1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package runtime_test
6
7import (
8	"fmt"
9	"math/rand"
10	"os"
11	"reflect"
12	"runtime"
13	"runtime/debug"
14	"sort"
15	"strings"
16	"sync"
17	"sync/atomic"
18	"testing"
19	"time"
20	"unsafe"
21)
22
23func TestGcSys(t *testing.T) {
24	t.Skip("skipping known-flaky test; golang.org/issue/37331")
25	if os.Getenv("GOGC") == "off" {
26		t.Skip("skipping test; GOGC=off in environment")
27	}
28	got := runTestProg(t, "testprog", "GCSys")
29	want := "OK\n"
30	if got != want {
31		t.Fatalf("expected %q, but got %q", want, got)
32	}
33}
34
35func TestGcDeepNesting(t *testing.T) {
36	type T [2][2][2][2][2][2][2][2][2][2]*int
37	a := new(T)
38
39	// Prevent the compiler from applying escape analysis.
40	// This makes sure new(T) is allocated on heap, not on the stack.
41	t.Logf("%p", a)
42
43	a[0][0][0][0][0][0][0][0][0][0] = new(int)
44	*a[0][0][0][0][0][0][0][0][0][0] = 13
45	runtime.GC()
46	if *a[0][0][0][0][0][0][0][0][0][0] != 13 {
47		t.Fail()
48	}
49}
50
51func TestGcMapIndirection(t *testing.T) {
52	defer debug.SetGCPercent(debug.SetGCPercent(1))
53	runtime.GC()
54	type T struct {
55		a [256]int
56	}
57	m := make(map[T]T)
58	for i := 0; i < 2000; i++ {
59		var a T
60		a.a[0] = i
61		m[a] = T{}
62	}
63}
64
65func TestGcArraySlice(t *testing.T) {
66	type X struct {
67		buf     [1]byte
68		nextbuf []byte
69		next    *X
70	}
71	var head *X
72	for i := 0; i < 10; i++ {
73		p := &X{}
74		p.buf[0] = 42
75		p.next = head
76		if head != nil {
77			p.nextbuf = head.buf[:]
78		}
79		head = p
80		runtime.GC()
81	}
82	for p := head; p != nil; p = p.next {
83		if p.buf[0] != 42 {
84			t.Fatal("corrupted heap")
85		}
86	}
87}
88
89func TestGcRescan(t *testing.T) {
90	type X struct {
91		c     chan error
92		nextx *X
93	}
94	type Y struct {
95		X
96		nexty *Y
97		p     *int
98	}
99	var head *Y
100	for i := 0; i < 10; i++ {
101		p := &Y{}
102		p.c = make(chan error)
103		if head != nil {
104			p.nextx = &head.X
105		}
106		p.nexty = head
107		p.p = new(int)
108		*p.p = 42
109		head = p
110		runtime.GC()
111	}
112	for p := head; p != nil; p = p.nexty {
113		if *p.p != 42 {
114			t.Fatal("corrupted heap")
115		}
116	}
117}
118
119func TestGcLastTime(t *testing.T) {
120	ms := new(runtime.MemStats)
121	t0 := time.Now().UnixNano()
122	runtime.GC()
123	t1 := time.Now().UnixNano()
124	runtime.ReadMemStats(ms)
125	last := int64(ms.LastGC)
126	if t0 > last || last > t1 {
127		t.Fatalf("bad last GC time: got %v, want [%v, %v]", last, t0, t1)
128	}
129	pause := ms.PauseNs[(ms.NumGC+255)%256]
130	// Due to timer granularity, pause can actually be 0 on windows
131	// or on virtualized environments.
132	if pause == 0 {
133		t.Logf("last GC pause was 0")
134	} else if pause > 10e9 {
135		t.Logf("bad last GC pause: got %v, want [0, 10e9]", pause)
136	}
137}
138
139var hugeSink any
140
141func TestHugeGCInfo(t *testing.T) {
142	// The test ensures that compiler can chew these huge types even on weakest machines.
