1 /* LRA (local register allocator) driver and LRA utilities.
2    Copyright (C) 2010-2016 Free Software Foundation, Inc.
3    Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.	If not see
19 <http://www.gnu.org/licenses/>.	 */
20 
21 
22 /* The Local Register Allocator (LRA) is a replacement of former
23    reload pass.	 It is focused to simplify code solving the reload
24    pass tasks, to make the code maintenance easier, and to implement new
25    perspective optimizations.
26 
27    The major LRA design solutions are:
28      o division small manageable, separated sub-tasks
29      o reflection of all transformations and decisions in RTL as more
30        as possible
31      o insn constraints as a primary source of the info (minimizing
32        number of target-depended macros/hooks)
33 
34    In brief LRA works by iterative insn process with the final goal is
35    to satisfy all insn and address constraints:
36      o New reload insns (in brief reloads) and reload pseudos might be
37        generated;
38      o Some pseudos might be spilled to assign hard registers to
39        new reload pseudos;
40      o Recalculating spilled pseudo values (rematerialization);
41      o Changing spilled pseudos to stack memory or their equivalences;
42      o Allocation stack memory changes the address displacement and
43        new iteration is needed.
44 
45    Here is block diagram of LRA passes:
46 
47                                 ------------------------
48            ---------------     | Undo inheritance for   |     ---------------
49           | Memory-memory |    | spilled pseudos,       |    | New (and old) |
50           | move coalesce |<---| splits for pseudos got |<-- |   pseudos     |
51            ---------------     | the same hard regs,    |    |  assignment   |
52   Start           |            | and optional reloads   |     ---------------
53     |             |             ------------------------            ^
54     V             |              ----------------                   |
55  -----------      V             | Update virtual |                  |
56 |  Remove   |----> ------------>|    register    |                  |
57 | scratches |     ^             |  displacements |                  |
58  -----------      |              ----------------                   |
59                   |                      |                          |
60                   |                      V         New              |
61                   |                 ------------  pseudos   -------------------
62                   |                |Constraints:| or insns | Inheritance/split |
63                   |                |    RTL     |--------->|  transformations  |
64                   |                | transfor-  |          |    in EBB scope   |
65                   | substi-        |  mations   |           -------------------
66                   | tutions         ------------
67                   |                     | No change
68           ----------------              V
69          | Spilled pseudo |      -------------------
70          |    to memory   |<----| Rematerialization |
71          |  substitution  |      -------------------
72           ----------------
73                   | No susbtitions
74                   V
75       -------------------------
76      | Hard regs substitution, |
77      |  devirtalization, and   |------> Finish
78      | restoring scratches got |
79      |         memory          |
80       -------------------------
81 
82    To speed up the process:
83      o We process only insns affected by changes on previous
84        iterations;
85      o We don't use DFA-infrastructure because it results in much slower
86        compiler speed than a special IR described below does;
87      o We use a special insn representation for quick access to insn
88        info which is always *synchronized* with the current RTL;
89        o Insn IR is minimized by memory.  It is divided on three parts:
90 	 o one specific for each insn in RTL (only operand locations);
91 	 o one common for all insns in RTL with the same insn code
92 	   (different operand attributes from machine descriptions);
93 	 o one oriented for maintenance of live info (list of pseudos).
94        o Pseudo data:
95 	 o all insns where the pseudo is referenced;
96 	 o live info (conflicting hard regs, live ranges, # of
97 	   references etc);
98 	 o data used for assigning (preferred hard regs, costs etc).
99 
100    This file contains LRA driver, LRA utility functions and data, and
101    code for dealing with scratches.  */
102 
103 #include "config.h"
104 #include "system.h"
105 #include "coretypes.h"
106 #include "backend.h"
107 #include "target.h"
108 #include "rtl.h"
109 #include "tree.h"
110 #include "predict.h"
111 #include "df.h"
112 #include "tm_p.h"
113 #include "optabs.h"
114 #include "regs.h"
115 #include "ira.h"
116 #include "recog.h"
117 #include "expr.h"
118 #include "cfgrtl.h"
119 #include "cfgbuild.h"
120 #include "lra.h"
121 #include "lra-int.h"
122 #include "print-rtl.h"
123 
124 /* Dump bitmap SET with TITLE and BB INDEX.  */
125 void
lra_dump_bitmap_with_title(const char * title,bitmap set,int index)126 lra_dump_bitmap_with_title (const char *title, bitmap set, int index)
127 {
128   unsigned int i;
129   int count;
130   bitmap_iterator bi;
131   static const int max_nums_on_line = 10;
132 
133   if (bitmap_empty_p (set))
134     return;
135   fprintf (lra_dump_file, "  %s %d:", title, index);
136   fprintf (lra_dump_file, "\n");
137   count = max_nums_on_line + 1;
138   EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
139     {
140       if (count > max_nums_on_line)
141 	{
142 	  fprintf (lra_dump_file, "\n    ");
143 	  count = 0;
144 	}
145       fprintf (lra_dump_file, " %4u", i);
146       count++;
147     }
148   fprintf (lra_dump_file, "\n");
149 }
150 
151 /* Hard registers currently not available for allocation.  It can
152    changed after some hard  registers become not eliminable.  */
153 HARD_REG_SET lra_no_alloc_regs;
154 
155 static int get_new_reg_value (void);
156 static void expand_reg_info (void);
157 static void invalidate_insn_recog_data (int);
158 static int get_insn_freq (rtx_insn *);
159 static void invalidate_insn_data_regno_info (lra_insn_recog_data_t,
160 					     rtx_insn *, int);
161 
162 /* Expand all regno related info needed for LRA.  */
163 static void
expand_reg_data(int old)164 expand_reg_data (int old)
165 {
166   resize_reg_info ();
167   expand_reg_info ();
168   ira_expand_reg_equiv ();
169   for (int i = (int) max_reg_num () - 1; i >= old; i--)
170     lra_change_class (i, ALL_REGS, "      Set", true);
171 }
172 
173 /* Create and return a new reg of ORIGINAL mode.  If ORIGINAL is NULL
174    or of VOIDmode, use MD_MODE for the new reg.  Initialize its
175    register class to RCLASS.  Print message about assigning class
176    RCLASS containing new register name TITLE unless it is NULL.  Use
177    attributes of ORIGINAL if it is a register.  The created register
178    will have unique held value.  */
179 rtx
lra_create_new_reg_with_unique_value(machine_mode md_mode,rtx original,enum reg_class rclass,const char * title)180 lra_create_new_reg_with_unique_value (machine_mode md_mode, rtx original,
181 				      enum reg_class rclass, const char *title)
182 {
183   machine_mode mode;
184   rtx new_reg;
185 
186   if (original == NULL_RTX || (mode = GET_MODE (original)) == VOIDmode)
187     mode = md_mode;
188   lra_assert (mode != VOIDmode);
189   new_reg = gen_reg_rtx (mode);
190   if (original == NULL_RTX || ! REG_P (original))
191     {
192       if (lra_dump_file != NULL)
193 	fprintf (lra_dump_file, "      Creating newreg=%i", REGNO (new_reg));
194     }
195   else
196     {
197       if (ORIGINAL_REGNO (original) >= FIRST_PSEUDO_REGISTER)
198 	ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original);
199       REG_USERVAR_P (new_reg) = REG_USERVAR_P (original);
200       REG_POINTER (new_reg) = REG_POINTER (original);
201       REG_ATTRS (new_reg) = REG_ATTRS (original);
202       if (lra_dump_file != NULL)
203 	fprintf (lra_dump_file, "      Creating newreg=%i from oldreg=%i",
204 		 REGNO (new_reg), REGNO (original));
205     }
206   if (lra_dump_file != NULL)
207     {
208       if (title != NULL)
209 	fprintf (lra_dump_file, ", assigning class %s to%s%s r%d",
210 		 reg_class_names[rclass], *title == '\0' ? "" : " ",
211 		 title, REGNO (new_reg));
212       fprintf (lra_dump_file, "\n");
213     }
214   expand_reg_data (max_reg_num ());
215   setup_reg_classes (REGNO (new_reg), rclass, NO_REGS, rclass);
216   return new_reg;
217 }
218 
219 /* Analogous to the previous function but also inherits value of
220    ORIGINAL.  */
221 rtx
lra_create_new_reg(machine_mode md_mode,rtx original,enum reg_class rclass,const char * title)222 lra_create_new_reg (machine_mode md_mode, rtx original,
223 		    enum reg_class rclass, const char *title)
224 {
225   rtx new_reg;
226 
227   new_reg
228     = lra_create_new_reg_with_unique_value (md_mode, original, rclass, title);
229   if (original != NULL_RTX && REG_P (original))
230     lra_assign_reg_val (REGNO (original), REGNO (new_reg));
231   return new_reg;
232 }
233 
234 /* Set up for REGNO unique hold value.	*/
235 void
lra_set_regno_unique_value(int regno)236 lra_set_regno_unique_value (int regno)
237 {
238   lra_reg_info[regno].val = get_new_reg_value ();
239 }
240 
241 /* Invalidate INSN related info used by LRA.  The info should never be
242    used after that.  */
243 void
lra_invalidate_insn_data(rtx_insn * insn)244 lra_invalidate_insn_data (rtx_insn *insn)
245 {
246   lra_invalidate_insn_regno_info (insn);
247   invalidate_insn_recog_data (INSN_UID (insn));
248 }
249 
250 /* Mark INSN deleted and invalidate the insn related info used by
251    LRA.	 */
252 void
lra_set_insn_deleted(rtx_insn * insn)253 lra_set_insn_deleted (rtx_insn *insn)
254 {
255   lra_invalidate_insn_data (insn);
256   SET_INSN_DELETED (insn);
257 }
258 
259 /* Delete an unneeded INSN and any previous insns who sole purpose is
260    loading data that is dead in INSN.  */
261 void
lra_delete_dead_insn(rtx_insn * insn)262 lra_delete_dead_insn (rtx_insn *insn)
263 {
264   rtx_insn *prev = prev_real_insn (insn);
265   rtx prev_dest;
266 
267   /* If the previous insn sets a register that dies in our insn,
268      delete it too.  */
269   if (prev && GET_CODE (PATTERN (prev)) == SET
270       && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
271       && reg_mentioned_p (prev_dest, PATTERN (insn))
272       && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
273       && ! side_effects_p (SET_SRC (PATTERN (prev))))
274     lra_delete_dead_insn (prev);
275 
276   lra_set_insn_deleted (insn);
277 }
278 
279 /* Emit insn x = y + z.  Return NULL if we failed to do it.
280    Otherwise, return the insn.  We don't use gen_add3_insn as it might
281    clobber CC.  */
282 static rtx_insn *
emit_add3_insn(rtx x,rtx y,rtx z)283 emit_add3_insn (rtx x, rtx y, rtx z)
284 {
285   rtx_insn *last;
286 
287   last = get_last_insn ();
288 
289   if (have_addptr3_insn (x, y, z))
290     {
291       rtx_insn *insn = gen_addptr3_insn (x, y, z);
292 
293       /* If the target provides an "addptr" pattern it hopefully does
294 	 for a reason.  So falling back to the normal add would be
295 	 a bug.  */
296       lra_assert (insn != NULL_RTX);
297       emit_insn (insn);
298       return insn;
299     }
300 
301   rtx_insn *insn = emit_insn (gen_rtx_SET (x, gen_rtx_PLUS (GET_MODE (y),
302 							    y, z)));
303   if (recog_memoized (insn) < 0)
304     {
305       delete_insns_since (last);
306       insn = NULL;
307     }
308   return insn;
309 }
310 
311 /* Emit insn x = x + y.  Return the insn.  We use gen_add2_insn as the
312    last resort.  */
313 static rtx_insn *
emit_add2_insn(rtx x,rtx y)314 emit_add2_insn (rtx x, rtx y)
315 {
316   rtx_insn *insn = emit_add3_insn (x, x, y);
317   if (insn == NULL_RTX)
318     {
319       insn = gen_add2_insn (x, y);
320       if (insn != NULL_RTX)
321 	emit_insn (insn);
322     }
323   return insn;
324 }
325 
326 /* Target checks operands through operand predicates to recognize an
327    insn.  We should have a special precaution to generate add insns
328    which are frequent results of elimination.
