1 /* Partial redundancy elimination / Hoisting for RTL.
2    Copyright (C) 1997-2016 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* TODO
21    - reordering of memory allocation and freeing to be more space efficient
22    - calc rough register pressure information and use the info to drive all
23      kinds of code motion (including code hoisting) in a unified way.
24 */
25 
26 /* References searched while implementing this.
27 
28    Compilers Principles, Techniques and Tools
29    Aho, Sethi, Ullman
30    Addison-Wesley, 1988
31 
32    Global Optimization by Suppression of Partial Redundancies
33    E. Morel, C. Renvoise
34    communications of the acm, Vol. 22, Num. 2, Feb. 1979
35 
36    A Portable Machine-Independent Global Optimizer - Design and Measurements
37    Frederick Chow
38    Stanford Ph.D. thesis, Dec. 1983
39 
40    A Fast Algorithm for Code Movement Optimization
41    D.M. Dhamdhere
42    SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
43 
44    A Solution to a Problem with Morel and Renvoise's
45    Global Optimization by Suppression of Partial Redundancies
46    K-H Drechsler, M.P. Stadel
47    ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
48 
49    Practical Adaptation of the Global Optimization
50    Algorithm of Morel and Renvoise
51    D.M. Dhamdhere
52    ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
53 
54    Efficiently Computing Static Single Assignment Form and the Control
55    Dependence Graph
56    R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57    ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
58 
59    Lazy Code Motion
60    J. Knoop, O. Ruthing, B. Steffen
61    ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
62 
63    What's In a Region?  Or Computing Control Dependence Regions in Near-Linear
64    Time for Reducible Flow Control
65    Thomas Ball
66    ACM Letters on Programming Languages and Systems,
67    Vol. 2, Num. 1-4, Mar-Dec 1993
68 
69    An Efficient Representation for Sparse Sets
70    Preston Briggs, Linda Torczon
71    ACM Letters on Programming Languages and Systems,
72    Vol. 2, Num. 1-4, Mar-Dec 1993
73 
74    A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75    K-H Drechsler, M.P. Stadel
76    ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
77 
78    Partial Dead Code Elimination
79    J. Knoop, O. Ruthing, B. Steffen
80    ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
81 
82    Effective Partial Redundancy Elimination
83    P. Briggs, K.D. Cooper
84    ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
85 
86    The Program Structure Tree: Computing Control Regions in Linear Time
87    R. Johnson, D. Pearson, K. Pingali
88    ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89 
90    Optimal Code Motion: Theory and Practice
91    J. Knoop, O. Ruthing, B. Steffen
92    ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
93 
94    The power of assignment motion
95    J. Knoop, O. Ruthing, B. Steffen
96    ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
97 
98    Global code motion / global value numbering
99    C. Click
100    ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
101 
102    Value Driven Redundancy Elimination
103    L.T. Simpson
104    Rice University Ph.D. thesis, Apr. 1996
105 
106    Value Numbering
107    L.T. Simpson
108    Massively Scalar Compiler Project, Rice University, Sep. 1996
109 
110    High Performance Compilers for Parallel Computing
111    Michael Wolfe
112    Addison-Wesley, 1996
113 
114    Advanced Compiler Design and Implementation
115    Steven Muchnick
116    Morgan Kaufmann, 1997
117 
118    Building an Optimizing Compiler
119    Robert Morgan
120    Digital Press, 1998
121 
122    People wishing to speed up the code here should read:
123      Elimination Algorithms for Data Flow Analysis
124      B.G. Ryder, M.C. Paull
125      ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
126 
127      How to Analyze Large Programs Efficiently and Informatively
128      D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129      ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
130 
131    People wishing to do something different can find various possibilities
132    in the above papers and elsewhere.
133 */
134 
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "backend.h"
139 #include "target.h"
140 #include "rtl.h"
141 #include "tree.h"
142 #include "predict.h"
143 #include "df.h"
144 #include "tm_p.h"
145 #include "insn-config.h"
146 #include "regs.h"
147 #include "ira.h"
148 #include "recog.h"
149 #include "diagnostic-core.h"
150 #include "cfgrtl.h"
151 #include "cfganal.h"
152 #include "lcm.h"
153 #include "cfgcleanup.h"
154 #include "expr.h"
155 #include "params.h"
156 #include "intl.h"
157 #include "tree-pass.h"
158 #include "dbgcnt.h"
159 #include "gcse.h"
160 #include "gcse-common.h"
161 
162 /* We support GCSE via Partial Redundancy Elimination.  PRE optimizations
163    are a superset of those done by classic GCSE.
164 
165    Two passes of copy/constant propagation are done around PRE or hoisting
166    because the first one enables more GCSE and the second one helps to clean
167    up the copies that PRE and HOIST create.  This is needed more for PRE than
168    for HOIST because code hoisting will try to use an existing register
169    containing the common subexpression rather than create a new one.  This is
170    harder to do for PRE because of the code motion (which HOIST doesn't do).
171 
172    Expressions we are interested in GCSE-ing are of the form
173    (set (pseudo-reg) (expression)).
174    Function want_to_gcse_p says what these are.
175 
176    In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
177    This allows PRE to hoist expressions that are expressed in multiple insns,
178    such as complex address calculations (e.g. for PIC code, or loads with a
179    high part and a low part).
180 
181    PRE handles moving invariant expressions out of loops (by treating them as
182    partially redundant).
183 
184    **********************
185 
186    We used to support multiple passes but there are diminishing returns in
187    doing so.  The first pass usually makes 90% of the changes that are doable.
188    A second pass can make a few more changes made possible by the first pass.
189    Experiments show any further passes don't make enough changes to justify
190    the expense.
191 
192    A study of spec92 using an unlimited number of passes:
193    [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
194    [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
195    [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
196 
197    It was found doing copy propagation between each pass enables further
198    substitutions.
199 
200    This study was done before expressions in REG_EQUAL notes were added as
201    candidate expressions for optimization, and before the GIMPLE optimizers
202    were added.  Probably, multiple passes is even less efficient now than
203    at the time when the study was conducted.
204 
205    PRE is quite expensive in complicated functions because the DFA can take
206    a while to converge.  Hence we only perform one pass.
207 
208    **********************
209 
210    The steps for PRE are:
211 
212    1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
213 
214    2) Perform the data flow analysis for PRE.
215 
216    3) Delete the redundant instructions
217 
218    4) Insert the required copies [if any] that make the partially
219       redundant instructions fully redundant.
220 
221    5) For other reaching expressions, insert an instruction to copy the value
222       to a newly created pseudo that will reach the redundant instruction.
223 
224    The deletion is done first so that when we do insertions we
225    know which pseudo reg to use.
226 
227    Various papers have argued that PRE DFA is expensive (O(n^2)) and others
228    argue it is not.  The number of iterations for the algorithm to converge
229    is typically 2-4 so I don't view it as that expensive (relatively speaking).
230 
231    PRE GCSE depends heavily on the second CPROP pass to clean up the copies
232    we create.  To make an expression reach the place where it's redundant,
233    the result of the expression is copied to a new register, and the redundant
234    expression is deleted by replacing it with this new register.  Classic GCSE
235    doesn't have this problem as much as it computes the reaching defs of
236    each register in each block and thus can try to use an existing
237    register.  */
238 
239 /* GCSE global vars.  */
240 
241 struct target_gcse default_target_gcse;
242 #if SWITCHABLE_TARGET
243 struct target_gcse *this_target_gcse = &default_target_gcse;
244 #endif
245 
246 /* Set to non-zero if CSE should run after all GCSE optimizations are done.  */
247 int flag_rerun_cse_after_global_opts;
248 
249 /* An obstack for our working variables.  */
250 static struct obstack gcse_obstack;
251 
252 /* Hash table of expressions.  */
253 
254 struct gcse_expr
255 {
256   /* The expression.  */
257   rtx expr;
258   /* Index in the available expression bitmaps.  */
259   int bitmap_index;
260   /* Next entry with the same hash.  */
261   struct gcse_expr *next_same_hash;
262   /* List of anticipatable occurrences in basic blocks in the function.
263      An "anticipatable occurrence" is one that is the first occurrence in the
264      basic block, the operands are not modified in the basic block prior
265      to the occurrence and the output is not used between the start of
266      the block and the occurrence.  */
267   struct gcse_occr *antic_occr;
268   /* List of available occurrence in basic blocks in the function.
269      An "available occurrence" is one that is the last occurrence in the
270      basic block and the operands are not modified by following statements in
271      the basic block [including this insn].  */
272   struct gcse_occr *avail_occr;
273   /* Non-null if the computation is PRE redundant.
274      The value is the newly created pseudo-reg to record a copy of the
275      expression in all the places that reach the redundant copy.  */
276   rtx reaching_reg;
277   /* Maximum distance in instructions this expression can travel.
278      We avoid moving simple expressions for more than a few instructions
279      to keep register pressure under control.
280      A value of "0" removes restrictions on how far the expression can
281      travel.  */
282   HOST_WIDE_INT max_distance;
283 };
284 
285 /* Occurrence of an expression.
286    There is one per basic block.  If a pattern appears more than once the
287    last appearance is used [or first for anticipatable expressions].  */
288 
289 struct gcse_occr
290 {
291   /* Next occurrence of this expression.  */
292   struct gcse_occr *next;
293   /* The insn that computes the expression.  */
294   rtx_insn *insn;
295   /* Nonzero if this [anticipatable] occurrence has been deleted.  */
296   char deleted_p;
297   /* Nonzero if this [available] occurrence has been copied to
298      reaching_reg.  */
299   /* ??? This is mutually exclusive with deleted_p, so they could share
300      the same byte.  */
301   char copied_p;
302 };
303 
304 typedef struct gcse_occr *occr_t;
305 
306 /* Expression hash tables.
307    Each hash table is an array of buckets.
308    ??? It is known that if it were an array of entries, structure elements
309    `next_same_hash' and `bitmap_index' wouldn't be necessary.  However, it is
310    not clear whether in the final analysis a sufficient amount of memory would
311    be saved as the size of the available expression bitmaps would be larger
312    [one could build a mapping table without holes afterwards though].
313    Someday I'll perform the computation and figure it out.  */
314 
315 struct gcse_hash_table_d
316 {
317   /* The table itself.
318      This is an array of `expr_hash_table_size' elements.  */
319   struct gcse_expr **table;
320 
321   /* Size of the hash table, in elements.  */
322   unsigned int size;
323 
324   /* Number of hash table elements.  */
325   unsigned int n_elems;
326 };
327 
328 /* Expression hash table.  */
329 static struct gcse_hash_table_d expr_hash_table;
330 
331 /* This is a list of expressions which are MEMs and will be used by load
332    or store motion.
333    Load motion tracks MEMs which aren't killed by anything except itself,
334    i.e. loads and stores to a single location.
335    We can then allow movement of these MEM refs with a little special
336    allowance. (all stores copy the same value to the reaching reg used
337    for the loads).  This means all values used to store into memory must have
338    no side effects so we can re-issue the setter value.  */
339 
340 struct ls_expr
341 {
342   struct gcse_expr * expr;	/* Gcse expression reference for LM.  */
343   rtx pattern;			/* Pattern of this mem.  */
344   rtx pattern_regs;		/* List of registers mentioned by the mem.  */
345   rtx_insn_list *loads;		/* INSN list of loads seen.  */
346   rtx_insn_list *stores;	/* INSN list of stores seen.  */
347   struct ls_expr * next;	/* Next in the list.  */
348   int invalid;			/* Invalid for some reason.  */
349   int index;			/* If it maps to a bitmap index.  */
350   unsigned int hash_index;	/* Index when in a hash table.  */
351   rtx reaching_reg;		/* Register to use when re-writing.  */
352 };
353 
354 /* Head of the list of load/store memory refs.  */
355 static struct ls_expr * pre_ldst_mems = NULL;
356 
357 struct pre_ldst_expr_hasher : nofree_ptr_hash <ls_expr>
358 {
359   typedef value_type compare_type;
360   static inline hashval_t hash (const ls_expr *);
361   static inline bool equal (const ls_expr *, const ls_expr *);
362 };
363 
364 /* Hashtable helpers.  */
365 inline hashval_t
hash(const ls_expr * x)366 pre_ldst_expr_hasher::hash (const ls_expr *x)
367 {
368   int do_not_record_p = 0;
369   return
370     hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
371 }
372 
373 static int expr_equiv_p (const_rtx, const_rtx);
374 
375 inline bool
equal(const ls_expr * ptr1,const ls_expr * ptr2)376 pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
377 			     const ls_expr *ptr2)
378 {
379   return expr_equiv_p (ptr1->pattern, ptr2->pattern);
380 }
381 
382 /* Hashtable for the load/store memory refs.  */
383 static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
384 
385 /* Bitmap containing one bit for each register in the program.
386    Used when performing GCSE to track which registers have been set since
387    the start of the basic block.  */
388 static regset reg_set_bitmap;
389 
390 /* Array, indexed by basic block number for a list of insns which modify
391    memory within that block.  */
392 static vec<rtx_insn *> *modify_mem_list;
393 static bitmap modify_mem_list_set;
394 
395 /* This array parallels modify_mem_list, except that it stores MEMs
396    being set and their canonicalized memory addresses.  */
397 static vec<modify_pair> *canon_modify_mem_list;
398 
399 /* Bitmap indexed by block numbers to record which blocks contain
400    function calls.  */
401 static bitmap blocks_with_calls;
402 
403 /* Various variables for statistics gathering.  */
404 
405 /* Memory used in a pass.
406    This isn't intended to be absolutely precise.  Its intent is only
407    to keep an eye on memory usage.  */
408 static int bytes_used;
409 
410 /* GCSE substitutions made.  */
411 static int gcse_subst_count;
412 /* Number of copy instructions created.  */
413 static int gcse_create_count;
414 
415 /* Doing code hoisting.  */
416 static bool doing_code_hoisting_p = false;
417 
418 /* For available exprs */
419 static sbitmap *ae_kill;
420 
421 /* Data stored for each basic block.  */
422 struct bb_data
423 {
424   /* Maximal register pressure inside basic block for given register class
425      (defined only for the pressure classes).  */
426   int max_reg_pressure[N_REG_CLASSES];
427   /* Recorded register pressure of basic block before trying to hoist
428      an expression.  Will be used to restore the register pressure
429      if the expression should not be hoisted.  */
430   int old_pressure;
431   /* Recorded register live_in info of basic block during code hoisting
432      process.  BACKUP is used to record live_in info before trying to
433      hoist an expression, and will be used to restore LIVE_IN if the
434      expression should not be hoisted.  */
435   bitmap live_in, backup;
436 };
437 
438 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
439 
440 static basic_block curr_bb;
441 
442 /* Current register pressure for each pressure class.  */
443 static int curr_reg_pressure[N_REG_CLASSES];
444 
445 
446 static void compute_can_copy (void);
447 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
448 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
449 static void *gcse_alloc (unsigned long);
450 static void alloc_gcse_mem (void);
451 static void free_gcse_mem (void);
452 static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
453 static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
454 static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
455 static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
456 static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
457 static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
458 static int oprs_available_p (const_rtx, const rtx_insn *);
459 static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
460 				  HOST_WIDE_INT, struct gcse_hash_table_d *);
461 static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
462 static void record_last_reg_set_info (rtx_insn *, int);
463 static void record_last_mem_set_info (rtx_insn *);
464 static void record_last_set_info (rtx, const_rtx, void *);
465 static void compute_hash_table (struct gcse_hash_table_d *);
466 static void alloc_hash_table (struct gcse_hash_table_d *);
467 static void free_hash_table (struct gcse_hash_table_d *);
468 static void compute_hash_table_work (struct gcse_hash_table_d *);
469 static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
470 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
471 				      struct gcse_hash_table_d *);
472 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
473 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
474 static void alloc_pre_mem (int, int);
475 static void free_pre_mem (void);
476 static struct edge_list *compute_pre_data (void);
477 static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
478 				    basic_block);
479 static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
480 static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
481 static void pre_insert_copies (void);
482 static int pre_delete (void);
483 static int pre_gcse (struct edge_list *);
484 static int one_pre_gcse_pass (void);
485 static void add_label_notes (rtx, rtx_insn *);
486 static void alloc_code_hoist_mem (int, int);
487 static void free_code_hoist_mem (void);
488 static void compute_code_hoist_vbeinout (void);
489 static void compute_code_hoist_data (void);
490 static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *,
491 				     basic_block,
492 				     sbitmap, HOST_WIDE_INT, int *,
493 				     enum reg_class,
494 				     int *, bitmap, rtx_insn *);
495 static int hoist_code (void);
496 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
497 static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
498 static int one_code_hoisting_pass (void);
499 static rtx_insn *process_insert_insn (struct gcse_expr *);
500 static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
501 static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
502 					 basic_block, char *);
503 static struct ls_expr * ldst_entry (rtx);
504 static void free_ldst_entry (struct ls_expr *);
505 static void free_ld_motion_mems (void);
506 static void print_ldst_list (FILE *);
507 static struct ls_expr * find_rtx_in_ldst (rtx);
508 static int simple_mem (const_rtx);
509 static void invalidate_any_buried_refs (rtx);
510 static void compute_ld_motion_mems (void);
511 static void trim_ld_motion_mems (void);
512 static void update_ld_motion_stores (struct gcse_expr *);
513 static void clear_modify_mem_tables (void);
514 static void free_modify_mem_tables (void);
515 
516 #define GNEW(T)			((T *) gmalloc (sizeof (T)))
517 #define GCNEW(T)		((T *) gcalloc (1, sizeof (T)))
518 
519 #define GNEWVEC(T, N)		((T *) gmalloc (sizeof (T) * (N)))
520 #define GCNEWVEC(T, N)		((T *) gcalloc ((N), sizeof (T)))
521 
522 #define GNEWVAR(T, S)		((T *) gmalloc ((S)))
523 #define GCNEWVAR(T, S)		((T *) gcalloc (1, (S)))
524 
525 #define GOBNEW(T)		((T *) gcse_alloc (sizeof (T)))
526 #define GOBNEWVAR(T, S)		((T *) gcse_alloc ((S)))
527 
528 /* Misc. utilities.  */
529 
530 #define can_copy \
531   (this_target_gcse->x_can_copy)
532 #define can_copy_init_p \
533   (this_target_gcse->x_can_copy_init_p)
534 
535 /* Compute which modes support reg/reg copy operations.  */
536 
537 static void
compute_can_copy(void)538 compute_can_copy (void)
539 {
540   int i;
541 #ifndef AVOID_CCMODE_COPIES
542   rtx reg;
543  rtx_insn *insn;
544 #endif
545   memset (can_copy, 0, NUM_MACHINE_MODES);
546 
547   start_sequence ();
548   for (i = 0; i < NUM_MACHINE_MODES; i++)
549     if (GET_MODE_CLASS (i) == MODE_CC)
550       {
551 #ifdef AVOID_CCMODE_COPIES
552 	can_copy[i] = 0;
553 #else
554 	reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
555 	insn = emit_insn (gen_rtx_SET (reg, reg));
556 	if (recog (PATTERN (insn), insn, NULL) >= 0)
557 	  can_copy[i] = 1;
558 #endif
559       }
560     else
561       can_copy[i] = 1;
562 
563   end_sequence ();
564 }
565 
566 /* Returns whether the mode supports reg/reg copy operations.  */
567 
568 bool
can_copy_p(machine_mode mode)569 can_copy_p (machine_mode mode)
570 {
571   if (! can_copy_init_p)
572     {
573       compute_can_copy ();
574       can_copy_init_p = true;
575     }
576 
577   return can_copy[mode] != 0;
578 }
579 
580 /* Cover function to xmalloc to record bytes allocated.  */
581 
582 static void *
gmalloc(size_t size)583 gmalloc (size_t size)
584 {
585   bytes_used += size;
586   return xmalloc (size);
587 }
588 
589 /* Cover function to xcalloc to record bytes allocated.  */
590 
591 static void *
gcalloc(size_t nelem,size_t elsize)592 gcalloc (size_t nelem, size_t elsize)
593 {
594   bytes_used += nelem * elsize;
595   return xcalloc (nelem, elsize);
596 }
597 
598 /* Cover function to obstack_alloc.  */
599 
600 static void *
gcse_alloc(unsigned long size)601 gcse_alloc (unsigned long size)
602 {
603   bytes_used += size;
604   return obstack_alloc (&gcse_obstack, size);
605 }
606 
607 /* Allocate memory for the reg/memory set tracking tables.