143	// The types are not allocated at runtime.
144	if hugeSink != nil {
145		// 400MB on 32 bots, 4TB on 64-bits.
146		const n = (400 << 20) + (unsafe.Sizeof(uintptr(0))-4)<<40
147		hugeSink = new([n]*byte)
148		hugeSink = new([n]uintptr)
149		hugeSink = new(struct {
150			x float64
151			y [n]*byte
152			z []string
153		})
154		hugeSink = new(struct {
155			x float64
156			y [n]uintptr
157			z []string
158		})
159	}
160}
161
162func TestPeriodicGC(t *testing.T) {
163	if runtime.GOARCH == "wasm" {
164		t.Skip("no sysmon on wasm yet")
165	}
166
167	// Make sure we're not in the middle of a GC.
168	runtime.GC()
169
170	var ms1, ms2 runtime.MemStats
171	runtime.ReadMemStats(&ms1)
172
173	// Make periodic GC run continuously.
174	orig := *runtime.ForceGCPeriod
175	*runtime.ForceGCPeriod = 0
176
177	// Let some periodic GCs happen. In a heavily loaded system,
178	// it's possible these will be delayed, so this is designed to
179	// succeed quickly if things are working, but to give it some
180	// slack if things are slow.
181	var numGCs uint32
182	const want = 2
183	for i := 0; i < 200 && numGCs < want; i++ {
184		time.Sleep(5 * time.Millisecond)
185
186		// Test that periodic GC actually happened.
187		runtime.ReadMemStats(&ms2)
188		numGCs = ms2.NumGC - ms1.NumGC
189	}
190	*runtime.ForceGCPeriod = orig
191
192	if numGCs < want {
193		t.Fatalf("no periodic GC: got %v GCs, want >= 2", numGCs)
194	}
195}
196
197func TestGcZombieReporting(t *testing.T) {
198	// This test is somewhat sensitive to how the allocator works.
199	// Pointers in zombies slice may cross-span, thus we
200	// add invalidptr=0 for avoiding the badPointer check.
201	// See issue https://golang.org/issues/49613/
202	got := runTestProg(t, "testprog", "GCZombie", "GODEBUG=invalidptr=0")
203	want := "found pointer to free object"
204	if !strings.Contains(got, want) {
205		t.Fatalf("expected %q in output, but got %q", want, got)
206	}
207}
208
209func TestGCTestMoveStackOnNextCall(t *testing.T) {
210	t.Parallel()
211	var onStack int
212	// GCTestMoveStackOnNextCall can fail in rare cases if there's
213	// a preemption. This won't happen many times in quick
214	// succession, so just retry a few times.
215	for retry := 0; retry < 5; retry++ {
216		runtime.GCTestMoveStackOnNextCall()
217		if moveStackCheck(t, &onStack, uintptr(unsafe.Pointer(&onStack))) {
218			// Passed.
219			return
220		}
221	}
222	t.Fatal("stack did not move")
223}
224
225// This must not be inlined because the point is to force a stack
226// growth check and move the stack.
227//
228//go:noinline
229func moveStackCheck(t *testing.T, new *int, old uintptr) bool {
230	// new should have been updated by the stack move;
231	// old should not have.
232
233	// Capture new's value before doing anything that could
234	// further move the stack.
235	new2 := uintptr(unsafe.Pointer(new))
236
237	t.Logf("old stack pointer %x, new stack pointer %x", old, new2)
238	if new2 == old {
239		// Check that we didn't screw up the test's escape analysis.
240		if cls := runtime.GCTestPointerClass(unsafe.Pointer(new)); cls != "stack" {
241			t.Fatalf("test bug: new (%#x) should be a stack pointer, not %s", new2, cls)
242		}
243		// This was a real failure.
244		return false
245	}
246	return true
247}
248
249func TestGCTestMoveStackRepeatedly(t *testing.T) {
250	// Move the stack repeatedly to make sure we're not doubling
251	// it each time.