329 
330    Emit insns for x = y + z.  X can be used to store intermediate
331    values and should be not in Y and Z when we use X to store an
332    intermediate value.  Y + Z should form [base] [+ index[ * scale]] [
333    + disp] where base and index are registers, disp and scale are
334    constants.  Y should contain base if it is present, Z should
335    contain disp if any.  index[*scale] can be part of Y or Z.  */
336 void
lra_emit_add(rtx x,rtx y,rtx z)337 lra_emit_add (rtx x, rtx y, rtx z)
338 {
339   int old;
340   rtx_insn *last;
341   rtx a1, a2, base, index, disp, scale, index_scale;
342   bool ok_p;
343 
344   rtx_insn *add3_insn = emit_add3_insn (x, y, z);
345   old = max_reg_num ();
346   if (add3_insn != NULL)
347     ;
348   else
349     {
350       disp = a2 = NULL_RTX;
351       if (GET_CODE (y) == PLUS)
352 	{
353 	  a1 = XEXP (y, 0);
354 	  a2 = XEXP (y, 1);
355 	  disp = z;
356 	}
357       else
358 	{
359 	  a1 = y;
360 	  if (CONSTANT_P (z))
361 	    disp = z;
362 	  else
363 	    a2 = z;
364 	}
365       index_scale = scale = NULL_RTX;
366       if (GET_CODE (a1) == MULT)
367 	{
368 	  index_scale = a1;
369 	  index = XEXP (a1, 0);
370 	  scale = XEXP (a1, 1);
371 	  base = a2;
372 	}
373       else if (a2 != NULL_RTX && GET_CODE (a2) == MULT)
374 	{
375 	  index_scale = a2;
376 	  index = XEXP (a2, 0);
377 	  scale = XEXP (a2, 1);
378 	  base = a1;
379 	}
380       else
381 	{
382 	  base = a1;
383 	  index = a2;
384 	}
385       if ((base != NULL_RTX && ! (REG_P (base) || GET_CODE (base) == SUBREG))
386 	  || (index != NULL_RTX
387 	      && ! (REG_P (index) || GET_CODE (index) == SUBREG))
388 	  || (disp != NULL_RTX && ! CONSTANT_P (disp))
389 	  || (scale != NULL_RTX && ! CONSTANT_P (scale)))
390 	{
391 	  /* Probably we have no 3 op add.  Last chance is to use 2-op
392 	     add insn.  To succeed, don't move Z to X as an address
393 	     segment always comes in Y.  Otherwise, we might fail when
394 	     adding the address segment to register.  */
395 	  lra_assert (x != y && x != z);
396 	  emit_move_insn (x, y);
397 	  rtx_insn *insn = emit_add2_insn (x, z);
398 	  lra_assert (insn != NULL_RTX);
399 	}
400       else
401 	{
402 	  if (index_scale == NULL_RTX)
403 	    index_scale = index;
404 	  if (disp == NULL_RTX)
405 	    {
406 	      /* Generate x = index_scale; x = x + base.  */
407 	      lra_assert (index_scale != NULL_RTX && base != NULL_RTX);
408 	      emit_move_insn (x, index_scale);
409 	      rtx_insn *insn = emit_add2_insn (x, base);
410 	      lra_assert (insn != NULL_RTX);
411 	    }
412 	  else if (scale == NULL_RTX)
413 	    {
414 	      /* Try x = base + disp.  */
415 	      lra_assert (base != NULL_RTX);
416 	      last = get_last_insn ();
417 	      rtx_insn *move_insn =
418 		emit_move_insn (x, gen_rtx_PLUS (GET_MODE (base), base, disp));
419 	      if (recog_memoized (move_insn) < 0)
420 		{
421 		  delete_insns_since (last);
422 		  /* Generate x = disp; x = x + base.  */
423 		  emit_move_insn (x, disp);
424 		  rtx_insn *add2_insn = emit_add2_insn (x, base);
425 		  lra_assert (add2_insn != NULL_RTX);
426 		}
427 	      /* Generate x = x + index.  */
428 	      if (index != NULL_RTX)
429 		{
430 		  rtx_insn *insn = emit_add2_insn (x, index);
431 		  lra_assert (insn != NULL_RTX);
432 		}
433 	    }
434 	  else
435 	    {
436 	      /* Try x = index_scale; x = x + disp; x = x + base.  */
437 	      last = get_last_insn ();
438 	      rtx_insn *move_insn = emit_move_insn (x, index_scale);
439 	      ok_p = false;
440 	      if (recog_memoized (move_insn) >= 0)
441 		{
442 		  rtx_insn *insn = emit_add2_insn (x, disp);
443 		  if (insn != NULL_RTX)
444 		    {
445 		      if (base == NULL_RTX)
446 			ok_p = true;
447 		      else
448 			{
449 			  insn = emit_add2_insn (x, base);
450 			  if (insn != NULL_RTX)
451 			    ok_p = true;
452 			}
453 		    }
454 		}
455 	      if (! ok_p)
456 		{
457 		  rtx_insn *insn;
458 
459 		  delete_insns_since (last);
460 		  /* Generate x = disp; x = x + base; x = x + index_scale.  */
461 		  emit_move_insn (x, disp);
462 		  if (base != NULL_RTX)
463 		    {
464 		      insn = emit_add2_insn (x, base);
465 		      lra_assert (insn != NULL_RTX);
466 		    }
467 		  insn = emit_add2_insn (x, index_scale);
468 		  lra_assert (insn != NULL_RTX);
469 		}
470 	    }
471 	}
472     }
473   /* Functions emit_... can create pseudos -- so expand the pseudo
474      data.  */
475   if (old != max_reg_num ())
476     expand_reg_data (old);
477 }
478 
479 /* The number of emitted reload insns so far.  */
480 int lra_curr_reload_num;
481 
482 /* Emit x := y, processing special case when y = u + v or y = u + v *
483    scale + w through emit_add (Y can be an address which is base +
484    index reg * scale + displacement in general case).  X may be used
485    as intermediate result therefore it should be not in Y.  */
486 void
lra_emit_move(rtx x,rtx y)487 lra_emit_move (rtx x, rtx y)
488 {
489   int old;
490 
491   if (GET_CODE (y) != PLUS)
492     {
493       if (rtx_equal_p (x, y))
494 	return;
495       old = max_reg_num ();
496       emit_move_insn (x, y);
497       if (REG_P (x))
498 	lra_reg_info[ORIGINAL_REGNO (x)].last_reload = ++lra_curr_reload_num;
499       /* Function emit_move can create pseudos -- so expand the pseudo
500 	 data.	*/
501       if (old != max_reg_num ())
502 	expand_reg_data (old);
503       return;
504     }
505   lra_emit_add (x, XEXP (y, 0), XEXP (y, 1));
506 }
507 
508 /* Update insn operands which are duplication of operands whose
509    numbers are in array of NOPS (with end marker -1).  The insn is
510    represented by its LRA internal representation ID.  */
511 void
lra_update_dups(lra_insn_recog_data_t id,signed char * nops)512 lra_update_dups (lra_insn_recog_data_t id, signed char *nops)
513 {
514   int i, j, nop;
515   struct lra_static_insn_data *static_id = id->insn_static_data;
516 
517   for (i = 0; i < static_id->n_dups; i++)
518     for (j = 0; (nop = nops[j]) >= 0; j++)
519       if (static_id->dup_num[i] == nop)
520 	*id->dup_loc[i] = *id->operand_loc[nop];
521 }
522 
523 
524 
525 /* This page contains code dealing with info about registers in the
526    insns.  */
527 
528 /* Pools for insn reg info.  */
529 object_allocator<lra_insn_reg> lra_insn_reg_pool ("insn regs");
530 
531 /* Create LRA insn related info about a reference to REGNO in INSN with
532    TYPE (in/out/inout), biggest reference mode MODE, flag that it is
533    reference through subreg (SUBREG_P), flag that is early clobbered
534    in the insn (EARLY_CLOBBER), and reference to the next insn reg
535    info (NEXT).	 */
536 static struct lra_insn_reg *
new_insn_reg(rtx_insn * insn,int regno,enum op_type type,machine_mode mode,bool subreg_p,bool early_clobber,struct lra_insn_reg * next)537 new_insn_reg (rtx_insn *insn, int regno, enum op_type type,
538 	      machine_mode mode,
539 	      bool subreg_p, bool early_clobber, struct lra_insn_reg *next)
540 {
541   lra_insn_reg *ir = lra_insn_reg_pool.allocate ();
542   ir->type = type;
543   ir->biggest_mode = mode;
544   if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (lra_reg_info[regno].biggest_mode)
545       && NONDEBUG_INSN_P (insn))
546     lra_reg_info[regno].biggest_mode = mode;
547   ir->subreg_p = subreg_p;
548   ir->early_clobber = early_clobber;
549   ir->regno = regno;
550   ir->next = next;
551   return ir;
552 }
553 
554 /* Free insn reg info list IR.	*/
555 static void
free_insn_regs(struct lra_insn_reg * ir)556 free_insn_regs (struct lra_insn_reg *ir)
557 {
558   struct lra_insn_reg *next_ir;
559 
560   for (; ir != NULL; ir = next_ir)
561     {
562       next_ir = ir->next;
563       lra_insn_reg_pool.remove (ir);
564     }
565 }
566 
567 /* Finish pool for insn reg info.  */
568 static void
finish_insn_regs(void)569 finish_insn_regs (void)
570 {
571   lra_insn_reg_pool.release ();
572 }
573 
574 
575 
576 /* This page contains code dealing LRA insn info (or in other words
577    LRA internal insn representation).  */
578 
579 /* Map INSN_CODE -> the static insn data.  This info is valid during
580    all translation unit.  */
581 struct lra_static_insn_data *insn_code_data[NUM_INSN_CODES];
582 
583 /* Debug insns are represented as a special insn with one input
584    operand which is RTL expression in var_location.  */
585 
586 /* The following data are used as static insn operand data for all
587    debug insns.	 If structure lra_operand_data is changed, the
588    initializer should be changed too.  */
589 static struct lra_operand_data debug_operand_data =
590   {
591     NULL, /* alternative  */
592     VOIDmode, /* We are not interesting in the operand mode.  */
593     OP_IN,
594     0, 0, 0, 0
595   };
596 
597 /* The following data are used as static insn data for all debug
598    insns.  If structure lra_static_insn_data is changed, the
599    initializer should be changed too.  */
600 static struct lra_static_insn_data debug_insn_static_data =
601   {
602     &debug_operand_data,
603     0,	/* Duplication operands #.  */
604     -1, /* Commutative operand #.  */
605     1,	/* Operands #.	There is only one operand which is debug RTL
606 	   expression.	*/
607     0,	/* Duplications #.  */
608     0,	/* Alternatives #.  We are not interesting in alternatives
609 	   because we does not proceed debug_insns for reloads.	 */
610     NULL, /* Hard registers referenced in machine description.	*/
611     NULL  /* Descriptions of operands in alternatives.	*/
612   };
613 
614 /* Called once per compiler work to initialize some LRA data related
615    to insns.  */
616 static void
init_insn_code_data_once(void)617 init_insn_code_data_once (void)
618 {
619   memset (insn_code_data, 0, sizeof (insn_code_data));
620 }
621 
622 /* Called once per compiler work to finalize some LRA data related to
623    insns.  */
624 static void
finish_insn_code_data_once(void)625 finish_insn_code_data_once (void)
626 {
627   for (unsigned int i = 0; i < NUM_INSN_CODES; i++)
628     {
629       if (insn_code_data[i] != NULL)
630 	free (insn_code_data[i]);
631     }
632 }
633 
634 /* Return static insn data, allocate and setup if necessary.  Although
635    dup_num is static data (it depends only on icode), to set it up we
636    need to extract insn first.	So recog_data should be valid for
637    normal insn (ICODE >= 0) before the call.  */
638 static struct lra_static_insn_data *
get_static_insn_data(int icode,int nop,int ndup,int nalt)639 get_static_insn_data (int icode, int nop, int ndup, int nalt)
640 {
641   struct lra_static_insn_data *data;
642   size_t n_bytes;
643 
644   lra_assert (icode < (int) NUM_INSN_CODES);
