1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// IP address manipulations
6//
7// IPv4 addresses are 4 bytes; IPv6 addresses are 16 bytes.
8// An IPv4 address can be converted to an IPv6 address by
9// adding a canonical prefix (10 zeros, 2 0xFFs).
10// This library accepts either size of byte slice but always
11// returns 16-byte addresses.
12
13package net
14
15import (
16	"internal/bytealg"
17	"internal/itoa"
18)
19
20// IP address lengths (bytes).
21const (
22	IPv4len = 4
23	IPv6len = 16
24)
25
26// An IP is a single IP address, a slice of bytes.
27// Functions in this package accept either 4-byte (IPv4)
28// or 16-byte (IPv6) slices as input.
29//
30// Note that in this documentation, referring to an
31// IP address as an IPv4 address or an IPv6 address
32// is a semantic property of the address, not just the
33// length of the byte slice: a 16-byte slice can still
34// be an IPv4 address.
35type IP []byte
36
37// An IPMask is a bitmask that can be used to manipulate
38// IP addresses for IP addressing and routing.
39//
40// See type IPNet and func ParseCIDR for details.
41type IPMask []byte
42
43// An IPNet represents an IP network.
44type IPNet struct {
45	IP   IP     // network number
46	Mask IPMask // network mask
47}
48
49// IPv4 returns the IP address (in 16-byte form) of the
50// IPv4 address a.b.c.d.
51func IPv4(a, b, c, d byte) IP {
52	p := make(IP, IPv6len)
53	copy(p, v4InV6Prefix)
54	p[12] = a
55	p[13] = b
56	p[14] = c
57	p[15] = d
58	return p
59}
60
61var v4InV6Prefix = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff}
62
63// IPv4Mask returns the IP mask (in 4-byte form) of the
64// IPv4 mask a.b.c.d.
65func IPv4Mask(a, b, c, d byte) IPMask {
66	p := make(IPMask, IPv4len)
67	p[0] = a
68	p[1] = b
69	p[2] = c
70	p[3] = d
71	return p
72}
73
74// CIDRMask returns an IPMask consisting of 'ones' 1 bits
75// followed by 0s up to a total length of 'bits' bits.
76// For a mask of this form, CIDRMask is the inverse of IPMask.Size.
77func CIDRMask(ones, bits int) IPMask {
78	if bits != 8*IPv4len && bits != 8*IPv6len {
79		return nil
80	}
81	if ones < 0 || ones > bits {
82		return nil
83	}
84	l := bits / 8
85	m := make(IPMask, l)
86	n := uint(ones)
87	for i := 0; i < l; i++ {
88		if n >= 8 {
89			m[i] = 0xff
90			n -= 8
91			continue
92		}
93		m[i] = ^byte(0xff >> n)
94		n = 0
95	}
96	return m
97}
98
99// Well-known IPv4 addresses
100var (
101	IPv4bcast     = IPv4(255, 255, 255, 255) // limited broadcast
102	IPv4allsys    = IPv4(224, 0, 0, 1)       // all systems
103	IPv4allrouter = IPv4(224, 0, 0, 2)       // all routers
104	IPv4zero      = IPv4(0, 0, 0, 0)         // all zeros
105)
106
107// Well-known IPv6 addresses
108var (
109	IPv6zero                   = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
110	IPv6unspecified            = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
111	IPv6loopback               = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
112	IPv6interfacelocalallnodes = IP{0xff, 0x01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01}
113	IPv6linklocalallnodes      = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01}
114	IPv6linklocalallrouters    = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x02}
115)
116
117// IsUnspecified reports whether ip is an unspecified address, either
118// the IPv4 address "0.0.0.0" or the IPv6 address "::".
119func (ip IP) IsUnspecified() bool {
120	return ip.Equal(IPv4zero) || ip.Equal(IPv6unspecified)
121}
122
123// IsLoopback reports whether ip is a loopback address.
124func (ip IP) IsLoopback() bool {
125	if ip4 := ip.To4(); ip4 != nil {
126		return ip4[0] == 127
127	}
128	return ip.Equal(IPv6loopback)
129}
130
131// IsPrivate reports whether ip is a private address, according to
132// RFC 1918 (IPv4 addresses) and RFC 4193 (IPv6 addresses).