608    This is called at the start of each pass.  */
609 
610 static void
alloc_gcse_mem(void)611 alloc_gcse_mem (void)
612 {
613   /* Allocate vars to track sets of regs.  */
614   reg_set_bitmap = ALLOC_REG_SET (NULL);
615 
616   /* Allocate array to keep a list of insns which modify memory in each
617      basic block.  The two typedefs are needed to work around the
618      pre-processor limitation with template types in macro arguments.  */
619   typedef vec<rtx_insn *> vec_rtx_heap;
620   typedef vec<modify_pair> vec_modify_pair_heap;
621   modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
622   canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
623 				    last_basic_block_for_fn (cfun));
624   modify_mem_list_set = BITMAP_ALLOC (NULL);
625   blocks_with_calls = BITMAP_ALLOC (NULL);
626 }
627 
628 /* Free memory allocated by alloc_gcse_mem.  */
629 
630 static void
free_gcse_mem(void)631 free_gcse_mem (void)
632 {
633   FREE_REG_SET (reg_set_bitmap);
634 
635   free_modify_mem_tables ();
636   BITMAP_FREE (modify_mem_list_set);
637   BITMAP_FREE (blocks_with_calls);
638 }
639 
640 /* Compute the local properties of each recorded expression.
641 
642    Local properties are those that are defined by the block, irrespective of
643    other blocks.
644 
645    An expression is transparent in a block if its operands are not modified
646    in the block.
647 
648    An expression is computed (locally available) in a block if it is computed
649    at least once and expression would contain the same value if the
650    computation was moved to the end of the block.
651 
652    An expression is locally anticipatable in a block if it is computed at
653    least once and expression would contain the same value if the computation
654    was moved to the beginning of the block.
655 
656    We call this routine for pre and code hoisting.  They all compute
657    basically the same information and thus can easily share this code.
658 
659    TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
660    properties.  If NULL, then it is not necessary to compute or record that
661    particular property.
662 
663    TABLE controls which hash table to look at.  */
664 
665 static void
compute_local_properties(sbitmap * transp,sbitmap * comp,sbitmap * antloc,struct gcse_hash_table_d * table)666 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
667 			  struct gcse_hash_table_d *table)
668 {
669   unsigned int i;
670 
671   /* Initialize any bitmaps that were passed in.  */
672   if (transp)
673     {
674       bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
675     }
676 
677   if (comp)
678     bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
679   if (antloc)
680     bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
681 
682   for (i = 0; i < table->size; i++)
683     {
684       struct gcse_expr *expr;
685 
686       for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
687 	{
688 	  int indx = expr->bitmap_index;
689 	  struct gcse_occr *occr;
690 
691 	  /* The expression is transparent in this block if it is not killed.
692 	     We start by assuming all are transparent [none are killed], and
693 	     then reset the bits for those that are.  */
694 	  if (transp)
695 	    compute_transp (expr->expr, indx, transp,
696 			    blocks_with_calls,
697 			    modify_mem_list_set,
698 			    canon_modify_mem_list);
699 
700 	  /* The occurrences recorded in antic_occr are exactly those that
701 	     we want to set to nonzero in ANTLOC.  */
702 	  if (antloc)
703 	    for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
704 	      {
705 		bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
706 
707 		/* While we're scanning the table, this is a good place to
708 		   initialize this.  */
709 		occr->deleted_p = 0;
710 	      }
711 
712 	  /* The occurrences recorded in avail_occr are exactly those that
713 	     we want to set to nonzero in COMP.  */
714 	  if (comp)
715 	    for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
716 	      {
717 		bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
718 
719 		/* While we're scanning the table, this is a good place to
720 		   initialize this.  */
721 		occr->copied_p = 0;
722 	      }
723 
724 	  /* While we're scanning the table, this is a good place to
725 	     initialize this.  */
726 	  expr->reaching_reg = 0;
727 	}
728     }
729 }
730 
731 /* Hash table support.  */
732 
733 struct reg_avail_info
734 {
735   basic_block last_bb;
736   int first_set;
737   int last_set;
738 };
739 
740 static struct reg_avail_info *reg_avail_info;
741 static basic_block current_bb;
742 
743 /* See whether X, the source of a set, is something we want to consider for
744    GCSE.  */
745 
746 static int
want_to_gcse_p(rtx x,machine_mode mode,HOST_WIDE_INT * max_distance_ptr)747 want_to_gcse_p (rtx x, machine_mode mode, HOST_WIDE_INT *max_distance_ptr)
748 {
749 #ifdef STACK_REGS
750   /* On register stack architectures, don't GCSE constants from the
751      constant pool, as the benefits are often swamped by the overhead
752      of shuffling the register stack between basic blocks.  */
753   if (IS_STACK_MODE (GET_MODE (x)))
754     x = avoid_constant_pool_reference (x);
755 #endif
756 
757   /* GCSE'ing constants:
758 
759      We do not specifically distinguish between constant and non-constant
760      expressions in PRE and Hoist.  We use set_src_cost below to limit
761      the maximum distance simple expressions can travel.
762 
763      Nevertheless, constants are much easier to GCSE, and, hence,
764      it is easy to overdo the optimizations.  Usually, excessive PRE and
765      Hoisting of constant leads to increased register pressure.
766 
767      RA can deal with this by rematerialing some of the constants.
768      Therefore, it is important that the back-end generates sets of constants
769      in a way that allows reload rematerialize them under high register
770      pressure, i.e., a pseudo register with REG_EQUAL to constant
771      is set only once.  Failing to do so will result in IRA/reload
772      spilling such constants under high register pressure instead of
773      rematerializing them.  */
774 
775   switch (GET_CODE (x))
776     {
777     case REG:
778     case SUBREG:
779     case CALL:
780       return 0;
781 
782     CASE_CONST_ANY:
783       if (!doing_code_hoisting_p)
784 	/* Do not PRE constants.  */
785 	return 0;
786 
787       /* FALLTHRU */
788 
789     default:
790       if (doing_code_hoisting_p)
791 	/* PRE doesn't implement max_distance restriction.  */
792 	{
793 	  int cost;
794 	  HOST_WIDE_INT max_distance;
795 
796 	  gcc_assert (!optimize_function_for_speed_p (cfun)
797 		      && optimize_function_for_size_p (cfun));
798 	  cost = set_src_cost (x, mode, 0);
799 
800 	  if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
801 	    {
802 	      max_distance
803 		= ((HOST_WIDE_INT)GCSE_COST_DISTANCE_RATIO * cost) / 10;
804 	      if (max_distance == 0)
805 		return 0;
806 
807 	      gcc_assert (max_distance > 0);
808 	    }
809 	  else
810 	    max_distance = 0;
811 
812 	  if (max_distance_ptr)
813 	    *max_distance_ptr = max_distance;
814 	}
815 
816       return can_assign_to_reg_without_clobbers_p (x, mode);
817     }
818 }
819 
820 /* Used internally by can_assign_to_reg_without_clobbers_p.  */
821 
822 static GTY(()) rtx_insn *test_insn;
823 
824 /* Return true if we can assign X to a pseudo register of mode MODE
825    such that the resulting insn does not result in clobbering a hard
826    register as a side-effect.
827 
828    Additionally, if the target requires it, check that the resulting insn
829    can be copied.  If it cannot, this means that X is special and probably
830    has hidden side-effects we don't want to mess with.
831 
832    This function is typically used by code motion passes, to verify
833    that it is safe to insert an insn without worrying about clobbering
834    maybe live hard regs.  */
835 
836 bool
can_assign_to_reg_without_clobbers_p(rtx x,machine_mode mode)837 can_assign_to_reg_without_clobbers_p (rtx x, machine_mode mode)
838 {
839   int num_clobbers = 0;
840   int icode;
841   bool can_assign = false;
842 
843   /* If this is a valid operand, we are OK.  If it's VOIDmode, we aren't.  */
844   if (general_operand (x, mode))
845     return 1;
846   else if (GET_MODE (x) == VOIDmode)
847     return 0;
848 
849   /* Otherwise, check if we can make a valid insn from it.  First initialize
850      our test insn if we haven't already.  */
851   if (test_insn == 0)
852     {
853       test_insn
854 	= make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
855 						   FIRST_PSEUDO_REGISTER * 2),
856 				      const0_rtx));
857       SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
858       INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
859     }
860 
861   /* Now make an insn like the one we would make when GCSE'ing and see if
862      valid.  */
863   PUT_MODE (SET_DEST (PATTERN (test_insn)), mode);
864   SET_SRC (PATTERN (test_insn)) = x;
865 
866   icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
867 
868   /* If the test insn is valid and doesn't need clobbers, and the target also
869      has no objections, we're good.  */
870   if (icode >= 0
871       && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
872       && ! (targetm.cannot_copy_insn_p
873 	    && targetm.cannot_copy_insn_p (test_insn)))
874     can_assign = true;
875 
876   /* Make sure test_insn doesn't have any pointers into GC space.  */
877   SET_SRC (PATTERN (test_insn)) = NULL_RTX;
878 
879   return can_assign;
880 }
881 
882 /* Return nonzero if the operands of expression X are unchanged from the
883    start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
884    or from INSN to the end of INSN's basic block (if AVAIL_P != 0).  */
885 
886 static int
oprs_unchanged_p(const_rtx x,const rtx_insn * insn,int avail_p)887 oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
888 {
889   int i, j;
890   enum rtx_code code;
891   const char *fmt;
892 
893   if (x == 0)
894     return 1;
895 
896   code = GET_CODE (x);
897   switch (code)
898     {
899     case REG:
900       {
901 	struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
902 
903 	if (info->last_bb != current_bb)
904 	  return 1;
905 	if (avail_p)
906 	  return info->last_set < DF_INSN_LUID (insn);
907 	else
908 	  return info->first_set >= DF_INSN_LUID (insn);
909       }
910 
911     case MEM:
912       if (! flag_gcse_lm
913 	  || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
914 				     x, avail_p))
915 	return 0;
916       else
917 	return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
918 
919     case PRE_DEC:
920     case PRE_INC:
921     case POST_DEC:
922     case POST_INC:
923     case PRE_MODIFY:
924     case POST_MODIFY:
925       return 0;
926 
927     case PC:
928     case CC0: /*FIXME*/
929     case CONST:
930     CASE_CONST_ANY:
931     case SYMBOL_REF:
932     case LABEL_REF:
933     case ADDR_VEC:
934     case ADDR_DIFF_VEC:
935       return 1;
936 
937     default:
938       break;
939     }
940 
941   for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
942     {
943       if (fmt[i] == 'e')
944 	{
945 	  /* If we are about to do the last recursive call needed at this
946 	     level, change it into iteration.  This function is called enough
947 	     to be worth it.  */
948 	  if (i == 0)
949 	    return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
950 
951 	  else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
952 	    return 0;
953 	}
954       else if (fmt[i] == 'E')
955 	for (j = 0; j < XVECLEN (x, i); j++)
956 	  if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
957 	    return 0;
958     }
959 
960   return 1;
961 }
962 
963 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p.  */
964 
965 struct mem_conflict_info
966 {
967   /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
968      see if a memory store conflicts with this memory load.  */
969   const_rtx mem;
970 
971   /* True if mems_conflict_for_gcse_p finds a conflict between two memory
972      references.  */
973   bool conflict;
974 };
975 
976 /* DEST is the output of an instruction.  If it is a memory reference and
977    possibly conflicts with the load found in DATA, then communicate this
978    information back through DATA.  */
979 
980 static void
mems_conflict_for_gcse_p(rtx dest,const_rtx setter ATTRIBUTE_UNUSED,void * data)981 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
982 			  void *data)
983 {
984   struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
985 
986   while (GET_CODE (dest) == SUBREG
987 	 || GET_CODE (dest) == ZERO_EXTRACT
988 	 || GET_CODE (dest) == STRICT_LOW_PART)
989     dest = XEXP (dest, 0);
990 
991   /* If DEST is not a MEM, then it will not conflict with the load.  Note
992      that function calls are assumed to clobber memory, but are handled
993      elsewhere.  */
994   if (! MEM_P (dest))
995     return;
996 
997   /* If we are setting a MEM in our list of specially recognized MEMs,
998      don't mark as killed this time.  */
999   if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
1000     {
1001       if (!find_rtx_in_ldst (dest))
1002 	mci->conflict = true;
1003       return;
1004     }
1005 
1006   if (true_dependence (dest, GET_MODE (dest), mci->mem))
1007     mci->conflict = true;
1008 }
1009 
1010 /* Return nonzero if the expression in X (a memory reference) is killed
1011    in block BB before or after the insn with the LUID in UID_LIMIT.
1012    AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1013    before UID_LIMIT.
1014 
1015    To check the entire block, set UID_LIMIT to max_uid + 1 and
1016    AVAIL_P to 0.  */
1017 
1018 static int
load_killed_in_block_p(const_basic_block bb,int uid_limit,const_rtx x,int avail_p)1019 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1020 			int avail_p)
1021 {
1022   vec<rtx_insn *> list = modify_mem_list[bb->index];
1023   rtx_insn *setter;
1024   unsigned ix;
1025 
1026   /* If this is a readonly then we aren't going to be changing it.  */
1027   if (MEM_READONLY_P (x))
1028     return 0;
1029 
1030   FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1031     {
1032       struct mem_conflict_info mci;
1033 
1034       /* Ignore entries in the list that do not apply.  */
1035       if ((avail_p
1036 	   && DF_INSN_LUID (setter) < uid_limit)
1037 	  || (! avail_p
1038 	      && DF_INSN_LUID (setter) > uid_limit))
1039 	continue;
1040 
1041       /* If SETTER is a call everything is clobbered.  Note that calls
1042 	 to pure functions are never put on the list, so we need not
1043 	 worry about them.  */
1044       if (CALL_P (setter))
1045 	return 1;
1046 
1047       /* SETTER must be an INSN of some kind that sets memory.  Call
1048 	 note_stores to examine each hunk of memory that is modified.  */
1049       mci.mem = x;
1050       mci.conflict = false;
1051       note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1052       if (mci.conflict)
1053 	return 1;
1054     }
1055   return 0;
1056 }
1057 
1058 /* Return nonzero if the operands of expression X are unchanged from
1059    the start of INSN's basic block up to but not including INSN.  */
1060 
1061 static int
oprs_anticipatable_p(const_rtx x,const rtx_insn * insn)1062 oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
1063 {
1064   return oprs_unchanged_p (x, insn, 0);
1065 }
1066 
1067 /* Return nonzero if the operands of expression X are unchanged from
1068    INSN to the end of INSN's basic block.  */
1069 
1070 static int
oprs_available_p(const_rtx x,const rtx_insn * insn)1071 oprs_available_p (const_rtx x, const rtx_insn *insn)
1072 {
1073   return oprs_unchanged_p (x, insn, 1);
1074 }
1075 
1076 /* Hash expression X.
1077 
1078    MODE is only used if X is a CONST_INT.  DO_NOT_RECORD_P is a boolean
1079    indicating if a volatile operand is found or if the expression contains
1080    something we don't want to insert in the table.  HASH_TABLE_SIZE is
1081    the current size of the hash table to be probed.  */
1082 
1083 static unsigned int
hash_expr(const_rtx x,machine_mode mode,int * do_not_record_p,int hash_table_size)1084 hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
1085 	   int hash_table_size)
1086 {
1087   unsigned int hash;
1088 
1089   *do_not_record_p = 0;
1090 
1091   hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1092   return hash % hash_table_size;
1093 }
1094 
1095 /* Return nonzero if exp1 is equivalent to exp2.  */
1096 
1097 static int
expr_equiv_p(const_rtx x,const_rtx y)1098 expr_equiv_p (const_rtx x, const_rtx y)
1099 {
1100   return exp_equiv_p (x, y, 0, true);
1101 }
1102 
1103 /* Insert expression X in INSN in the hash TABLE.