645   if (icode >= 0 && (data = insn_code_data[icode]) != NULL)
646     return data;
647   lra_assert (nop >= 0 && ndup >= 0 && nalt >= 0);
648   n_bytes = sizeof (struct lra_static_insn_data)
649 	    + sizeof (struct lra_operand_data) * nop
650 	    + sizeof (int) * ndup;
651   data = XNEWVAR (struct lra_static_insn_data, n_bytes);
652   data->operand_alternative = NULL;
653   data->n_operands = nop;
654   data->n_dups = ndup;
655   data->n_alternatives = nalt;
656   data->operand = ((struct lra_operand_data *)
657 		   ((char *) data + sizeof (struct lra_static_insn_data)));
658   data->dup_num = ((int *) ((char *) data->operand
659 			    + sizeof (struct lra_operand_data) * nop));
660   if (icode >= 0)
661     {
662       int i;
663 
664       insn_code_data[icode] = data;
665       for (i = 0; i < nop; i++)
666 	{
667 	  data->operand[i].constraint
668 	    = insn_data[icode].operand[i].constraint;
669 	  data->operand[i].mode = insn_data[icode].operand[i].mode;
670 	  data->operand[i].strict_low = insn_data[icode].operand[i].strict_low;
671 	  data->operand[i].is_operator
672 	    = insn_data[icode].operand[i].is_operator;
673 	  data->operand[i].type
674 	    = (data->operand[i].constraint[0] == '=' ? OP_OUT
675 	       : data->operand[i].constraint[0] == '+' ? OP_INOUT
676 	       : OP_IN);
677 	  data->operand[i].is_address = false;
678 	}
679       for (i = 0; i < ndup; i++)
680 	data->dup_num[i] = recog_data.dup_num[i];
681     }
682   return data;
683 }
684 
685 /* The current length of the following array.  */
686 int lra_insn_recog_data_len;
687 
688 /* Map INSN_UID -> the insn recog data (NULL if unknown).  */
689 lra_insn_recog_data_t *lra_insn_recog_data;
690 
691 /* Initialize LRA data about insns.  */
692 static void
init_insn_recog_data(void)693 init_insn_recog_data (void)
694 {
695   lra_insn_recog_data_len = 0;
696   lra_insn_recog_data = NULL;
697 }
698 
699 /* Expand, if necessary, LRA data about insns.	*/
700 static void
check_and_expand_insn_recog_data(int index)701 check_and_expand_insn_recog_data (int index)
702 {
703   int i, old;
704 
705   if (lra_insn_recog_data_len > index)
706     return;
707   old = lra_insn_recog_data_len;
708   lra_insn_recog_data_len = index * 3 / 2 + 1;
709   lra_insn_recog_data = XRESIZEVEC (lra_insn_recog_data_t,
710 				    lra_insn_recog_data,
711 				    lra_insn_recog_data_len);
712   for (i = old; i < lra_insn_recog_data_len; i++)
713     lra_insn_recog_data[i] = NULL;
714 }
715 
716 /* Finish LRA DATA about insn.	*/
717 static void
free_insn_recog_data(lra_insn_recog_data_t data)718 free_insn_recog_data (lra_insn_recog_data_t data)
719 {
720   if (data->operand_loc != NULL)
721     free (data->operand_loc);
722   if (data->dup_loc != NULL)
723     free (data->dup_loc);
724   if (data->arg_hard_regs != NULL)
725     free (data->arg_hard_regs);
726   if (data->icode < 0 && NONDEBUG_INSN_P (data->insn))
727     {
728       if (data->insn_static_data->operand_alternative != NULL)
729 	free (const_cast <operand_alternative *>
730 	      (data->insn_static_data->operand_alternative));
731       free_insn_regs (data->insn_static_data->hard_regs);
732       free (data->insn_static_data);
733     }
734   free_insn_regs (data->regs);
735   data->regs = NULL;
736   free (data);
737 }
738 
739 /* Pools for copies.  */
740 static object_allocator<lra_copy> lra_copy_pool ("lra copies");
741 
742 /* Finish LRA data about all insns.  */
743 static void
finish_insn_recog_data(void)744 finish_insn_recog_data (void)
745 {
746   int i;
747   lra_insn_recog_data_t data;
748 
749   for (i = 0; i < lra_insn_recog_data_len; i++)
750     if ((data = lra_insn_recog_data[i]) != NULL)
751       free_insn_recog_data (data);
752   finish_insn_regs ();
753   lra_copy_pool.release ();
754   lra_insn_reg_pool.release ();
755   free (lra_insn_recog_data);
756 }
757 
758 /* Setup info about operands in alternatives of LRA DATA of insn.  */
759 static void
setup_operand_alternative(lra_insn_recog_data_t data,const operand_alternative * op_alt)760 setup_operand_alternative (lra_insn_recog_data_t data,
761 			   const operand_alternative *op_alt)
762 {
763   int i, j, nop, nalt;
764   int icode = data->icode;
765   struct lra_static_insn_data *static_data = data->insn_static_data;
766 
767   static_data->commutative = -1;
768   nop = static_data->n_operands;
769   nalt = static_data->n_alternatives;
770   static_data->operand_alternative = op_alt;
771   for (i = 0; i < nop; i++)
772     {
773       static_data->operand[i].early_clobber = false;
774       static_data->operand[i].is_address = false;
775       if (static_data->operand[i].constraint[0] == '%')
776 	{
777 	  /* We currently only support one commutative pair of operands.  */
778 	  if (static_data->commutative < 0)
779 	    static_data->commutative = i;
780 	  else
781 	    lra_assert (icode < 0); /* Asm  */
782 	  /* The last operand should not be marked commutative.  */
783 	  lra_assert (i != nop - 1);
784 	}
785     }
786   for (j = 0; j < nalt; j++)
787     for (i = 0; i < nop; i++, op_alt++)
788       {
789 	static_data->operand[i].early_clobber |= op_alt->earlyclobber;
790 	static_data->operand[i].is_address |= op_alt->is_address;
791       }
792 }
793 
794 /* Recursively process X and collect info about registers, which are
795    not the insn operands, in X with TYPE (in/out/inout) and flag that
796    it is early clobbered in the insn (EARLY_CLOBBER) and add the info
797    to LIST.  X is a part of insn given by DATA.	 Return the result
798    list.  */
799 static struct lra_insn_reg *
collect_non_operand_hard_regs(rtx * x,lra_insn_recog_data_t data,struct lra_insn_reg * list,enum op_type type,bool early_clobber)800 collect_non_operand_hard_regs (rtx *x, lra_insn_recog_data_t data,
801 			       struct lra_insn_reg *list,
802 			       enum op_type type, bool early_clobber)
803 {
804   int i, j, regno, last;
805   bool subreg_p;
806   machine_mode mode;
807   struct lra_insn_reg *curr;
808   rtx op = *x;
809   enum rtx_code code = GET_CODE (op);
810   const char *fmt = GET_RTX_FORMAT (code);
811 
812   for (i = 0; i < data->insn_static_data->n_operands; i++)
813     if (x == data->operand_loc[i])
814       /* It is an operand loc. Stop here.  */
815       return list;
816   for (i = 0; i < data->insn_static_data->n_dups; i++)
817     if (x == data->dup_loc[i])
818       /* It is a dup loc. Stop here.  */
819       return list;
820   mode = GET_MODE (op);
821   subreg_p = false;
822   if (code == SUBREG)
823     {
824       op = SUBREG_REG (op);
825       code = GET_CODE (op);
826       if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (op)))
827 	{
828 	  mode = GET_MODE (op);
829 	  if (GET_MODE_SIZE (mode) > REGMODE_NATURAL_SIZE (mode))
830 	    subreg_p = true;
831 	}
832     }
833   if (REG_P (op))
834     {
835       if ((regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER)
836 	return list;
837       /* Process all regs even unallocatable ones as we need info
838 	 about all regs for rematerialization pass.  */
839       for (last = regno + hard_regno_nregs[regno][mode];
840 	   regno < last;
841 	   regno++)
842 	{
843 	  for (curr = list; curr != NULL; curr = curr->next)
844 	    if (curr->regno == regno && curr->subreg_p == subreg_p
845 		&& curr->biggest_mode == mode)
846 	      {
847 		if (curr->type != type)
848 		  curr->type = OP_INOUT;
849 		if (curr->early_clobber != early_clobber)
850 		  curr->early_clobber = true;
851 		break;
852 	      }
853 	  if (curr == NULL)
854 	    {
855 	      /* This is a new hard regno or the info can not be
856 		 integrated into the found structure.	 */
857 #ifdef STACK_REGS
858 	      early_clobber
859 		= (early_clobber
860 		   /* This clobber is to inform popping floating
861 		      point stack only.  */
862 		   && ! (FIRST_STACK_REG <= regno
863 			 && regno <= LAST_STACK_REG));
864 #endif
865 	      list = new_insn_reg (data->insn, regno, type, mode, subreg_p,
866 				   early_clobber, list);
867 	    }
868 	}
869       return list;
870     }
871   switch (code)
872     {
873     case SET:
874       list = collect_non_operand_hard_regs (&SET_DEST (op), data,
875 					    list, OP_OUT, false);
876       list = collect_non_operand_hard_regs (&SET_SRC (op), data,
877 					    list, OP_IN, false);
878       break;
879     case CLOBBER:
880       /* We treat clobber of non-operand hard registers as early
881 	 clobber (the behavior is expected from asm).  */
882       list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
883 					    list, OP_OUT, true);
884       break;
885     case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
886       list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
887 					    list, OP_INOUT, false);
888       break;
889     case PRE_MODIFY: case POST_MODIFY:
890       list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
891 					    list, OP_INOUT, false);
892       list = collect_non_operand_hard_regs (&XEXP (op, 1), data,
893 					    list, OP_IN, false);
894       break;
895     default:
896       fmt = GET_RTX_FORMAT (code);
897       for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
898 	{
899 	  if (fmt[i] == 'e')
900 	    list = collect_non_operand_hard_regs (&XEXP (op, i), data,
901 						  list, OP_IN, false);
902 	  else if (fmt[i] == 'E')
903 	    for (j = XVECLEN (op, i) - 1; j >= 0; j--)
904 	      list = collect_non_operand_hard_regs (&XVECEXP (op, i, j), data,
905 						    list, OP_IN, false);
906 	}
907     }
908   return list;
909 }
910 
911 /* Set up and return info about INSN.  Set up the info if it is not set up
912    yet.	 */
913 lra_insn_recog_data_t
lra_set_insn_recog_data(rtx_insn * insn)914 lra_set_insn_recog_data (rtx_insn *insn)
915 {
916   lra_insn_recog_data_t data;
917   int i, n, icode;
918   rtx **locs;
919   unsigned int uid = INSN_UID (insn);
920   struct lra_static_insn_data *insn_static_data;
921 
922   check_and_expand_insn_recog_data (uid);
923   if (DEBUG_INSN_P (insn))
924     icode = -1;
925   else
926     {
927       icode = INSN_CODE (insn);
928       if (icode < 0)
929 	/* It might be a new simple insn which is not recognized yet.  */
930 	INSN_CODE (insn) = icode = recog_memoized (insn);
931     }
932   data = XNEW (struct lra_insn_recog_data);
933   lra_insn_recog_data[uid] = data;
934   data->insn = insn;
935   data->used_insn_alternative = -1;
936   data->icode = icode;
937   data->regs = NULL;
938   if (DEBUG_INSN_P (insn))
939     {
940       data->insn_static_data = &debug_insn_static_data;
941       data->dup_loc = NULL;
942       data->arg_hard_regs = NULL;
943       data->preferred_alternatives = ALL_ALTERNATIVES;
944       data->operand_loc = XNEWVEC (rtx *, 1);