133func (ip IP) IsPrivate() bool {
134	if ip4 := ip.To4(); ip4 != nil {
135		// Following RFC 1918, Section 3. Private Address Space which says:
136		//   The Internet Assigned Numbers Authority (IANA) has reserved the
137		//   following three blocks of the IP address space for private internets:
138		//     10.0.0.0        -   10.255.255.255  (10/8 prefix)
139		//     172.16.0.0      -   172.31.255.255  (172.16/12 prefix)
140		//     192.168.0.0     -   192.168.255.255 (192.168/16 prefix)
141		return ip4[0] == 10 ||
142			(ip4[0] == 172 && ip4[1]&0xf0 == 16) ||
143			(ip4[0] == 192 && ip4[1] == 168)
144	}
145	// Following RFC 4193, Section 8. IANA Considerations which says:
146	//   The IANA has assigned the FC00::/7 prefix to "Unique Local Unicast".
147	return len(ip) == IPv6len && ip[0]&0xfe == 0xfc
148}
149
150// IsMulticast reports whether ip is a multicast address.
151func (ip IP) IsMulticast() bool {
152	if ip4 := ip.To4(); ip4 != nil {
153		return ip4[0]&0xf0 == 0xe0
154	}
155	return len(ip) == IPv6len && ip[0] == 0xff
156}
157
158// IsInterfaceLocalMulticast reports whether ip is
159// an interface-local multicast address.
160func (ip IP) IsInterfaceLocalMulticast() bool {
161	return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x01
162}
163
164// IsLinkLocalMulticast reports whether ip is a link-local
165// multicast address.
166func (ip IP) IsLinkLocalMulticast() bool {
167	if ip4 := ip.To4(); ip4 != nil {
168		return ip4[0] == 224 && ip4[1] == 0 && ip4[2] == 0
169	}
170	return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x02
171}
172
173// IsLinkLocalUnicast reports whether ip is a link-local
174// unicast address.
175func (ip IP) IsLinkLocalUnicast() bool {
176	if ip4 := ip.To4(); ip4 != nil {
177		return ip4[0] == 169 && ip4[1] == 254
178	}
179	return len(ip) == IPv6len && ip[0] == 0xfe && ip[1]&0xc0 == 0x80
180}
181
182// IsGlobalUnicast reports whether ip is a global unicast
183// address.
184//
185// The identification of global unicast addresses uses address type
186// identification as defined in RFC 1122, RFC 4632 and RFC 4291 with
187// the exception of IPv4 directed broadcast addresses.
188// It returns true even if ip is in IPv4 private address space or
189// local IPv6 unicast address space.
190func (ip IP) IsGlobalUnicast() bool {
191	return (len(ip) == IPv4len || len(ip) == IPv6len) &&
192		!ip.Equal(IPv4bcast) &&
193		!ip.IsUnspecified() &&
194		!ip.IsLoopback() &&
195		!ip.IsMulticast() &&
196		!ip.IsLinkLocalUnicast()
197}
198
199// Is p all zeros?
200func isZeros(p IP) bool {
201	for i := 0; i < len(p); i++ {
202		if p[i] != 0 {
203			return false
204		}
205	}
206	return true
207}
208
209// To4 converts the IPv4 address ip to a 4-byte representation.
210// If ip is not an IPv4 address, To4 returns nil.
211func (ip IP) To4() IP {
212	if len(ip) == IPv4len {
213		return ip
214	}
215	if len(ip) == IPv6len &&
216		isZeros(ip[0:10]) &&
217		ip[10] == 0xff &&
218		ip[11] == 0xff {
219		return ip[12:16]
220	}
221	return nil
222}
223
224// To16 converts the IP address ip to a 16-byte representation.
225// If ip is not an IP address (it is the wrong length), To16 returns nil.