252	for i := 0; i < 100; i++ {
253		runtime.GCTestMoveStackOnNextCall()
254		moveStack1(false)
255	}
256}
257
258//go:noinline
259func moveStack1(x bool) {
260	// Make sure this function doesn't get auto-nosplit.
261	if x {
262		println("x")
263	}
264}
265
266func TestGCTestIsReachable(t *testing.T) {
267	var all, half []unsafe.Pointer
268	var want uint64
269	for i := 0; i < 16; i++ {
270		// The tiny allocator muddies things, so we use a
271		// scannable type.
272		p := unsafe.Pointer(new(*int))
273		all = append(all, p)
274		if i%2 == 0 {
275			half = append(half, p)
276			want |= 1 << i
277		}
278	}
279
280	got := runtime.GCTestIsReachable(all...)
281	if want != got {
282		t.Fatalf("did not get expected reachable set; want %b, got %b", want, got)
283	}
284	runtime.KeepAlive(half)
285}
286
287var pointerClassSink *int
288var pointerClassData = 42
289
290func TestGCTestPointerClass(t *testing.T) {
291	t.Parallel()
292	check := func(p unsafe.Pointer, want string) {
293		t.Helper()
294		got := runtime.GCTestPointerClass(p)
295		if got != want {
296			// Convert the pointer to a uintptr to avoid
297			// escaping it.
298			t.Errorf("for %#x, want class %s, got %s", uintptr(p), want, got)
299		}
300	}
301	var onStack int
302	var notOnStack int
303	pointerClassSink = &notOnStack
304	check(unsafe.Pointer(&onStack), "stack")
305	check(unsafe.Pointer(&notOnStack), "heap")
306	check(unsafe.Pointer(&pointerClassSink), "bss")
307	check(unsafe.Pointer(&pointerClassData), "data")
308	check(nil, "other")
309}
310
311func BenchmarkSetTypePtr(b *testing.B) {
312	benchSetType(b, new(*byte))
313}
314
315func BenchmarkSetTypePtr8(b *testing.B) {
316	benchSetType(b, new([8]*byte))
317}
318
319func BenchmarkSetTypePtr16(b *testing.B) {
320	benchSetType(b, new([16]*byte))
321}
322
323func BenchmarkSetTypePtr32(b *testing.B) {
324	benchSetType(b, new([32]*byte))
325}
326
327func BenchmarkSetTypePtr64(b *testing.B) {
328	benchSetType(b, new([64]*byte))
329}
330
331func BenchmarkSetTypePtr126(b *testing.B) {
332	benchSetType(b, new([126]*byte))
333}
334
335func BenchmarkSetTypePtr128(b *testing.B) {
336	benchSetType(b, new([128]*byte))
337}
338
339func BenchmarkSetTypePtrSlice(b *testing.B) {
340	benchSetType(b, make([]*byte, 1<<10))
341}
342
343type Node1 struct {
344	Value       [1]uintptr
345	Left, Right *byte
346}
347
348func BenchmarkSetTypeNode1(b *testing.B) {
349	benchSetType(b, new(Node1))
350}
351
352func BenchmarkSetTypeNode1Slice(b *testing.B) {
353	benchSetType(b, make([]Node1, 32))
354}
355
356type Node8 struct {
357	Value       [8]uintptr
358	Left, Right *byte
359}
360
361func BenchmarkSetTypeNode8(b *testing.B) {
362	benchSetType(b, new(Node8))
363}
364
365func BenchmarkSetTypeNode8Slice(b *testing.B) {
366	benchSetType(b, make([]Node8, 32))
367}
368
369type Node64 struct {
370	Value       [64]uintptr
371	Left, Right *byte
372}
373
374func BenchmarkSetTypeNode64(b *testing.B) {
375	benchSetType(b, new(Node64))
376}
377
378func BenchmarkSetTypeNode64Slice(b *testing.B) {
379	benchSetType(b, make([]Node64, 32))
380}
381
382type Node64Dead struct {
383	Left, Right *byte
384	Value       [64]uintptr
385}
386
387func BenchmarkSetTypeNode64Dead(b *testing.B) {
388	benchSetType(b, new(Node64Dead))
389}
390
391func BenchmarkSetTypeNode64DeadSlice(b *testing.B) {
392	benchSetType(b, make([]Node64Dead, 32))
393}
394
395type Node124 struct {