945       data->operand_loc[0] = &INSN_VAR_LOCATION_LOC (insn);
946       return data;
947     }
948   if (icode < 0)
949     {
950       int nop, nalt;
951       machine_mode operand_mode[MAX_RECOG_OPERANDS];
952       const char *constraints[MAX_RECOG_OPERANDS];
953 
954       nop = asm_noperands (PATTERN (insn));
955       data->operand_loc = data->dup_loc = NULL;
956       nalt = 1;
957       if (nop < 0)
958 	{
959 	  /* It is a special insn like USE or CLOBBER.  We should
960 	     recognize any regular insn otherwise LRA can do nothing
961 	     with this insn.  */
962 	  gcc_assert (GET_CODE (PATTERN (insn)) == USE
963 		      || GET_CODE (PATTERN (insn)) == CLOBBER
964 		      || GET_CODE (PATTERN (insn)) == ASM_INPUT);
965 	  data->insn_static_data = insn_static_data
966 	    = get_static_insn_data (-1, 0, 0, nalt);
967 	}
968       else
969 	{
970 	  /* expand_asm_operands makes sure there aren't too many
971 	     operands.	*/
972 	  lra_assert (nop <= MAX_RECOG_OPERANDS);
973 	  if (nop != 0)
974 	    data->operand_loc = XNEWVEC (rtx *, nop);
975 	  /* Now get the operand values and constraints out of the
976 	     insn.  */
977 	  decode_asm_operands (PATTERN (insn), NULL,
978 			       data->operand_loc,
979 			       constraints, operand_mode, NULL);
980 	  if (nop > 0)
981 	    {
982 	      const char *p =  recog_data.constraints[0];
983 
984 	      for (p =	constraints[0]; *p; p++)
985 		nalt += *p == ',';
986 	    }
987 	  data->insn_static_data = insn_static_data
988 	    = get_static_insn_data (-1, nop, 0, nalt);
989 	  for (i = 0; i < nop; i++)
990 	    {
991 	      insn_static_data->operand[i].mode = operand_mode[i];
992 	      insn_static_data->operand[i].constraint = constraints[i];
993 	      insn_static_data->operand[i].strict_low = false;
994 	      insn_static_data->operand[i].is_operator = false;
995 	      insn_static_data->operand[i].is_address = false;
996 	    }
997 	}
998       for (i = 0; i < insn_static_data->n_operands; i++)
999 	insn_static_data->operand[i].type
1000 	  = (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1001 	     : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1002 	     : OP_IN);
1003       data->preferred_alternatives = ALL_ALTERNATIVES;
1004       if (nop > 0)
1005 	{
1006 	  operand_alternative *op_alt = XCNEWVEC (operand_alternative,
1007 						  nalt * nop);
1008 	  preprocess_constraints (nop, nalt, constraints, op_alt);
1009 	  setup_operand_alternative (data, op_alt);
1010 	}
1011     }
1012   else
1013     {
1014       insn_extract (insn);
1015       data->insn_static_data = insn_static_data
1016 	= get_static_insn_data (icode, insn_data[icode].n_operands,
1017 				insn_data[icode].n_dups,
1018 				insn_data[icode].n_alternatives);
1019       n = insn_static_data->n_operands;
1020       if (n == 0)
1021 	locs = NULL;
1022       else
1023 	{
1024 	  locs = XNEWVEC (rtx *, n);
1025 	  memcpy (locs, recog_data.operand_loc, n * sizeof (rtx *));
1026 	}
1027       data->operand_loc = locs;
1028       n = insn_static_data->n_dups;
1029       if (n == 0)
1030 	locs = NULL;
1031       else
1032 	{
1033 	  locs = XNEWVEC (rtx *, n);
1034 	  memcpy (locs, recog_data.dup_loc, n * sizeof (rtx *));
1035 	}
1036       data->dup_loc = locs;
1037       data->preferred_alternatives = get_preferred_alternatives (insn);
1038       const operand_alternative *op_alt = preprocess_insn_constraints (icode);
1039       if (!insn_static_data->operand_alternative)
1040 	setup_operand_alternative (data, op_alt);
1041       else if (op_alt != insn_static_data->operand_alternative)
1042 	insn_static_data->operand_alternative = op_alt;
1043     }
1044   if (GET_CODE (PATTERN (insn)) == CLOBBER || GET_CODE (PATTERN (insn)) == USE)
1045     insn_static_data->hard_regs = NULL;
1046   else
1047     insn_static_data->hard_regs
1048       = collect_non_operand_hard_regs (&PATTERN (insn), data,
1049 				       NULL, OP_IN, false);
1050   data->arg_hard_regs = NULL;
1051   if (CALL_P (insn))
1052     {
1053       bool use_p;
1054       rtx link;
1055       int n_hard_regs, regno, arg_hard_regs[FIRST_PSEUDO_REGISTER];
1056 
1057       n_hard_regs = 0;
1058       /* Finding implicit hard register usage.	We believe it will be
1059 	 not changed whatever transformations are used.	 Call insns
1060 	 are such example.  */
1061       for (link = CALL_INSN_FUNCTION_USAGE (insn);
1062 	   link != NULL_RTX;
1063 	   link = XEXP (link, 1))
1064 	if (((use_p = GET_CODE (XEXP (link, 0)) == USE)
1065 	     || GET_CODE (XEXP (link, 0)) == CLOBBER)
1066 	    && REG_P (XEXP (XEXP (link, 0), 0)))
1067 	  {
1068 	    regno = REGNO (XEXP (XEXP (link, 0), 0));
1069 	    lra_assert (regno < FIRST_PSEUDO_REGISTER);
1070 	    /* It is an argument register.  */
1071 	    for (i = REG_NREGS (XEXP (XEXP (link, 0), 0)) - 1; i >= 0; i--)
1072 	      arg_hard_regs[n_hard_regs++]
1073 		= regno + i + (use_p ? 0 : FIRST_PSEUDO_REGISTER);
1074 	  }
1075       if (n_hard_regs != 0)
1076 	{
1077 	  arg_hard_regs[n_hard_regs++] = -1;
1078 	  data->arg_hard_regs = XNEWVEC (int, n_hard_regs);
1079 	  memcpy (data->arg_hard_regs, arg_hard_regs,
1080 		  sizeof (int) * n_hard_regs);
1081 	}
1082     }
1083   /* Some output operand can be recognized only from the context not
1084      from the constraints which are empty in this case.	 Call insn may
1085      contain a hard register in set destination with empty constraint
1086      and extract_insn treats them as an input.	*/
1087   for (i = 0; i < insn_static_data->n_operands; i++)
1088     {
1089       int j;
1090       rtx pat, set;
1091       struct lra_operand_data *operand = &insn_static_data->operand[i];
1092 
1093       /* ??? Should we treat 'X' the same way.	It looks to me that
1094 	 'X' means anything and empty constraint means we do not
1095 	 care.	*/
1096       if (operand->type != OP_IN || *operand->constraint != '\0'
1097 	  || operand->is_operator)
1098 	continue;
1099       pat = PATTERN (insn);
1100       if (GET_CODE (pat) == SET)
1101 	{
1102 	  if (data->operand_loc[i] != &SET_DEST (pat))
1103 	    continue;
1104 	}
1105       else if (GET_CODE (pat) == PARALLEL)
1106 	{
1107 	  for (j = XVECLEN (pat, 0) - 1; j >= 0; j--)
1108 	    {
1109 	      set = XVECEXP (PATTERN (insn), 0, j);
1110 	      if (GET_CODE (set) == SET
1111 		  && &SET_DEST (set) == data->operand_loc[i])
1112 		break;
1113 	    }
1114 	  if (j < 0)
1115 	    continue;
1116 	}
1117       else
1118 	continue;
1119       operand->type = OP_OUT;
1120     }
1121   return data;
1122 }
1123 
1124 /* Return info about insn give by UID.	The info should be already set
1125    up.	*/
1126 static lra_insn_recog_data_t
get_insn_recog_data_by_uid(int uid)1127 get_insn_recog_data_by_uid (int uid)
1128 {
1129   lra_insn_recog_data_t data;
1130 
1131   data = lra_insn_recog_data[uid];
1132   lra_assert (data != NULL);
1133   return data;
1134 }
1135 
1136 /* Invalidate all info about insn given by its UID.  */
1137 static void
invalidate_insn_recog_data(int uid)1138 invalidate_insn_recog_data (int uid)
1139 {
1140   lra_insn_recog_data_t data;
1141 
1142   data = lra_insn_recog_data[uid];
1143   lra_assert (data != NULL);
1144   free_insn_recog_data (data);
1145   lra_insn_recog_data[uid] = NULL;
1146 }
1147 
1148 /* Update all the insn info about INSN.	 It is usually called when
1149    something in the insn was changed.  Return the updated info.	 */
1150 lra_insn_recog_data_t
lra_update_insn_recog_data(rtx_insn * insn)1151 lra_update_insn_recog_data (rtx_insn *insn)
1152 {
1153   lra_insn_recog_data_t data;
1154   int n;
1155   unsigned int uid = INSN_UID (insn);
1156   struct lra_static_insn_data *insn_static_data;
1157   HOST_WIDE_INT sp_offset = 0;
1158 
1159   check_and_expand_insn_recog_data (uid);
1160   if ((data = lra_insn_recog_data[uid]) != NULL
1161       && data->icode != INSN_CODE (insn))
1162     {
1163       sp_offset = data->sp_offset;
1164       invalidate_insn_data_regno_info (data, insn, get_insn_freq (insn));
1165       invalidate_insn_recog_data (uid);
1166       data = NULL;
1167     }
1168   if (data == NULL)
1169     {
1170       data = lra_get_insn_recog_data (insn);
1171       /* Initiate or restore SP offset.  */
1172       data->sp_offset = sp_offset;
1173       return data;
1174     }
1175   insn_static_data = data->insn_static_data;
1176   data->used_insn_alternative = -1;
1177   if (DEBUG_INSN_P (insn))
1178     return data;
1179   if (data->icode < 0)
1180     {
1181       int nop;
1182       machine_mode operand_mode[MAX_RECOG_OPERANDS];
1183       const char *constraints[MAX_RECOG_OPERANDS];
1184 
1185       nop = asm_noperands (PATTERN (insn));
1186       if (nop >= 0)
1187 	{
1188 	  lra_assert (nop == data->insn_static_data->n_operands);
1189 	  /* Now get the operand values and constraints out of the
1190 	     insn.  */
1191 	  decode_asm_operands (PATTERN (insn), NULL,
1192 			       data->operand_loc,
1193 			       constraints, operand_mode, NULL);
1194 
1195 	  if (flag_checking)
1196 	    for (int i = 0; i < nop; i++)
1197 	      lra_assert
1198 		(insn_static_data->operand[i].mode == operand_mode[i]
1199 		 && insn_static_data->operand[i].constraint == constraints[i]
1200 		 && ! insn_static_data->operand[i].is_operator);
1201 	}
1202 
1203       if (flag_checking)
1204 	for (int i = 0; i < insn_static_data->n_operands; i++)
1205 	  lra_assert
1206 	    (insn_static_data->operand[i].type
1207 	     == (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1208 		 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1209 		 : OP_IN));
1210     }
1211   else
1212     {
1213       insn_extract (insn);
1214       n = insn_static_data->n_operands;
1215       if (n != 0)
1216 	memcpy (data->operand_loc, recog_data.operand_loc, n * sizeof (rtx *));
1217       n = insn_static_data->n_dups;
1218       if (n != 0)
1219 	memcpy (data->dup_loc, recog_data.dup_loc, n * sizeof (rtx *));
1220       lra_assert (check_bool_attrs (insn));
1221     }
1222   return data;
1223 }
1224 
1225 /* Set up that INSN is using alternative ALT now.  */
1226 void
lra_set_used_insn_alternative(rtx_insn * insn,int alt)1227 lra_set_used_insn_alternative (rtx_insn *insn, int alt)
1228 {
1229   lra_insn_recog_data_t data;
1230 
1231   data = lra_get_insn_recog_data (insn);
1232   data->used_insn_alternative = alt;
1233 }
1234 
1235 /* Set up that insn with UID is using alternative ALT now.  The insn
1236    info should be already set up.  */
1237 void
lra_set_used_insn_alternative_by_uid(int uid,int alt)1238 lra_set_used_insn_alternative_by_uid (int uid, int alt)
1239 {
1240   lra_insn_recog_data_t data;
1241 
1242   check_and_expand_insn_recog_data (uid);