1104    If it is already present, record it as the last occurrence in INSN's
1105    basic block.
1106 
1107    MODE is the mode of the value X is being stored into.
1108    It is only used if X is a CONST_INT.
1109 
1110    ANTIC_P is nonzero if X is an anticipatable expression.
1111    AVAIL_P is nonzero if X is an available expression.
1112 
1113    MAX_DISTANCE is the maximum distance in instructions this expression can
1114    be moved.  */
1115 
1116 static void
insert_expr_in_table(rtx x,machine_mode mode,rtx_insn * insn,int antic_p,int avail_p,HOST_WIDE_INT max_distance,struct gcse_hash_table_d * table)1117 insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
1118 		      int antic_p,
1119 		      int avail_p, HOST_WIDE_INT max_distance,
1120 		      struct gcse_hash_table_d *table)
1121 {
1122   int found, do_not_record_p;
1123   unsigned int hash;
1124   struct gcse_expr *cur_expr, *last_expr = NULL;
1125   struct gcse_occr *antic_occr, *avail_occr;
1126 
1127   hash = hash_expr (x, mode, &do_not_record_p, table->size);
1128 
1129   /* Do not insert expression in table if it contains volatile operands,
1130      or if hash_expr determines the expression is something we don't want
1131      to or can't handle.  */
1132   if (do_not_record_p)
1133     return;
1134 
1135   cur_expr = table->table[hash];
1136   found = 0;
1137 
1138   while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1139     {
1140       /* If the expression isn't found, save a pointer to the end of
1141 	 the list.  */
1142       last_expr = cur_expr;
1143       cur_expr = cur_expr->next_same_hash;
1144     }
1145 
1146   if (! found)
1147     {
1148       cur_expr = GOBNEW (struct gcse_expr);
1149       bytes_used += sizeof (struct gcse_expr);
1150       if (table->table[hash] == NULL)
1151 	/* This is the first pattern that hashed to this index.  */
1152 	table->table[hash] = cur_expr;
1153       else
1154 	/* Add EXPR to end of this hash chain.  */
1155 	last_expr->next_same_hash = cur_expr;
1156 
1157       /* Set the fields of the expr element.  */
1158       cur_expr->expr = x;
1159       cur_expr->bitmap_index = table->n_elems++;
1160       cur_expr->next_same_hash = NULL;
1161       cur_expr->antic_occr = NULL;
1162       cur_expr->avail_occr = NULL;
1163       gcc_assert (max_distance >= 0);
1164       cur_expr->max_distance = max_distance;
1165     }
1166   else
1167     gcc_assert (cur_expr->max_distance == max_distance);
1168 
1169   /* Now record the occurrence(s).  */
1170   if (antic_p)
1171     {
1172       antic_occr = cur_expr->antic_occr;
1173 
1174       if (antic_occr
1175 	  && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1176 	antic_occr = NULL;
1177 
1178       if (antic_occr)
1179 	/* Found another instance of the expression in the same basic block.
1180 	   Prefer the currently recorded one.  We want the first one in the
1181 	   block and the block is scanned from start to end.  */
1182 	; /* nothing to do */
1183       else
1184 	{
1185 	  /* First occurrence of this expression in this basic block.  */
1186 	  antic_occr = GOBNEW (struct gcse_occr);
1187 	  bytes_used += sizeof (struct gcse_occr);
1188 	  antic_occr->insn = insn;
1189 	  antic_occr->next = cur_expr->antic_occr;
1190 	  antic_occr->deleted_p = 0;
1191 	  cur_expr->antic_occr = antic_occr;
1192 	}
1193     }
1194 
1195   if (avail_p)
1196     {
1197       avail_occr = cur_expr->avail_occr;
1198 
1199       if (avail_occr
1200 	  && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1201 	{
1202 	  /* Found another instance of the expression in the same basic block.
1203 	     Prefer this occurrence to the currently recorded one.  We want
1204 	     the last one in the block and the block is scanned from start
1205 	     to end.  */
1206 	  avail_occr->insn = insn;
1207 	}
1208       else
1209 	{
1210 	  /* First occurrence of this expression in this basic block.  */
1211 	  avail_occr = GOBNEW (struct gcse_occr);
1212 	  bytes_used += sizeof (struct gcse_occr);
1213 	  avail_occr->insn = insn;
1214 	  avail_occr->next = cur_expr->avail_occr;
1215 	  avail_occr->deleted_p = 0;
1216 	  cur_expr->avail_occr = avail_occr;
1217 	}
1218     }
1219 }
1220 
1221 /* Scan SET present in INSN and add an entry to the hash TABLE.  */
1222 
1223 static void
hash_scan_set(rtx set,rtx_insn * insn,struct gcse_hash_table_d * table)1224 hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
1225 {
1226   rtx src = SET_SRC (set);
1227   rtx dest = SET_DEST (set);
1228   rtx note;
1229 
1230   if (GET_CODE (src) == CALL)
1231     hash_scan_call (src, insn, table);
1232 
1233   else if (REG_P (dest))
1234     {
1235       unsigned int regno = REGNO (dest);
1236       HOST_WIDE_INT max_distance = 0;
1237 
1238       /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1239 
1240 	 This allows us to do a single GCSE pass and still eliminate
1241 	 redundant constants, addresses or other expressions that are
1242 	 constructed with multiple instructions.
1243 
1244 	 However, keep the original SRC if INSN is a simple reg-reg move.
1245 	 In this case, there will almost always be a REG_EQUAL note on the
1246 	 insn that sets SRC.  By recording the REG_EQUAL value here as SRC
1247 	 for INSN, we miss copy propagation opportunities and we perform the
1248 	 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1249 	 do more than one PRE GCSE pass.
1250 
1251 	 Note that this does not impede profitable constant propagations.  We
1252 	 "look through" reg-reg sets in lookup_avail_set.  */
1253       note = find_reg_equal_equiv_note (insn);
1254       if (note != 0
1255 	  && REG_NOTE_KIND (note) == REG_EQUAL
1256 	  && !REG_P (src)
1257 	  && want_to_gcse_p (XEXP (note, 0), GET_MODE (dest), NULL))
1258 	src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
1259 
1260       /* Only record sets of pseudo-regs in the hash table.  */
1261       if (regno >= FIRST_PSEUDO_REGISTER
1262 	  /* Don't GCSE something if we can't do a reg/reg copy.  */
1263 	  && can_copy_p (GET_MODE (dest))
1264 	  /* GCSE commonly inserts instruction after the insn.  We can't
1265 	     do that easily for EH edges so disable GCSE on these for now.  */
1266 	  /* ??? We can now easily create new EH landing pads at the
1267 	     gimple level, for splitting edges; there's no reason we
1268 	     can't do the same thing at the rtl level.  */
1269 	  && !can_throw_internal (insn)
1270 	  /* Is SET_SRC something we want to gcse?  */
1271 	  && want_to_gcse_p (src, GET_MODE (dest), &max_distance)
1272 	  /* Don't CSE a nop.  */
1273 	  && ! set_noop_p (set)
1274 	  /* Don't GCSE if it has attached REG_EQUIV note.
1275 	     At this point this only function parameters should have
1276 	     REG_EQUIV notes and if the argument slot is used somewhere
1277 	     explicitly, it means address of parameter has been taken,
1278 	     so we should not extend the lifetime of the pseudo.  */
1279 	  && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1280 	{
1281 	  /* An expression is not anticipatable if its operands are
1282 	     modified before this insn or if this is not the only SET in
1283 	     this insn.  The latter condition does not have to mean that
1284 	     SRC itself is not anticipatable, but we just will not be
1285 	     able to handle code motion of insns with multiple sets.  */
1286 	  int antic_p = oprs_anticipatable_p (src, insn)
1287 			&& !multiple_sets (insn);
1288 	  /* An expression is not available if its operands are
1289 	     subsequently modified, including this insn.  It's also not
1290 	     available if this is a branch, because we can't insert
1291 	     a set after the branch.  */
1292 	  int avail_p = (oprs_available_p (src, insn)
1293 			 && ! JUMP_P (insn));
1294 
1295 	  insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1296 				max_distance, table);
1297 	}
1298     }
1299   /* In case of store we want to consider the memory value as available in
1300      the REG stored in that memory. This makes it possible to remove
1301      redundant loads from due to stores to the same location.  */
1302   else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1303     {
1304       unsigned int regno = REGNO (src);
1305       HOST_WIDE_INT max_distance = 0;
1306 
1307       /* Only record sets of pseudo-regs in the hash table.  */
1308       if (regno >= FIRST_PSEUDO_REGISTER
1309 	  /* Don't GCSE something if we can't do a reg/reg copy.  */
1310 	  && can_copy_p (GET_MODE (src))
1311 	  /* GCSE commonly inserts instruction after the insn.  We can't
1312 	     do that easily for EH edges so disable GCSE on these for now.  */
1313 	  && !can_throw_internal (insn)
1314 	  /* Is SET_DEST something we want to gcse?  */
1315 	  && want_to_gcse_p (dest, GET_MODE (dest), &max_distance)
1316 	  /* Don't CSE a nop.  */
1317 	  && ! set_noop_p (set)
1318 	  /* Don't GCSE if it has attached REG_EQUIV note.
1319 	     At this point this only function parameters should have
1320 	     REG_EQUIV notes and if the argument slot is used somewhere
1321 	     explicitly, it means address of parameter has been taken,
1322 	     so we should not extend the lifetime of the pseudo.  */
1323 	  && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1324 	      || ! MEM_P (XEXP (note, 0))))
1325 	{
1326 	  /* Stores are never anticipatable.  */
1327 	  int antic_p = 0;
1328 	  /* An expression is not available if its operands are
1329 	     subsequently modified, including this insn.  It's also not
1330 	     available if this is a branch, because we can't insert
1331 	     a set after the branch.  */
1332 	  int avail_p = oprs_available_p (dest, insn) && ! JUMP_P (insn);
1333 
1334 	  /* Record the memory expression (DEST) in the hash table.  */
1335 	  insert_expr_in_table (dest, GET_MODE (dest), insn,
1336 				antic_p, avail_p, max_distance, table);
1337 	}
1338     }
1339 }
1340 
1341 static void
hash_scan_clobber(rtx x ATTRIBUTE_UNUSED,rtx_insn * insn ATTRIBUTE_UNUSED,struct gcse_hash_table_d * table ATTRIBUTE_UNUSED)1342 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1343 		   struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1344 {
1345   /* Currently nothing to do.  */
1346 }
1347 
1348 static void
hash_scan_call(rtx x ATTRIBUTE_UNUSED,rtx_insn * insn ATTRIBUTE_UNUSED,struct gcse_hash_table_d * table ATTRIBUTE_UNUSED)1349 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1350 		struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1351 {
1352   /* Currently nothing to do.  */
1353 }
1354 
1355 /* Process INSN and add hash table entries as appropriate.  */
1356 
1357 static void
hash_scan_insn(rtx_insn * insn,struct gcse_hash_table_d * table)1358 hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
1359 {
1360   rtx pat = PATTERN (insn);
1361   int i;
1362 
1363   /* Pick out the sets of INSN and for other forms of instructions record
1364      what's been modified.  */
1365 
1366   if (GET_CODE (pat) == SET)
1367     hash_scan_set (pat, insn, table);
1368 
1369   else if (GET_CODE (pat) == CLOBBER)
1370     hash_scan_clobber (pat, insn, table);
1371 
1372   else if (GET_CODE (pat) == CALL)
1373     hash_scan_call (pat, insn, table);
1374 
1375   else if (GET_CODE (pat) == PARALLEL)
1376     for (i = 0; i < XVECLEN (pat, 0); i++)
1377       {
1378 	rtx x = XVECEXP (pat, 0, i);
1379 
1380 	if (GET_CODE (x) == SET)
1381 	  hash_scan_set (x, insn, table);
1382 	else if (GET_CODE (x) == CLOBBER)
1383 	  hash_scan_clobber (x, insn, table);
1384 	else if (GET_CODE (x) == CALL)
1385 	  hash_scan_call (x, insn, table);
1386       }
1387 }
1388 
1389 /* Dump the hash table TABLE to file FILE under the name NAME.  */
1390 
1391 static void
dump_hash_table(FILE * file,const char * name,struct gcse_hash_table_d * table)1392 dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
1393 {
1394   int i;
1395   /* Flattened out table, so it's printed in proper order.  */
1396   struct gcse_expr **flat_table;
1397   unsigned int *hash_val;
1398   struct gcse_expr *expr;
1399 
1400   flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1401   hash_val = XNEWVEC (unsigned int, table->n_elems);
1402 
1403   for (i = 0; i < (int) table->size; i++)
1404     for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1405       {
1406 	flat_table[expr->bitmap_index] = expr;
1407 	hash_val[expr->bitmap_index] = i;
1408       }
1409 
1410   fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1411 	   name, table->size, table->n_elems);
1412 
1413   for (i = 0; i < (int) table->n_elems; i++)
1414     if (flat_table[i] != 0)
1415       {
1416 	expr = flat_table[i];
1417 	fprintf (file, "Index %d (hash value %d; max distance "
1418 		 HOST_WIDE_INT_PRINT_DEC ")\n  ",
1419 		 expr->bitmap_index, hash_val[i], expr->max_distance);
1420 	print_rtl (file, expr->expr);
1421 	fprintf (file, "\n");
1422       }
1423 
1424   fprintf (file, "\n");
1425 
1426   free (flat_table);
1427   free (hash_val);
1428 }
1429 
1430 /* Record register first/last/block set information for REGNO in INSN.
1431 
1432    first_set records the first place in the block where the register
1433    is set and is used to compute "anticipatability".
1434 
1435    last_set records the last place in the block where the register
1436    is set and is used to compute "availability".
1437 
1438    last_bb records the block for which first_set and last_set are
1439    valid, as a quick test to invalidate them.  */
1440 
1441 static void
record_last_reg_set_info(rtx_insn * insn,int regno)1442 record_last_reg_set_info (rtx_insn *insn, int regno)
1443 {
1444   struct reg_avail_info *info = &reg_avail_info[regno];
1445   int luid = DF_INSN_LUID (insn);
1446 
1447   info->last_set = luid;
1448   if (info->last_bb != current_bb)
1449     {
1450       info->last_bb = current_bb;
1451       info->first_set = luid;
1452     }
1453 }
1454 
1455 /* Record memory modification information for INSN.  We do not actually care
1456    about the memory location(s) that are set, or even how they are set (consider
1457    a CALL_INSN).  We merely need to record which insns modify memory.  */
1458 
1459 static void
record_last_mem_set_info(rtx_insn * insn)1460 record_last_mem_set_info (rtx_insn *insn)
1461 {
1462   if (! flag_gcse_lm)
1463     return;
1464 
1465   record_last_mem_set_info_common (insn, modify_mem_list,
1466 				   canon_modify_mem_list,
1467 				   modify_mem_list_set,
1468 				   blocks_with_calls);
1469 }
1470 
1471 /* Called from compute_hash_table via note_stores to handle one
1472    SET or CLOBBER in an insn.  DATA is really the instruction in which
1473    the SET is taking place.  */
1474 
1475 static void
record_last_set_info(rtx dest,const_rtx setter ATTRIBUTE_UNUSED,void * data)1476 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1477 {
1478   rtx_insn *last_set_insn = (rtx_insn *) data;
1479 
1480   if (GET_CODE (dest) == SUBREG)
1481     dest = SUBREG_REG (dest);
1482 
1483   if (REG_P (dest))
1484     record_last_reg_set_info (last_set_insn, REGNO (dest));
1485   else if (MEM_P (dest)
1486 	   /* Ignore pushes, they clobber nothing.  */
1487 	   && ! push_operand (dest, GET_MODE (dest)))
1488     record_last_mem_set_info (last_set_insn);
1489 }
1490 
1491 /* Top level function to create an expression hash table.
1492 
1493    Expression entries are placed in the hash table if
1494    - they are of the form (set (pseudo-reg) src),
1495    - src is something we want to perform GCSE on,
1496    - none of the operands are subsequently modified in the block
1497 
1498    Currently src must be a pseudo-reg or a const_int.
1499 
1500    TABLE is the table computed.  */
1501 
1502 static void
compute_hash_table_work(struct gcse_hash_table_d * table)1503 compute_hash_table_work (struct gcse_hash_table_d *table)
1504 {
1505   int i;
1506 
1507   /* re-Cache any INSN_LIST nodes we have allocated.  */
1508   clear_modify_mem_tables ();
1509   /* Some working arrays used to track first and last set in each block.  */
1510   reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1511 
1512   for (i = 0; i < max_reg_num (); ++i)
1513     reg_avail_info[i].last_bb = NULL;
1514 
1515   FOR_EACH_BB_FN (current_bb, cfun)
1516     {
1517       rtx_insn *insn;
1518       unsigned int regno;
1519 
1520       /* First pass over the instructions records information used to
1521 	 determine when registers and memory are first and last set.  */
1522       FOR_BB_INSNS (current_bb, insn)
1523 	{
1524 	  if (!NONDEBUG_INSN_P (insn))
1525 	    continue;
1526 
1527 	  if (CALL_P (insn))
1528 	    {
1529 	      hard_reg_set_iterator hrsi;
1530 	      EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1531 					      0, regno, hrsi)
1532 		record_last_reg_set_info (insn, regno);
1533 
1534 	      if (! RTL_CONST_OR_PURE_CALL_P (insn))
1535 		record_last_mem_set_info (insn);
1536 	    }
1537 
1538 	  note_stores (PATTERN (insn), record_last_set_info, insn);
1539 	}
1540 
1541       /* The next pass builds the hash table.  */
1542       FOR_BB_INSNS (current_bb, insn)
1543 	if (NONDEBUG_INSN_P (insn))
1544 	  hash_scan_insn (insn, table);
1545     }
1546 
1547   free (reg_avail_info);
1548   reg_avail_info = NULL;
1549 }
1550 
1551 /* Allocate space for the set/expr hash TABLE.
