1// Copyright 2014 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Memory allocator.
6//
7// This was originally based on tcmalloc, but has diverged quite a bit.
8// http://goog-perftools.sourceforge.net/doc/tcmalloc.html
9
10// The main allocator works in runs of pages.
11// Small allocation sizes (up to and including 32 kB) are
12// rounded to one of about 70 size classes, each of which
13// has its own free set of objects of exactly that size.
14// Any free page of memory can be split into a set of objects
15// of one size class, which are then managed using a free bitmap.
16//
17// The allocator's data structures are:
18//
19//	fixalloc: a free-list allocator for fixed-size off-heap objects,
20//		used to manage storage used by the allocator.
21//	mheap: the malloc heap, managed at page (8192-byte) granularity.
22//	mspan: a run of in-use pages managed by the mheap.
23//	mcentral: collects all spans of a given size class.
24//	mcache: a per-P cache of mspans with free space.
25//	mstats: allocation statistics.
26//
27// Allocating a small object proceeds up a hierarchy of caches:
28//
29//	1. Round the size up to one of the small size classes
30//	   and look in the corresponding mspan in this P's mcache.
31//	   Scan the mspan's free bitmap to find a free slot.
32//	   If there is a free slot, allocate it.
33//	   This can all be done without acquiring a lock.
34//
35//	2. If the mspan has no free slots, obtain a new mspan
36//	   from the mcentral's list of mspans of the required size
37//	   class that have free space.
38//	   Obtaining a whole span amortizes the cost of locking
39//	   the mcentral.
40//
41//	3. If the mcentral's mspan list is empty, obtain a run
42//	   of pages from the mheap to use for the mspan.
43//
44//	4. If the mheap is empty or has no page runs large enough,
45//	   allocate a new group of pages (at least 1MB) from the
46//	   operating system. Allocating a large run of pages
47//	   amortizes the cost of talking to the operating system.
48//
49// Sweeping an mspan and freeing objects on it proceeds up a similar
50// hierarchy:
51//
52//	1. If the mspan is being swept in response to allocation, it
53//	   is returned to the mcache to satisfy the allocation.
54//
55//	2. Otherwise, if the mspan still has allocated objects in it,
56//	   it is placed on the mcentral free list for the mspan's size
57//	   class.
58//
59//	3. Otherwise, if all objects in the mspan are free, the mspan's
60//	   pages are returned to the mheap and the mspan is now dead.
61//
62// Allocating and freeing a large object uses the mheap
63// directly, bypassing the mcache and mcentral.
64//
65// If mspan.needzero is false, then free object slots in the mspan are
66// already zeroed. Otherwise if needzero is true, objects are zeroed as
67// they are allocated. There are various benefits to delaying zeroing
68// this way:
69//
70//	1. Stack frame allocation can avoid zeroing altogether.
71//
72//	2. It exhibits better temporal locality, since the program is
73//	   probably about to write to the memory.
74//
75//	3. We don't zero pages that never get reused.
76
77// Virtual memory layout
78//
79// The heap consists of a set of arenas, which are 64MB on 64-bit and
80// 4MB on 32-bit (heapArenaBytes). Each arena's start address is also
81// aligned to the arena size.
82//
83// Each arena has an associated heapArena object that stores the
84// metadata for that arena: the heap bitmap for all words in the arena
85// and the span map for all pages in the arena. heapArena objects are
86// themselves allocated off-heap.
87//
88// Since arenas are aligned, the address space can be viewed as a
89// series of arena frames. The arena map (mheap_.arenas) maps from
90// arena frame number to *heapArena, or nil for parts of the address
91// space not backed by the Go heap. The arena map is structured as a
92// two-level array consisting of a "L1" arena map and many "L2" arena
93// maps; however, since arenas are large, on many architectures, the
94// arena map consists of a single, large L2 map.
95//
96// The arena map covers the entire possible address space, allowing
97// the Go heap to use any part of the address space. The allocator
98// attempts to keep arenas contiguous so that large spans (and hence
99// large objects) can cross arenas.
100
101package runtime
102
103import (
104	"runtime/internal/atomic"
105	"runtime/internal/math"
106	"runtime/internal/sys"
107	"unsafe"
108)
109
110const (
111	debugMalloc = false
112
113	maxTinySize   = _TinySize
114	tinySizeClass = _TinySizeClass
115	maxSmallSize  = _MaxSmallSize
116
117	pageShift = _PageShift
118	pageSize  = _PageSize
119	pageMask  = _PageMask
120	// By construction, single page spans of the smallest object class
121	// have the most objects per span.
122	maxObjsPerSpan = pageSize / 8
123
124	concurrentSweep = _ConcurrentSweep
125
126	_PageSize = 1 << _PageShift
127	_PageMask = _PageSize - 1
128
129	// _64bit = 1 on 64-bit systems, 0 on 32-bit systems
130	_64bit = 1 << (^uintptr(0) >> 63) / 2
131
132	// Tiny allocator parameters, see "Tiny allocator" comment in malloc.go.
133	_TinySize      = 16
134	_TinySizeClass = int8(2)
135
136	_FixAllocChunk = 16 << 10 // Chunk size for FixAlloc
137
138	// Per-P, per order stack segment cache size.
139	_StackCacheSize = 32 * 1024
140
141	// Number of orders that get caching. Order 0 is FixedStack
142	// and each successive order is twice as large.
143	// We want to cache 2KB, 4KB, 8KB, and 16KB stacks. Larger stacks
144	// will be allocated directly.
145	// Since FixedStack is different on different systems, we
146	// must vary NumStackOrders to keep the same maximum cached size.
147	//   OS               | FixedStack | NumStackOrders
148	//   -----------------+------------+---------------
149	//   linux/darwin/bsd | 2KB        | 4
150	//   windows/32       | 4KB        | 3
151	//   windows/64       | 8KB        | 2
152	//   plan9            | 4KB        | 3
153	_NumStackOrders = 4 - sys.PtrSize/4*sys.GoosWindows - 1*sys.GoosPlan9
154
155	// heapAddrBits is the number of bits in a heap address. On
156	// amd64, addresses are sign-extended beyond heapAddrBits. On
157	// other arches, they are zero-extended.
158	//
159	// On most 64-bit platforms, we limit this to 48 bits based on a
160	// combination of hardware and OS limitations.
161	//
162	// amd64 hardware limits addresses to 48 bits, sign-extended
163	// to 64 bits. Addresses where the top 16 bits are not either
164	// all 0 or all 1 are "non-canonical" and invalid. Because of
165	// these "negative" addresses, we offset addresses by 1<<47
166	// (arenaBaseOffset) on amd64 before computing indexes into
167	// the heap arenas index. In 2017, amd64 hardware added
168	// support for 57 bit addresses; however, currently only Linux
169	// supports this extension and the kernel will never choose an
170	// address above 1<<47 unless mmap is called with a hint
171	// address above 1<<47 (which we never do).
172	//
173	// arm64 hardware (as of ARMv8) limits user addresses to 48
174	// bits, in the range [0, 1<<48).