226func (ip IP) To16() IP {
227	if len(ip) == IPv4len {
228		return IPv4(ip[0], ip[1], ip[2], ip[3])
229	}
230	if len(ip) == IPv6len {
231		return ip
232	}
233	return nil
234}
235
236// Default route masks for IPv4.
237var (
238	classAMask = IPv4Mask(0xff, 0, 0, 0)
239	classBMask = IPv4Mask(0xff, 0xff, 0, 0)
240	classCMask = IPv4Mask(0xff, 0xff, 0xff, 0)
241)
242
243// DefaultMask returns the default IP mask for the IP address ip.
244// Only IPv4 addresses have default masks; DefaultMask returns
245// nil if ip is not a valid IPv4 address.
246func (ip IP) DefaultMask() IPMask {
247	if ip = ip.To4(); ip == nil {
248		return nil
249	}
250	switch {
251	case ip[0] < 0x80:
252		return classAMask
253	case ip[0] < 0xC0:
254		return classBMask
255	default:
256		return classCMask
257	}
258}
259
260func allFF(b []byte) bool {
261	for _, c := range b {
262		if c != 0xff {
263			return false
264		}
265	}
266	return true
267}
268
269// Mask returns the result of masking the IP address ip with mask.
270func (ip IP) Mask(mask IPMask) IP {
271	if len(mask) == IPv6len && len(ip) == IPv4len && allFF(mask[:12]) {
272		mask = mask[12:]
273	}
274	if len(mask) == IPv4len && len(ip) == IPv6len && bytealg.Equal(ip[:12], v4InV6Prefix) {
275		ip = ip[12:]
276	}
277	n := len(ip)
278	if n != len(mask) {
279		return nil
280	}
281	out := make(IP, n)
282	for i := 0; i < n; i++ {
283		out[i] = ip[i] & mask[i]
284	}
285	return out
286}
287
288// ubtoa encodes the string form of the integer v to dst[start:] and
289// returns the number of bytes written to dst. The caller must ensure
290// that dst has sufficient length.
291func ubtoa(dst []byte, start int, v byte) int {
292	if v < 10 {
293		dst[start] = v + '0'
294		return 1
295	} else if v < 100 {
296		dst[start+1] = v%10 + '0'
297		dst[start] = v/10 + '0'
298		return 2
299	}
300
301	dst[start+2] = v%10 + '0'
302	dst[start+1] = (v/10)%10 + '0'
303	dst[start] = v/100 + '0'
304	return 3
305}
306
307// String returns the string form of the IP address ip.
308// It returns one of 4 forms:
309//   - "<nil>", if ip has length 0
310//   - dotted decimal ("192.0.2.1"), if ip is an IPv4 or IP4-mapped IPv6 address
311//   - IPv6 conforming to RFC 5952 ("2001:db8::1"), if ip is a valid IPv6 address
312//   - the hexadecimal form of ip, without punctuation, if no other cases apply
313func (ip IP) String() string {
314	p := ip
315
316	if len(ip) == 0 {
317		return "<nil>"
318	}
319
320	// If IPv4, use dotted notation.
321	if p4 := p.To4(); len(p4) == IPv4len {
322		const maxIPv4StringLen = len("255.255.255.255")
323		b := make([]byte, maxIPv4StringLen)
324
325		n := ubtoa(b, 0, p4[0])
326		b[n] = '.'
327		n++
328
329		n += ubtoa(b, n, p4[1])
330		b[n] = '.'
331		n++
332
333		n += ubtoa(b, n, p4[2])
334		b[n] = '.'
335		n++
336
337		n += ubtoa(b, n, p4[3])
338		return string(b[:n])
339	}
340	if len(p) != IPv6len {
341		return "?" + hexString(ip)
342	}
343
344	// Find longest run of zeros.
345	e0 := -1
346	e1 := -1
347	for i := 0; i < IPv6len; i += 2 {
348		j := i
349		for j < IPv6len && p[j] == 0 && p[j+1] == 0 {
350			j += 2
351		}
352		if j > i && j-i > e1-e0 {
353			e0 = i
354			e1 = j
355			i = j
356		}
357	}
358	// The symbol "::" MUST NOT be used to shorten just one 16 bit 0 field.