1552    It is used to determine the number of buckets to use.  */
1553 
1554 static void
alloc_hash_table(struct gcse_hash_table_d * table)1555 alloc_hash_table (struct gcse_hash_table_d *table)
1556 {
1557   int n;
1558 
1559   n = get_max_insn_count ();
1560 
1561   table->size = n / 4;
1562   if (table->size < 11)
1563     table->size = 11;
1564 
1565   /* Attempt to maintain efficient use of hash table.
1566      Making it an odd number is simplest for now.
1567      ??? Later take some measurements.  */
1568   table->size |= 1;
1569   n = table->size * sizeof (struct gcse_expr *);
1570   table->table = GNEWVAR (struct gcse_expr *, n);
1571 }
1572 
1573 /* Free things allocated by alloc_hash_table.  */
1574 
1575 static void
free_hash_table(struct gcse_hash_table_d * table)1576 free_hash_table (struct gcse_hash_table_d *table)
1577 {
1578   free (table->table);
1579 }
1580 
1581 /* Compute the expression hash table TABLE.  */
1582 
1583 static void
compute_hash_table(struct gcse_hash_table_d * table)1584 compute_hash_table (struct gcse_hash_table_d *table)
1585 {
1586   /* Initialize count of number of entries in hash table.  */
1587   table->n_elems = 0;
1588   memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
1589 
1590   compute_hash_table_work (table);
1591 }
1592 
1593 /* Expression tracking support.  */
1594 
1595 /* Clear canon_modify_mem_list and modify_mem_list tables.  */
1596 static void
clear_modify_mem_tables(void)1597 clear_modify_mem_tables (void)
1598 {
1599   unsigned i;
1600   bitmap_iterator bi;
1601 
1602   EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1603     {
1604       modify_mem_list[i].release ();
1605       canon_modify_mem_list[i].release ();
1606     }
1607   bitmap_clear (modify_mem_list_set);
1608   bitmap_clear (blocks_with_calls);
1609 }
1610 
1611 /* Release memory used by modify_mem_list_set.  */
1612 
1613 static void
free_modify_mem_tables(void)1614 free_modify_mem_tables (void)
1615 {
1616   clear_modify_mem_tables ();
1617   free (modify_mem_list);
1618   free (canon_modify_mem_list);
1619   modify_mem_list = 0;
1620   canon_modify_mem_list = 0;
1621 }
1622 
1623 /* Compute PRE+LCM working variables.  */
1624 
1625 /* Local properties of expressions.  */
1626 
1627 /* Nonzero for expressions that are transparent in the block.  */
1628 static sbitmap *transp;
1629 
1630 /* Nonzero for expressions that are computed (available) in the block.  */
1631 static sbitmap *comp;
1632 
1633 /* Nonzero for expressions that are locally anticipatable in the block.  */
1634 static sbitmap *antloc;
1635 
1636 /* Nonzero for expressions where this block is an optimal computation
1637    point.  */
1638 static sbitmap *pre_optimal;
1639 
1640 /* Nonzero for expressions which are redundant in a particular block.  */
1641 static sbitmap *pre_redundant;
1642 
1643 /* Nonzero for expressions which should be inserted on a specific edge.  */
1644 static sbitmap *pre_insert_map;
1645 
1646 /* Nonzero for expressions which should be deleted in a specific block.  */
1647 static sbitmap *pre_delete_map;
1648 
1649 /* Allocate vars used for PRE analysis.  */
1650 
1651 static void
alloc_pre_mem(int n_blocks,int n_exprs)1652 alloc_pre_mem (int n_blocks, int n_exprs)
1653 {
1654   transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1655   comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1656   antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1657 
1658   pre_optimal = NULL;
1659   pre_redundant = NULL;
1660   pre_insert_map = NULL;
1661   pre_delete_map = NULL;
1662   ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1663 
1664   /* pre_insert and pre_delete are allocated later.  */
1665 }
1666 
1667 /* Free vars used for PRE analysis.  */
1668 
1669 static void
free_pre_mem(void)1670 free_pre_mem (void)
1671 {
1672   sbitmap_vector_free (transp);
1673   sbitmap_vector_free (comp);
1674 
1675   /* ANTLOC and AE_KILL are freed just after pre_lcm finishes.  */
1676 
1677   if (pre_optimal)
1678     sbitmap_vector_free (pre_optimal);
1679   if (pre_redundant)
1680     sbitmap_vector_free (pre_redundant);
1681   if (pre_insert_map)
1682     sbitmap_vector_free (pre_insert_map);
1683   if (pre_delete_map)
1684     sbitmap_vector_free (pre_delete_map);
1685 
1686   transp = comp = NULL;
1687   pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1688 }
1689 
1690 /* Remove certain expressions from anticipatable and transparent
1691    sets of basic blocks that have incoming abnormal edge.
1692    For PRE remove potentially trapping expressions to avoid placing
1693    them on abnormal edges.  For hoisting remove memory references that
1694    can be clobbered by calls.  */
1695 
1696 static void
prune_expressions(bool pre_p)1697 prune_expressions (bool pre_p)
1698 {
1699   sbitmap prune_exprs;
1700   struct gcse_expr *expr;
1701   unsigned int ui;
1702   basic_block bb;
1703 
1704   prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1705   bitmap_clear (prune_exprs);
1706   for (ui = 0; ui < expr_hash_table.size; ui++)
1707     {
1708       for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1709 	{
1710 	  /* Note potentially trapping expressions.  */
1711 	  if (may_trap_p (expr->expr))
1712 	    {
1713 	      bitmap_set_bit (prune_exprs, expr->bitmap_index);
1714 	      continue;
1715 	    }
1716 
1717 	  if (!pre_p && MEM_P (expr->expr))
1718 	    /* Note memory references that can be clobbered by a call.
1719 	       We do not split abnormal edges in hoisting, so would
1720 	       a memory reference get hoisted along an abnormal edge,
1721 	       it would be placed /before/ the call.  Therefore, only
1722 	       constant memory references can be hoisted along abnormal
1723 	       edges.  */
1724 	    {
1725 	      if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1726 		  && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1727 		continue;
1728 
1729 	      if (MEM_READONLY_P (expr->expr)
1730 		  && !MEM_VOLATILE_P (expr->expr)
1731 		  && MEM_NOTRAP_P (expr->expr))
1732 		/* Constant memory reference, e.g., a PIC address.  */
1733 		continue;
1734 
1735 	      /* ??? Optimally, we would use interprocedural alias
1736 		 analysis to determine if this mem is actually killed
1737 		 by this call.  */
1738 
1739 	      bitmap_set_bit (prune_exprs, expr->bitmap_index);
1740 	    }
1741 	}
1742     }
1743 
1744   FOR_EACH_BB_FN (bb, cfun)
1745     {
1746       edge e;
1747       edge_iterator ei;
1748 
1749       /* If the current block is the destination of an abnormal edge, we
1750 	 kill all trapping (for PRE) and memory (for hoist) expressions
1751 	 because we won't be able to properly place the instruction on
1752 	 the edge.  So make them neither anticipatable nor transparent.
1753 	 This is fairly conservative.
1754 
1755 	 ??? For hoisting it may be necessary to check for set-and-jump
1756 	 instructions here, not just for abnormal edges.  The general problem
1757 	 is that when an expression cannot not be placed right at the end of
1758 	 a basic block we should account for any side-effects of a subsequent
1759 	 jump instructions that could clobber the expression.  It would
1760 	 be best to implement this check along the lines of
1761 	 should_hoist_expr_to_dom where the target block is already known
1762 	 and, hence, there's no need to conservatively prune expressions on
1763 	 "intermediate" set-and-jump instructions.  */
1764       FOR_EACH_EDGE (e, ei, bb->preds)
1765 	if ((e->flags & EDGE_ABNORMAL)
1766 	    && (pre_p || CALL_P (BB_END (e->src))))
1767 	  {
1768 	    bitmap_and_compl (antloc[bb->index],
1769 				antloc[bb->index], prune_exprs);
1770 	    bitmap_and_compl (transp[bb->index],
1771 				transp[bb->index], prune_exprs);
1772 	    break;
1773 	  }
1774     }
1775 
1776   sbitmap_free (prune_exprs);
1777 }
1778 
1779 /* It may be necessary to insert a large number of insns on edges to
1780    make the existing occurrences of expressions fully redundant.  This
1781    routine examines the set of insertions and deletions and if the ratio
1782    of insertions to deletions is too high for a particular expression, then
1783    the expression is removed from the insertion/deletion sets.
1784 
1785    N_ELEMS is the number of elements in the hash table.  */
1786 
1787 static void
prune_insertions_deletions(int n_elems)1788 prune_insertions_deletions (int n_elems)
1789 {
1790   sbitmap_iterator sbi;
1791   sbitmap prune_exprs;
1792 
1793   /* We always use I to iterate over blocks/edges and J to iterate over
1794      expressions.  */
1795   unsigned int i, j;
1796 
1797   /* Counts for the number of times an expression needs to be inserted and
1798      number of times an expression can be removed as a result.  */
1799   int *insertions = GCNEWVEC (int, n_elems);
1800   int *deletions = GCNEWVEC (int, n_elems);
1801 
1802   /* Set of expressions which require too many insertions relative to
1803      the number of deletions achieved.  We will prune these out of the
1804      insertion/deletion sets.  */
1805   prune_exprs = sbitmap_alloc (n_elems);
1806   bitmap_clear (prune_exprs);
1807 
1808   /* Iterate over the edges counting the number of times each expression
1809      needs to be inserted.  */
1810   for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1811     {
1812       EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1813 	insertions[j]++;
1814     }
1815 
1816   /* Similarly for deletions, but those occur in blocks rather than on
1817      edges.  */
1818   for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1819     {
1820       EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1821 	deletions[j]++;
1822     }
1823 
1824   /* Now that we have accurate counts, iterate over the elements in the
1825      hash table and see if any need too many insertions relative to the
1826      number of evaluations that can be removed.  If so, mark them in
1827      PRUNE_EXPRS.  */
1828   for (j = 0; j < (unsigned) n_elems; j++)
1829     if (deletions[j]
1830 	&& ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1831       bitmap_set_bit (prune_exprs, j);
1832 
1833   /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS.  */
1834   EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1835     {
1836       for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1837 	bitmap_clear_bit (pre_insert_map[i], j);
1838 
1839       for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1840 	bitmap_clear_bit (pre_delete_map[i], j);
1841     }
1842 
1843   sbitmap_free (prune_exprs);
1844   free (insertions);
1845   free (deletions);
1846 }
1847 
1848 /* Top level routine to do the dataflow analysis needed by PRE.  */
1849 
1850 static struct edge_list *
compute_pre_data(void)1851 compute_pre_data (void)
1852 {
1853   struct edge_list *edge_list;
1854   basic_block bb;
1855 
1856   compute_local_properties (transp, comp, antloc, &expr_hash_table);
1857   prune_expressions (true);
1858   bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
1859 
1860   /* Compute ae_kill for each basic block using:
1861 
1862      ~(TRANSP | COMP)
1863   */
1864 
1865   FOR_EACH_BB_FN (bb, cfun)
1866     {
1867       bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1868       bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1869     }
1870 
1871   edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1872 			    ae_kill, &pre_insert_map, &pre_delete_map);
1873   sbitmap_vector_free (antloc);
1874   antloc = NULL;
1875   sbitmap_vector_free (ae_kill);
1876   ae_kill = NULL;
1877 
1878   prune_insertions_deletions (expr_hash_table.n_elems);
1879 
1880   return edge_list;
1881 }
1882 
1883 /* PRE utilities */
1884 
1885 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
1886    block BB.
1887 
1888    VISITED is a pointer to a working buffer for tracking which BB's have
1889    been visited.  It is NULL for the top-level call.
1890 
1891    We treat reaching expressions that go through blocks containing the same
1892    reaching expression as "not reaching".  E.g. if EXPR is generated in blocks
1893    2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1894    2 as not reaching.  The intent is to improve the probability of finding
1895    only one reaching expression and to reduce register lifetimes by picking
1896    the closest such expression.  */
1897 
1898 static int
pre_expr_reaches_here_p_work(basic_block occr_bb,struct gcse_expr * expr,basic_block bb,char * visited)1899 pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
1900 			      basic_block bb, char *visited)
1901 {
1902   edge pred;
1903   edge_iterator ei;
1904 
1905   FOR_EACH_EDGE (pred, ei, bb->preds)
1906     {
1907       basic_block pred_bb = pred->src;
1908 
1909       if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1910 	  /* Has predecessor has already been visited?  */
1911 	  || visited[pred_bb->index])
1912 	;/* Nothing to do.  */
1913 
1914       /* Does this predecessor generate this expression?  */
1915       else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
1916 	{
1917 	  /* Is this the occurrence we're looking for?
1918 	     Note that there's only one generating occurrence per block
1919 	     so we just need to check the block number.  */
1920 	  if (occr_bb == pred_bb)
1921 	    return 1;
1922 
1923 	  visited[pred_bb->index] = 1;
1924 	}
1925       /* Ignore this predecessor if it kills the expression.  */
1926       else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
1927 	visited[pred_bb->index] = 1;
1928 
1929       /* Neither gen nor kill.  */
1930       else
1931 	{
1932 	  visited[pred_bb->index] = 1;
1933 	  if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
1934 	    return 1;
1935 	}
1936     }
1937 
1938   /* All paths have been checked.  */
1939   return 0;
1940 }
1941 
1942 /* The wrapper for pre_expr_reaches_here_work that ensures that any
1943    memory allocated for that function is returned.  */
1944 
1945 static int
pre_expr_reaches_here_p(basic_block occr_bb,struct gcse_expr * expr,basic_block bb)1946 pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
1947 {
1948   int rval;
1949   char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
1950 
1951   rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
1952 
1953   free (visited);
1954   return rval;
1955 }
1956 
1957 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it.  */
1958 
1959 static rtx_insn *
process_insert_insn(struct gcse_expr * expr)1960 process_insert_insn (struct gcse_expr *expr)
1961 {
1962   rtx reg = expr->reaching_reg;
1963   /* Copy the expression to make sure we don't have any sharing issues.  */
1964   rtx exp = copy_rtx (expr->expr);
1965   rtx_insn *pat;
1966 
1967   start_sequence ();
1968 
1969   /* If the expression is something that's an operand, like a constant,
1970      just copy it to a register.  */
1971   if (general_operand (exp, GET_MODE (reg)))
1972     emit_move_insn (reg, exp);
1973 
1974   /* Otherwise, make a new insn to compute this expression and make sure the
1975      insn will be recognized (this also adds any needed CLOBBERs).  */
1976   else
1977     {
1978       rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
1979 
1980       if (insn_invalid_p (insn, false))
1981 	gcc_unreachable ();
1982     }
1983 
1984   pat = get_insns ();
1985   end_sequence ();
1986 
1987   return pat;
1988 }
1989 
1990 /* Add EXPR to the end of basic block BB.
1991 
1992    This is used by both the PRE and code hoisting.  */
1993 
1994 static void
insert_insn_end_basic_block(struct gcse_expr * expr,basic_block bb)1995 insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
1996 {
1997   rtx_insn *insn = BB_END (bb);
1998   rtx_insn *new_insn;
1999   rtx reg = expr->reaching_reg;
2000   int regno = REGNO (reg);
2001   rtx_insn *pat, *pat_end;
2002 
2003   pat = process_insert_insn (expr);
2004   gcc_assert (pat && INSN_P (pat));
2005 
2006   pat_end = pat;
2007   while (NEXT_INSN (pat_end) != NULL_RTX)
2008     pat_end = NEXT_INSN (pat_end);
2009 
2010   /* If the last insn is a jump, insert EXPR in front [taking care to
2011      handle cc0, etc. properly].  Similarly we need to care trapping
2012      instructions in presence of non-call exceptions.  */
2013 
2014   if (JUMP_P (insn)
2015       || (NONJUMP_INSN_P (insn)
2016 	  && (!single_succ_p (bb)
2017 	      || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2018     {
2019       /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2020 	 if cc0 isn't set.  */
2021       if (HAVE_cc0)
2022 	{
2023 	  rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2024 	  if (note)
2025 	    insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2026 	  else
2027 	    {
2028 	      rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2029 	      if (maybe_cc0_setter
2030 		  && INSN_P (maybe_cc0_setter)
2031 		  && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2032 		insn = maybe_cc0_setter;
2033 	    }
2034 	}
2035 
2036       /* FIXME: What if something in cc0/jump uses value set in new insn?  */
2037       new_insn = emit_insn_before_noloc (pat, insn, bb);
2038     }
2039 
2040   /* Likewise if the last insn is a call, as will happen in the presence
2041      of exception handling.  */
2042   else if (CALL_P (insn)
2043 	   && (!single_succ_p (bb)
2044 	       || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2045     {
2046       /* Keeping in mind targets with small register classes and parameters
2047          in registers, we search backward and place the instructions before
2048 	 the first parameter is loaded.  Do this for everyone for consistency
2049 	 and a presumption that we'll get better code elsewhere as well.  */
2050 
2051       /* Since different machines initialize their parameter registers
2052 	 in different orders, assume nothing.  Collect the set of all
2053 	 parameter registers.  */
2054       insn = find_first_parameter_load (insn, BB_HEAD (bb));
2055 
2056       /* If we found all the parameter loads, then we want to insert
2057 	 before the first parameter load.
2058 
2059 	 If we did not find all the parameter loads, then we might have
2060 	 stopped on the head of the block, which could be a CODE_LABEL.