175	//
176	// ppc64, mips64, and s390x support arbitrary 64 bit addresses
177	// in hardware. On Linux, Go leans on stricter OS limits. Based
178	// on Linux's processor.h, the user address space is limited as
179	// follows on 64-bit architectures:
180	//
181	// Architecture  Name              Maximum Value (exclusive)
182	// ---------------------------------------------------------------------
183	// amd64         TASK_SIZE_MAX     0x007ffffffff000 (47 bit addresses)
184	// arm64         TASK_SIZE_64      0x01000000000000 (48 bit addresses)
185	// ppc64{,le}    TASK_SIZE_USER64  0x00400000000000 (46 bit addresses)
186	// mips64{,le}   TASK_SIZE64       0x00010000000000 (40 bit addresses)
187	// s390x         TASK_SIZE         1<<64 (64 bit addresses)
188	//
189	// These limits may increase over time, but are currently at
190	// most 48 bits except on s390x. On all architectures, Linux
191	// starts placing mmap'd regions at addresses that are
192	// significantly below 48 bits, so even if it's possible to
193	// exceed Go's 48 bit limit, it's extremely unlikely in
194	// practice.
195	//
196	// On 32-bit platforms, we accept the full 32-bit address
197	// space because doing so is cheap.
198	// mips32 only has access to the low 2GB of virtual memory, so
199	// we further limit it to 31 bits.
200	//
201	// On darwin/arm64, although 64-bit pointers are presumably
202	// available, pointers are truncated to 33 bits. Furthermore,
203	// only the top 4 GiB of the address space are actually available
204	// to the application, but we allow the whole 33 bits anyway for
205	// simplicity.
206	// TODO(mknyszek): Consider limiting it to 32 bits and using
207	// arenaBaseOffset to offset into the top 4 GiB.
208	//
209	// WebAssembly currently has a limit of 4GB linear memory.
210	heapAddrBits = (_64bit*(1-sys.GoarchWasm)*(1-sys.GoosDarwin*sys.GoarchArm64))*48 + (1-_64bit+sys.GoarchWasm)*(32-(sys.GoarchMips+sys.GoarchMipsle)) + 33*sys.GoosDarwin*sys.GoarchArm64
211
212	// maxAlloc is the maximum size of an allocation. On 64-bit,
213	// it's theoretically possible to allocate 1<<heapAddrBits bytes. On
214	// 32-bit, however, this is one less than 1<<32 because the
215	// number of bytes in the address space doesn't actually fit
216	// in a uintptr.
217	maxAlloc = (1 << heapAddrBits) - (1-_64bit)*1
218
219	// The number of bits in a heap address, the size of heap
220	// arenas, and the L1 and L2 arena map sizes are related by
221	//
222	//   (1 << addr bits) = arena size * L1 entries * L2 entries
223	//
224	// Currently, we balance these as follows:
225	//
226	//       Platform  Addr bits  Arena size  L1 entries   L2 entries
227	// --------------  ---------  ----------  ----------  -----------
228	//       */64-bit         48        64MB           1    4M (32MB)
229	// windows/64-bit         48         4MB          64    1M  (8MB)
230	//       */32-bit         32         4MB           1  1024  (4KB)
231	//     */mips(le)         31         4MB           1   512  (2KB)
232
233	// heapArenaBytes is the size of a heap arena. The heap
234	// consists of mappings of size heapArenaBytes, aligned to
235	// heapArenaBytes. The initial heap mapping is one arena.
236	//
237	// This is currently 64MB on 64-bit non-Windows and 4MB on
238	// 32-bit and on Windows. We use smaller arenas on Windows
239	// because all committed memory is charged to the process,
240	// even if it's not touched. Hence, for processes with small
241	// heaps, the mapped arena space needs to be commensurate.
242	// This is particularly important with the race detector,
243	// since it significantly amplifies the cost of committed
244	// memory.
245	heapArenaBytes = 1 << logHeapArenaBytes
246
247	// logHeapArenaBytes is log_2 of heapArenaBytes. For clarity,
248	// prefer using heapArenaBytes where possible (we need the
249	// constant to compute some other constants).
250	logHeapArenaBytes = (6+20)*(_64bit*(1-sys.GoosWindows)*(1-sys.GoarchWasm)) + (2+20)*(_64bit*sys.GoosWindows) + (2+20)*(1-_64bit) + (2+20)*sys.GoarchWasm
251
252	// heapArenaBitmapBytes is the size of each heap arena's bitmap.
253	heapArenaBitmapBytes = heapArenaBytes / (sys.PtrSize * 8 / 2)
254
255	pagesPerArena = heapArenaBytes / pageSize
256
257	// arenaL1Bits is the number of bits of the arena number
258	// covered by the first level arena map.
259	//
260	// This number should be small, since the first level arena
261	// map requires PtrSize*(1<<arenaL1Bits) of space in the
262	// binary's BSS. It can be zero, in which case the first level
263	// index is effectively unused. There is a performance benefit
264	// to this, since the generated code can be more efficient,
265	// but comes at the cost of having a large L2 mapping.
266	//
267	// We use the L1 map on 64-bit Windows because the arena size
268	// is small, but the address space is still 48 bits, and
269	// there's a high cost to having a large L2.
270	arenaL1Bits = 6 * (_64bit * sys.GoosWindows)
271
272	// arenaL2Bits is the number of bits of the arena number
273	// covered by the second level arena index.
274	//
275	// The size of each arena map allocation is proportional to
276	// 1<<arenaL2Bits, so it's important that this not be too
277	// large. 48 bits leads to 32MB arena index allocations, which
278	// is about the practical threshold.
279	arenaL2Bits = heapAddrBits - logHeapArenaBytes - arenaL1Bits
280
281	// arenaL1Shift is the number of bits to shift an arena frame
282	// number by to compute an index into the first level arena map.
283	arenaL1Shift = arenaL2Bits
284
285	// arenaBits is the total bits in a combined arena map index.
286	// This is split between the index into the L1 arena map and
287	// the L2 arena map.
288	arenaBits = arenaL1Bits + arenaL2Bits
289
290	// arenaBaseOffset is the pointer value that corresponds to
291	// index 0 in the heap arena map.
292	//
293	// On amd64, the address space is 48 bits, sign extended to 64
294	// bits. This offset lets us handle "negative" addresses (or
295	// high addresses if viewed as unsigned).
296	//
297	// On aix/ppc64, this offset allows to keep the heapAddrBits to
298	// 48. Otherwize, it would be 60 in order to handle mmap addresses
299	// (in range 0x0a00000000000000 - 0x0afffffffffffff). But in this
300	// case, the memory reserved in (s *pageAlloc).init for chunks
301	// is causing important slowdowns.
302	//
303	// On other platforms, the user address space is contiguous
304	// and starts at 0, so no offset is necessary.
305	arenaBaseOffset = sys.GoarchAmd64*(1<<47) + (^0x0a00000000000000+1)&uintptrMask*sys.GoosAix
306
307	// Max number of threads to run garbage collection.
308	// 2, 3, and 4 are all plausible maximums depending
309	// on the hardware details of the machine. The garbage
310	// collector scales well to 32 cpus.
311	_MaxGcproc = 32
312
313	// minLegalPointer is the smallest possible legal pointer.