396	Value       [124]uintptr
397	Left, Right *byte
398}
399
400func BenchmarkSetTypeNode124(b *testing.B) {
401	benchSetType(b, new(Node124))
402}
403
404func BenchmarkSetTypeNode124Slice(b *testing.B) {
405	benchSetType(b, make([]Node124, 32))
406}
407
408type Node126 struct {
409	Value       [126]uintptr
410	Left, Right *byte
411}
412
413func BenchmarkSetTypeNode126(b *testing.B) {
414	benchSetType(b, new(Node126))
415}
416
417func BenchmarkSetTypeNode126Slice(b *testing.B) {
418	benchSetType(b, make([]Node126, 32))
419}
420
421type Node128 struct {
422	Value       [128]uintptr
423	Left, Right *byte
424}
425
426func BenchmarkSetTypeNode128(b *testing.B) {
427	benchSetType(b, new(Node128))
428}
429
430func BenchmarkSetTypeNode128Slice(b *testing.B) {
431	benchSetType(b, make([]Node128, 32))
432}
433
434type Node130 struct {
435	Value       [130]uintptr
436	Left, Right *byte
437}
438
439func BenchmarkSetTypeNode130(b *testing.B) {
440	benchSetType(b, new(Node130))
441}
442
443func BenchmarkSetTypeNode130Slice(b *testing.B) {
444	benchSetType(b, make([]Node130, 32))
445}
446
447type Node1024 struct {
448	Value       [1024]uintptr
449	Left, Right *byte
450}
451
452func BenchmarkSetTypeNode1024(b *testing.B) {
453	benchSetType(b, new(Node1024))
454}
455
456func BenchmarkSetTypeNode1024Slice(b *testing.B) {
457	benchSetType(b, make([]Node1024, 32))
458}
459
460func benchSetType(b *testing.B, x any) {
461	v := reflect.ValueOf(x)
462	t := v.Type()
463	switch t.Kind() {
464	case reflect.Pointer:
465		b.SetBytes(int64(t.Elem().Size()))
466	case reflect.Slice:
467		b.SetBytes(int64(t.Elem().Size()) * int64(v.Len()))
468	}
469	b.ResetTimer()
470	runtime.BenchSetType(b.N, x)
471}
472
473func BenchmarkAllocation(b *testing.B) {
474	type T struct {
475		x, y *byte
476	}
477	ngo := runtime.GOMAXPROCS(0)
478	work := make(chan bool, b.N+ngo)
479	result := make(chan *T)
480	for i := 0; i < b.N; i++ {
481		work <- true
482	}
483	for i := 0; i < ngo; i++ {
484		work <- false
485	}
486	for i := 0; i < ngo; i++ {
487		go func() {
488			var x *T
489			for <-work {
490				for i := 0; i < 1000; i++ {
491					x = &T{}
492				}
493			}
494			result <- x
495		}()
496	}
497	for i := 0; i < ngo; i++ {
498		<-result
499	}
500}
501
502func TestPrintGC(t *testing.T) {
503	if testing.Short() {
504		t.Skip("Skipping in short mode")
505	}
506	defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(2))
507	done := make(chan bool)
508	go func() {
509		for {
510			select {
511			case <-done:
512				return
513			default:
514				runtime.GC()
515			}
516		}
517	}()
518	for i := 0; i < 1e4; i++ {
519		func() {
520			defer print("")
521		}()
522	}
523	close(done)
524}
525
526func testTypeSwitch(x any) error {
527	switch y := x.(type) {
528	case nil:
529		// ok
530	case error:
531		return y
532	}
533	return nil
534}
535
536func testAssert(x any) error {
537	if y, ok := x.(error); ok {
538		return y
539	}
540	return nil
541}
542
543func testAssertVar(x any) error {
544	var y, ok = x.(error)
545	if ok {
546		return y
547	}
548	return nil
549}
550
551var a bool
552
553//go:noinline
554func testIfaceEqual(x any) {
555	if x == "abc" {
556		a = true
557	}
558}
559
560func TestPageAccounting(t *testing.T) {
561	// Grow the heap in small increments. This used to drop the
562	// pages-in-use count below zero because of a rounding
563	// mismatch (golang.org/issue/15022).