359	if e1-e0 <= 2 {
360		e0 = -1
361		e1 = -1
362	}
363
364	const maxLen = len("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff")
365	b := make([]byte, 0, maxLen)
366
367	// Print with possible :: in place of run of zeros
368	for i := 0; i < IPv6len; i += 2 {
369		if i == e0 {
370			b = append(b, ':', ':')
371			i = e1
372			if i >= IPv6len {
373				break
374			}
375		} else if i > 0 {
376			b = append(b, ':')
377		}
378		b = appendHex(b, (uint32(p[i])<<8)|uint32(p[i+1]))
379	}
380	return string(b)
381}
382
383func hexString(b []byte) string {
384	s := make([]byte, len(b)*2)
385	for i, tn := range b {
386		s[i*2], s[i*2+1] = hexDigit[tn>>4], hexDigit[tn&0xf]
387	}
388	return string(s)
389}
390
391// ipEmptyString is like ip.String except that it returns
392// an empty string when ip is unset.
393func ipEmptyString(ip IP) string {
394	if len(ip) == 0 {
395		return ""
396	}
397	return ip.String()
398}
399
400// MarshalText implements the encoding.TextMarshaler interface.
401// The encoding is the same as returned by String, with one exception:
402// When len(ip) is zero, it returns an empty slice.
403func (ip IP) MarshalText() ([]byte, error) {
404	if len(ip) == 0 {
405		return []byte(""), nil
406	}
407	if len(ip) != IPv4len && len(ip) != IPv6len {
408		return nil, &AddrError{Err: "invalid IP address", Addr: hexString(ip)}
409	}
410	return []byte(ip.String()), nil
411}
412
413// UnmarshalText implements the encoding.TextUnmarshaler interface.
414// The IP address is expected in a form accepted by ParseIP.
415func (ip *IP) UnmarshalText(text []byte) error {
416	if len(text) == 0 {
417		*ip = nil
418		return nil
419	}
420	s := string(text)
421	x := ParseIP(s)
422	if x == nil {
423		return &ParseError{Type: "IP address", Text: s}
424	}
425	*ip = x
426	return nil
427}
428
429// Equal reports whether ip and x are the same IP address.
430// An IPv4 address and that same address in IPv6 form are
431// considered to be equal.
432func (ip IP) Equal(x IP) bool {
433	if len(ip) == len(x) {
434		return bytealg.Equal(ip, x)
435	}
436	if len(ip) == IPv4len && len(x) == IPv6len {
437		return bytealg.Equal(x[0:12], v4InV6Prefix) && bytealg.Equal(ip, x[12:])
438	}
439	if len(ip) == IPv6len && len(x) == IPv4len {
440		return bytealg.Equal(ip[0:12], v4InV6Prefix) && bytealg.Equal(ip[12:], x)
441	}
442	return false
443}
444
445func (ip IP) matchAddrFamily(x IP) bool {
446	return ip.To4() != nil && x.To4() != nil || ip.To16() != nil && ip.To4() == nil && x.To16() != nil && x.To4() == nil
447}
448
449// If mask is a sequence of 1 bits followed by 0 bits,
450// return the number of 1 bits.
451func simpleMaskLength(mask IPMask) int {
452	var n int
453	for i, v := range mask {
454		if v == 0xff {
455			n += 8
456			continue
457		}
458		// found non-ff byte
459		// count 1 bits
460		for v&0x80 != 0 {
461			n++
462			v <<= 1
463		}
464		// rest must be 0 bits
465		if v != 0 {
466			return -1
467		}
468		for i++; i < len(mask); i++ {
469			if mask[i] != 0 {
470				return -1
471			}
472		}
473		break
474	}
475	return n
476}
477
478// Size returns the number of leading ones and total bits in the mask.
479// If the mask is not in the canonical form--ones followed by zeros--then
480// Size returns 0, 0.
481func (m IPMask) Size() (ones, bits int) {
482	ones, bits = simpleMaskLength(m), len(m)*8
483	if ones == -1 {
484		return 0, 0
485	}
486	return
487}
488
489// String returns the hexadecimal form of m, with no punctuation.