314	// This is the smallest possible architectural page size,
315	// since we assume that the first page is never mapped.
316	//
317	// This should agree with minZeroPage in the compiler.
318	minLegalPointer uintptr = 4096
319)
320
321// physPageSize is the size in bytes of the OS's physical pages.
322// Mapping and unmapping operations must be done at multiples of
323// physPageSize.
324//
325// This must be set by the OS init code (typically in osinit) before
326// mallocinit.
327var physPageSize uintptr
328
329// physHugePageSize is the size in bytes of the OS's default physical huge
330// page size whose allocation is opaque to the application. It is assumed
331// and verified to be a power of two.
332//
333// If set, this must be set by the OS init code (typically in osinit) before
334// mallocinit. However, setting it at all is optional, and leaving the default
335// value is always safe (though potentially less efficient).
336//
337// Since physHugePageSize is always assumed to be a power of two,
338// physHugePageShift is defined as physHugePageSize == 1 << physHugePageShift.
339// The purpose of physHugePageShift is to avoid doing divisions in
340// performance critical functions.
341var (
342	physHugePageSize  uintptr
343	physHugePageShift uint
344)
345
346// OS memory management abstraction layer
347//
348// Regions of the address space managed by the runtime may be in one of four
349// states at any given time:
350// 1) None - Unreserved and unmapped, the default state of any region.
351// 2) Reserved - Owned by the runtime, but accessing it would cause a fault.
352//               Does not count against the process' memory footprint.
353// 3) Prepared - Reserved, intended not to be backed by physical memory (though
354//               an OS may implement this lazily). Can transition efficiently to
355//               Ready. Accessing memory in such a region is undefined (may
356//               fault, may give back unexpected zeroes, etc.).
357// 4) Ready - may be accessed safely.
358//
359// This set of states is more than is strictly necessary to support all the
360// currently supported platforms. One could get by with just None, Reserved, and
361// Ready. However, the Prepared state gives us flexibility for performance
362// purposes. For example, on POSIX-y operating systems, Reserved is usually a
363// private anonymous mmap'd region with PROT_NONE set, and to transition
364// to Ready would require setting PROT_READ|PROT_WRITE. However the
365// underspecification of Prepared lets us use just MADV_FREE to transition from
366// Ready to Prepared. Thus with the Prepared state we can set the permission
367// bits just once early on, we can efficiently tell the OS that it's free to
368// take pages away from us when we don't strictly need them.
369//
370// For each OS there is a common set of helpers defined that transition
371// memory regions between these states. The helpers are as follows:
372//
373// sysAlloc transitions an OS-chosen region of memory from None to Ready.
374// More specifically, it obtains a large chunk of zeroed memory from the
375// operating system, typically on the order of a hundred kilobytes
376// or a megabyte. This memory is always immediately available for use.
377//
378// sysFree transitions a memory region from any state to None. Therefore, it
379// returns memory unconditionally. It is used if an out-of-memory error has been
380// detected midway through an allocation or to carve out an aligned section of
381// the address space. It is okay if sysFree is a no-op only if sysReserve always
382// returns a memory region aligned to the heap allocator's alignment
383// restrictions.
384//
385// sysReserve transitions a memory region from None to Reserved. It reserves
386// address space in such a way that it would cause a fatal fault upon access
387// (either via permissions or not committing the memory). Such a reservation is
388// thus never backed by physical memory.
389// If the pointer passed to it is non-nil, the caller wants the
390// reservation there, but sysReserve can still choose another
391// location if that one is unavailable.
392// NOTE: sysReserve returns OS-aligned memory, but the heap allocator
393// may use larger alignment, so the caller must be careful to realign the
394// memory obtained by sysReserve.
395//
396// sysMap transitions a memory region from Reserved to Prepared. It ensures the
397// memory region can be efficiently transitioned to Ready.
398//
399// sysUsed transitions a memory region from Prepared to Ready. It notifies the
400// operating system that the memory region is needed and ensures that the region
401// may be safely accessed. This is typically a no-op on systems that don't have
402// an explicit commit step and hard over-commit limits, but is critical on
403// Windows, for example.
404//
405// sysUnused transitions a memory region from Ready to Prepared. It notifies the
406// operating system that the physical pages backing this memory region are no
407// longer needed and can be reused for other purposes. The contents of a
408// sysUnused memory region are considered forfeit and the region must not be
409// accessed again until sysUsed is called.
410//
411// sysFault transitions a memory region from Ready or Prepared to Reserved. It
412// marks a region such that it will always fault if accessed. Used only for
413// debugging the runtime.
414
415func mallocinit() {
416	if class_to_size[_TinySizeClass] != _TinySize {
417		throw("bad TinySizeClass")
418	}
419
420	testdefersizes()
421
422	if heapArenaBitmapBytes&(heapArenaBitmapBytes-1) != 0 {
423		// heapBits expects modular arithmetic on bitmap
424		// addresses to work.
425		throw("heapArenaBitmapBytes not a power of 2")
426	}
427
428	// Copy class sizes out for statistics table.
429	for i := range class_to_size {
430		memstats.by_size[i].size = uint32(class_to_size[i])
431	}
432
433	// Check physPageSize.
434	if physPageSize == 0 {
435		// The OS init code failed to fetch the physical page size.
436		throw("failed to get system page size")
437	}
438	if physPageSize > maxPhysPageSize {
439		print("system page size (", physPageSize, ") is larger than maximum page size (", maxPhysPageSize, ")\n")
440		throw("bad system page size")
441	}
442	if physPageSize < minPhysPageSize {
443		print("system page size (", physPageSize, ") is smaller than minimum page size (", minPhysPageSize, ")\n")
444		throw("bad system page size")
445	}
446	if physPageSize&(physPageSize-1) != 0 {
447		print("system page size (", physPageSize, ") must be a power of 2\n")
448		throw("bad system page size")
449	}
450	if physHugePageSize&(physHugePageSize-1) != 0 {
451		print("system huge page size (", physHugePageSize, ") must be a power of 2\n")
452		throw("bad system huge page size")
453	}
454	if physHugePageSize > maxPhysHugePageSize {
455		// physHugePageSize is greater than the maximum supported huge page size.
456		// Don't throw here, like in the other cases, since a system configured
457		// in this way isn't wrong, we just don't have the code to support them.
458		// Instead, silently set the huge page size to zero.
459		physHugePageSize = 0
460	}
461	if physHugePageSize != 0 {
462		// Since physHugePageSize is a power of 2, it suffices to increase
463		// physHugePageShift until 1<<physHugePageShift == physHugePageSize.
464		for 1<<physHugePageShift != physHugePageSize {
465			physHugePageShift++
466		}
467	}
468
469	// Initialize the heap.
470	mheap_.init()
471	_g_ := getg()
472	_g_.m.mcache = allocmcache()
473
474	// Create initial arena growth hints.
475	if sys.PtrSize == 8 {
476		// On a 64-bit machine, we pick the following hints
477		// because:
478		//
479		// 1. Starting from the middle of the address space
480		// makes it easier to grow out a contiguous range
481		// without running in to some other mapping.
482		//
483		// 2. This makes Go heap addresses more easily
484		// recognizable when debugging.