1243   data = lra_insn_recog_data[uid];
1244   lra_assert (data != NULL);
1245   data->used_insn_alternative = alt;
1246 }
1247 
1248 
1249 
1250 /* This page contains code dealing with common register info and
1251    pseudo copies.  */
1252 
1253 /* The size of the following array.  */
1254 static int reg_info_size;
1255 /* Common info about each register.  */
1256 struct lra_reg *lra_reg_info;
1257 
1258 /* Last register value.	 */
1259 static int last_reg_value;
1260 
1261 /* Return new register value.  */
1262 static int
get_new_reg_value(void)1263 get_new_reg_value (void)
1264 {
1265   return ++last_reg_value;
1266 }
1267 
1268 /* Vec referring to pseudo copies.  */
1269 static vec<lra_copy_t> copy_vec;
1270 
1271 /* Initialize I-th element of lra_reg_info.  */
1272 static inline void
initialize_lra_reg_info_element(int i)1273 initialize_lra_reg_info_element (int i)
1274 {
1275   bitmap_initialize (&lra_reg_info[i].insn_bitmap, &reg_obstack);
1276 #ifdef STACK_REGS
1277   lra_reg_info[i].no_stack_p = false;
1278 #endif
1279   CLEAR_HARD_REG_SET (lra_reg_info[i].conflict_hard_regs);
1280   CLEAR_HARD_REG_SET (lra_reg_info[i].actual_call_used_reg_set);
1281   lra_reg_info[i].preferred_hard_regno1 = -1;
1282   lra_reg_info[i].preferred_hard_regno2 = -1;
1283   lra_reg_info[i].preferred_hard_regno_profit1 = 0;
1284   lra_reg_info[i].preferred_hard_regno_profit2 = 0;
1285   lra_reg_info[i].biggest_mode = VOIDmode;
1286   lra_reg_info[i].live_ranges = NULL;
1287   lra_reg_info[i].nrefs = lra_reg_info[i].freq = 0;
1288   lra_reg_info[i].last_reload = 0;
1289   lra_reg_info[i].restore_regno = -1;
1290   lra_reg_info[i].val = get_new_reg_value ();
1291   lra_reg_info[i].offset = 0;
1292   lra_reg_info[i].copies = NULL;
1293 }
1294 
1295 /* Initialize common reg info and copies.  */
1296 static void
init_reg_info(void)1297 init_reg_info (void)
1298 {
1299   int i;
1300 
1301   last_reg_value = 0;
1302   reg_info_size = max_reg_num () * 3 / 2 + 1;
1303   lra_reg_info = XNEWVEC (struct lra_reg, reg_info_size);
1304   for (i = 0; i < reg_info_size; i++)
1305     initialize_lra_reg_info_element (i);
1306   copy_vec.truncate (0);
1307 }
1308 
1309 
1310 /* Finish common reg info and copies.  */
1311 static void
finish_reg_info(void)1312 finish_reg_info (void)
1313 {
1314   int i;
1315 
1316   for (i = 0; i < reg_info_size; i++)
1317     bitmap_clear (&lra_reg_info[i].insn_bitmap);
1318   free (lra_reg_info);
1319   reg_info_size = 0;
1320 }
1321 
1322 /* Expand common reg info if it is necessary.  */
1323 static void
expand_reg_info(void)1324 expand_reg_info (void)
1325 {
1326   int i, old = reg_info_size;
1327 
1328   if (reg_info_size > max_reg_num ())
1329     return;
1330   reg_info_size = max_reg_num () * 3 / 2 + 1;
1331   lra_reg_info = XRESIZEVEC (struct lra_reg, lra_reg_info, reg_info_size);
1332   for (i = old; i < reg_info_size; i++)
1333     initialize_lra_reg_info_element (i);
1334 }
1335 
1336 /* Free all copies.  */
1337 void
lra_free_copies(void)1338 lra_free_copies (void)
1339 {
1340   lra_copy_t cp;
1341 
1342   while (copy_vec.length () != 0)
1343     {
1344       cp = copy_vec.pop ();
1345       lra_reg_info[cp->regno1].copies = lra_reg_info[cp->regno2].copies = NULL;
1346       lra_copy_pool.remove (cp);
1347     }
1348 }
1349 
1350 /* Create copy of two pseudos REGNO1 and REGNO2.  The copy execution
1351    frequency is FREQ.  */
1352 void
lra_create_copy(int regno1,int regno2,int freq)1353 lra_create_copy (int regno1, int regno2, int freq)
1354 {
1355   bool regno1_dest_p;
1356   lra_copy_t cp;
1357 
1358   lra_assert (regno1 != regno2);
1359   regno1_dest_p = true;
1360   if (regno1 > regno2)
1361     {
1362       std::swap (regno1, regno2);
1363       regno1_dest_p = false;
1364     }
1365   cp = lra_copy_pool.allocate ();
1366   copy_vec.safe_push (cp);
1367   cp->regno1_dest_p = regno1_dest_p;
1368   cp->freq = freq;
1369   cp->regno1 = regno1;
1370   cp->regno2 = regno2;
1371   cp->regno1_next = lra_reg_info[regno1].copies;
1372   lra_reg_info[regno1].copies = cp;
1373   cp->regno2_next = lra_reg_info[regno2].copies;
1374   lra_reg_info[regno2].copies = cp;
1375   if (lra_dump_file != NULL)
1376     fprintf (lra_dump_file, "	   Creating copy r%d%sr%d@%d\n",
1377 	     regno1, regno1_dest_p ? "<-" : "->", regno2, freq);
1378 }
1379 
1380 /* Return N-th (0, 1, ...) copy.  If there is no copy, return
1381    NULL.  */
1382 lra_copy_t
lra_get_copy(int n)1383 lra_get_copy (int n)
1384 {
1385   if (n >= (int) copy_vec.length ())
1386     return NULL;
1387   return copy_vec[n];
1388 }
1389 
1390 
1391 
1392 /* This page contains code dealing with info about registers in
1393    insns.  */
1394 
1395 /* Process X of insn UID recursively and add info (operand type is
1396    given by TYPE, flag of that it is early clobber is EARLY_CLOBBER)
1397    about registers in X to the insn DATA.  */
1398 static void
add_regs_to_insn_regno_info(lra_insn_recog_data_t data,rtx x,int uid,enum op_type type,bool early_clobber)1399 add_regs_to_insn_regno_info (lra_insn_recog_data_t data, rtx x, int uid,
1400 			     enum op_type type, bool early_clobber)
1401 {
1402   int i, j, regno;
1403   bool subreg_p;
1404   machine_mode mode;
1405   const char *fmt;
1406   enum rtx_code code;
1407   struct lra_insn_reg *curr;
1408 
1409   code = GET_CODE (x);
1410   mode = GET_MODE (x);
1411   subreg_p = false;
1412   if (GET_CODE (x) == SUBREG)
1413     {
1414       x = SUBREG_REG (x);
1415       code = GET_CODE (x);
1416       if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
1417 	{
1418 	  mode = GET_MODE (x);
1419 	  if (GET_MODE_SIZE (mode) > REGMODE_NATURAL_SIZE (mode))
1420 	    subreg_p = true;
1421 	}
1422     }
1423   if (REG_P (x))
1424     {
1425       regno = REGNO (x);
1426       /* Process all regs even unallocatable ones as we need info about
1427 	 all regs for rematerialization pass.  */
1428       expand_reg_info ();
1429       if (bitmap_set_bit (&lra_reg_info[regno].insn_bitmap, uid))
1430 	{
1431 	  data->regs = new_insn_reg (data->insn, regno, type, mode, subreg_p,
1432 				     early_clobber, data->regs);
1433 	  return;
1434 	}
1435       else
1436 	{
1437 	  for (curr = data->regs; curr != NULL; curr = curr->next)
1438 	    if (curr->regno == regno)
1439 	      {
1440 		if (curr->subreg_p != subreg_p || curr->biggest_mode != mode)
1441 		  /* The info can not be integrated into the found
1442 		     structure.  */
1443 		  data->regs = new_insn_reg (data->insn, regno, type, mode,
1444 					     subreg_p, early_clobber,
1445 					     data->regs);
1446 		else
1447 		  {
1448 		    if (curr->type != type)
1449 		      curr->type = OP_INOUT;
1450 		    if (curr->early_clobber != early_clobber)
1451 		      curr->early_clobber = true;
1452 		  }
1453 		return;
1454 	      }
1455 	  gcc_unreachable ();
1456 	}
1457     }
1458 
1459   switch (code)
1460     {
1461     case SET:
1462       add_regs_to_insn_regno_info (data, SET_DEST (x), uid, OP_OUT, false);
1463       add_regs_to_insn_regno_info (data, SET_SRC (x), uid, OP_IN, false);
1464       break;
1465     case CLOBBER:
1466       /* We treat clobber of non-operand hard registers as early
1467 	 clobber (the behavior is expected from asm).  */
1468       add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_OUT, true);
1469       break;
1470     case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
1471       add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_INOUT, false);
1472       break;
1473     case PRE_MODIFY: case POST_MODIFY:
1474       add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_INOUT, false);
1475       add_regs_to_insn_regno_info (data, XEXP (x, 1), uid, OP_IN, false);
1476       break;
1477     default:
1478       if ((code != PARALLEL && code != EXPR_LIST) || type != OP_OUT)
1479 	/* Some targets place small structures in registers for return
1480 	   values of functions, and those registers are wrapped in
1481 	   PARALLEL that we may see as the destination of a SET.  Here
1482 	   is an example:
1483 
1484 	   (call_insn 13 12 14 2 (set (parallel:BLK [
1485 		(expr_list:REG_DEP_TRUE (reg:DI 0 ax)
1486 		    (const_int 0 [0]))
1487 		(expr_list:REG_DEP_TRUE (reg:DI 1 dx)
1488 		    (const_int 8 [0x8]))
1489 	       ])
1490 	     (call (mem:QI (symbol_ref:DI (...	*/
1491 	type = OP_IN;
1492       fmt = GET_RTX_FORMAT (code);
1493       for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1494 	{
1495 	  if (fmt[i] == 'e')
1496 	    add_regs_to_insn_regno_info (data, XEXP (x, i), uid, type, false);
1497 	  else if (fmt[i] == 'E')
1498 	    {
1499 	      for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1500 		add_regs_to_insn_regno_info (data, XVECEXP (x, i, j), uid,
1501 					     type, false);
1502 	    }
1503 	}
1504     }
1505 }
1506 
1507 /* Return execution frequency of INSN.	*/
1508 static int
get_insn_freq(rtx_insn * insn)1509 get_insn_freq (rtx_insn *insn)
1510 {
1511   basic_block bb = BLOCK_FOR_INSN (insn);
1512 
1513   gcc_checking_assert (bb != NULL);
1514   return REG_FREQ_FROM_BB (bb);
1515 }
1516 
1517 /* Invalidate all reg info of INSN with DATA and execution frequency
1518    FREQ.  Update common info about the invalidated registers.  */
1519 static void
invalidate_insn_data_regno_info(lra_insn_recog_data_t data,rtx_insn * insn,int freq)1520 invalidate_insn_data_regno_info (lra_insn_recog_data_t data, rtx_insn *insn,
1521 				 int freq)
1522 {
1523   int uid;
1524   bool debug_p;
1525   unsigned int i;
1526   struct lra_insn_reg *ir, *next_ir;
1527 
1528   uid = INSN_UID (insn);
1529   debug_p = DEBUG_INSN_P (insn);
1530   for (ir = data->regs; ir != NULL; ir = next_ir)
1531     {
1532       i = ir->regno;
1533       next_ir = ir->next;
1534       lra_insn_reg_pool.remove (ir);
1535       bitmap_clear_bit (&lra_reg_info[i].insn_bitmap, uid);
1536       if (i >= FIRST_PSEUDO_REGISTER && ! debug_p)
1537 	{
1538 	  lra_reg_info[i].nrefs--;
1539 	  lra_reg_info[i].freq -= freq;
1540 	  lra_assert (lra_reg_info[i].nrefs >= 0 && lra_reg_info[i].freq >= 0);
1541 	}
1542     }
1543   data->regs = NULL;
1544 }
1545 
1546 /* Invalidate all reg info of INSN.  Update common info about the
1547    invalidated registers.  */
1548 void
lra_invalidate_insn_regno_info(rtx_insn * insn)1549 lra_invalidate_insn_regno_info (rtx_insn *insn)
1550 {
1551   invalidate_insn_data_regno_info (lra_get_insn_recog_data (insn), insn,
1552 				   get_insn_freq (insn));
1553 }
1554 
1555 /* Update common reg info from reg info of insn given by its DATA and
1556    execution frequency FREQ.  */
1557 static void
setup_insn_reg_info(lra_insn_recog_data_t data,int freq)1558 setup_insn_reg_info (lra_insn_recog_data_t data, int freq)