2061 	 If we inserted before the CODE_LABEL, then we would be putting
2062 	 the insn in the wrong basic block.  In that case, put the insn
2063 	 after the CODE_LABEL.  Also, respect NOTE_INSN_BASIC_BLOCK.  */
2064       while (LABEL_P (insn)
2065 	     || NOTE_INSN_BASIC_BLOCK_P (insn))
2066 	insn = NEXT_INSN (insn);
2067 
2068       new_insn = emit_insn_before_noloc (pat, insn, bb);
2069     }
2070   else
2071     new_insn = emit_insn_after_noloc (pat, insn, bb);
2072 
2073   while (1)
2074     {
2075       if (INSN_P (pat))
2076 	add_label_notes (PATTERN (pat), new_insn);
2077       if (pat == pat_end)
2078 	break;
2079       pat = NEXT_INSN (pat);
2080     }
2081 
2082   gcse_create_count++;
2083 
2084   if (dump_file)
2085     {
2086       fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2087 	       bb->index, INSN_UID (new_insn));
2088       fprintf (dump_file, "copying expression %d to reg %d\n",
2089 	       expr->bitmap_index, regno);
2090     }
2091 }
2092 
2093 /* Insert partially redundant expressions on edges in the CFG to make
2094    the expressions fully redundant.  */
2095 
2096 static int
pre_edge_insert(struct edge_list * edge_list,struct gcse_expr ** index_map)2097 pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
2098 {
2099   int e, i, j, num_edges, set_size, did_insert = 0;
2100   sbitmap *inserted;
2101 
2102   /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2103      if it reaches any of the deleted expressions.  */
2104 
2105   set_size = pre_insert_map[0]->size;
2106   num_edges = NUM_EDGES (edge_list);
2107   inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2108   bitmap_vector_clear (inserted, num_edges);
2109 
2110   for (e = 0; e < num_edges; e++)
2111     {
2112       int indx;
2113       basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2114 
2115       for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2116 	{
2117 	  SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2118 
2119 	  for (j = indx;
2120 	       insert && j < (int) expr_hash_table.n_elems;
2121 	       j++, insert >>= 1)
2122 	    if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2123 	      {
2124 		struct gcse_expr *expr = index_map[j];
2125 		struct gcse_occr *occr;
2126 
2127 		/* Now look at each deleted occurrence of this expression.  */
2128 		for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2129 		  {
2130 		    if (! occr->deleted_p)
2131 		      continue;
2132 
2133 		    /* Insert this expression on this edge if it would
2134 		       reach the deleted occurrence in BB.  */
2135 		    if (!bitmap_bit_p (inserted[e], j))
2136 		      {
2137 			rtx_insn *insn;
2138 			edge eg = INDEX_EDGE (edge_list, e);
2139 
2140 			/* We can't insert anything on an abnormal and
2141 			   critical edge, so we insert the insn at the end of
2142 			   the previous block. There are several alternatives
2143 			   detailed in Morgans book P277 (sec 10.5) for
2144 			   handling this situation.  This one is easiest for
2145 			   now.  */
2146 
2147 			if (eg->flags & EDGE_ABNORMAL)
2148 			  insert_insn_end_basic_block (index_map[j], bb);
2149 			else
2150 			  {
2151 			    insn = process_insert_insn (index_map[j]);
2152 			    insert_insn_on_edge (insn, eg);
2153 			  }
2154 
2155 			if (dump_file)
2156 			  {
2157 			    fprintf (dump_file, "PRE: edge (%d,%d), ",
2158 				     bb->index,
2159 				     INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2160 			    fprintf (dump_file, "copy expression %d\n",
2161 				     expr->bitmap_index);
2162 			  }
2163 
2164 			update_ld_motion_stores (expr);
2165 			bitmap_set_bit (inserted[e], j);
2166 			did_insert = 1;
2167 			gcse_create_count++;
2168 		      }
2169 		  }
2170 	      }
2171 	}
2172     }
2173 
2174   sbitmap_vector_free (inserted);
2175   return did_insert;
2176 }
2177 
2178 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2179    Given "old_reg <- expr" (INSN), instead of adding after it
2180      reaching_reg <- old_reg
2181    it's better to do the following:
2182      reaching_reg <- expr
2183      old_reg      <- reaching_reg
2184    because this way copy propagation can discover additional PRE
2185    opportunities.  But if this fails, we try the old way.
2186    When "expr" is a store, i.e.
2187    given "MEM <- old_reg", instead of adding after it
2188      reaching_reg <- old_reg
2189    it's better to add it before as follows:
2190      reaching_reg <- old_reg
2191      MEM          <- reaching_reg.  */
2192 
2193 static void
pre_insert_copy_insn(struct gcse_expr * expr,rtx_insn * insn)2194 pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
2195 {
2196   rtx reg = expr->reaching_reg;
2197   int regno = REGNO (reg);
2198   int indx = expr->bitmap_index;
2199   rtx pat = PATTERN (insn);
2200   rtx set, first_set;
2201   rtx_insn *new_insn;
2202   rtx old_reg;
2203   int i;
2204 
2205   /* This block matches the logic in hash_scan_insn.  */
2206   switch (GET_CODE (pat))
2207     {
2208     case SET:
2209       set = pat;
2210       break;
2211 
2212     case PARALLEL:
2213       /* Search through the parallel looking for the set whose
2214 	 source was the expression that we're interested in.  */
2215       first_set = NULL_RTX;
2216       set = NULL_RTX;
2217       for (i = 0; i < XVECLEN (pat, 0); i++)
2218 	{
2219 	  rtx x = XVECEXP (pat, 0, i);
2220 	  if (GET_CODE (x) == SET)
2221 	    {
2222 	      /* If the source was a REG_EQUAL or REG_EQUIV note, we
2223 		 may not find an equivalent expression, but in this
2224 		 case the PARALLEL will have a single set.  */
2225 	      if (first_set == NULL_RTX)
2226 		first_set = x;
2227 	      if (expr_equiv_p (SET_SRC (x), expr->expr))
2228 	        {
2229 	          set = x;
2230 	          break;
2231 	        }
2232 	    }
2233 	}
2234 
2235       gcc_assert (first_set);
2236       if (set == NULL_RTX)
2237         set = first_set;
2238       break;
2239 
2240     default:
2241       gcc_unreachable ();
2242     }
2243 
2244   if (REG_P (SET_DEST (set)))
2245     {
2246       old_reg = SET_DEST (set);
2247       /* Check if we can modify the set destination in the original insn.  */
2248       if (validate_change (insn, &SET_DEST (set), reg, 0))
2249         {
2250           new_insn = gen_move_insn (old_reg, reg);
2251           new_insn = emit_insn_after (new_insn, insn);
2252         }
2253       else
2254         {
2255           new_insn = gen_move_insn (reg, old_reg);
2256           new_insn = emit_insn_after (new_insn, insn);
2257         }
2258     }
2259   else /* This is possible only in case of a store to memory.  */
2260     {
2261       old_reg = SET_SRC (set);
2262       new_insn = gen_move_insn (reg, old_reg);
2263 
2264       /* Check if we can modify the set source in the original insn.  */
2265       if (validate_change (insn, &SET_SRC (set), reg, 0))
2266         new_insn = emit_insn_before (new_insn, insn);
2267       else
2268         new_insn = emit_insn_after (new_insn, insn);
2269     }
2270 
2271   gcse_create_count++;
2272 
2273   if (dump_file)
2274     fprintf (dump_file,
2275 	     "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2276 	      BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2277 	      INSN_UID (insn), regno);
2278 }
2279 
2280 /* Copy available expressions that reach the redundant expression
2281    to `reaching_reg'.  */
2282 
2283 static void
pre_insert_copies(void)2284 pre_insert_copies (void)
2285 {
2286   unsigned int i, added_copy;
2287   struct gcse_expr *expr;
2288   struct gcse_occr *occr;
2289   struct gcse_occr *avail;
2290 
2291   /* For each available expression in the table, copy the result to
2292      `reaching_reg' if the expression reaches a deleted one.
2293 
2294      ??? The current algorithm is rather brute force.
2295      Need to do some profiling.  */
2296 
2297   for (i = 0; i < expr_hash_table.size; i++)
2298     for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2299       {
2300 	/* If the basic block isn't reachable, PPOUT will be TRUE.  However,
2301 	   we don't want to insert a copy here because the expression may not
2302 	   really be redundant.  So only insert an insn if the expression was
2303 	   deleted.  This test also avoids further processing if the
2304 	   expression wasn't deleted anywhere.  */
2305 	if (expr->reaching_reg == NULL)
2306 	  continue;
2307 
2308 	/* Set when we add a copy for that expression.  */
2309 	added_copy = 0;
2310 
2311 	for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2312 	  {
2313 	    if (! occr->deleted_p)
2314 	      continue;
2315 
2316 	    for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2317 	      {
2318 		rtx_insn *insn = avail->insn;
2319 
2320 		/* No need to handle this one if handled already.  */
2321 		if (avail->copied_p)
2322 		  continue;
2323 
2324 		/* Don't handle this one if it's a redundant one.  */
2325 		if (insn->deleted ())
2326 		  continue;
2327 
2328 		/* Or if the expression doesn't reach the deleted one.  */
2329 		if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2330 					       expr,
2331 					       BLOCK_FOR_INSN (occr->insn)))
2332 		  continue;
2333 
2334                 added_copy = 1;
2335 
2336 		/* Copy the result of avail to reaching_reg.  */
2337 		pre_insert_copy_insn (expr, insn);
2338 		avail->copied_p = 1;
2339 	      }
2340 	  }
2341 
2342 	  if (added_copy)
2343             update_ld_motion_stores (expr);
2344       }
2345 }
2346 
2347 struct set_data
2348 {
2349   rtx_insn *insn;
2350   const_rtx set;
2351   int nsets;
2352 };
2353 
2354 /* Increment number of sets and record set in DATA.  */
2355 
2356 static void
record_set_data(rtx dest,const_rtx set,void * data)2357 record_set_data (rtx dest, const_rtx set, void *data)
2358 {
2359   struct set_data *s = (struct set_data *)data;
2360 
2361   if (GET_CODE (set) == SET)
2362     {
2363       /* We allow insns having multiple sets, where all but one are
2364 	 dead as single set insns.  In the common case only a single
2365 	 set is present, so we want to avoid checking for REG_UNUSED
2366 	 notes unless necessary.  */
2367       if (s->nsets == 1
2368 	  && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2369 	  && !side_effects_p (s->set))
2370 	s->nsets = 0;
2371 
2372       if (!s->nsets)
2373 	{
2374 	  /* Record this set.  */
2375 	  s->nsets += 1;
2376 	  s->set = set;
2377 	}
2378       else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2379 	       || side_effects_p (set))
2380 	s->nsets += 1;
2381     }
2382 }
2383 
2384 static const_rtx
single_set_gcse(rtx_insn * insn)2385 single_set_gcse (rtx_insn *insn)
2386 {
2387   struct set_data s;
2388   rtx pattern;
2389 
2390   gcc_assert (INSN_P (insn));
2391 
2392   /* Optimize common case.  */
2393   pattern = PATTERN (insn);
2394   if (GET_CODE (pattern) == SET)
2395     return pattern;
2396 
2397   s.insn = insn;
2398   s.nsets = 0;
2399   note_stores (pattern, record_set_data, &s);
2400 
2401   /* Considered invariant insns have exactly one set.  */
2402   gcc_assert (s.nsets == 1);
2403   return s.set;
2404 }
2405 
2406 /* Emit move from SRC to DEST noting the equivalence with expression computed
2407    in INSN.  */
2408 
2409 static rtx_insn *
gcse_emit_move_after(rtx dest,rtx src,rtx_insn * insn)2410 gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
2411 {
2412   rtx_insn *new_rtx;
2413   const_rtx set = single_set_gcse (insn);
2414   rtx set2;
2415   rtx note;
2416   rtx eqv = NULL_RTX;
2417 
2418   /* This should never fail since we're creating a reg->reg copy
2419      we've verified to be valid.  */
2420 
2421   new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2422 
2423   /* Note the equivalence for local CSE pass.  Take the note from the old
2424      set if there was one.  Otherwise record the SET_SRC from the old set
2425      unless DEST is also an operand of the SET_SRC.  */
2426   set2 = single_set (new_rtx);
2427   if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2428     return new_rtx;
2429   if ((note = find_reg_equal_equiv_note (insn)))
2430     eqv = XEXP (note, 0);
2431   else if (! REG_P (dest)
2432 	   || ! reg_mentioned_p (dest, SET_SRC (set)))
2433     eqv = SET_SRC (set);
2434 
2435   if (eqv != NULL_RTX)
2436     set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2437 
2438   return new_rtx;
2439 }
2440 
2441 /* Delete redundant computations.
2442    Deletion is done by changing the insn to copy the `reaching_reg' of
2443    the expression into the result of the SET.  It is left to later passes
2444    to propagate the copy or eliminate it.
2445 
2446    Return nonzero if a change is made.  */
2447 
2448 static int
pre_delete(void)2449 pre_delete (void)
2450 {
2451   unsigned int i;
2452   int changed;
2453   struct gcse_expr *expr;
2454   struct gcse_occr *occr;
2455 
2456   changed = 0;
2457   for (i = 0; i < expr_hash_table.size; i++)
2458     for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2459       {
2460 	int indx = expr->bitmap_index;
2461 
2462 	/* We only need to search antic_occr since we require ANTLOC != 0.  */
2463 	for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2464 	  {
2465 	    rtx_insn *insn = occr->insn;
2466 	    rtx set;
2467 	    basic_block bb = BLOCK_FOR_INSN (insn);
2468 
2469 	    /* We only delete insns that have a single_set.  */
2470 	    if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2471 		&& (set = single_set (insn)) != 0
2472                 && dbg_cnt (pre_insn))
2473 	      {
2474 		/* Create a pseudo-reg to store the result of reaching
2475 		   expressions into.  Get the mode for the new pseudo from
2476 		   the mode of the original destination pseudo.  */
2477 		if (expr->reaching_reg == NULL)
2478 		  expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2479 
2480 		gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2481 		delete_insn (insn);
2482 		occr->deleted_p = 1;
2483 		changed = 1;
2484 		gcse_subst_count++;
2485 
2486 		if (dump_file)
2487 		  {
2488 		    fprintf (dump_file,
2489 			     "PRE: redundant insn %d (expression %d) in ",
2490 			       INSN_UID (insn), indx);
2491 		    fprintf (dump_file, "bb %d, reaching reg is %d\n",
2492 			     bb->index, REGNO (expr->reaching_reg));
2493 		  }
2494 	      }
2495 	  }
2496       }
2497 
2498   return changed;
2499 }
2500 
2501 /* Perform GCSE optimizations using PRE.
2502    This is called by one_pre_gcse_pass after all the dataflow analysis
2503    has been done.
2504 
2505    This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2506    lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2507    Compiler Design and Implementation.
2508 
2509    ??? A new pseudo reg is created to hold the reaching expression.  The nice
2510    thing about the classical approach is that it would try to use an existing
2511    reg.  If the register can't be adequately optimized [i.e. we introduce
2512    reload problems], one could add a pass here to propagate the new register
2513    through the block.
2514 
2515    ??? We don't handle single sets in PARALLELs because we're [currently] not
2516    able to copy the rest of the parallel when we insert copies to create full
2517    redundancies from partial redundancies.  However, there's no reason why we
2518    can't handle PARALLELs in the cases where there are no partial
2519    redundancies.  */
2520 
2521 static int
pre_gcse(struct edge_list * edge_list)2522 pre_gcse (struct edge_list *edge_list)
2523 {
2524   unsigned int i;
2525   int did_insert, changed;
2526   struct gcse_expr **index_map;
2527   struct gcse_expr *expr;
2528 
2529   /* Compute a mapping from expression number (`bitmap_index') to
2530      hash table entry.  */
2531 
2532   index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
2533   for (i = 0; i < expr_hash_table.size; i++)
2534     for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2535       index_map[expr->bitmap_index] = expr;
2536 
2537   /* Delete the redundant insns first so that
2538      - we know what register to use for the new insns and for the other
2539        ones with reaching expressions
2540      - we know which insns are redundant when we go to create copies  */
2541 
2542   changed = pre_delete ();
2543   did_insert = pre_edge_insert (edge_list, index_map);
2544 
2545   /* In other places with reaching expressions, copy the expression to the
2546      specially allocated pseudo-reg that reaches the redundant expr.  */
2547   pre_insert_copies ();
2548   if (did_insert)
2549     {
2550       commit_edge_insertions ();
2551       changed = 1;
2552     }
2553 
2554   free (index_map);
2555   return changed;
2556 }
2557 
2558 /* Top level routine to perform one PRE GCSE pass.
2559 
2560    Return nonzero if a change was made.  */
2561 
2562 static int
one_pre_gcse_pass(void)2563 one_pre_gcse_pass (void)
2564 {
2565   int changed = 0;
2566 
2567   gcse_subst_count = 0;
2568   gcse_create_count = 0;
2569 
2570   /* Return if there's nothing to do, or it is too expensive.  */
2571   if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2572       || gcse_or_cprop_is_too_expensive (_("PRE disabled")))
2573     return 0;
2574 
2575   /* We need alias.  */
2576   init_alias_analysis ();
2577 
2578   bytes_used = 0;
2579   gcc_obstack_init (&gcse_obstack);
2580   alloc_gcse_mem ();
2581 
2582   alloc_hash_table (&expr_hash_table);
2583   add_noreturn_fake_exit_edges ();
2584   if (flag_gcse_lm)
2585     compute_ld_motion_mems ();
2586 
2587   compute_hash_table (&expr_hash_table);
2588   if (flag_gcse_lm)
2589     trim_ld_motion_mems ();
2590   if (dump_file)
2591     dump_hash_table (dump_file, "Expression", &expr_hash_table);
2592 
2593   if (expr_hash_table.n_elems > 0)
2594     {
2595       struct edge_list *edge_list;
2596       alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2597       edge_list = compute_pre_data ();
2598       changed |= pre_gcse (edge_list);
2599       free_edge_list (edge_list);
2600       free_pre_mem ();
2601     }
2602 
2603   if (flag_gcse_lm)
2604     free_ld_motion_mems ();
2605   remove_fake_exit_edges ();
2606   free_hash_table (&expr_hash_table);
2607 
2608   free_gcse_mem ();
2609   obstack_free (&gcse_obstack, NULL);
2610 
2611   /* We are finished with alias.  */
2612   end_alias_analysis ();
2613 
2614   if (dump_file)
2615     {
2616       fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2617 	       current_function_name (), n_basic_blocks_for_fn (cfun),
2618 	       bytes_used);
2619       fprintf (dump_file, "%d substs, %d insns created\n",
2620 	       gcse_subst_count, gcse_create_count);
2621     }
2622 
2623   return changed;
2624 }
2625 
2626 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2627    to INSN.  If such notes are added to an insn which references a
2628    CODE_LABEL, the LABEL_NUSES count is incremented.  We have to add
2629    that note, because the following loop optimization pass requires
2630    them.  */
2631 
2632 /* ??? If there was a jump optimization pass after gcse and before loop,
2633    then we would not need to do this here, because jump would add the
2634    necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes.  */
2635 
2636 static void
add_label_notes(rtx x,rtx_insn * insn)2637 add_label_notes (rtx x, rtx_insn *insn)
2638 {
2639   enum rtx_code code = GET_CODE (x);
2640   int i, j;
2641   const char *fmt;
2642 
2643   if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2644     {
2645       /* This code used to ignore labels that referred to dispatch tables to
2646 	 avoid flow generating (slightly) worse code.