490func (m IPMask) String() string {
491	if len(m) == 0 {
492		return "<nil>"
493	}
494	return hexString(m)
495}
496
497func networkNumberAndMask(n *IPNet) (ip IP, m IPMask) {
498	if ip = n.IP.To4(); ip == nil {
499		ip = n.IP
500		if len(ip) != IPv6len {
501			return nil, nil
502		}
503	}
504	m = n.Mask
505	switch len(m) {
506	case IPv4len:
507		if len(ip) != IPv4len {
508			return nil, nil
509		}
510	case IPv6len:
511		if len(ip) == IPv4len {
512			m = m[12:]
513		}
514	default:
515		return nil, nil
516	}
517	return
518}
519
520// Contains reports whether the network includes ip.
521func (n *IPNet) Contains(ip IP) bool {
522	nn, m := networkNumberAndMask(n)
523	if x := ip.To4(); x != nil {
524		ip = x
525	}
526	l := len(ip)
527	if l != len(nn) {
528		return false
529	}
530	for i := 0; i < l; i++ {
531		if nn[i]&m[i] != ip[i]&m[i] {
532			return false
533		}
534	}
535	return true
536}
537
538// Network returns the address's network name, "ip+net".
539func (n *IPNet) Network() string { return "ip+net" }
540
541// String returns the CIDR notation of n like "192.0.2.0/24"
542// or "2001:db8::/48" as defined in RFC 4632 and RFC 4291.
543// If the mask is not in the canonical form, it returns the
544// string which consists of an IP address, followed by a slash
545// character and a mask expressed as hexadecimal form with no
546// punctuation like "198.51.100.0/c000ff00".
547func (n *IPNet) String() string {
548	nn, m := networkNumberAndMask(n)
549	if nn == nil || m == nil {
550		return "<nil>"
551	}
552	l := simpleMaskLength(m)
553	if l == -1 {
554		return nn.String() + "/" + m.String()
555	}
556	return nn.String() + "/" + itoa.Uitoa(uint(l))
557}
558
559// Parse IPv4 address (d.d.d.d).
560func parseIPv4(s string) IP {
561	var p [IPv4len]byte
562	for i := 0; i < IPv4len; i++ {
563		if len(s) == 0 {
564			// Missing octets.
565			return nil
566		}
567		if i > 0 {
568			if s[0] != '.' {
569				return nil
570			}
571			s = s[1:]
572		}
573		n, c, ok := dtoi(s)
574		if !ok || n > 0xFF {
575			return nil
576		}
577		if c > 1 && s[0] == '0' {
578			// Reject non-zero components with leading zeroes.
579			return nil
580		}
581		s = s[c:]
582		p[i] = byte(n)
583	}
584	if len(s) != 0 {
585		return nil
586	}
587	return IPv4(p[0], p[1], p[2], p[3])
588}
589
590// parseIPv6Zone parses s as a literal IPv6 address and its associated zone
591// identifier which is described in RFC 4007.
592func parseIPv6Zone(s string) (IP, string) {
593	s, zone := splitHostZone(s)
594	return parseIPv6(s), zone
595}
596
597// parseIPv6 parses s as a literal IPv6 address described in RFC 4291
598// and RFC 5952.
599func parseIPv6(s string) (ip IP) {
600	ip = make(IP, IPv6len)
601	ellipsis := -1 // position of ellipsis in ip
602
603	// Might have leading ellipsis
604	if len(s) >= 2 && s[0] == ':' && s[1] == ':' {
605		ellipsis = 0
606		s = s[2:]
607		// Might be only ellipsis
608		if len(s) == 0 {
609			return ip
610		}
611	}
612
613	// Loop, parsing hex numbers followed by colon.
614	i := 0
615	for i < IPv6len {
616		// Hex number.
617		n, c, ok := xtoi(s)
618		if !ok || n > 0xFFFF {
619			return nil
620		}
621
622		// If followed by dot, might be in trailing IPv4.
623		if c < len(s) && s[c] == '.' {
624			if ellipsis < 0 && i != IPv6len-IPv4len {
625				// Not the right place.