1559 {
1560   unsigned int i;
1561   struct lra_insn_reg *ir;
1562 
1563   for (ir = data->regs; ir != NULL; ir = ir->next)
1564     if ((i = ir->regno) >= FIRST_PSEUDO_REGISTER)
1565       {
1566 	lra_reg_info[i].nrefs++;
1567 	lra_reg_info[i].freq += freq;
1568       }
1569 }
1570 
1571 /* Set up insn reg info of INSN.  Update common reg info from reg info
1572    of INSN.  */
1573 void
lra_update_insn_regno_info(rtx_insn * insn)1574 lra_update_insn_regno_info (rtx_insn *insn)
1575 {
1576   int i, uid, freq;
1577   lra_insn_recog_data_t data;
1578   struct lra_static_insn_data *static_data;
1579   enum rtx_code code;
1580   rtx link;
1581 
1582   if (! INSN_P (insn))
1583     return;
1584   data = lra_get_insn_recog_data (insn);
1585   static_data = data->insn_static_data;
1586   freq = get_insn_freq (insn);
1587   invalidate_insn_data_regno_info (data, insn, freq);
1588   uid = INSN_UID (insn);
1589   for (i = static_data->n_operands - 1; i >= 0; i--)
1590     add_regs_to_insn_regno_info (data, *data->operand_loc[i], uid,
1591 				 static_data->operand[i].type,
1592 				 static_data->operand[i].early_clobber);
1593   if ((code = GET_CODE (PATTERN (insn))) == CLOBBER || code == USE)
1594     add_regs_to_insn_regno_info (data, XEXP (PATTERN (insn), 0), uid,
1595 				 code == USE ? OP_IN : OP_OUT, false);
1596   if (CALL_P (insn))
1597     /* On some targets call insns can refer to pseudos in memory in
1598        CALL_INSN_FUNCTION_USAGE list.  Process them in order to
1599        consider their occurrences in calls for different
1600        transformations (e.g. inheritance) with given pseudos.  */
1601     for (link = CALL_INSN_FUNCTION_USAGE (insn);
1602 	 link != NULL_RTX;
1603 	 link = XEXP (link, 1))
1604       if (((code = GET_CODE (XEXP (link, 0))) == USE || code == CLOBBER)
1605 	  && MEM_P (XEXP (XEXP (link, 0), 0)))
1606 	add_regs_to_insn_regno_info (data, XEXP (XEXP (link, 0), 0), uid,
1607 				     code == USE ? OP_IN : OP_OUT, false);
1608   if (NONDEBUG_INSN_P (insn))
1609     setup_insn_reg_info (data, freq);
1610 }
1611 
1612 /* Return reg info of insn given by it UID.  */
1613 struct lra_insn_reg *
lra_get_insn_regs(int uid)1614 lra_get_insn_regs (int uid)
1615 {
1616   lra_insn_recog_data_t data;
1617 
1618   data = get_insn_recog_data_by_uid (uid);
1619   return data->regs;
1620 }
1621 
1622 
1623 
1624 /* This page contains code dealing with stack of the insns which
1625    should be processed by the next constraint pass.  */
1626 
1627 /* Bitmap used to put an insn on the stack only in one exemplar.  */
1628 static sbitmap lra_constraint_insn_stack_bitmap;
1629 
1630 /* The stack itself.  */
1631 vec<rtx_insn *> lra_constraint_insn_stack;
1632 
1633 /* Put INSN on the stack.  If ALWAYS_UPDATE is true, always update the reg
1634    info for INSN, otherwise only update it if INSN is not already on the
1635    stack.  */
1636 static inline void
lra_push_insn_1(rtx_insn * insn,bool always_update)1637 lra_push_insn_1 (rtx_insn *insn, bool always_update)
1638 {
1639   unsigned int uid = INSN_UID (insn);
1640   if (always_update)
1641     lra_update_insn_regno_info (insn);
1642   if (uid >= SBITMAP_SIZE (lra_constraint_insn_stack_bitmap))
1643     lra_constraint_insn_stack_bitmap =
1644       sbitmap_resize (lra_constraint_insn_stack_bitmap, 3 * uid / 2, 0);
1645   if (bitmap_bit_p (lra_constraint_insn_stack_bitmap, uid))
1646     return;
1647   bitmap_set_bit (lra_constraint_insn_stack_bitmap, uid);
1648   if (! always_update)
1649     lra_update_insn_regno_info (insn);
1650   lra_constraint_insn_stack.safe_push (insn);
1651 }
1652 
1653 /* Put INSN on the stack.  */
1654 void
lra_push_insn(rtx_insn * insn)1655 lra_push_insn (rtx_insn *insn)
1656 {
1657   lra_push_insn_1 (insn, false);
1658 }
1659 
1660 /* Put INSN on the stack and update its reg info.  */
1661 void
lra_push_insn_and_update_insn_regno_info(rtx_insn * insn)1662 lra_push_insn_and_update_insn_regno_info (rtx_insn *insn)
1663 {
1664   lra_push_insn_1 (insn, true);
1665 }
1666 
1667 /* Put insn with UID on the stack.  */
1668 void
lra_push_insn_by_uid(unsigned int uid)1669 lra_push_insn_by_uid (unsigned int uid)
1670 {
1671   lra_push_insn (lra_insn_recog_data[uid]->insn);
1672 }
1673 
1674 /* Take the last-inserted insns off the stack and return it.  */
1675 rtx_insn *
lra_pop_insn(void)1676 lra_pop_insn (void)
1677 {
1678   rtx_insn *insn = lra_constraint_insn_stack.pop ();
1679   bitmap_clear_bit (lra_constraint_insn_stack_bitmap, INSN_UID (insn));
1680   return insn;
1681 }
1682 
1683 /* Return the current size of the insn stack.  */
1684 unsigned int
lra_insn_stack_length(void)1685 lra_insn_stack_length (void)
1686 {
1687   return lra_constraint_insn_stack.length ();
1688 }
1689 
1690 /* Push insns FROM to TO (excluding it) going in reverse order.	 */
1691 static void
push_insns(rtx_insn * from,rtx_insn * to)1692 push_insns (rtx_insn *from, rtx_insn *to)
1693 {
1694   rtx_insn *insn;
1695 
1696   if (from == NULL_RTX)
1697     return;
1698   for (insn = from; insn != to; insn = PREV_INSN (insn))
1699     if (INSN_P (insn))
1700       lra_push_insn (insn);
1701 }
1702 
1703 /* Set up sp offset for insn in range [FROM, LAST].  The offset is
1704    taken from the next BB insn after LAST or zero if there in such
1705    insn.  */
1706 static void
setup_sp_offset(rtx_insn * from,rtx_insn * last)1707 setup_sp_offset (rtx_insn *from, rtx_insn *last)
1708 {
1709   rtx_insn *before = next_nonnote_insn_bb (last);
1710   HOST_WIDE_INT offset = (before == NULL_RTX || ! INSN_P (before)
1711 			  ? 0 : lra_get_insn_recog_data (before)->sp_offset);
1712 
1713   for (rtx_insn *insn = from; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
1714     lra_get_insn_recog_data (insn)->sp_offset = offset;
1715 }
1716 
1717 /* Emit insns BEFORE before INSN and insns AFTER after INSN.  Put the
1718    insns onto the stack.  Print about emitting the insns with
1719    TITLE.  */
1720 void
lra_process_new_insns(rtx_insn * insn,rtx_insn * before,rtx_insn * after,const char * title)1721 lra_process_new_insns (rtx_insn *insn, rtx_insn *before, rtx_insn *after,
1722 		       const char *title)
1723 {
1724   rtx_insn *last;
1725 
1726   if (before == NULL_RTX && after == NULL_RTX)
1727     return;
1728   if (lra_dump_file != NULL)
1729     {
1730       dump_insn_slim (lra_dump_file, insn);
1731       if (before != NULL_RTX)
1732 	{
1733 	  fprintf (lra_dump_file,"    %s before:\n", title);
1734 	  dump_rtl_slim (lra_dump_file, before, NULL, -1, 0);
1735 	}
1736       if (after != NULL_RTX)
1737 	{
1738 	  fprintf (lra_dump_file, "    %s after:\n", title);
1739 	  dump_rtl_slim (lra_dump_file, after, NULL, -1, 0);
1740 	}
1741       fprintf (lra_dump_file, "\n");
1742     }
1743   if (before != NULL_RTX)
1744     {
1745       if (cfun->can_throw_non_call_exceptions)
1746 	copy_reg_eh_region_note_forward (insn, before, NULL);
1747       emit_insn_before (before, insn);
1748       push_insns (PREV_INSN (insn), PREV_INSN (before));
1749       setup_sp_offset (before, PREV_INSN (insn));
1750     }
1751   if (after != NULL_RTX)
1752     {
1753       if (cfun->can_throw_non_call_exceptions)
1754 	copy_reg_eh_region_note_forward (insn, after, NULL);
1755       for (last = after; NEXT_INSN (last) != NULL_RTX; last = NEXT_INSN (last))
1756 	;
1757       emit_insn_after (after, insn);
1758       push_insns (last, insn);
1759       setup_sp_offset (after, last);
1760     }
1761   if (cfun->can_throw_non_call_exceptions)
1762     {
1763       rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1764       if (note && !insn_could_throw_p (insn))
1765 	remove_note (insn, note);
1766     }
1767 }
1768 
1769 
1770 /* Replace all references to register OLD_REGNO in *LOC with pseudo
1771    register NEW_REG.  Try to simplify subreg of constant if SUBREG_P.
1772    Return true if any change was made.  */
1773 bool
lra_substitute_pseudo(rtx * loc,int old_regno,rtx new_reg,bool subreg_p)1774 lra_substitute_pseudo (rtx *loc, int old_regno, rtx new_reg, bool subreg_p)
1775 {
1776   rtx x = *loc;
1777   bool result = false;
1778   enum rtx_code code;
1779   const char *fmt;
1780   int i, j;
1781 
1782   if (x == NULL_RTX)
1783     return false;
1784 
1785   code = GET_CODE (x);
1786   if (code == SUBREG && subreg_p)
1787     {
1788       rtx subst, inner = SUBREG_REG (x);
1789       /* Transform subreg of constant while we still have inner mode
1790 	 of the subreg.  The subreg internal should not be an insn
1791 	 operand.  */
1792       if (REG_P (inner) && (int) REGNO (inner) == old_regno
1793 	  && CONSTANT_P (new_reg)
1794 	  && (subst = simplify_subreg (GET_MODE (x), new_reg, GET_MODE (inner),
1795 				       SUBREG_BYTE (x))) != NULL_RTX)
1796 	{
1797 	  *loc = subst;
1798 	  return true;
1799 	}
1800 
1801     }
1802   else if (code == REG && (int) REGNO (x) == old_regno)
1803     {
1804       machine_mode mode = GET_MODE (x);
1805       machine_mode inner_mode = GET_MODE (new_reg);
1806 
1807       if (mode != inner_mode
1808 	  && ! (CONST_INT_P (new_reg) && SCALAR_INT_MODE_P (mode)))
1809 	{
1810 	  if (GET_MODE_SIZE (mode) >= GET_MODE_SIZE (inner_mode)
1811 	      || ! SCALAR_INT_MODE_P (inner_mode))
1812 	    new_reg = gen_rtx_SUBREG (mode, new_reg, 0);
1813 	  else
1814 	    new_reg = gen_lowpart_SUBREG (mode, new_reg);
1815 	}
1816       *loc = new_reg;
1817       return true;
1818     }
1819 
1820   /* Scan all the operand sub-expressions.  */
1821   fmt = GET_RTX_FORMAT (code);
1822   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1823     {
1824       if (fmt[i] == 'e')
1825 	{
1826 	  if (lra_substitute_pseudo (&XEXP (x, i), old_regno,
1827 				     new_reg, subreg_p))
1828 	    result = true;
1829 	}
1830       else if (fmt[i] == 'E')
1831 	{
1832 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1833 	    if (lra_substitute_pseudo (&XVECEXP (x, i, j), old_regno,
1834 				       new_reg, subreg_p))
1835 	      result = true;
1836 	}
1837     }
1838   return result;
1839 }
1840 
1841 /* Call lra_substitute_pseudo within an insn.  Try to simplify subreg
1842    of constant if SUBREG_P.  This won't update the insn ptr, just the
1843    contents of the insn.  */
1844 bool
lra_substitute_pseudo_within_insn(rtx_insn * insn,int old_regno,rtx new_reg,bool subreg_p)1845 lra_substitute_pseudo_within_insn (rtx_insn *insn, int old_regno,
1846 				   rtx new_reg, bool subreg_p)
1847 {
1848   rtx loc = insn;
1849   return lra_substitute_pseudo (&loc, old_regno, new_reg, subreg_p);
1850 }
1851 
1852 
1853 
1854 /* This page contains code dealing with scratches (changing them onto
1855    pseudos and restoring them from the pseudos).