485		//
486		// 3. Stack scanning in gccgo is still conservative,
487		// so it's important that addresses be distinguishable
488		// from other data.
489		//
490		// Starting at 0x00c0 means that the valid memory addresses
491		// will begin 0x00c0, 0x00c1, ...
492		// In little-endian, that's c0 00, c1 00, ... None of those are valid
493		// UTF-8 sequences, and they are otherwise as far away from
494		// ff (likely a common byte) as possible. If that fails, we try other 0xXXc0
495		// addresses. An earlier attempt to use 0x11f8 caused out of memory errors
496		// on OS X during thread allocations.  0x00c0 causes conflicts with
497		// AddressSanitizer which reserves all memory up to 0x0100.
498		// These choices reduce the odds of a conservative garbage collector
499		// not collecting memory because some non-pointer block of memory
500		// had a bit pattern that matched a memory address.
501		//
502		// However, on arm64, we ignore all this advice above and slam the
503		// allocation at 0x40 << 32 because when using 4k pages with 3-level
504		// translation buffers, the user address space is limited to 39 bits
505		// On darwin/arm64, the address space is even smaller.
506		//
507		// On AIX, mmaps starts at 0x0A00000000000000 for 64-bit.
508		// processes.
509		for i := 0x7f; i >= 0; i-- {
510			var p uintptr
511			switch {
512			case GOARCH == "arm64" && GOOS == "darwin":
513				p = uintptr(i)<<40 | uintptrMask&(0x0013<<28)
514			case GOARCH == "arm64":
515				p = uintptr(i)<<40 | uintptrMask&(0x0040<<32)
516			case GOOS == "aix":
517				if i == 0 {
518					// We don't use addresses directly after 0x0A00000000000000
519					// to avoid collisions with others mmaps done by non-go programs.
520					continue
521				}
522				p = uintptr(i)<<40 | uintptrMask&(0xa0<<52)
523			case raceenabled:
524				// The TSAN runtime requires the heap
525				// to be in the range [0x00c000000000,
526				// 0x00e000000000).
527				p = uintptr(i)<<32 | uintptrMask&(0x00c0<<32)
528				if p >= uintptrMask&0x00e000000000 {
529					continue
530				}
531			default:
532				p = uintptr(i)<<40 | uintptrMask&(0x00c0<<32)
533			}
534			hint := (*arenaHint)(mheap_.arenaHintAlloc.alloc())
535			hint.addr = p
536			hint.next, mheap_.arenaHints = mheap_.arenaHints, hint
537		}
538	} else {
539		// On a 32-bit machine, we're much more concerned
540		// about keeping the usable heap contiguous.
541		// Hence:
542		//
543		// 1. We reserve space for all heapArenas up front so
544		// they don't get interleaved with the heap. They're
545		// ~258MB, so this isn't too bad. (We could reserve a
546		// smaller amount of space up front if this is a
547		// problem.)
548		//
549		// 2. We hint the heap to start right above the end of
550		// the binary so we have the best chance of keeping it
551		// contiguous.
552		//
553		// 3. We try to stake out a reasonably large initial
554		// heap reservation.
555
556		const arenaMetaSize = (1 << arenaBits) * unsafe.Sizeof(heapArena{})
557		meta := uintptr(sysReserve(nil, arenaMetaSize))
558		if meta != 0 {
559			mheap_.heapArenaAlloc.init(meta, arenaMetaSize)
560		}
561
562		// We want to start the arena low, but if we're linked
563		// against C code, it's possible global constructors
564		// have called malloc and adjusted the process' brk.
565		// Query the brk so we can avoid trying to map the
566		// region over it (which will cause the kernel to put
567		// the region somewhere else, likely at a high
568		// address).
569		procBrk := sbrk0()
570
571		// If we ask for the end of the data segment but the
572		// operating system requires a little more space
573		// before we can start allocating, it will give out a
574		// slightly higher pointer. Except QEMU, which is
575		// buggy, as usual: it won't adjust the pointer
576		// upward. So adjust it upward a little bit ourselves:
577		// 1/4 MB to get away from the running binary image.
578		p := firstmoduledata.end
579		if p < procBrk {
580			p = procBrk
581		}
582		if mheap_.heapArenaAlloc.next <= p && p < mheap_.heapArenaAlloc.end {
583			p = mheap_.heapArenaAlloc.end
584		}
585		p = alignUp(p+(256<<10), heapArenaBytes)
586		// Because we're worried about fragmentation on
587		// 32-bit, we try to make a large initial reservation.
588		arenaSizes := []uintptr{
589			512 << 20,
590			256 << 20,
591			128 << 20,
592		}
593		for _, arenaSize := range arenaSizes {
594			a, size := sysReserveAligned(unsafe.Pointer(p), arenaSize, heapArenaBytes)
595			if a != nil {
596				mheap_.arena.init(uintptr(a), size)
597				p = uintptr(a) + size // For hint below
598				break
599			}
600		}
601		hint := (*arenaHint)(mheap_.arenaHintAlloc.alloc())
602		hint.addr = p
603		hint.next, mheap_.arenaHints = mheap_.arenaHints, hint
604	}
605}
606
607// sysAlloc allocates heap arena space for at least n bytes. The
608// returned pointer is always heapArenaBytes-aligned and backed by
609// h.arenas metadata. The returned size is always a multiple of
610// heapArenaBytes. sysAlloc returns nil on failure.
611// There is no corresponding free function.
612//
613// sysAlloc returns a memory region in the Prepared state. This region must
614// be transitioned to Ready before use.
615//
616// h must be locked.
617func (h *mheap) sysAlloc(n uintptr) (v unsafe.Pointer, size uintptr) {
618	n = alignUp(n, heapArenaBytes)
619
620	// First, try the arena pre-reservation.
621	v = h.arena.alloc(n, heapArenaBytes, &memstats.heap_sys)
622	if v != nil {
623		size = n
624		goto mapped
625	}
626
627	// Try to grow the heap at a hint address.
628	for h.arenaHints != nil {
629		hint := h.arenaHints
630		p := hint.addr
631		if hint.down {
632			p -= n
633		}
634		if p+n < p {
635			// We can't use this, so don't ask.
636			v = nil
637		} else if arenaIndex(p+n-1) >= 1<<arenaBits {
638			// Outside addressable heap. Can't use.
639			v = nil
640		} else {
641			v = sysReserve(unsafe.Pointer(p), n)
642		}
643		if p == uintptr(v) {
644			// Success. Update the hint.
645			if !hint.down {
646				p += n
647			}
648			hint.addr = p
649			size = n
650			break
651		}
652		// Failed. Discard this hint and try the next.
653		//
654		// TODO: This would be cleaner if sysReserve could be
655		// told to only return the requested address. In
656		// particular, this is already how Windows behaves, so
657		// it would simplify things there.
658		if v != nil {
659			sysFree(v, n, nil)
660		}
661		h.arenaHints = hint.next
662		h.arenaHintAlloc.free(unsafe.Pointer(hint))
663	}
664
665	if size == 0 {
666		if raceenabled {
667			// The race detector assumes the heap lives in
668			// [0x00c000000000, 0x00e000000000), but we
669			// just ran out of hints in this region. Give
670			// a nice failure.