626				return nil
627			}
628			if i+IPv4len > IPv6len {
629				// Not enough room.
630				return nil
631			}
632			ip4 := parseIPv4(s)
633			if ip4 == nil {
634				return nil
635			}
636			ip[i] = ip4[12]
637			ip[i+1] = ip4[13]
638			ip[i+2] = ip4[14]
639			ip[i+3] = ip4[15]
640			s = ""
641			i += IPv4len
642			break
643		}
644
645		// Save this 16-bit chunk.
646		ip[i] = byte(n >> 8)
647		ip[i+1] = byte(n)
648		i += 2
649
650		// Stop at end of string.
651		s = s[c:]
652		if len(s) == 0 {
653			break
654		}
655
656		// Otherwise must be followed by colon and more.
657		if s[0] != ':' || len(s) == 1 {
658			return nil
659		}
660		s = s[1:]
661
662		// Look for ellipsis.
663		if s[0] == ':' {
664			if ellipsis >= 0 { // already have one
665				return nil
666			}
667			ellipsis = i
668			s = s[1:]
669			if len(s) == 0 { // can be at end
670				break
671			}
672		}
673	}
674
675	// Must have used entire string.
676	if len(s) != 0 {
677		return nil
678	}
679
680	// If didn't parse enough, expand ellipsis.
681	if i < IPv6len {
682		if ellipsis < 0 {
683			return nil
684		}
685		n := IPv6len - i
686		for j := i - 1; j >= ellipsis; j-- {
687			ip[j+n] = ip[j]
688		}
689		for j := ellipsis + n - 1; j >= ellipsis; j-- {
690			ip[j] = 0
691		}
692	} else if ellipsis >= 0 {
693		// Ellipsis must represent at least one 0 group.
694		return nil
695	}
696	return ip
697}
698
699// ParseIP parses s as an IP address, returning the result.
700// The string s can be in IPv4 dotted decimal ("192.0.2.1"), IPv6
701// ("2001:db8::68"), or IPv4-mapped IPv6 ("::ffff:192.0.2.1") form.
702// If s is not a valid textual representation of an IP address,
703// ParseIP returns nil.
704func ParseIP(s string) IP {
705	for i := 0; i < len(s); i++ {
706		switch s[i] {
707		case '.':
708			return parseIPv4(s)
709		case ':':
710			return parseIPv6(s)
711		}
712	}
713	return nil
714}
715
716// parseIPZone parses s as an IP address, return it and its associated zone
717// identifier (IPv6 only).
718func parseIPZone(s string) (IP, string) {
719	for i := 0; i < len(s); i++ {
720		switch s[i] {
721		case '.':
722			return parseIPv4(s), ""
723		case ':':
724			return parseIPv6Zone(s)
725		}
726	}
727	return nil, ""
728}
729
730// ParseCIDR parses s as a CIDR notation IP address and prefix length,
731// like "192.0.2.0/24" or "2001:db8::/32", as defined in
732// RFC 4632 and RFC 4291.
733//
734// It returns the IP address and the network implied by the IP and
735// prefix length.
736// For example, ParseCIDR("192.0.2.1/24") returns the IP address
737// 192.0.2.1 and the network 192.0.2.0/24.
738func ParseCIDR(s string) (IP, *IPNet, error) {
739	i := bytealg.IndexByteString(s, '/')
740	if i < 0 {
741		return nil, nil, &ParseError{Type: "CIDR address", Text: s}
742	}
743	addr, mask := s[:i], s[i+1:]
744	iplen := IPv4len
745	ip := parseIPv4(addr)
746	if ip == nil {
747		iplen = IPv6len
748		ip = parseIPv6(addr)
749	}
750	n, i, ok := dtoi(mask)
751	if ip == nil || !ok || i != len(mask) || n < 0 || n > 8*iplen {
752		return nil, nil, &ParseError{Type: "CIDR address", Text: s}
753	}
754	m := CIDRMask(n, 8*iplen)
755	return ip, &IPNet{IP: ip.Mask(m), Mask: m}, nil
756}
757