564	const blockSize = 64 << 10
565	blocks := make([]*[blockSize]byte, (64<<20)/blockSize)
566	for i := range blocks {
567		blocks[i] = new([blockSize]byte)
568	}
569
570	// Check that the running page count matches reality.
571	pagesInUse, counted := runtime.CountPagesInUse()
572	if pagesInUse != counted {
573		t.Fatalf("mheap_.pagesInUse is %d, but direct count is %d", pagesInUse, counted)
574	}
575}
576
577func TestReadMemStats(t *testing.T) {
578	base, slow := runtime.ReadMemStatsSlow()
579	if base != slow {
580		logDiff(t, "MemStats", reflect.ValueOf(base), reflect.ValueOf(slow))
581		t.Fatal("memstats mismatch")
582	}
583}
584
585func logDiff(t *testing.T, prefix string, got, want reflect.Value) {
586	typ := got.Type()
587	switch typ.Kind() {
588	case reflect.Array, reflect.Slice:
589		if got.Len() != want.Len() {
590			t.Logf("len(%s): got %v, want %v", prefix, got, want)
591			return
592		}
593		for i := 0; i < got.Len(); i++ {
594			logDiff(t, fmt.Sprintf("%s[%d]", prefix, i), got.Index(i), want.Index(i))
595		}
596	case reflect.Struct:
597		for i := 0; i < typ.NumField(); i++ {
598			gf, wf := got.Field(i), want.Field(i)
599			logDiff(t, prefix+"."+typ.Field(i).Name, gf, wf)
600		}
601	case reflect.Map:
602		t.Fatal("not implemented: logDiff for map")
603	default:
604		if got.Interface() != want.Interface() {
605			t.Logf("%s: got %v, want %v", prefix, got, want)
606		}
607	}
608}
609
610func BenchmarkReadMemStats(b *testing.B) {
611	var ms runtime.MemStats
612	const heapSize = 100 << 20
613	x := make([]*[1024]byte, heapSize/1024)
614	for i := range x {
615		x[i] = new([1024]byte)
616	}
617	hugeSink = x
618
619	b.ResetTimer()
620	for i := 0; i < b.N; i++ {
621		runtime.ReadMemStats(&ms)
622	}
623
624	hugeSink = nil
625}
626
627func applyGCLoad(b *testing.B) func() {
628	// We’ll apply load to the runtime with maxProcs-1 goroutines
629	// and use one more to actually benchmark. It doesn't make sense
630	// to try to run this test with only 1 P (that's what
631	// BenchmarkReadMemStats is for).
632	maxProcs := runtime.GOMAXPROCS(-1)
633	if maxProcs == 1 {
634		b.Skip("This benchmark can only be run with GOMAXPROCS > 1")
635	}
636
637	// Code to build a big tree with lots of pointers.
638	type node struct {
639		children [16]*node
640	}
641	var buildTree func(depth int) *node
642	buildTree = func(depth int) *node {
643		tree := new(node)
644		if depth != 0 {
645			for i := range tree.children {
646				tree.children[i] = buildTree(depth - 1)
647			}
648		}
649		return tree
650	}
651
652	// Keep the GC busy by continuously generating large trees.