671			throw("too many address space collisions for -race mode")
672		}
673
674		// All of the hints failed, so we'll take any
675		// (sufficiently aligned) address the kernel will give
676		// us.
677		v, size = sysReserveAligned(nil, n, heapArenaBytes)
678		if v == nil {
679			return nil, 0
680		}
681
682		// Create new hints for extending this region.
683		hint := (*arenaHint)(h.arenaHintAlloc.alloc())
684		hint.addr, hint.down = uintptr(v), true
685		hint.next, mheap_.arenaHints = mheap_.arenaHints, hint
686		hint = (*arenaHint)(h.arenaHintAlloc.alloc())
687		hint.addr = uintptr(v) + size
688		hint.next, mheap_.arenaHints = mheap_.arenaHints, hint
689	}
690
691	// Check for bad pointers or pointers we can't use.
692	{
693		var bad string
694		p := uintptr(v)
695		if p+size < p {
696			bad = "region exceeds uintptr range"
697		} else if arenaIndex(p) >= 1<<arenaBits {
698			bad = "base outside usable address space"
699		} else if arenaIndex(p+size-1) >= 1<<arenaBits {
700			bad = "end outside usable address space"
701		}
702		if bad != "" {
703			// This should be impossible on most architectures,
704			// but it would be really confusing to debug.
705			print("runtime: memory allocated by OS [", hex(p), ", ", hex(p+size), ") not in usable address space: ", bad, "\n")
706			throw("memory reservation exceeds address space limit")
707		}
708	}
709
710	if uintptr(v)&(heapArenaBytes-1) != 0 {
711		throw("misrounded allocation in sysAlloc")
712	}
713
714	// Transition from Reserved to Prepared.
715	sysMap(v, size, &memstats.heap_sys)
716
717mapped:
718	// Create arena metadata.
719	for ri := arenaIndex(uintptr(v)); ri <= arenaIndex(uintptr(v)+size-1); ri++ {
720		l2 := h.arenas[ri.l1()]
721		if l2 == nil {
722			// Allocate an L2 arena map.
723			l2 = (*[1 << arenaL2Bits]*heapArena)(persistentalloc(unsafe.Sizeof(*l2), sys.PtrSize, nil))
724			if l2 == nil {
725				throw("out of memory allocating heap arena map")
726			}
727			atomic.StorepNoWB(unsafe.Pointer(&h.arenas[ri.l1()]), unsafe.Pointer(l2))
728		}
729
730		if l2[ri.l2()] != nil {
731			throw("arena already initialized")
732		}
733		var r *heapArena
734		r = (*heapArena)(h.heapArenaAlloc.alloc(unsafe.Sizeof(*r), sys.PtrSize, &memstats.gc_sys))
735		if r == nil {
736			r = (*heapArena)(persistentalloc(unsafe.Sizeof(*r), sys.PtrSize, &memstats.gc_sys))
737			if r == nil {
738				throw("out of memory allocating heap arena metadata")
739			}
740		}
741
742		// Add the arena to the arenas list.
743		if len(h.allArenas) == cap(h.allArenas) {
744			size := 2 * uintptr(cap(h.allArenas)) * sys.PtrSize
745			if size == 0 {
746				size = physPageSize
747			}
748			newArray := (*notInHeap)(persistentalloc(size, sys.PtrSize, &memstats.gc_sys))
749			if newArray == nil {
750				throw("out of memory allocating allArenas")
751			}
752			oldSlice := h.allArenas
753			*(*notInHeapSlice)(unsafe.Pointer(&h.allArenas)) = notInHeapSlice{newArray, len(h.allArenas), int(size / sys.PtrSize)}
754			copy(h.allArenas, oldSlice)
755			// Do not free the old backing array because
756			// there may be concurrent readers. Since we
757			// double the array each time, this can lead
758			// to at most 2x waste.
759		}
760		h.allArenas = h.allArenas[:len(h.allArenas)+1]
761		h.allArenas[len(h.allArenas)-1] = ri
762
763		// Store atomically just in case an object from the
764		// new heap arena becomes visible before the heap lock
765		// is released (which shouldn't happen, but there's
766		// little downside to this).
767		atomic.StorepNoWB(unsafe.Pointer(&l2[ri.l2()]), unsafe.Pointer(r))
768	}
769
770	// Tell the race detector about the new heap memory.
771	if raceenabled {
772		racemapshadow(v, size)
773	}
774
775	return
776}
777
778// sysReserveAligned is like sysReserve, but the returned pointer is
779// aligned to align bytes. It may reserve either n or n+align bytes,
780// so it returns the size that was reserved.
781func sysReserveAligned(v unsafe.Pointer, size, align uintptr) (unsafe.Pointer, uintptr) {
782	// Since the alignment is rather large in uses of this
783	// function, we're not likely to get it by chance, so we ask
784	// for a larger region and remove the parts we don't need.
785	retries := 0
786retry:
787	p := uintptr(sysReserve(v, size+align))
788	switch {
789	case p == 0:
790		return nil, 0
791	case p&(align-1) == 0:
792		// We got lucky and got an aligned region, so we can
793		// use the whole thing.
794		return unsafe.Pointer(p), size + align
795	case GOOS == "windows":
796		// On Windows we can't release pieces of a
797		// reservation, so we release the whole thing and
798		// re-reserve the aligned sub-region. This may race,
799		// so we may have to try again.
800		sysFree(unsafe.Pointer(p), size+align, nil)
801		p = alignUp(p, align)
802		p2 := sysReserve(unsafe.Pointer(p), size)
803		if p != uintptr(p2) {
804			// Must have raced. Try again.
805			sysFree(p2, size, nil)
806			if retries++; retries == 100 {
807				throw("failed to allocate aligned heap memory; too many retries")
808			}
809			goto retry
810		}
811		// Success.
812		return p2, size
813	default:
814		// Trim off the unaligned parts.
815		pAligned := alignUp(p, align)
816		sysFree(unsafe.Pointer(p), pAligned-p, nil)
817		end := pAligned + size
818		endLen := (p + size + align) - end
819		if endLen > 0 {
820			sysFree(unsafe.Pointer(end), endLen, nil)
821		}
822		return unsafe.Pointer(pAligned), size
823	}
824}
825
826// base address for all 0-byte allocations
827var zerobase uintptr
828
829// nextFreeFast returns the next free object if one is quickly available.
830// Otherwise it returns 0.
831func nextFreeFast(s *mspan) gclinkptr {
832	theBit := sys.Ctz64(s.allocCache) // Is there a free object in the allocCache?
833	if theBit < 64 {
834		result := s.freeindex + uintptr(theBit)
835		if result < s.nelems {
836			freeidx := result + 1
837			if freeidx%64 == 0 && freeidx != s.nelems {
838				return 0
839			}
840			s.allocCache >>= uint(theBit + 1)
841			s.freeindex = freeidx
842			s.allocCount++
843			return gclinkptr(result*s.elemsize + s.base())
844		}
845	}
846	return 0
847}
848
849// nextFree returns the next free object from the cached span if one is available.
