directly_leaked)
696     return leak1.total_size > leak2.total_size;
697   else
698     return leak1.is_directly_leaked;
699 }
700 
ReportTopLeaks(uptr num_leaks_to_report)701 void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
702   CHECK(leaks_.size() <= kMaxLeaksConsidered);
703   Printf("\n");
704   if (leaks_.size() == kMaxLeaksConsidered)
705     Printf("Too many leaks! Only the first %zu leaks encountered will be "
706            "reported.\n",
707            kMaxLeaksConsidered);
708 
709   uptr unsuppressed_count = UnsuppressedLeakCount();
710   if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
711     Printf("The %zu top leak(s):\n", num_leaks_to_report);
712   Sort(leaks_.data(), leaks_.size(), &LeakComparator);
713   uptr leaks_reported = 0;
714   for (uptr i = 0; i < leaks_.size(); i++) {
715     if (leaks_[i].is_suppressed) continue;
716     PrintReportForLeak(i);
717     leaks_reported++;
718     if (leaks_reported == num_leaks_to_report) break;
719   }
720   if (leaks_reported < unsuppressed_count) {
721     uptr remaining = unsuppressed_count - leaks_reported;
722     Printf("Omitting %zu more leak(s).\n", remaining);
723   }
724 }
725 
PrintReportForLeak(uptr index)726 void LeakReport::PrintReportForLeak(uptr index) {
727   Decorator d;
728   Printf("%s", d.Leak());
729   Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
730          leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
731          leaks_[index].total_size, leaks_[index].hit_count);
732   Printf("%s", d.Default());
733 
734   PrintStackTraceById(leaks_[index].stack_trace_id);
735 
736   if (flags()->report_objects) {
737     Printf("Objects leaked above:\n");
738     PrintLeakedObjectsForLeak(index);
739     Printf("\n");
740   }
741 }
742 
PrintLeakedObjectsForLeak(uptr index)743 void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
744   u32 leak_id = leaks_[index].id;
745   for (uptr j = 0; j < leaked_objects_.size(); j++) {
746     if (leaked_objects_[j].leak_id == leak_id)
747       Printf("%p (%zu bytes)\n", leaked_objects_[j].addr,
748              leaked_objects_[j].size);
749   }
750 }
751 
PrintSummary()752 void LeakReport::PrintSummary() {
753   CHECK(leaks_.size() <= kMaxLeaksConsidered);
754   uptr bytes = 0, allocations = 0;
755   for (uptr i = 0; i < leaks_.size(); i++) {
756       if (leaks_[i].is_suppressed) continue;
757       bytes += leaks_[i].total_size;
758       allocations += leaks_[i].hit_count;
759   }
760   InternalScopedString summary(kMaxSummaryLength);
761   summary.append("%zu byte(s) leaked in %zu allocation(s).", bytes,
762                  allocations);
763   ReportErrorSummary(summary.data());
764 }
765 
ApplySuppressions()766 void LeakReport::ApplySuppressions() {
767   for (uptr i = 0; i < leaks_.size(); i++) {
768     Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id);
769     if (s) {
770       s->weight += leaks_[i].total_size;
771       atomic_store_relaxed(&s->hit_count, atomic_load_relaxed(&s->hit_count) +
772           leaks_[i].hit_count);
773       leaks_[i].is_suppressed = true;
774     }
775   }
776 }
777 
UnsuppressedLeakCount()778 uptr LeakReport::UnsuppressedLeakCount() {
779   uptr result = 0;
780   for (uptr i = 0; i < leaks_.size(); i++)
781     if (!leaks_[i].is_suppressed) result++;
782   return result;
783 }
784 
785 } // namespace __lsan
786 #else // CAN_SANITIZE_LEAKS
787 namespace __lsan {
InitCommonLsan()788 void InitCommonLsan() { }
DoLeakCheck()789 void DoLeakCheck() { }
DoRecoverableLeakCheckVoid()790 void DoRecoverableLeakCheckVoid() { }
DisableInThisThread()791 void DisableInThisThread() { }
EnableInThisThread()792 void EnableInThisThread() { }
793 }
794 #endif // CAN_SANITIZE_LEAKS
795 
796 using namespace __lsan;  // NOLINT
797 
798 extern "C" {
799 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_ignore_object(const void * p)800 void __lsan_ignore_object(const void *p) {
801 #if CAN_SANITIZE_LEAKS
802   if (!common_flags()->detect_leaks)
803     return;
804   // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
805   // locked.