2647 
2648 	 We no longer ignore such label references (see LABEL_REF handling in
2649 	 mark_jump_label for additional information).  */
2650 
2651       /* There's no reason for current users to emit jump-insns with
2652 	 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2653 	 notes.  */
2654       gcc_assert (!JUMP_P (insn));
2655       add_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x));
2656 
2657       if (LABEL_P (LABEL_REF_LABEL (x)))
2658 	LABEL_NUSES (LABEL_REF_LABEL (x))++;
2659 
2660       return;
2661     }
2662 
2663   for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2664     {
2665       if (fmt[i] == 'e')
2666 	add_label_notes (XEXP (x, i), insn);
2667       else if (fmt[i] == 'E')
2668 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2669 	  add_label_notes (XVECEXP (x, i, j), insn);
2670     }
2671 }
2672 
2673 /* Code Hoisting variables and subroutines.  */
2674 
2675 /* Very busy expressions.  */
2676 static sbitmap *hoist_vbein;
2677 static sbitmap *hoist_vbeout;
2678 
2679 /* ??? We could compute post dominators and run this algorithm in
2680    reverse to perform tail merging, doing so would probably be
2681    more effective than the tail merging code in jump.c.
2682 
2683    It's unclear if tail merging could be run in parallel with
2684    code hoisting.  It would be nice.  */
2685 
2686 /* Allocate vars used for code hoisting analysis.  */
2687 
2688 static void
alloc_code_hoist_mem(int n_blocks,int n_exprs)2689 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2690 {
2691   antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2692   transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2693   comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2694 
2695   hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2696   hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2697 }
2698 
2699 /* Free vars used for code hoisting analysis.  */
2700 
2701 static void
free_code_hoist_mem(void)2702 free_code_hoist_mem (void)
2703 {
2704   sbitmap_vector_free (antloc);
2705   sbitmap_vector_free (transp);
2706   sbitmap_vector_free (comp);
2707 
2708   sbitmap_vector_free (hoist_vbein);
2709   sbitmap_vector_free (hoist_vbeout);
2710 
2711   free_dominance_info (CDI_DOMINATORS);
2712 }
2713 
2714 /* Compute the very busy expressions at entry/exit from each block.
2715 
2716    An expression is very busy if all paths from a given point
2717    compute the expression.  */
2718 
2719 static void
compute_code_hoist_vbeinout(void)2720 compute_code_hoist_vbeinout (void)
2721 {
2722   int changed, passes;
2723   basic_block bb;
2724 
2725   bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2726   bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2727 
2728   passes = 0;
2729   changed = 1;
2730 
2731   while (changed)
2732     {
2733       changed = 0;
2734 
2735       /* We scan the blocks in the reverse order to speed up
2736 	 the convergence.  */
2737       FOR_EACH_BB_REVERSE_FN (bb, cfun)
2738 	{
2739 	  if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2740 	    {
2741 	      bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2742 					    hoist_vbein, bb);
2743 
2744 	      /* Include expressions in VBEout that are calculated
2745 		 in BB and available at its end.  */
2746 	      bitmap_ior (hoist_vbeout[bb->index],
2747 			      hoist_vbeout[bb->index], comp[bb->index]);
2748 	    }
2749 
2750 	  changed |= bitmap_or_and (hoist_vbein[bb->index],
2751 					      antloc[bb->index],
2752 					      hoist_vbeout[bb->index],
2753 					      transp[bb->index]);
2754 	}
2755 
2756       passes++;
2757     }
2758 
2759   if (dump_file)
2760     {
2761       fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2762 
2763       FOR_EACH_BB_FN (bb, cfun)
2764         {
2765 	  fprintf (dump_file, "vbein (%d): ", bb->index);
2766 	  dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2767 	  fprintf (dump_file, "vbeout(%d): ", bb->index);
2768 	  dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2769 	}
2770     }
2771 }
2772 
2773 /* Top level routine to do the dataflow analysis needed by code hoisting.  */
2774 
2775 static void
compute_code_hoist_data(void)2776 compute_code_hoist_data (void)
2777 {
2778   compute_local_properties (transp, comp, antloc, &expr_hash_table);
2779   prune_expressions (false);
2780   compute_code_hoist_vbeinout ();
2781   calculate_dominance_info (CDI_DOMINATORS);
2782   if (dump_file)
2783     fprintf (dump_file, "\n");
2784 }
2785 
2786 /* Update register pressure for BB when hoisting an expression from
2787    instruction FROM, if live ranges of inputs are shrunk.  Also
2788    maintain live_in information if live range of register referred
2789    in FROM is shrunk.
2790 
2791    Return 0 if register pressure doesn't change, otherwise return
2792    the number by which register pressure is decreased.
2793 
2794    NOTE: Register pressure won't be increased in this function.  */
2795 
2796 static int
update_bb_reg_pressure(basic_block bb,rtx_insn * from)2797 update_bb_reg_pressure (basic_block bb, rtx_insn *from)
2798 {
2799   rtx dreg;
2800   rtx_insn *insn;
2801   basic_block succ_bb;
2802   df_ref use, op_ref;
2803   edge succ;
2804   edge_iterator ei;
2805   int decreased_pressure = 0;
2806   int nregs;
2807   enum reg_class pressure_class;
2808 
2809   FOR_EACH_INSN_USE (use, from)
2810     {
2811       dreg = DF_REF_REAL_REG (use);
2812       /* The live range of register is shrunk only if it isn't:
2813 	 1. referred on any path from the end of this block to EXIT, or
2814 	 2. referred by insns other than FROM in this block.  */
2815       FOR_EACH_EDGE (succ, ei, bb->succs)
2816 	{
2817 	  succ_bb = succ->dest;
2818 	  if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2819 	    continue;
2820 
2821 	  if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2822 	    break;
2823 	}
2824       if (succ != NULL)
2825 	continue;
2826 
2827       op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2828       for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2829 	{
2830 	  if (!DF_REF_INSN_INFO (op_ref))
2831 	    continue;
2832 
2833 	  insn = DF_REF_INSN (op_ref);
2834 	  if (BLOCK_FOR_INSN (insn) == bb
2835 	      && NONDEBUG_INSN_P (insn) && insn != from)
2836 	    break;
2837 	}
2838 
2839       pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2840       /* Decrease register pressure and update live_in information for
2841 	 this block.  */
2842       if (!op_ref && pressure_class != NO_REGS)
2843 	{
2844 	  decreased_pressure += nregs;
2845 	  BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2846 	  bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2847 	}
2848     }
2849   return decreased_pressure;
2850 }
2851 
2852 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2853    flow graph, if it can reach BB unimpared.  Stop the search if the
2854    expression would need to be moved more than DISTANCE instructions.
2855 
2856    DISTANCE is the number of instructions through which EXPR can be
2857    hoisted up in flow graph.
2858 
2859    BB_SIZE points to an array which contains the number of instructions
2860    for each basic block.
2861 
2862    PRESSURE_CLASS and NREGS are register class and number of hard registers
2863    for storing EXPR.
2864 
2865    HOISTED_BBS points to a bitmap indicating basic blocks through which
2866    EXPR is hoisted.
2867 
2868    FROM is the instruction from which EXPR is hoisted.
2869 
2870    It's unclear exactly what Muchnick meant by "unimpared".  It seems
2871    to me that the expression must either be computed or transparent in
2872    *every* block in the path(s) from EXPR_BB to BB.  Any other definition
2873    would allow the expression to be hoisted out of loops, even if
2874    the expression wasn't a loop invariant.
2875 
2876    Contrast this to reachability for PRE where an expression is
2877    considered reachable if *any* path reaches instead of *all*
2878    paths.  */
2879 
2880 static int
should_hoist_expr_to_dom(basic_block expr_bb,struct gcse_expr * expr,basic_block bb,sbitmap visited,HOST_WIDE_INT distance,int * bb_size,enum reg_class pressure_class,int * nregs,bitmap hoisted_bbs,rtx_insn * from)2881 should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
2882 			  basic_block bb, sbitmap visited,
2883 			  HOST_WIDE_INT distance,
2884 			  int *bb_size, enum reg_class pressure_class,
2885 			  int *nregs, bitmap hoisted_bbs, rtx_insn *from)
2886 {
2887   unsigned int i;
2888   edge pred;
2889   edge_iterator ei;
2890   sbitmap_iterator sbi;
2891   int visited_allocated_locally = 0;
2892   int decreased_pressure = 0;
2893 
2894   if (flag_ira_hoist_pressure)
2895     {
2896       /* Record old information of basic block BB when it is visited
2897 	 at the first time.  */
2898       if (!bitmap_bit_p (hoisted_bbs, bb->index))
2899 	{
2900 	  struct bb_data *data = BB_DATA (bb);
2901 	  bitmap_copy (data->backup, data->live_in);
2902 	  data->old_pressure = data->max_reg_pressure[pressure_class];
2903 	}
2904       decreased_pressure = update_bb_reg_pressure (bb, from);
2905     }
2906   /* Terminate the search if distance, for which EXPR is allowed to move,
2907      is exhausted.  */
2908   if (distance > 0)
2909     {
2910       if (flag_ira_hoist_pressure)
2911 	{
2912 	  /* Prefer to hoist EXPR if register pressure is decreased.  */
2913 	  if (decreased_pressure > *nregs)
2914 	    distance += bb_size[bb->index];
2915 	  /* Let EXPR be hoisted through basic block at no cost if one
2916 	     of following conditions is satisfied:
2917 
2918 	     1. The basic block has low register pressure.
2919 	     2. Register pressure won't be increases after hoisting EXPR.
2920 
2921 	     Constant expressions is handled conservatively, because
2922 	     hoisting constant expression aggressively results in worse
2923 	     code.  This decision is made by the observation of CSiBE
2924 	     on ARM target, while it has no obvious effect on other
2925 	     targets like x86, x86_64, mips and powerpc.  */
2926 	  else if (CONST_INT_P (expr->expr)
2927 		   || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2928 			 >= ira_class_hard_regs_num[pressure_class]
2929 		       && decreased_pressure < *nregs))
2930 	    distance -= bb_size[bb->index];
2931 	}
2932       else
2933 	distance -= bb_size[bb->index];
2934 
2935       if (distance <= 0)
2936 	return 0;
2937     }
2938   else
2939     gcc_assert (distance == 0);
2940 
2941   if (visited == NULL)
2942     {
2943       visited_allocated_locally = 1;
2944       visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
2945       bitmap_clear (visited);
2946     }
2947 
2948   FOR_EACH_EDGE (pred, ei, bb->preds)
2949     {
2950       basic_block pred_bb = pred->src;
2951 
2952       if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2953 	break;
2954       else if (pred_bb == expr_bb)
2955 	continue;
2956       else if (bitmap_bit_p (visited, pred_bb->index))
2957 	continue;
2958       else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2959 	break;
2960       /* Not killed.  */
2961       else
2962 	{
2963 	  bitmap_set_bit (visited, pred_bb->index);
2964 	  if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2965 					  visited, distance, bb_size,
2966 					  pressure_class, nregs,
2967 					  hoisted_bbs, from))
2968 	    break;
2969 	}
2970     }
2971   if (visited_allocated_locally)
2972     {
2973       /* If EXPR can be hoisted to expr_bb, record basic blocks through
2974 	 which EXPR is hoisted in hoisted_bbs.  */
2975       if (flag_ira_hoist_pressure && !pred)
2976 	{
2977 	  /* Record the basic block from which EXPR is hoisted.  */
2978 	  bitmap_set_bit (visited, bb->index);
2979 	  EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
2980 	    bitmap_set_bit (hoisted_bbs, i);
2981 	}
2982       sbitmap_free (visited);
2983     }
2984 
2985   return (pred == NULL);
2986 }
2987 
2988 /* Find occurrence in BB.  */
2989 
2990 static struct gcse_occr *
find_occr_in_bb(struct gcse_occr * occr,basic_block bb)2991 find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
2992 {
2993   /* Find the right occurrence of this expression.  */
2994   while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
2995     occr = occr->next;
2996 
2997   return occr;
2998 }
2999 
3000 /* Actually perform code hoisting.
3001 
3002    The code hoisting pass can hoist multiple computations of the same
3003    expression along dominated path to a dominating basic block, like
3004    from b2/b3 to b1 as depicted below:
3005 
3006           b1      ------
3007           /\         |
3008          /  \        |
3009         bx   by   distance
3010        /      \      |
3011       /        \     |
3012      b2        b3 ------
3013 
3014    Unfortunately code hoisting generally extends the live range of an
3015    output pseudo register, which increases register pressure and hurts
3016    register allocation.  To address this issue, an attribute MAX_DISTANCE
3017    is computed and attached to each expression.  The attribute is computed
3018    from rtx cost of the corresponding expression and it's used to control
3019    how long the expression can be hoisted up in flow graph.  As the
3020    expression is hoisted up in flow graph, GCC decreases its DISTANCE
3021    and stops the hoist if DISTANCE reaches 0.  Code hoisting can decrease
3022    register pressure if live ranges of inputs are shrunk.
3023 
3024    Option "-fira-hoist-pressure" implements register pressure directed
3025    hoist based on upper method.  The rationale is:
3026      1. Calculate register pressure for each basic block by reusing IRA
3027 	facility.
3028      2. When expression is hoisted through one basic block, GCC checks
3029 	the change of live ranges for inputs/output.  The basic block's
3030 	register pressure will be increased because of extended live
3031 	range of output.  However, register pressure will be decreased
3032 	if the live ranges of inputs are shrunk.
3033      3. After knowing how hoisting affects register pressure, GCC prefers
3034 	to hoist the expression if it can decrease register pressure, by
3035 	increasing DISTANCE of the corresponding expression.
3036      4. If hoisting the expression increases register pressure, GCC checks
3037 	register pressure of the basic block and decrease DISTANCE only if
3038 	the register pressure is high.  In other words, expression will be
3039 	hoisted through at no cost if the basic block has low register
3040 	pressure.