850// Otherwise it refills the cache with a span with an available object and
851// returns that object along with a flag indicating that this was a heavy
852// weight allocation. If it is a heavy weight allocation the caller must
853// determine whether a new GC cycle needs to be started or if the GC is active
854// whether this goroutine needs to assist the GC.
855//
856// Must run in a non-preemptible context since otherwise the owner of
857// c could change.
858func (c *mcache) nextFree(spc spanClass) (v gclinkptr, s *mspan, shouldhelpgc bool) {
859	s = c.alloc[spc]
860	shouldhelpgc = false
861	freeIndex := s.nextFreeIndex()
862	if freeIndex == s.nelems {
863		// The span is full.
864		if uintptr(s.allocCount) != s.nelems {
865			println("runtime: s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
866			throw("s.allocCount != s.nelems && freeIndex == s.nelems")
867		}
868		c.refill(spc)
869		shouldhelpgc = true
870		s = c.alloc[spc]
871
872		freeIndex = s.nextFreeIndex()
873	}
874
875	if freeIndex >= s.nelems {
876		throw("freeIndex is not valid")
877	}
878
879	v = gclinkptr(freeIndex*s.elemsize + s.base())
880	s.allocCount++
881	if uintptr(s.allocCount) > s.nelems {
882		println("s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
883		throw("s.allocCount > s.nelems")
884	}
885	return
886}
887
888// Allocate an object of size bytes.
889// Small objects are allocated from the per-P cache's free lists.
890// Large objects (> 32 kB) are allocated straight from the heap.
891func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
892	if gcphase == _GCmarktermination {
893		throw("mallocgc called with gcphase == _GCmarktermination")
894	}
895
896	if size == 0 {
897		return unsafe.Pointer(&zerobase)
898	}
899
900	if debug.sbrk != 0 {
901		align := uintptr(16)
902		if typ != nil {
903			// TODO(austin): This should be just
904			//   align = uintptr(typ.align)
905			// but that's only 4 on 32-bit platforms,
906			// even if there's a uint64 field in typ (see #599).
907			// This causes 64-bit atomic accesses to panic.
908			// Hence, we use stricter alignment that matches
909			// the normal allocator better.
910			if size&7 == 0 {
911				align = 8
912			} else if size&3 == 0 {
913				align = 4
914			} else if size&1 == 0 {
915				align = 2
916			} else {
917				align = 1
918			}
919		}
920		return persistentalloc(size, align, &memstats.other_sys)
921	}
922
923	// assistG is the G to charge for this allocation, or nil if
924	// GC is not currently active.
925	var assistG *g
926	if gcBlackenEnabled != 0 {
927		// Charge the current user G for this allocation.
928		assistG = getg()
929		if assistG.m.curg != nil {
930			assistG = assistG.m.curg
931		}
932		// Charge the allocation against the G. We'll account
933		// for internal fragmentation at the end of mallocgc.
934		assistG.gcAssistBytes -= int64(size)
935
936		if assistG.gcAssistBytes < 0 {
937			// This G is in debt. Assist the GC to correct
938			// this before allocating. This must happen
939			// before disabling preemption.
940			gcAssistAlloc(assistG)
941		}
942	}
943
944	// Set mp.mallocing to keep from being preempted by GC.
945	mp := acquirem()
946	if mp.mallocing != 0 {
947		throw("malloc deadlock")
948	}
949	if mp.gsignal == getg() {
950		throw("malloc during signal")
951	}
952	mp.mallocing = 1
953
954	shouldhelpgc := false
955	dataSize := size
956	c := gomcache()
957	var x unsafe.Pointer
958	noscan := typ == nil || typ.ptrdata == 0
959	if size <= maxSmallSize {
960		if noscan && size < maxTinySize {
961			// Tiny allocator.
962			//
963			// Tiny allocator combines several tiny allocation requests
964			// into a single memory block. The resulting memory block
965			// is freed when all subobjects are unreachable. The subobjects
966			// must be noscan (don't have pointers), this ensures that
967			// the amount of potentially wasted memory is bounded.
968			//
969			// Size of the memory block used for combining (maxTinySize) is tunable.
970			// Current setting is 16 bytes, which relates to 2x worst case memory
971			// wastage (when all but one subobjects are unreachable).
972			// 8 bytes would result in no wastage at all, but provides less
973			// opportunities for combining.
974			// 32 bytes provides more opportunities for combining,
975			// but can lead to 4x worst case wastage.
976			// The best case winning is 8x regardless of block size.
977			//
978			// Objects obtained from tiny allocator must not be freed explicitly.
979			// So when an object will be freed explicitly, we ensure that
980			// its size >= maxTinySize.
981			//
982			// SetFinalizer has a special case for objects potentially coming
983			// from tiny allocator, it such case it allows to set finalizers
984			// for an inner byte of a memory block.
985			//
986			// The main targets of tiny allocator are small strings and
987			// standalone escaping variables. On a json benchmark
988			// the allocator reduces number of allocations by ~12% and
989			// reduces heap size by ~20%.
990			off := c.tinyoffset
991			// Align tiny pointer for required (conservative) alignment.
992			if size&7 == 0 {
993				off = alignUp(off, 8)
994			} else if size&3 == 0 {
995				off = alignUp(off, 4)
996			} else if size&1 == 0 {
997				off = alignUp(off, 2)
998			}
999			if off+size <= maxTinySize && c.tiny != 0 {
1000				// The object fits into existing tiny block.
1001				x = unsafe.Pointer(c.tiny + off)
1002				c.tinyoffset = off + size
1003				c.local_tinyallocs++
1004				mp.mallocing = 0
1005				releasem(mp)
1006				return x
1007			}
1008			// Allocate a new maxTinySize block.
1009			span := c.alloc[tinySpanClass]
1010			v := nextFreeFast(span)
1011			if v == 0 {
1012				v, _, shouldhelpgc = c.nextFree(tinySpanClass)
1013			}
1014			x = unsafe.Pointer(v)
1015			(*[2]uint64)(x)[0] = 0
1016			(*[2]uint64)(x)[1] = 0
1017			// See if we need to replace the existing tiny block with the new one
1018			// based on amount of remaining free space.
1019			if size < c.tinyoffset || c.tiny == 0 {
1020				c.tiny = uintptr(x)
1021				c.tinyoffset = size
1022			}
1023			size = maxTinySize
1024		} else {
1025			var sizeclass uint8
1026			if size <= smallSizeMax-8 {
1027				sizeclass = size_to_class8[(size+smallSizeDiv-1)/smallSizeDiv]
1028			} else {
1029				sizeclass = size_to_class128[(size-smallSizeMax+largeSizeDiv-1)/largeSizeDiv]
1030			}
1031			size = uintptr(class_to_size[sizeclass])
1032			spc := makeSpanClass(sizeclass, noscan)
1033			span := c.alloc[spc]
1034			v := nextFreeFast(span)
1035			if v == 0 {
1036				v, span, shouldhelpgc = c.nextFree(spc)
1037			}
1038			x = unsafe.Pointer(v)
1039			if needzero && span.needzero != 0 {
1040				memclrNoHeapPointers(unsafe.Pointer(v), size)
1041			}
1042		}
1043	} else {
1044		var s *mspan
1045		shouldhelpgc = true
1046		systemstack(func() {
1047			s = largeAlloc(size, needzero, noscan)
1048		})
1049		s.freeindex = 1
1050		s.allocCount = 1
1051		x = unsafe.Pointer(s.base())
1052		size = s.elemsize
1053	}
1054
1055	var scanSize uintptr
1056	if !noscan {
1057		// If allocating a defer+arg block, now that we've picked a malloc size
1058		// large enough to hold everything, cut the "asked for" size down to
1059		// just the defer header, so that the GC bitmap will record the arg block
1060		// as containing nothing at all (as if it were unused space at the end of
1061		// a malloc block caused by size rounding).