653	done := make(chan struct{})
654	var wg sync.WaitGroup
655	for i := 0; i < maxProcs-1; i++ {
656		wg.Add(1)
657		go func() {
658			defer wg.Done()
659			var hold *node
660		loop:
661			for {
662				hold = buildTree(5)
663				select {
664				case <-done:
665					break loop
666				default:
667				}
668			}
669			runtime.KeepAlive(hold)
670		}()
671	}
672	return func() {
673		close(done)
674		wg.Wait()
675	}
676}
677
678func BenchmarkReadMemStatsLatency(b *testing.B) {
679	stop := applyGCLoad(b)
680
681	// Spend this much time measuring latencies.
682	latencies := make([]time.Duration, 0, 1024)
683
684	// Run for timeToBench hitting ReadMemStats continuously
685	// and measuring the latency.
686	b.ResetTimer()
687	var ms runtime.MemStats
688	for i := 0; i < b.N; i++ {
689		// Sleep for a bit, otherwise we're just going to keep
690		// stopping the world and no one will get to do anything.
691		time.Sleep(100 * time.Millisecond)
692		start := time.Now()
693		runtime.ReadMemStats(&ms)
694		latencies = append(latencies, time.Now().Sub(start))
695	}
696	// Make sure to stop the timer before we wait! The load created above
697	// is very heavy-weight and not easy to stop, so we could end up
698	// confusing the benchmarking framework for small b.N.
699	b.StopTimer()
700	stop()
701
702	// Disable the default */op metrics.
703	// ns/op doesn't mean anything because it's an average, but we
704	// have a sleep in our b.N loop above which skews this significantly.
705	b.ReportMetric(0, "ns/op")
706	b.ReportMetric(0, "B/op")
707	b.ReportMetric(0, "allocs/op")
708
709	// Sort latencies then report percentiles.
710	sort.Slice(latencies, func(i, j int) bool {
711		return latencies[i] < latencies[j]
712	})
713	b.ReportMetric(float64(latencies[len(latencies)*50/100]), "p50-ns")
714	b.ReportMetric(float64(latencies[len(latencies)*90/100]), "p90-ns")
715	b.ReportMetric(float64(latencies[len(latencies)*99/100]), "p99-ns")
716}
717
718func TestUserForcedGC(t *testing.T) {
719	// Test that runtime.GC() triggers a GC even if GOGC=off.
720	defer debug.SetGCPercent(debug.SetGCPercent(-1))
721
722	var ms1, ms2 runtime.MemStats
723	runtime.ReadMemStats(&ms1)
724	runtime.GC()
725	runtime.ReadMemStats(&ms2)
726	if ms1.NumGC == ms2.NumGC {
727		t.Fatalf("runtime.GC() did not trigger GC")
728	}
729	if ms1.NumForcedGC == ms2.NumForcedGC {
730		t.Fatalf("runtime.GC() was not accounted in NumForcedGC")
731	}
732}
733
734func writeBarrierBenchmark(b *testing.B, f func()) {
735	runtime.GC()
736	var ms runtime.MemStats
737	runtime.ReadMemStats(&ms)
738	//b.Logf("heap size: %d MB", ms.HeapAlloc>>20)
739
740	// Keep GC running continuously during the benchmark, which in
741	// turn keeps the write barrier on continuously.
742	var stop uint32
743	done := make(chan bool)
744	go func() {
745		for atomic.LoadUint32(&stop) == 0 {
746			runtime.GC()
747		}
748		close(done)
749	}()
750	defer func() {
751		atomic.StoreUint32(&stop, 1)
752		<-done
753	}()
754
755	b.ResetTimer()
756	f()
757	b.StopTimer()
758}
759
760func BenchmarkWriteBarrier(b *testing.B) {
761	if runtime.GOMAXPROCS(-1) < 2 {
762		// We don't want GC to take our time.
763		b.Skip("need GOMAXPROCS >= 2")
764	}
765
766	// Construct a large tree both so the GC runs for a while and
767	// so we have a data structure to manipulate the pointers of.