806   BlockingMutexLock l(&global_mutex);
807   IgnoreObjectResult res = IgnoreObjectLocked(p);
808   if (res == kIgnoreObjectInvalid)
809     VReport(1, "__lsan_ignore_object(): no heap object found at %p", p);
810   if (res == kIgnoreObjectAlreadyIgnored)
811     VReport(1, "__lsan_ignore_object(): "
812            "heap object at %p is already being ignored\n", p);
813   if (res == kIgnoreObjectSuccess)
814     VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
815 #endif // CAN_SANITIZE_LEAKS
816 }
817 
818 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_register_root_region(const void * begin,uptr size)819 void __lsan_register_root_region(const void *begin, uptr size) {
820 #if CAN_SANITIZE_LEAKS
821   BlockingMutexLock l(&global_mutex);
822   CHECK(root_regions);
823   RootRegion region = {reinterpret_cast<uptr>(begin), size};
824   root_regions->push_back(region);
825   VReport(1, "Registered root region at %p of size %llu\n", begin, size);
826 #endif // CAN_SANITIZE_LEAKS
827 }
828 
829 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_unregister_root_region(const void * begin,uptr size)830 void __lsan_unregister_root_region(const void *begin, uptr size) {
831 #if CAN_SANITIZE_LEAKS
832   BlockingMutexLock l(&global_mutex);
833   CHECK(root_regions);
834   bool removed = false;
835   for (uptr i = 0; i < root_regions->size(); i++) {
836     RootRegion region = (*root_regions)[i];
837     if (region.begin == reinterpret_cast<uptr>(begin) && region.size == size) {
838       removed = true;
839       uptr last_index = root_regions->size() - 1;
840       (*root_regions)[i] = (*root_regions)[last_index];
841       root_regions->pop_back();
842       VReport(1, "Unregistered root region at %p of size %llu\n", begin, size);
843       break;
844     }
845   }
846   if (!removed) {
847     Report(
848         "__lsan_unregister_root_region(): region at %p of size %llu has not "
849         "been registered.\n",
850         begin, size);
851     Die();
852   }
853 #endif // CAN_SANITIZE_LEAKS
854 }
855 
856 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_disable()857 void __lsan_disable() {
858 #if CAN_SANITIZE_LEAKS
859   __lsan::DisableInThisThread();
860 #endif
861 }
862 
863 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_enable()864 void __lsan_enable() {
865 #if CAN_SANITIZE_LEAKS
866   __lsan::EnableInThisThread();
867 #endif
868 }
869 
870 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_do_leak_check()871 void __lsan_do_leak_check() {
872 #if CAN_SANITIZE_LEAKS
873   if (common_flags()->detect_leaks)
874     __lsan::DoLeakCheck();
875 #endif // CAN_SANITIZE_LEAKS
876 }
877 
878 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_do_recoverable_leak_check()879 int __lsan_do_recoverable_leak_check() {
880 #if CAN_SANITIZE_LEAKS
881   if (common_flags()->detect_leaks)
882     return __lsan::DoRecoverableLeakCheck();
883 #endif // CAN_SANITIZE_LEAKS
884   return 0;
885 }
886 
887 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
888 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
__lsan_default_options()889 const char * __lsan_default_options() {
890   return "";
891 }
892 
893 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
__lsan_is_turned_off()894 int __lsan_is_turned_off() {
895   return 0;
896 }
897 
898 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
__lsan_default_suppressions()899 const char *__lsan_default_suppressions() {
900   return "";
901 }
902 #endif
903 } // extern "C"
904