1062		// The defer arg areas are scanned as part of scanstack.
1063		if typ == deferType {
1064			dataSize = unsafe.Sizeof(_defer{})
1065		}
1066		heapBitsSetType(uintptr(x), size, dataSize, typ)
1067		if dataSize > typ.size {
1068			// Array allocation. If there are any
1069			// pointers, GC has to scan to the last
1070			// element.
1071			if typ.ptrdata != 0 {
1072				scanSize = dataSize - typ.size + typ.ptrdata
1073			}
1074		} else {
1075			scanSize = typ.ptrdata
1076		}
1077		c.local_scan += scanSize
1078	}
1079
1080	// Ensure that the stores above that initialize x to
1081	// type-safe memory and set the heap bits occur before
1082	// the caller can make x observable to the garbage
1083	// collector. Otherwise, on weakly ordered machines,
1084	// the garbage collector could follow a pointer to x,
1085	// but see uninitialized memory or stale heap bits.
1086	publicationBarrier()
1087
1088	// Allocate black during GC.
1089	// All slots hold nil so no scanning is needed.
1090	// This may be racing with GC so do it atomically if there can be
1091	// a race marking the bit.
1092	if gcphase != _GCoff {
1093		gcmarknewobject(uintptr(x), size, scanSize)
1094	}
1095
1096	if raceenabled {
1097		racemalloc(x, size)
1098	}
1099
1100	if msanenabled {
1101		msanmalloc(x, size)
1102	}
1103
1104	mp.mallocing = 0
1105	releasem(mp)
1106
1107	if debug.allocfreetrace != 0 {
1108		tracealloc(x, size, typ)
1109	}
1110
1111	if rate := MemProfileRate; rate > 0 {
1112		if rate != 1 && size < c.next_sample {
1113			c.next_sample -= size
1114		} else {
1115			mp := acquirem()
1116			profilealloc(mp, x, size)
1117			releasem(mp)
1118		}
1119	}
1120
1121	if assistG != nil {
1122		// Account for internal fragmentation in the assist
1123		// debt now that we know it.
1124		assistG.gcAssistBytes -= int64(size - dataSize)
1125	}
1126
1127	if shouldhelpgc {
1128		if t := (gcTrigger{kind: gcTriggerHeap}); t.test() {
1129			gcStart(t)
1130		}
1131	}
1132
1133	return x
1134}
1135
1136func largeAlloc(size uintptr, needzero bool, noscan bool) *mspan {
1137	// print("largeAlloc size=", size, "\n")
1138
1139	if size+_PageSize < size {
1140		throw("out of memory")
1141	}
1142	npages := size >> _PageShift
1143	if size&_PageMask != 0 {
1144		npages++
1145	}
1146
1147	// Deduct credit for this span allocation and sweep if
1148	// necessary. mHeap_Alloc will also sweep npages, so this only
1149	// pays the debt down to npage pages.
1150	deductSweepCredit(npages*_PageSize, npages)
1151
1152	s := mheap_.alloc(npages, makeSpanClass(0, noscan), needzero)
1153	if s == nil {
1154		throw("out of memory")
1155	}
1156	s.limit = s.base() + size
1157	heapBitsForAddr(s.base()).initSpan(s)
1158	return s
1159}
1160
1161// implementation of new builtin
1162// compiler (both frontend and SSA backend) knows the signature
1163// of this function
1164func newobject(typ *_type) unsafe.Pointer {
1165	return mallocgc(typ.size, typ, true)
1166}
1167
1168//go:linkname reflect_unsafe_New reflect.unsafe_New
1169func reflect_unsafe_New(typ *_type) unsafe.Pointer {
1170	return mallocgc(typ.size, typ, true)
1171}
1172
1173//go:linkname reflectlite_unsafe_New internal/reflectlite.unsafe_New
1174func reflectlite_unsafe_New(typ *_type) unsafe.Pointer {
1175	return mallocgc(typ.size, typ, true)
1176}
1177
1178// newarray allocates an array of n elements of type typ.
1179func newarray(typ *_type, n int) unsafe.Pointer {
1180	if n == 1 {
1181		return mallocgc(typ.size, typ, true)
1182	}
1183	mem, overflow := math.MulUintptr(typ.size, uintptr(n))
1184	if overflow || mem > maxAlloc || n < 0 {
1185		panic(plainError("runtime: allocation size out of range"))
1186	}
1187	return mallocgc(mem, typ, true)
1188}
1189
1190//go:linkname reflect_unsafe_NewArray reflect.unsafe_NewArray
1191func reflect_unsafe_NewArray(typ *_type, n int) unsafe.Pointer {
1192	return newarray(typ, n)
1193}
1194
1195func profilealloc(mp *m, x unsafe.Pointer, size uintptr) {
1196	mp.mcache.next_sample = nextSample()
1197	mProf_Malloc(x, size)
1198}
1199
1200// nextSample returns the next sampling point for heap profiling. The goal is
1201// to sample allocations on average every MemProfileRate bytes, but with a
1202// completely random distribution over the allocation timeline; this
1203// corresponds to a Poisson process with parameter MemProfileRate. In Poisson
1204// processes, the distance between two samples follows the exponential
1205// distribution (exp(MemProfileRate)), so the best return value is a random
1206// number taken from an exponential distribution whose mean is MemProfileRate.
1207func nextSample() uintptr {
1208	if GOOS == "plan9" {
1209		// Plan 9 doesn't support floating point in note handler.
1210		if g := getg(); g == g.m.gsignal {
1211			return nextSampleNoFP()
1212		}
1213	}
1214
1215	return uintptr(fastexprand(MemProfileRate))
1216}
1217
1218// fastexprand returns a random number from an exponential distribution with
1219// the specified mean.
1220func fastexprand(mean int) int32 {
1221	// Avoid overflow. Maximum possible step is
1222	// -ln(1/(1<<randomBitCount)) * mean, approximately 20 * mean.
1223	switch {
1224	case mean > 0x7000000:
1225		mean = 0x7000000
1226	case mean == 0:
1227		return 0
1228	}
1229
1230	// Take a random sample of the exponential distribution exp(-mean*x).