1856 
1857    We change scratches into pseudos at the beginning of LRA to
1858    simplify dealing with them (conflicts, hard register assignments).
1859 
1860    If the pseudo denoting scratch was spilled it means that we do need
1861    a hard register for it.  Such pseudos are transformed back to
1862    scratches at the end of LRA.	 */
1863 
1864 /* Description of location of a former scratch operand.	 */
1865 struct sloc
1866 {
1867   rtx_insn *insn; /* Insn where the scratch was.  */
1868   int nop;  /* Number of the operand which was a scratch.  */
1869 };
1870 
1871 typedef struct sloc *sloc_t;
1872 
1873 /* Locations of the former scratches.  */
1874 static vec<sloc_t> scratches;
1875 
1876 /* Bitmap of scratch regnos.  */
1877 static bitmap_head scratch_bitmap;
1878 
1879 /* Bitmap of scratch operands.	*/
1880 static bitmap_head scratch_operand_bitmap;
1881 
1882 /* Return true if pseudo REGNO is made of SCRATCH.  */
1883 bool
lra_former_scratch_p(int regno)1884 lra_former_scratch_p (int regno)
1885 {
1886   return bitmap_bit_p (&scratch_bitmap, regno);
1887 }
1888 
1889 /* Return true if the operand NOP of INSN is a former scratch.	*/
1890 bool
lra_former_scratch_operand_p(rtx_insn * insn,int nop)1891 lra_former_scratch_operand_p (rtx_insn *insn, int nop)
1892 {
1893   return bitmap_bit_p (&scratch_operand_bitmap,
1894 		       INSN_UID (insn) * MAX_RECOG_OPERANDS + nop) != 0;
1895 }
1896 
1897 /* Register operand NOP in INSN as a former scratch.  It will be
1898    changed to scratch back, if it is necessary, at the LRA end.  */
1899 void
lra_register_new_scratch_op(rtx_insn * insn,int nop)1900 lra_register_new_scratch_op (rtx_insn *insn, int nop)
1901 {
1902   lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
1903   rtx op = *id->operand_loc[nop];
1904   sloc_t loc = XNEW (struct sloc);
1905   lra_assert (REG_P (op));
1906   loc->insn = insn;
1907   loc->nop = nop;
1908   scratches.safe_push (loc);
1909   bitmap_set_bit (&scratch_bitmap, REGNO (op));
1910   bitmap_set_bit (&scratch_operand_bitmap,
1911 		  INSN_UID (insn) * MAX_RECOG_OPERANDS + nop);
1912   add_reg_note (insn, REG_UNUSED, op);
1913 }
1914 
1915 /* Change scratches onto pseudos and save their location.  */
1916 static void
remove_scratches(void)1917 remove_scratches (void)
1918 {
1919   int i;
1920   bool insn_changed_p;
1921   basic_block bb;
1922   rtx_insn *insn;
1923   rtx reg;
1924   lra_insn_recog_data_t id;
1925   struct lra_static_insn_data *static_id;
1926 
1927   scratches.create (get_max_uid ());
1928   bitmap_initialize (&scratch_bitmap, &reg_obstack);
1929   bitmap_initialize (&scratch_operand_bitmap, &reg_obstack);
1930   FOR_EACH_BB_FN (bb, cfun)
1931     FOR_BB_INSNS (bb, insn)
1932     if (INSN_P (insn))
1933       {
1934 	id = lra_get_insn_recog_data (insn);
1935 	static_id = id->insn_static_data;
1936 	insn_changed_p = false;
1937 	for (i = 0; i < static_id->n_operands; i++)
1938 	  if (GET_CODE (*id->operand_loc[i]) == SCRATCH
1939 	      && GET_MODE (*id->operand_loc[i]) != VOIDmode)
1940 	    {
1941 	      insn_changed_p = true;
1942 	      *id->operand_loc[i] = reg
1943 		= lra_create_new_reg (static_id->operand[i].mode,
1944 				      *id->operand_loc[i], ALL_REGS, NULL);
1945 	      lra_register_new_scratch_op (insn, i);
1946 	      if (lra_dump_file != NULL)
1947 		fprintf (lra_dump_file,
1948 			 "Removing SCRATCH in insn #%u (nop %d)\n",
1949 			 INSN_UID (insn), i);
1950 	    }
1951 	if (insn_changed_p)
1952 	  /* Because we might use DF right after caller-saves sub-pass
1953 	     we need to keep DF info up to date.  */
1954 	  df_insn_rescan (insn);
1955       }
1956 }
1957 
1958 /* Changes pseudos created by function remove_scratches onto scratches.	 */
1959 static void
restore_scratches(void)1960 restore_scratches (void)
1961 {
1962   int regno;
1963   unsigned i;
1964   sloc_t loc;
1965   rtx_insn *last = NULL;
1966   lra_insn_recog_data_t id = NULL;
1967 
1968   for (i = 0; scratches.iterate (i, &loc); i++)
1969     {
1970       /* Ignore already deleted insns.  */
1971       if (NOTE_P (loc->insn)
1972 	  && NOTE_KIND (loc->insn) == NOTE_INSN_DELETED)
1973 	continue;
1974       if (last != loc->insn)
1975 	{
1976 	  last = loc->insn;
1977 	  id = lra_get_insn_recog_data (last);
1978 	}
1979       if (REG_P (*id->operand_loc[loc->nop])
1980 	  && ((regno = REGNO (*id->operand_loc[loc->nop]))
1981 	      >= FIRST_PSEUDO_REGISTER)
1982 	  && lra_get_regno_hard_regno (regno) < 0)
1983 	{
1984 	  /* It should be only case when scratch register with chosen
1985 	     constraint 'X' did not get memory or hard register.  */
1986 	  lra_assert (lra_former_scratch_p (regno));
1987 	  *id->operand_loc[loc->nop]
1988 	    = gen_rtx_SCRATCH (GET_MODE (*id->operand_loc[loc->nop]));
1989 	  lra_update_dup (id, loc->nop);
1990 	  if (lra_dump_file != NULL)
1991 	    fprintf (lra_dump_file, "Restoring SCRATCH in insn #%u(nop %d)\n",
1992 		     INSN_UID (loc->insn), loc->nop);
1993 	}
1994     }
1995   for (i = 0; scratches.iterate (i, &loc); i++)
1996     free (loc);
1997   scratches.release ();
1998   bitmap_clear (&scratch_bitmap);
1999   bitmap_clear (&scratch_operand_bitmap);
2000 }
2001 
2002 
2003 
2004 /* Function checks RTL for correctness.	 If FINAL_P is true, it is
2005    done at the end of LRA and the check is more rigorous.  */
2006 static void
check_rtl(bool final_p)2007 check_rtl (bool final_p)
2008 {
2009   basic_block bb;
2010   rtx_insn *insn;
2011 
2012   lra_assert (! final_p || reload_completed);
2013   FOR_EACH_BB_FN (bb, cfun)
2014     FOR_BB_INSNS (bb, insn)
2015     if (NONDEBUG_INSN_P (insn)
2016 	&& GET_CODE (PATTERN (insn)) != USE
2017 	&& GET_CODE (PATTERN (insn)) != CLOBBER
2018 	&& GET_CODE (PATTERN (insn)) != ASM_INPUT)
2019       {
2020 	if (final_p)
2021 	  {
2022 	    extract_constrain_insn (insn);
2023 	    continue;
2024 	  }
2025 	/* LRA code is based on assumption that all addresses can be
2026 	   correctly decomposed.  LRA can generate reloads for
2027 	   decomposable addresses.  The decomposition code checks the
2028 	   correctness of the addresses.  So we don't need to check
2029 	   the addresses here.  Don't call insn_invalid_p here, it can
2030 	   change the code at this stage.  */
2031 	if (recog_memoized (insn) < 0 && asm_noperands (PATTERN (insn)) < 0)
2032 	  fatal_insn_not_found (insn);
2033       }
2034 }
2035 
2036 /* Determine if the current function has an exception receiver block
2037    that reaches the exit block via non-exceptional edges  */
2038 static bool
has_nonexceptional_receiver(void)2039 has_nonexceptional_receiver (void)
2040 {
2041   edge e;
2042   edge_iterator ei;
2043   basic_block *tos, *worklist, bb;
2044 
2045   /* If we're not optimizing, then just err on the safe side.  */
2046   if (!optimize)
2047     return true;
2048 
2049   /* First determine which blocks can reach exit via normal paths.  */
2050   tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
2051 
2052   FOR_EACH_BB_FN (bb, cfun)
2053     bb->flags &= ~BB_REACHABLE;
2054 
2055   /* Place the exit block on our worklist.  */
2056   EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
2057   *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
2058 
2059   /* Iterate: find everything reachable from what we've already seen.  */
2060   while (tos != worklist)
2061     {
2062       bb = *--tos;
2063 
2064       FOR_EACH_EDGE (e, ei, bb->preds)
2065 	if (e->flags & EDGE_ABNORMAL)
2066 	  {
2067 	    free (worklist);
2068 	    return true;
2069 	  }
2070 	else
2071 	  {
2072 	    basic_block src = e->src;
2073 
2074 	    if (!(src->flags & BB_REACHABLE))
2075 	      {
2076 		src->flags |= BB_REACHABLE;
2077 		*tos++ = src;
2078 	      }
2079 	  }
2080     }
2081   free (worklist);
2082   /* No exceptional block reached exit unexceptionally.	 */
2083   return false;
2084 }
2085 
2086 
2087 /* Process recursively X of INSN and add REG_INC notes if necessary.  */
2088 static void
add_auto_inc_notes(rtx_insn * insn,rtx x)2089 add_auto_inc_notes (rtx_insn *insn, rtx x)
2090 {
2091   enum rtx_code code = GET_CODE (x);
2092   const char *fmt;
2093   int i, j;
2094 
2095   if (code == MEM && auto_inc_p (XEXP (x, 0)))
2096     {
2097       add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
2098       return;
2099     }
2100 
2101   /* Scan all X sub-expressions.  */
2102   fmt = GET_RTX_FORMAT (code);
2103   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2104     {
2105       if (fmt[i] == 'e')
2106 	add_auto_inc_notes (insn, XEXP (x, i));
2107       else if (fmt[i] == 'E')
2108 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2109 	  add_auto_inc_notes (insn, XVECEXP (x, i, j));
2110     }
2111 }
2112 
2113 
2114 /* Remove all REG_DEAD and REG_UNUSED notes and regenerate REG_INC.