3041      5. Update register pressure information for basic blocks through
3042 	which expression is hoisted.  */
3043 
3044 static int
hoist_code(void)3045 hoist_code (void)
3046 {
3047   basic_block bb, dominated;
3048   vec<basic_block> dom_tree_walk;
3049   unsigned int dom_tree_walk_index;
3050   vec<basic_block> domby;
3051   unsigned int i, j, k;
3052   struct gcse_expr **index_map;
3053   struct gcse_expr *expr;
3054   int *to_bb_head;
3055   int *bb_size;
3056   int changed = 0;
3057   struct bb_data *data;
3058   /* Basic blocks that have occurrences reachable from BB.  */
3059   bitmap from_bbs;
3060   /* Basic blocks through which expr is hoisted.  */
3061   bitmap hoisted_bbs = NULL;
3062   bitmap_iterator bi;
3063 
3064   /* Compute a mapping from expression number (`bitmap_index') to
3065      hash table entry.  */
3066 
3067   index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
3068   for (i = 0; i < expr_hash_table.size; i++)
3069     for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3070       index_map[expr->bitmap_index] = expr;
3071 
3072   /* Calculate sizes of basic blocks and note how far
3073      each instruction is from the start of its block.  We then use this
3074      data to restrict distance an expression can travel.  */
3075 
3076   to_bb_head = XCNEWVEC (int, get_max_uid ());
3077   bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3078 
3079   FOR_EACH_BB_FN (bb, cfun)
3080     {
3081       rtx_insn *insn;
3082       int to_head;
3083 
3084       to_head = 0;
3085       FOR_BB_INSNS (bb, insn)
3086 	{
3087 	  /* Don't count debug instructions to avoid them affecting
3088 	     decision choices.  */
3089 	  if (NONDEBUG_INSN_P (insn))
3090 	    to_bb_head[INSN_UID (insn)] = to_head++;
3091 	}
3092 
3093       bb_size[bb->index] = to_head;
3094     }
3095 
3096   gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3097 	      && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3098 		  == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3099 
3100   from_bbs = BITMAP_ALLOC (NULL);
3101   if (flag_ira_hoist_pressure)
3102     hoisted_bbs = BITMAP_ALLOC (NULL);
3103 
3104   dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3105 					    ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3106 
3107   /* Walk over each basic block looking for potentially hoistable
3108      expressions, nothing gets hoisted from the entry block.  */
3109   FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3110     {
3111       domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3112 
3113       if (domby.length () == 0)
3114 	continue;
3115 
3116       /* Examine each expression that is very busy at the exit of this
3117 	 block.  These are the potentially hoistable expressions.  */
3118       for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3119 	{
3120 	  if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3121 	    {
3122 	      int nregs = 0;
3123 	      enum reg_class pressure_class = NO_REGS;
3124 	      /* Current expression.  */
3125 	      struct gcse_expr *expr = index_map[i];
3126 	      /* Number of occurrences of EXPR that can be hoisted to BB.  */
3127 	      int hoistable = 0;
3128 	      /* Occurrences reachable from BB.  */
3129 	      vec<occr_t> occrs_to_hoist = vNULL;
3130 	      /* We want to insert the expression into BB only once, so
3131 		 note when we've inserted it.  */
3132 	      int insn_inserted_p;
3133 	      occr_t occr;
3134 
3135 	      /* If an expression is computed in BB and is available at end of
3136 		 BB, hoist all occurrences dominated by BB to BB.  */
3137 	      if (bitmap_bit_p (comp[bb->index], i))
3138 		{
3139 		  occr = find_occr_in_bb (expr->antic_occr, bb);
3140 
3141 		  if (occr)
3142 		    {
3143 		      /* An occurrence might've been already deleted
3144 			 while processing a dominator of BB.  */
3145 		      if (!occr->deleted_p)
3146 			{
3147 			  gcc_assert (NONDEBUG_INSN_P (occr->insn));
3148 			  hoistable++;
3149 			}
3150 		    }
3151 		  else
3152 		    hoistable++;
3153 		}
3154 
3155 	      /* We've found a potentially hoistable expression, now
3156 		 we look at every block BB dominates to see if it
3157 		 computes the expression.  */
3158 	      FOR_EACH_VEC_ELT (domby, j, dominated)
3159 		{
3160 		  HOST_WIDE_INT max_distance;
3161 
3162 		  /* Ignore self dominance.  */
3163 		  if (bb == dominated)
3164 		    continue;
3165 		  /* We've found a dominated block, now see if it computes
3166 		     the busy expression and whether or not moving that
3167 		     expression to the "beginning" of that block is safe.  */
3168 		  if (!bitmap_bit_p (antloc[dominated->index], i))
3169 		    continue;
3170 
3171 		  occr = find_occr_in_bb (expr->antic_occr, dominated);
3172 		  gcc_assert (occr);
3173 
3174 		  /* An occurrence might've been already deleted
3175 		     while processing a dominator of BB.  */
3176 		  if (occr->deleted_p)
3177 		    continue;
3178 		  gcc_assert (NONDEBUG_INSN_P (occr->insn));
3179 
3180 		  max_distance = expr->max_distance;
3181 		  if (max_distance > 0)
3182 		    /* Adjust MAX_DISTANCE to account for the fact that
3183 		       OCCR won't have to travel all of DOMINATED, but
3184 		       only part of it.  */
3185 		    max_distance += (bb_size[dominated->index]
3186 				     - to_bb_head[INSN_UID (occr->insn)]);
3187 
3188 		  pressure_class = get_pressure_class_and_nregs (occr->insn,
3189 								 &nregs);
3190 
3191 		  /* Note if the expression should be hoisted from the dominated
3192 		     block to BB if it can reach DOMINATED unimpared.
3193 
3194 		     Keep track of how many times this expression is hoistable
3195 		     from a dominated block into BB.  */
3196 		  if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3197 						max_distance, bb_size,
3198 						pressure_class,	&nregs,
3199 						hoisted_bbs, occr->insn))
3200 		    {
3201 		      hoistable++;
3202 		      occrs_to_hoist.safe_push (occr);
3203 		      bitmap_set_bit (from_bbs, dominated->index);
3204 		    }
3205 		}
3206 
3207 	      /* If we found more than one hoistable occurrence of this
3208 		 expression, then note it in the vector of expressions to
3209 		 hoist.  It makes no sense to hoist things which are computed
3210 		 in only one BB, and doing so tends to pessimize register
3211 		 allocation.  One could increase this value to try harder
3212 		 to avoid any possible code expansion due to register
3213 		 allocation issues; however experiments have shown that
3214 		 the vast majority of hoistable expressions are only movable
3215 		 from two successors, so raising this threshold is likely
3216 		 to nullify any benefit we get from code hoisting.  */
3217 	      if (hoistable > 1 && dbg_cnt (hoist_insn))
3218 		{
3219 		  /* If (hoistable != vec::length), then there is
3220 		     an occurrence of EXPR in BB itself.  Don't waste
3221 		     time looking for LCA in this case.  */
3222 		  if ((unsigned) hoistable == occrs_to_hoist.length ())
3223 		    {
3224 		      basic_block lca;
3225 
3226 		      lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3227 							      from_bbs);
3228 		      if (lca != bb)
3229 			/* Punt, it's better to hoist these occurrences to
3230 			   LCA.  */
3231 			occrs_to_hoist.release ();
3232 		    }
3233 		}
3234 	      else
3235 		/* Punt, no point hoisting a single occurrence.  */
3236 		occrs_to_hoist.release ();
3237 
3238 	      if (flag_ira_hoist_pressure
3239 		  && !occrs_to_hoist.is_empty ())
3240 		{
3241 		  /* Increase register pressure of basic blocks to which
3242 		     expr is hoisted because of extended live range of
3243 		     output.  */
3244 		  data = BB_DATA (bb);
3245 		  data->max_reg_pressure[pressure_class] += nregs;
3246 		  EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3247 		    {
3248 		      data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3249 		      data->max_reg_pressure[pressure_class] += nregs;
3250 		    }
3251 		}
3252 	      else if (flag_ira_hoist_pressure)
3253 		{
3254 		  /* Restore register pressure and live_in info for basic
3255 		     blocks recorded in hoisted_bbs when expr will not be
3256 		     hoisted.  */
3257 		  EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3258 		    {
3259 		      data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3260 		      bitmap_copy (data->live_in, data->backup);
3261 		      data->max_reg_pressure[pressure_class]
3262 			  = data->old_pressure;
3263 		    }
3264 		}
3265 
3266 	      if (flag_ira_hoist_pressure)
3267 		bitmap_clear (hoisted_bbs);
3268 
3269 	      insn_inserted_p = 0;
3270 
3271 	      /* Walk through occurrences of I'th expressions we want
3272 		 to hoist to BB and make the transformations.  */
3273 	      FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3274 		{
3275 		  rtx_insn *insn;
3276 		  const_rtx set;
3277 
3278 		  gcc_assert (!occr->deleted_p);
3279 
3280 		  insn = occr->insn;
3281 		  set = single_set_gcse (insn);
3282 
3283 		  /* Create a pseudo-reg to store the result of reaching
3284 		     expressions into.  Get the mode for the new pseudo
3285 		     from the mode of the original destination pseudo.
3286 
3287 		     It is important to use new pseudos whenever we
3288 		     emit a set.  This will allow reload to use
3289 		     rematerialization for such registers.  */
3290 		  if (!insn_inserted_p)
3291 		    expr->reaching_reg
3292 		      = gen_reg_rtx_and_attrs (SET_DEST (set));
3293 
3294 		  gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3295 					insn);
3296 		  delete_insn (insn);
3297 		  occr->deleted_p = 1;
3298 		  changed = 1;
3299 		  gcse_subst_count++;
3300 
3301 		  if (!insn_inserted_p)
3302 		    {
3303 		      insert_insn_end_basic_block (expr, bb);
3304 		      insn_inserted_p = 1;
3305 		    }
3306 		}
3307 
3308 	      occrs_to_hoist.release ();
3309 	      bitmap_clear (from_bbs);
3310 	    }
3311 	}
3312       domby.release ();
3313     }
3314 
3315   dom_tree_walk.release ();
3316   BITMAP_FREE (from_bbs);
3317   if (flag_ira_hoist_pressure)
3318     BITMAP_FREE (hoisted_bbs);
3319 
3320   free (bb_size);
3321   free (to_bb_head);
3322   free (index_map);
3323 
3324   return changed;
3325 }
3326 
3327 /* Return pressure class and number of needed hard registers (through
3328    *NREGS) of register REGNO.  */
3329 static enum reg_class
get_regno_pressure_class(int regno,int * nregs)3330 get_regno_pressure_class (int regno, int *nregs)
3331 {
3332   if (regno >= FIRST_PSEUDO_REGISTER)
3333     {
3334       enum reg_class pressure_class;
3335 
3336       pressure_class = reg_allocno_class (regno);
3337       pressure_class = ira_pressure_class_translate[pressure_class];
3338       *nregs
3339 	= ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3340       return pressure_class;
3341     }
3342   else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3343 	   && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3344     {
3345       *nregs = 1;
3346       return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3347     }
3348   else
3349     {
3350       *nregs = 0;
3351       return NO_REGS;
3352     }
3353 }
3354 
3355 /* Return pressure class and number of hard registers (through *NREGS)
3356    for destination of INSN. */
3357 static enum reg_class
get_pressure_class_and_nregs(rtx_insn * insn,int * nregs)3358 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
3359 {
3360   rtx reg;
3361   enum reg_class pressure_class;
3362   const_rtx set = single_set_gcse (insn);
3363 
3364   reg = SET_DEST (set);
3365   if (GET_CODE (reg) == SUBREG)
3366     reg = SUBREG_REG (reg);
3367   if (MEM_P (reg))
3368     {
3369       *nregs = 0;
3370       pressure_class = NO_REGS;
3371     }
3372   else
3373     {
3374       gcc_assert (REG_P (reg));
3375       pressure_class = reg_allocno_class (REGNO (reg));
3376       pressure_class = ira_pressure_class_translate[pressure_class];
3377       *nregs
3378 	= ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3379     }
3380   return pressure_class;
3381 }
3382 
3383 /* Increase (if INCR_P) or decrease current register pressure for
3384    register REGNO.  */
3385 static void
change_pressure(int regno,bool incr_p)3386 change_pressure (int regno, bool incr_p)
3387 {
3388   int nregs;
3389   enum reg_class pressure_class;
3390 
3391   pressure_class = get_regno_pressure_class (regno, &nregs);
3392   if (! incr_p)
3393     curr_reg_pressure[pressure_class] -= nregs;
3394   else
3395     {
3396       curr_reg_pressure[pressure_class] += nregs;
3397       if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3398 	  < curr_reg_pressure[pressure_class])
3399 	BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3400 	  = curr_reg_pressure[pressure_class];
3401     }
3402 }
3403 
3404 /* Calculate register pressure for each basic block by walking insns
3405    from last to first.  */
3406 static void
calculate_bb_reg_pressure(void)3407 calculate_bb_reg_pressure (void)
3408 {
3409   int i;
3410   unsigned int j;
3411   rtx_insn *insn;
3412   basic_block bb;
3413   bitmap curr_regs_live;
3414   bitmap_iterator bi;
3415 
3416 
3417   ira_setup_eliminable_regset ();
3418   curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3419   FOR_EACH_BB_FN (bb, cfun)
3420     {
3421       curr_bb = bb;
3422       BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3423       BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3424       bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3425       bitmap_copy (curr_regs_live, df_get_live_out (bb));
3426       for (i = 0; i < ira_pressure_classes_num; i++)
3427 	curr_reg_pressure[ira_pressure_classes[i]] = 0;
3428       EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3429 	change_pressure (j, true);
3430 
3431       FOR_BB_INSNS_REVERSE (bb, insn)
3432 	{
3433 	  rtx dreg;
3434 	  int regno;
3435 	  df_ref def, use;
3436 
3437 	  if (! NONDEBUG_INSN_P (insn))
3438 	    continue;
3439 
3440 	  FOR_EACH_INSN_DEF (def, insn)
3441 	    {
3442 	      dreg = DF_REF_REAL_REG (def);
3443 	      gcc_assert (REG_P (dreg));
3444 	      regno = REGNO (dreg);
3445 	      if (!(DF_REF_FLAGS (def)
3446 		    & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3447 		{
3448 		  if (bitmap_clear_bit (curr_regs_live, regno))
3449 		    change_pressure (regno, false);
3450 		}
3451 	    }
3452 
3453 	  FOR_EACH_INSN_USE (use, insn)
3454 	    {
3455 	      dreg = DF_REF_REAL_REG (use);
3456 	      gcc_assert (REG_P (dreg));
3457 	      regno = REGNO (dreg);
3458 	      if (bitmap_set_bit (curr_regs_live, regno))
3459 		change_pressure (regno, true);
3460 	    }
3461 	}
3462     }
3463   BITMAP_FREE (curr_regs_live);
3464 
3465   if (dump_file == NULL)
3466     return;
3467 
3468   fprintf (dump_file, "\nRegister Pressure: \n");
3469   FOR_EACH_BB_FN (bb, cfun)
3470     {
3471       fprintf (dump_file, "  Basic block %d: \n", bb->index);
3472       for (i = 0; (int) i < ira_pressure_classes_num; i++)
3473 	{
3474 	  enum reg_class pressure_class;
3475 
3476 	  pressure_class = ira_pressure_classes[i];
3477 	  if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3478 	    continue;
3479 
3480 	  fprintf (dump_file, "    %s=%d\n", reg_class_names[pressure_class],
3481 		   BB_DATA (bb)->max_reg_pressure[pressure_class]);
3482 	}
3483     }
3484   fprintf (dump_file, "\n");
3485 }
3486 
3487 /* Top level routine to perform one code hoisting (aka unification) pass
3488 
3489    Return nonzero if a change was made.  */
3490 
3491 static int
one_code_hoisting_pass(void)3492 one_code_hoisting_pass (void)
3493 {
3494   int changed = 0;
3495 
3496   gcse_subst_count = 0;
3497   gcse_create_count = 0;
3498 
3499   /* Return if there's nothing to do, or it is too expensive.  */
3500   if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3501       || gcse_or_cprop_is_too_expensive (_("GCSE disabled")))
3502     return 0;
3503 
3504   doing_code_hoisting_p = true;
3505 
3506   /* Calculate register pressure for each basic block.  */
3507   if (flag_ira_hoist_pressure)
3508     {
3509       regstat_init_n_sets_and_refs ();
3510       ira_set_pseudo_classes (false, dump_file);
3511       alloc_aux_for_blocks (sizeof (struct bb_data));
3512       calculate_bb_reg_pressure ();
3513       regstat_free_n_sets_and_refs ();
3514     }
3515 
3516   /* We need alias.  */
3517   init_alias_analysis ();
3518 
3519   bytes_used = 0;
3520   gcc_obstack_init (&gcse_obstack);
3521   alloc_gcse_mem ();
3522 
3523   alloc_hash_table (&expr_hash_table);
3524   compute_hash_table (&expr_hash_table);
3525   if (dump_file)
3526     dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3527 
3528   if (expr_hash_table.n_elems > 0)
3529     {
3530       alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3531 			    expr_hash_table.n_elems);
3532       compute_code_hoist_data ();
3533       changed = hoist_code ();
3534       free_code_hoist_mem ();
3535     }
3536 
3537   if (flag_ira_hoist_pressure)
3538     {
3539       free_aux_for_blocks ();
3540       free_reg_info ();
3541     }
3542   free_hash_table (&expr_hash_table);
3543   free_gcse_mem ();
3544   obstack_free (&gcse_obstack, NULL);
3545 
3546   /* We are finished with alias.  */
3547   end_alias_analysis ();
3548 
3549   if (dump_file)
3550     {
3551       fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3552 	       current_function_name (), n_basic_blocks_for_fn (cfun),
3553 	       bytes_used);
3554       fprintf (dump_file, "%d substs, %d insns created\n",
3555 	       gcse_subst_count, gcse_create_count);
3556     }
3557 
3558   doing_code_hoisting_p = false;
3559 
3560   return changed;
3561 }
3562 
3563 /*  Here we provide the things required to do store motion towards the exit.
3564     In order for this to be effective, gcse also needed to be taught how to
3565     move a load when it is killed only by a store to itself.
3566 
3567 	    int i;
3568 	    float a[10];
3569 
3570 	    void foo(float scale)
3571 	    {
3572 	      for (i=0; i<10; i++)
3573 		a[i] *= scale;
3574 	    }
3575 
3576     'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3577     the load out since its live around the loop, and stored at the bottom
3578     of the loop.
3579 
3580       The 'Load Motion' referred to and implemented in this file is
3581     an enhancement to gcse which when using edge based LCM, recognizes
3582     this situation and allows gcse to move the load out of the loop.