1231	// The probability distribution function is mean*exp(-mean*x), so the CDF is
1232	// p = 1 - exp(-mean*x), so
1233	// q = 1 - p == exp(-mean*x)
1234	// log_e(q) = -mean*x
1235	// -log_e(q)/mean = x
1236	// x = -log_e(q) * mean
1237	// x = log_2(q) * (-log_e(2)) * mean    ; Using log_2 for efficiency
1238	const randomBitCount = 26
1239	q := fastrand()%(1<<randomBitCount) + 1
1240	qlog := fastlog2(float64(q)) - randomBitCount
1241	if qlog > 0 {
1242		qlog = 0
1243	}
1244	const minusLog2 = -0.6931471805599453 // -ln(2)
1245	return int32(qlog*(minusLog2*float64(mean))) + 1
1246}
1247
1248// nextSampleNoFP is similar to nextSample, but uses older,
1249// simpler code to avoid floating point.
1250func nextSampleNoFP() uintptr {
1251	// Set first allocation sample size.
1252	rate := MemProfileRate
1253	if rate > 0x3fffffff { // make 2*rate not overflow
1254		rate = 0x3fffffff
1255	}
1256	if rate != 0 {
1257		return uintptr(fastrand() % uint32(2*rate))
1258	}
1259	return 0
1260}
1261
1262type persistentAlloc struct {
1263	base *notInHeap
1264	off  uintptr
1265}
1266
1267var globalAlloc struct {
1268	mutex
1269	persistentAlloc
1270}
1271
1272// persistentChunkSize is the number of bytes we allocate when we grow
1273// a persistentAlloc.
1274const persistentChunkSize = 256 << 10
1275
1276// persistentChunks is a list of all the persistent chunks we have
1277// allocated. The list is maintained through the first word in the
1278// persistent chunk. This is updated atomically.
1279var persistentChunks *notInHeap
1280
1281// Wrapper around sysAlloc that can allocate small chunks.
1282// There is no associated free operation.
1283// Intended for things like function/type/debug-related persistent data.
1284// If align is 0, uses default align (currently 8).
1285// The returned memory will be zeroed.
1286//
1287// Consider marking persistentalloc'd types go:notinheap.
1288func persistentalloc(size, align uintptr, sysStat *uint64) unsafe.Pointer {
1289	var p *notInHeap
1290	systemstack(func() {
1291		p = persistentalloc1(size, align, sysStat)
1292	})
1293	return unsafe.Pointer(p)
1294}
1295
1296// Must run on system stack because stack growth can (re)invoke it.
1297// See issue 9174.
1298//go:systemstack
1299func persistentalloc1(size, align uintptr, sysStat *uint64) *notInHeap {
1300	const (
1301		maxBlock = 64 << 10 // VM reservation granularity is 64K on windows
1302	)
1303
1304	if size == 0 {
1305		throw("persistentalloc: size == 0")
1306	}
1307	if align != 0 {
1308		if align&(align-1) != 0 {
1309			throw("persistentalloc: align is not a power of 2")
1310		}
1311		if align > _PageSize {
1312			throw("persistentalloc: align is too large")
1313		}
1314	} else {
1315		align = 8
1316	}
1317
1318	if size >= maxBlock {
1319		return (*notInHeap)(sysAlloc(size, sysStat))
1320	}
1321
1322	mp := acquirem()
1323	var persistent *persistentAlloc
1324	if mp != nil && mp.p != 0 {
1325		persistent = &mp.p.ptr().palloc
1326	} else {
1327		lock(&globalAlloc.mutex)
1328		persistent = &globalAlloc.persistentAlloc
1329	}
1330	persistent.off = alignUp(persistent.off, align)
1331	if persistent.off+size > persistentChunkSize || persistent.base == nil {
1332		persistent.base = (*notInHeap)(sysAlloc(persistentChunkSize, &memstats.other_sys))
1333		if persistent.base == nil {
1334			if persistent == &globalAlloc.persistentAlloc {
1335				unlock(&globalAlloc.mutex)
1336			}
1337			throw("runtime: cannot allocate memory")
1338		}
1339
1340		// Add the new chunk to the persistentChunks list.
1341		for {
1342			chunks := uintptr(unsafe.Pointer(persistentChunks))
1343			*(*uintptr)(unsafe.Pointer(persistent.base)) = chunks
1344			if atomic.Casuintptr((*uintptr)(unsafe.Pointer(&persistentChunks)), chunks, uintptr(unsafe.Pointer(persistent.base))) {
1345				break
1346			}
1347		}
1348		persistent.off = alignUp(sys.PtrSize, align)
1349	}
1350	p := persistent.base.add(persistent.off)
1351	persistent.off += size
1352	releasem(mp)
1353	if persistent == &globalAlloc.persistentAlloc {
1354		unlock(&globalAlloc.mutex)
1355	}
1356
1357	if sysStat != &memstats.other_sys {
1358		mSysStatInc(sysStat, size)
1359		mSysStatDec(&memstats.other_sys, size)
1360	}
1361	return p
1362}
1363
1364// inPersistentAlloc reports whether p points to memory allocated by
1365// persistentalloc. This must be nosplit because it is called by the
1366// cgo checker code, which is called by the write barrier code.
1367//go:nosplit
1368func inPersistentAlloc(p uintptr) bool {
1369	chunk := atomic.Loaduintptr((*uintptr)(unsafe.Pointer(&persistentChunks)))
1370	for chunk != 0 {
1371		if p >= chunk && p < chunk+persistentChunkSize {
1372			return true
1373		}
1374		chunk = *(*uintptr)(unsafe.Pointer(chunk))
1375	}
1376	return false
1377}
1378
1379// linearAlloc is a simple linear allocator that pre-reserves a region
1380// of memory and then maps that region into the Ready state as needed. The
1381// caller is responsible for locking.
1382type linearAlloc struct {
1383	next   uintptr // next free byte
1384	mapped uintptr // one byte past end of mapped space
1385	end    uintptr // end of reserved space
1386}
1387
1388func (l *linearAlloc) init(base, size uintptr) {
1389	l.next, l.mapped = base, base
1390	l.end = base + size
1391}
1392
1393func (l *linearAlloc) alloc(size, align uintptr, sysStat *uint64) unsafe.Pointer {
1394	p := alignUp(l.next, align)
1395	if p+size > l.end {
1396		return nil
1397	}
1398	l.next = p + size
1399	if pEnd := alignUp(l.next-1, physPageSize); pEnd > l.mapped {
1400		// Transition from Reserved to Prepared to Ready.
1401		sysMap(unsafe.Pointer(l.mapped), pEnd-l.mapped, sysStat)
1402		sysUsed(unsafe.Pointer(l.mapped), pEnd-l.mapped)
1403		l.mapped = pEnd
1404	}
1405	return unsafe.Pointer(p)
1406}
1407
1408// notInHeap is off-heap memory allocated by a lower-level allocator
1409// like sysAlloc or persistentAlloc.
1410//
1411// In general, it's better to use real types marked as go:notinheap,
1412// but this serves as a generic type for situations where that isn't
1413// possible (like in the allocators).
1414//
1415// TODO: Use this as the return type of sysAlloc, persistentAlloc, etc?
1416//
1417//go:notinheap
1418type notInHeap struct{}
1419
1420func (p *notInHeap) add(bytes uintptr) *notInHeap {
1421	return (*notInHeap)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + bytes))
1422}
1423