2115    We change pseudos by hard registers without notification of DF and
2116    that can make the notes obsolete.  DF-infrastructure does not deal
2117    with REG_INC notes -- so we should regenerate them here.  */
2118 static void
update_inc_notes(void)2119 update_inc_notes (void)
2120 {
2121   rtx *pnote;
2122   basic_block bb;
2123   rtx_insn *insn;
2124 
2125   FOR_EACH_BB_FN (bb, cfun)
2126     FOR_BB_INSNS (bb, insn)
2127     if (NONDEBUG_INSN_P (insn))
2128       {
2129 	pnote = &REG_NOTES (insn);
2130 	while (*pnote != 0)
2131 	  {
2132 	    if (REG_NOTE_KIND (*pnote) == REG_DEAD
2133                 || REG_NOTE_KIND (*pnote) == REG_UNUSED
2134                 || REG_NOTE_KIND (*pnote) == REG_INC)
2135 	      *pnote = XEXP (*pnote, 1);
2136 	    else
2137 	      pnote = &XEXP (*pnote, 1);
2138 	  }
2139 
2140 	if (AUTO_INC_DEC)
2141 	  add_auto_inc_notes (insn, PATTERN (insn));
2142       }
2143 }
2144 
2145 /* Set to 1 while in lra.  */
2146 int lra_in_progress;
2147 
2148 /* Start of pseudo regnos before the LRA.  */
2149 int lra_new_regno_start;
2150 
2151 /* Start of reload pseudo regnos before the new spill pass.  */
2152 int lra_constraint_new_regno_start;
2153 
2154 /* Avoid spilling pseudos with regno more than the following value if
2155    it is possible.  */
2156 int lra_bad_spill_regno_start;
2157 
2158 /* Inheritance pseudo regnos before the new spill pass.	 */
2159 bitmap_head lra_inheritance_pseudos;
2160 
2161 /* Split regnos before the new spill pass.  */
2162 bitmap_head lra_split_regs;
2163 
2164 /* Reload pseudo regnos before the new assignmnet pass which still can
2165    be spilled after the assinment pass as memory is also accepted in
2166    insns for the reload pseudos.  */
2167 bitmap_head lra_optional_reload_pseudos;
2168 
2169 /* Pseudo regnos used for subreg reloads before the new assignment
2170    pass.  Such pseudos still can be spilled after the assinment
2171    pass.  */
2172 bitmap_head lra_subreg_reload_pseudos;
2173 
2174 /* File used for output of LRA debug information.  */
2175 FILE *lra_dump_file;
2176 
2177 /* True if we should try spill into registers of different classes
2178    instead of memory.  */
2179 bool lra_reg_spill_p;
2180 
2181 /* Set up value LRA_REG_SPILL_P.  */
2182 static void
setup_reg_spill_flag(void)2183 setup_reg_spill_flag (void)
2184 {
2185   int cl, mode;
2186 
2187   if (targetm.spill_class != NULL)
2188     for (cl = 0; cl < (int) LIM_REG_CLASSES; cl++)
2189       for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
2190 	if (targetm.spill_class ((enum reg_class) cl,
2191 				 (machine_mode) mode) != NO_REGS)
2192 	  {
2193 	    lra_reg_spill_p = true;
2194 	    return;
2195 	  }
2196   lra_reg_spill_p = false;
2197 }
2198 
2199 /* True if the current function is too big to use regular algorithms
2200    in LRA. In other words, we should use simpler and faster algorithms
2201    in LRA.  It also means we should not worry about generation code
2202    for caller saves.  The value is set up in IRA.  */
2203 bool lra_simple_p;
2204 
2205 /* Major LRA entry function.  F is a file should be used to dump LRA
2206    debug info.  */
2207 void
lra(FILE * f)2208 lra (FILE *f)
2209 {
2210   int i;
2211   bool live_p, scratch_p, inserted_p;
2212 
2213   lra_dump_file = f;
2214 
2215   timevar_push (TV_LRA);
2216 
2217   /* Make sure that the last insn is a note.  Some subsequent passes
2218      need it.  */
2219   emit_note (NOTE_INSN_DELETED);
2220 
2221   COPY_HARD_REG_SET (lra_no_alloc_regs, ira_no_alloc_regs);
2222 
2223   init_reg_info ();
2224   expand_reg_info ();
2225 
2226   init_insn_recog_data ();
2227 
2228   /* Some quick check on RTL generated by previous passes.  */
2229   if (flag_checking)
2230     check_rtl (false);
2231 
2232   lra_in_progress = 1;
2233 
2234   lra_live_range_iter = lra_coalesce_iter = lra_constraint_iter = 0;
2235   lra_assignment_iter = lra_assignment_iter_after_spill = 0;
2236   lra_inheritance_iter = lra_undo_inheritance_iter = 0;
2237   lra_rematerialization_iter = 0;
2238 
2239   setup_reg_spill_flag ();
2240 
2241   /* Function remove_scratches can creates new pseudos for clobbers --
2242      so set up lra_constraint_new_regno_start before its call to
2243      permit changing reg classes for pseudos created by this
2244      simplification.  */
2245   lra_constraint_new_regno_start = lra_new_regno_start = max_reg_num ();
2246   lra_bad_spill_regno_start = INT_MAX;
2247   remove_scratches ();
2248   scratch_p = lra_constraint_new_regno_start != max_reg_num ();
2249 
2250   /* A function that has a non-local label that can reach the exit
2251      block via non-exceptional paths must save all call-saved
2252      registers.	 */
2253   if (cfun->has_nonlocal_label && has_nonexceptional_receiver ())
2254     crtl->saves_all_registers = 1;
2255 
2256   if (crtl->saves_all_registers)
2257     for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2258       if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
2259 	df_set_regs_ever_live (i, true);
2260 
2261   /* We don't DF from now and avoid its using because it is to
2262      expensive when a lot of RTL changes are made.  */
2263   df_set_flags (DF_NO_INSN_RESCAN);
2264   lra_constraint_insn_stack.create (get_max_uid ());
2265   lra_constraint_insn_stack_bitmap = sbitmap_alloc (get_max_uid ());
2266   bitmap_clear (lra_constraint_insn_stack_bitmap);
2267   lra_live_ranges_init ();
2268   lra_constraints_init ();
2269   lra_curr_reload_num = 0;
2270   push_insns (get_last_insn (), NULL);
2271   /* It is needed for the 1st coalescing.  */
2272   bitmap_initialize (&lra_inheritance_pseudos, &reg_obstack);
2273   bitmap_initialize (&lra_split_regs, &reg_obstack);
2274   bitmap_initialize (&lra_optional_reload_pseudos, &reg_obstack);
2275   bitmap_initialize (&lra_subreg_reload_pseudos, &reg_obstack);
2276   live_p = false;
2277   if (get_frame_size () != 0 && crtl->stack_alignment_needed)
2278     /* If we have a stack frame, we must align it now.  The stack size
2279        may be a part of the offset computation for register
2280        elimination.  */
2281     assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
2282   lra_init_equiv ();
2283   for (;;)
2284     {
2285       for (;;)
2286 	{
2287 	  /* We should try to assign hard registers to scratches even
2288 	     if there were no RTL transformations in
2289 	     lra_constraints.  */
2290 	  if (! lra_constraints (lra_constraint_iter == 0)
2291 	      && (lra_constraint_iter > 1
2292 		  || (! scratch_p && ! caller_save_needed)))
2293 	    break;
2294 	  /* Constraint transformations may result in that eliminable
2295 	     hard regs become uneliminable and pseudos which use them
2296 	     should be spilled.	 It is better to do it before pseudo
2297 	     assignments.
2298 
2299 	     For example, rs6000 can make
2300 	     RS6000_PIC_OFFSET_TABLE_REGNUM uneliminable if we started
2301 	     to use a constant pool.  */
2302 	  lra_eliminate (false, false);
2303 	  /* Do inheritance only for regular algorithms.  */
2304 	  if (! lra_simple_p)
2305 	    {
2306 	      if (flag_ipa_ra)
2307 		{
2308 		  if (live_p)
2309 		    lra_clear_live_ranges ();
2310 		  /* As a side-effect of lra_create_live_ranges, we calculate
2311 		     actual_call_used_reg_set,  which is needed during
2312 		     lra_inheritance.  */
2313 		  lra_create_live_ranges (true, true);
2314 		  live_p = true;
2315 		}
2316 	      lra_inheritance ();
2317 	    }
2318 	  if (live_p)
2319 	    lra_clear_live_ranges ();
2320 	  /* We need live ranges for lra_assign -- so build them.  But
2321 	     don't remove dead insns or change global live info as we
2322 	     can undo inheritance transformations after inheritance
2323 	     pseudo assigning.  */
2324 	  lra_create_live_ranges (true, false);
2325 	  live_p = true;
2326 	  /* If we don't spill non-reload and non-inheritance pseudos,
2327 	     there is no sense to run memory-memory move coalescing.
2328 	     If inheritance pseudos were spilled, the memory-memory
2329 	     moves involving them will be removed by pass undoing
2330 	     inheritance.  */
2331 	  if (lra_simple_p)
2332 	    lra_assign ();
2333 	  else
2334 	    {
2335 	      bool spill_p = !lra_assign ();
2336 
2337 	      if (lra_undo_inheritance ())
2338 		live_p = false;
2339 	      if (spill_p)
2340 		{
2341 		  if (! live_p)
2342 		    {
2343 		      lra_create_live_ranges (true, true);
2344 		      live_p = true;
2345 		    }
2346 		  if (lra_coalesce ())
2347 		    live_p = false;
2348 		}
2349 	      if (! live_p)
2350 		lra_clear_live_ranges ();
2351 	    }
2352 	}
2353       /* Don't clear optional reloads bitmap until all constraints are
2354 	 satisfied as we need to differ them from regular reloads.  */
2355       bitmap_clear (&lra_optional_reload_pseudos);
2356       bitmap_clear (&lra_subreg_reload_pseudos);
2357       bitmap_clear (&lra_inheritance_pseudos);
2358       bitmap_clear (&lra_split_regs);
2359       if (! live_p)
2360 	{
2361 	  /* We need full live info for spilling pseudos into
2362 	     registers instead of memory.  */
2363 	  lra_create_live_ranges (lra_reg_spill_p, true);
2364 	  live_p = true;
2365 	}
2366       /* We should check necessity for spilling here as the above live
2367 	 range pass can remove spilled pseudos.  */
2368       if (! lra_need_for_spills_p ())
2369 	break;
2370       /* Now we know what pseudos should be spilled.  Try to
2371 	 rematerialize them first.  */
2372       if (lra_remat ())
2373 	{
2374 	  /* We need full live info -- see the comment above.  */
2375 	  lra_create_live_ranges (lra_reg_spill_p, true);
2376 	  live_p = true;
2377 	  if (! lra_need_for_spills_p ())
2378 	    break;
2379 	}
2380       lra_spill ();
2381       /* Assignment of stack slots changes elimination offsets for
2382 	 some eliminations.  So update the offsets here.  */
2383       lra_eliminate (false, false);
2384       lra_constraint_new_regno_start = max_reg_num ();
2385       if (lra_bad_spill_regno_start == INT_MAX
2386 	  && lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES
2387 	  && lra_rematerialization_iter > LRA_MAX_REMATERIALIZATION_PASSES)
2388 	/* After switching off inheritance and rematerialization
2389 	   passes, avoid spilling reload pseudos will be created to
2390 	   prevent LRA cycling in some complicated cases.  */
2391 	lra_bad_spill_regno_start = lra_constraint_new_regno_start;
2392       lra_assignment_iter_after_spill = 0;
2393     }
2394   restore_scratches ();
2395   lra_eliminate (true, false);
2396   lra_final_code_change ();
2397   lra_in_progress = 0;
2398   if (live_p)
2399     lra_clear_live_ranges ();
2400   lra_live_ranges_finish ();
2401   lra_constraints_finish ();
2402   finish_reg_info ();
2403   sbitmap_free (lra_constraint_insn_stack_bitmap);
2404   lra_constraint_insn_stack.release ();
2405   finish_insn_recog_data ();
2406   regstat_free_n_sets_and_refs ();
2407   regstat_free_ri ();
2408   reload_completed = 1;
2409   update_inc_notes ();
2410 
2411   inserted_p = fixup_abnormal_edges ();
2412 
2413   /* We've possibly turned single trapping insn into multiple ones.  */
2414   if (cfun->can_throw_non_call_exceptions)
2415     {
2416       sbitmap blocks;
2417       blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
2418       bitmap_ones (blocks);
2419       find_many_sub_basic_blocks (blocks);
2420       sbitmap_free (blocks);
2421     }
2422 
2423   if (inserted_p)
2424     commit_edge_insertions ();
2425 
2426   /* Replacing pseudos with their memory equivalents might have
2427      created shared rtx.  Subsequent passes would get confused
2428      by this, so unshare everything here.  */
2429   unshare_all_rtl_again (get_insns ());
2430 
2431   if (flag_checking)
2432     check_rtl (true);
2433 
2434   timevar_pop (TV_LRA);
2435 }
2436 
2437 /* Called once per compiler to initialize LRA data once.  */
2438 void
lra_init_once(void)2439 lra_init_once (void)
2440 {
2441   init_insn_code_data_once ();
2442 }
2443 
2444 /* Called once per compiler to finish LRA data which are initialize
2445    once.  */
2446 void
lra_finish_once(void)2447 lra_finish_once (void)
2448 {
2449   finish_insn_code_data_once ();
2450 }
2451