3583 
3584       Once gcse has hoisted the load, store motion can then push this
3585     load towards the exit, and we end up with no loads or stores of 'i'
3586     in the loop.  */
3587 
3588 /* This will search the ldst list for a matching expression. If it
3589    doesn't find one, we create one and initialize it.  */
3590 
3591 static struct ls_expr *
ldst_entry(rtx x)3592 ldst_entry (rtx x)
3593 {
3594   int do_not_record_p = 0;
3595   struct ls_expr * ptr;
3596   unsigned int hash;
3597   ls_expr **slot;
3598   struct ls_expr e;
3599 
3600   hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3601 		   NULL,  /*have_reg_qty=*/false);
3602 
3603   e.pattern = x;
3604   slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
3605   if (*slot)
3606     return *slot;
3607 
3608   ptr = XNEW (struct ls_expr);
3609 
3610   ptr->next         = pre_ldst_mems;
3611   ptr->expr         = NULL;
3612   ptr->pattern      = x;
3613   ptr->pattern_regs = NULL_RTX;
3614   ptr->loads        = NULL;
3615   ptr->stores       = NULL;
3616   ptr->reaching_reg = NULL_RTX;
3617   ptr->invalid      = 0;
3618   ptr->index        = 0;
3619   ptr->hash_index   = hash;
3620   pre_ldst_mems     = ptr;
3621   *slot = ptr;
3622 
3623   return ptr;
3624 }
3625 
3626 /* Free up an individual ldst entry.  */
3627 
3628 static void
free_ldst_entry(struct ls_expr * ptr)3629 free_ldst_entry (struct ls_expr * ptr)
3630 {
3631   free_INSN_LIST_list (& ptr->loads);
3632   free_INSN_LIST_list (& ptr->stores);
3633 
3634   free (ptr);
3635 }
3636 
3637 /* Free up all memory associated with the ldst list.  */
3638 
3639 static void
free_ld_motion_mems(void)3640 free_ld_motion_mems (void)
3641 {
3642   delete pre_ldst_table;
3643   pre_ldst_table = NULL;
3644 
3645   while (pre_ldst_mems)
3646     {
3647       struct ls_expr * tmp = pre_ldst_mems;
3648 
3649       pre_ldst_mems = pre_ldst_mems->next;
3650 
3651       free_ldst_entry (tmp);
3652     }
3653 
3654   pre_ldst_mems = NULL;
3655 }
3656 
3657 /* Dump debugging info about the ldst list.  */
3658 
3659 static void
print_ldst_list(FILE * file)3660 print_ldst_list (FILE * file)
3661 {
3662   struct ls_expr * ptr;
3663 
3664   fprintf (file, "LDST list: \n");
3665 
3666   for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3667     {
3668       fprintf (file, "  Pattern (%3d): ", ptr->index);
3669 
3670       print_rtl (file, ptr->pattern);
3671 
3672       fprintf (file, "\n	 Loads : ");
3673 
3674       if (ptr->loads)
3675 	print_rtl (file, ptr->loads);
3676       else
3677 	fprintf (file, "(nil)");
3678 
3679       fprintf (file, "\n	Stores : ");
3680 
3681       if (ptr->stores)
3682 	print_rtl (file, ptr->stores);
3683       else
3684 	fprintf (file, "(nil)");
3685 
3686       fprintf (file, "\n\n");
3687     }
3688 
3689   fprintf (file, "\n");
3690 }
3691 
3692 /* Returns 1 if X is in the list of ldst only expressions.  */
3693 
3694 static struct ls_expr *
find_rtx_in_ldst(rtx x)3695 find_rtx_in_ldst (rtx x)
3696 {
3697   struct ls_expr e;
3698   ls_expr **slot;
3699   if (!pre_ldst_table)
3700     return NULL;
3701   e.pattern = x;
3702   slot = pre_ldst_table->find_slot (&e, NO_INSERT);
3703   if (!slot || (*slot)->invalid)
3704     return NULL;
3705   return *slot;
3706 }
3707 
3708 /* Load Motion for loads which only kill themselves.  */
3709 
3710 /* Return true if x, a MEM, is a simple access with no side effects.
3711    These are the types of loads we consider for the ld_motion list,
3712    otherwise we let the usual aliasing take care of it.  */
3713 
3714 static int
simple_mem(const_rtx x)3715 simple_mem (const_rtx x)
3716 {
3717   if (MEM_VOLATILE_P (x))
3718     return 0;
3719 
3720   if (GET_MODE (x) == BLKmode)
3721     return 0;
3722 
3723   /* If we are handling exceptions, we must be careful with memory references
3724      that may trap.  If we are not, the behavior is undefined, so we may just
3725      continue.  */
3726   if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3727     return 0;
3728 
3729   if (side_effects_p (x))
3730     return 0;
3731 
3732   /* Do not consider function arguments passed on stack.  */
3733   if (reg_mentioned_p (stack_pointer_rtx, x))
3734     return 0;
3735 
3736   if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3737     return 0;
3738 
3739   return 1;
3740 }
3741 
3742 /* Make sure there isn't a buried reference in this pattern anywhere.
3743    If there is, invalidate the entry for it since we're not capable
3744    of fixing it up just yet.. We have to be sure we know about ALL
3745    loads since the aliasing code will allow all entries in the
3746    ld_motion list to not-alias itself.  If we miss a load, we will get
3747    the wrong value since gcse might common it and we won't know to
3748    fix it up.  */
3749 
3750 static void
invalidate_any_buried_refs(rtx x)3751 invalidate_any_buried_refs (rtx x)
3752 {
3753   const char * fmt;
3754   int i, j;
3755   struct ls_expr * ptr;
3756 
3757   /* Invalidate it in the list.  */
3758   if (MEM_P (x) && simple_mem (x))
3759     {
3760       ptr = ldst_entry (x);
3761       ptr->invalid = 1;
3762     }
3763 
3764   /* Recursively process the insn.  */
3765   fmt = GET_RTX_FORMAT (GET_CODE (x));
3766 
3767   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3768     {
3769       if (fmt[i] == 'e')
3770 	invalidate_any_buried_refs (XEXP (x, i));
3771       else if (fmt[i] == 'E')
3772 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3773 	  invalidate_any_buried_refs (XVECEXP (x, i, j));
3774     }
3775 }
3776 
3777 /* Find all the 'simple' MEMs which are used in LOADs and STORES.  Simple
3778    being defined as MEM loads and stores to symbols, with no side effects
3779    and no registers in the expression.  For a MEM destination, we also
3780    check that the insn is still valid if we replace the destination with a
3781    REG, as is done in update_ld_motion_stores.  If there are any uses/defs
3782    which don't match this criteria, they are invalidated and trimmed out
3783    later.  */
3784 
3785 static void
compute_ld_motion_mems(void)3786 compute_ld_motion_mems (void)
3787 {
3788   struct ls_expr * ptr;
3789   basic_block bb;
3790   rtx_insn *insn;
3791 
3792   pre_ldst_mems = NULL;
3793   pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
3794 
3795   FOR_EACH_BB_FN (bb, cfun)
3796     {
3797       FOR_BB_INSNS (bb, insn)
3798 	{
3799 	  if (NONDEBUG_INSN_P (insn))
3800 	    {
3801 	      if (GET_CODE (PATTERN (insn)) == SET)
3802 		{
3803 		  rtx src = SET_SRC (PATTERN (insn));
3804 		  rtx dest = SET_DEST (PATTERN (insn));
3805 
3806 		  /* Check for a simple load.  */
3807 		  if (MEM_P (src) && simple_mem (src))
3808 		    {
3809 		      ptr = ldst_entry (src);
3810 		      if (REG_P (dest))
3811 			ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3812 		      else
3813 			ptr->invalid = 1;
3814 		    }
3815 		  else
3816 		    {
3817 		      /* Make sure there isn't a buried load somewhere.  */
3818 		      invalidate_any_buried_refs (src);
3819 		    }
3820 
3821 		  /* Check for a simple load through a REG_EQUAL note.  */
3822 		  rtx note = find_reg_equal_equiv_note (insn), src_eq;
3823 		  if (note
3824 		      && REG_NOTE_KIND (note) == REG_EQUAL
3825 		      && (src_eq = XEXP (note, 0))
3826 		      && !(MEM_P (src_eq) && simple_mem (src_eq)))
3827 		    invalidate_any_buried_refs (src_eq);
3828 
3829 		  /* Check for stores. Don't worry about aliased ones, they
3830 		     will block any movement we might do later. We only care
3831 		     about this exact pattern since those are the only
3832 		     circumstance that we will ignore the aliasing info.  */
3833 		  if (MEM_P (dest) && simple_mem (dest))
3834 		    {
3835 		      ptr = ldst_entry (dest);
3836 		      machine_mode src_mode = GET_MODE (src);
3837 		      if (! MEM_P (src)
3838 			  && GET_CODE (src) != ASM_OPERANDS
3839 			  /* Check for REG manually since want_to_gcse_p
3840 			     returns 0 for all REGs.  */
3841 			  && can_assign_to_reg_without_clobbers_p (src,
3842 								    src_mode))
3843 			ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3844 		      else
3845 			ptr->invalid = 1;
3846 		    }
3847 		}
3848 	      else
3849 		{
3850 		  /* Invalidate all MEMs in the pattern and...  */
3851 		  invalidate_any_buried_refs (PATTERN (insn));
3852 
3853 		  /* ...in REG_EQUAL notes for PARALLELs with single SET.  */
3854 		  rtx note = find_reg_equal_equiv_note (insn), src_eq;
3855 		  if (note
3856 		      && REG_NOTE_KIND (note) == REG_EQUAL
3857 		      && (src_eq = XEXP (note, 0)))
3858 		    invalidate_any_buried_refs (src_eq);
3859 		}
3860 	    }
3861 	}
3862     }
3863 }
3864 
3865 /* Remove any references that have been either invalidated or are not in the
3866    expression list for pre gcse.  */
3867 
3868 static void
trim_ld_motion_mems(void)3869 trim_ld_motion_mems (void)
3870 {
3871   struct ls_expr * * last = & pre_ldst_mems;
3872   struct ls_expr * ptr = pre_ldst_mems;
3873 
3874   while (ptr != NULL)
3875     {
3876       struct gcse_expr * expr;
3877 
3878       /* Delete if entry has been made invalid.  */
3879       if (! ptr->invalid)
3880 	{
3881 	  /* Delete if we cannot find this mem in the expression list.  */
3882 	  unsigned int hash = ptr->hash_index % expr_hash_table.size;
3883 
3884 	  for (expr = expr_hash_table.table[hash];
3885 	       expr != NULL;
3886 	       expr = expr->next_same_hash)
3887 	    if (expr_equiv_p (expr->expr, ptr->pattern))
3888 	      break;
3889 	}
3890       else
3891 	expr = (struct gcse_expr *) 0;
3892 
3893       if (expr)
3894 	{
3895 	  /* Set the expression field if we are keeping it.  */
3896 	  ptr->expr = expr;
3897 	  last = & ptr->next;
3898 	  ptr = ptr->next;
3899 	}
3900       else
3901 	{
3902 	  *last = ptr->next;
3903 	  pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
3904 	  free_ldst_entry (ptr);
3905 	  ptr = * last;
3906 	}
3907     }
3908 
3909   /* Show the world what we've found.  */
3910   if (dump_file && pre_ldst_mems != NULL)
3911     print_ldst_list (dump_file);
3912 }
3913 
3914 /* This routine will take an expression which we are replacing with
3915    a reaching register, and update any stores that are needed if
3916    that expression is in the ld_motion list.  Stores are updated by
3917    copying their SRC to the reaching register, and then storing
3918    the reaching register into the store location. These keeps the
3919    correct value in the reaching register for the loads.  */
3920 
3921 static void
update_ld_motion_stores(struct gcse_expr * expr)3922 update_ld_motion_stores (struct gcse_expr * expr)
3923 {
3924   struct ls_expr * mem_ptr;
3925 
3926   if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3927     {
3928       /* We can try to find just the REACHED stores, but is shouldn't
3929 	 matter to set the reaching reg everywhere...  some might be
3930 	 dead and should be eliminated later.  */
3931 
3932       /* We replace (set mem expr) with (set reg expr) (set mem reg)
3933 	 where reg is the reaching reg used in the load.  We checked in
3934 	 compute_ld_motion_mems that we can replace (set mem expr) with
3935 	 (set reg expr) in that insn.  */
3936       rtx list = mem_ptr->stores;
3937 
3938       for ( ; list != NULL_RTX; list = XEXP (list, 1))
3939 	{
3940 	  rtx_insn *insn = as_a <rtx_insn *> (XEXP (list, 0));
3941 	  rtx pat = PATTERN (insn);
3942 	  rtx src = SET_SRC (pat);
3943 	  rtx reg = expr->reaching_reg;
3944 
3945 	  /* If we've already copied it, continue.  */
3946 	  if (expr->reaching_reg == src)
3947 	    continue;
3948 
3949 	  if (dump_file)
3950 	    {
3951 	      fprintf (dump_file, "PRE:  store updated with reaching reg ");
3952 	      print_rtl (dump_file, reg);
3953 	      fprintf (dump_file, ":\n	");
3954 	      print_inline_rtx (dump_file, insn, 8);
3955 	      fprintf (dump_file, "\n");
3956 	    }
3957 
3958 	  rtx_insn *copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
3959 	  emit_insn_before (copy, insn);
3960 	  SET_SRC (pat) = reg;
3961 	  df_insn_rescan (insn);
3962 
3963 	  /* un-recognize this pattern since it's probably different now.  */
3964 	  INSN_CODE (insn) = -1;
3965 	  gcse_create_count++;
3966 	}
3967     }
3968 }
3969 
3970 /* Return true if the graph is too expensive to optimize. PASS is the
3971    optimization about to be performed.  */
3972 
3973 bool
gcse_or_cprop_is_too_expensive(const char * pass)3974 gcse_or_cprop_is_too_expensive (const char *pass)
3975 {
3976   unsigned int memory_request = (n_basic_blocks_for_fn (cfun)
3977 				 * SBITMAP_SET_SIZE (max_reg_num ())
3978 				 * sizeof (SBITMAP_ELT_TYPE));
3979 
3980   /* Trying to perform global optimizations on flow graphs which have
3981      a high connectivity will take a long time and is unlikely to be
3982      particularly useful.
3983 
3984      In normal circumstances a cfg should have about twice as many
3985      edges as blocks.  But we do not want to punish small functions
3986      which have a couple switch statements.  Rather than simply
3987      threshold the number of blocks, uses something with a more
3988      graceful degradation.  */
3989   if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
3990     {
3991       warning (OPT_Wdisabled_optimization,
3992 	       "%s: %d basic blocks and %d edges/basic block",
3993 	       pass, n_basic_blocks_for_fn (cfun),
3994 	       n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
3995 
3996       return true;
3997     }
3998 
3999   /* If allocating memory for the dataflow bitmaps would take up too much
4000      storage it's better just to disable the optimization.  */
4001   if (memory_request > MAX_GCSE_MEMORY)
4002     {
4003       warning (OPT_Wdisabled_optimization,
4004 	       "%s: %d basic blocks and %d registers; increase --param max-gcse-memory above %d",
4005 	       pass, n_basic_blocks_for_fn (cfun), max_reg_num (),
4006 	       memory_request);
4007 
4008       return true;
4009     }
4010 
4011   return false;
4012 }
4013 
4014 static unsigned int
execute_rtl_pre(void)4015 execute_rtl_pre (void)
4016 {
4017   int changed;
4018   delete_unreachable_blocks ();
4019   df_analyze ();
4020   changed = one_pre_gcse_pass ();
4021   flag_rerun_cse_after_global_opts |= changed;
4022   if (changed)
4023     cleanup_cfg (0);
4024   return 0;
4025 }
4026 
4027 static unsigned int
execute_rtl_hoist(void)4028 execute_rtl_hoist (void)
4029 {
4030   int changed;
4031   delete_unreachable_blocks ();
4032   df_analyze ();
4033   changed = one_code_hoisting_pass ();
4034   flag_rerun_cse_after_global_opts |= changed;
4035   if (changed)
4036     cleanup_cfg (0);
4037   return 0;
4038 }
4039 
4040 namespace {
4041 
4042 const pass_data pass_data_rtl_pre =
4043 {
4044   RTL_PASS, /* type */
4045   "rtl pre", /* name */
4046   OPTGROUP_NONE, /* optinfo_flags */
4047   TV_PRE, /* tv_id */
4048   PROP_cfglayout, /* properties_required */
4049   0, /* properties_provided */
4050   0, /* properties_destroyed */
4051   0, /* todo_flags_start */
4052   TODO_df_finish, /* todo_flags_finish */
4053 };
4054 
4055 class pass_rtl_pre : public rtl_opt_pass
4056 {
4057 public:
pass_rtl_pre(gcc::context * ctxt)4058   pass_rtl_pre (gcc::context *ctxt)
4059     : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4060   {}
4061 
4062   /* opt_pass methods: */
4063   virtual bool gate (function *);
execute(function *)4064   virtual unsigned int execute (function *) { return execute_rtl_pre (); }
4065 
4066 }; // class pass_rtl_pre
4067 
4068 /* We do not construct an accurate cfg in functions which call
4069    setjmp, so none of these passes runs if the function calls
4070    setjmp.
4071    FIXME: Should just handle setjmp via REG_SETJMP notes.  */
4072 
4073 bool
gate(function * fun)4074 pass_rtl_pre::gate (function *fun)
4075 {
4076   return optimize > 0 && flag_gcse
4077     && !fun->calls_setjmp
4078     && optimize_function_for_speed_p (fun)
4079     && dbg_cnt (pre);
4080 }
4081 
4082 } // anon namespace
4083 
4084 rtl_opt_pass *
make_pass_rtl_pre(gcc::context * ctxt)4085 make_pass_rtl_pre (gcc::context *ctxt)
4086 {
4087   return new pass_rtl_pre (ctxt);
4088 }
4089 
4090 namespace {
4091 
4092 const pass_data pass_data_rtl_hoist =
4093 {
4094   RTL_PASS, /* type */
4095   "hoist", /* name */
4096   OPTGROUP_NONE, /* optinfo_flags */
4097   TV_HOIST, /* tv_id */
4098   PROP_cfglayout, /* properties_required */
4099   0, /* properties_provided */
4100   0, /* properties_destroyed */
4101   0, /* todo_flags_start */
4102   TODO_df_finish, /* todo_flags_finish */
4103 };
4104 
4105 class pass_rtl_hoist : public rtl_opt_pass
4106 {
4107 public:
pass_rtl_hoist(gcc::context * ctxt)4108   pass_rtl_hoist (gcc::context *ctxt)
4109     : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4110   {}
4111 
4112   /* opt_pass methods: */
4113   virtual bool gate (function *);
execute(function *)4114   virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
4115 
4116 }; // class pass_rtl_hoist
4117 
4118 bool
gate(function *)4119 pass_rtl_hoist::gate (function *)
4120 {
4121   return optimize > 0 && flag_gcse
4122     && !cfun->calls_setjmp
4123     /* It does not make sense to run code hoisting unless we are optimizing
4124        for code size -- it rarely makes programs faster, and can make then
4125        bigger if we did PRE (when optimizing for space, we don't run PRE).  */
4126     && optimize_function_for_size_p (cfun)
4127     && dbg_cnt (hoist);
4128 }
4129 
4130 } // anon namespace
4131 
4132 rtl_opt_pass *
make_pass_rtl_hoist(gcc::context * ctxt)4133 make_pass_rtl_hoist (gcc::context *ctxt)
4134 {
4135   return new pass_rtl_hoist (ctxt);
4136 }
4137 
4138 /* Reset all state within gcse.c so that we can rerun the compiler
4139    within the same process.  For use by toplev::finalize.  */
4140 
4141 void
gcse_c_finalize(void)4142 gcse_c_finalize (void)
4143 {
4144   test_insn = NULL;
4145 }
4146 
4147 #include "gt-gcse.h"
4148