768	type node struct {
769		l, r *node
770	}
771	var wbRoots []*node
772	var mkTree func(level int) *node
773	mkTree = func(level int) *node {
774		if level == 0 {
775			return nil
776		}
777		n := &node{mkTree(level - 1), mkTree(level - 1)}
778		if level == 10 {
779			// Seed GC with enough early pointers so it
780			// doesn't start termination barriers when it
781			// only has the top of the tree.
782			wbRoots = append(wbRoots, n)
783		}
784		return n
785	}
786	const depth = 22 // 64 MB
787	root := mkTree(22)
788
789	writeBarrierBenchmark(b, func() {
790		var stack [depth]*node
791		tos := -1
792
793		// There are two write barriers per iteration, so i+=2.
794		for i := 0; i < b.N; i += 2 {
795			if tos == -1 {
796				stack[0] = root
797				tos = 0
798			}
799
800			// Perform one step of reversing the tree.
801			n := stack[tos]
802			if n.l == nil {
803				tos--
804			} else {
805				n.l, n.r = n.r, n.l
806				stack[tos] = n.l
807				stack[tos+1] = n.r
808				tos++
809			}
810
811			if i%(1<<12) == 0 {
812				// Avoid non-preemptible loops (see issue #10958).
813				runtime.Gosched()
814			}
815		}
816	})
817
818	runtime.KeepAlive(wbRoots)
819}
820
821func BenchmarkBulkWriteBarrier(b *testing.B) {
822	if runtime.GOMAXPROCS(-1) < 2 {
823		// We don't want GC to take our time.
824		b.Skip("need GOMAXPROCS >= 2")
825	}
826
827	// Construct a large set of objects we can copy around.
828	const heapSize = 64 << 20
829	type obj [16]*byte
830	ptrs := make([]*obj, heapSize/unsafe.Sizeof(obj{}))
831	for i := range ptrs {
832		ptrs[i] = new(obj)
833	}
834
835	writeBarrierBenchmark(b, func() {
836		const blockSize = 1024
837		var pos int
838		for i := 0; i < b.N; i += blockSize {
839			// Rotate block.
840			block := ptrs[pos : pos+blockSize]
841			first := block[0]
842			copy(block, block[1:])
843			block[blockSize-1] = first
844
845			pos += blockSize
846			if pos+blockSize > len(ptrs) {
847				pos = 0
848			}
849
850			runtime.Gosched()
851		}
852	})
853
854	runtime.KeepAlive(ptrs)
855}
856
857func BenchmarkScanStackNoLocals(b *testing.B) {
858	var ready sync.WaitGroup
859	teardown := make(chan bool)
860	for j := 0; j < 10; j++ {
861		ready.Add(1)
862		go func() {
863			x := 100000
864			countpwg(&x, &ready, teardown)
865		}()
866	}
867	ready.Wait()
868	b.ResetTimer()
869	for i := 0; i < b.N; i++ {
870		b.StartTimer()
871		runtime.GC()
872		runtime.GC()
873		b.StopTimer()
874	}
875	close(teardown)
876}
877
878func BenchmarkMSpanCountAlloc(b *testing.B) {
879	// Allocate one dummy mspan for the whole benchmark.
880	s := runtime.AllocMSpan()
881	defer runtime.FreeMSpan(s)
882
883	// n is the number of bytes to benchmark against.
884	// n must always be a multiple of 8, since gcBits is
885	// always rounded up 8 bytes.
886	for _, n := range []int{8, 16, 32, 64, 128} {
887		b.Run(fmt.Sprintf("bits=%d", n*8), func(b *testing.B) {
888			// Initialize a new byte slice with pseduo-random data.
889			bits := make([]byte, n)
890			rand.Read(bits)
891
892			b.ResetTimer()
893			for i := 0; i < b.N; i++ {
894				runtime.MSpanCountAlloc(s, bits)
895			}
896		})
897	}
898}
899
900func countpwg(n *int, ready *sync.WaitGroup, teardown chan bool) {
901	if *n == 0 {
902		ready.Done()
903		<-teardown
904		return
905	}
906	*n--
907	countpwg(n, ready, teardown)
908}
909