1// Copyright 2014 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package runtime
6
7// This file contains the implementation of Go's map type.
8//
9// A map is just a hash table. The data is arranged
10// into an array of buckets. Each bucket contains up to
11// 8 key/elem pairs. The low-order bits of the hash are
12// used to select a bucket. Each bucket contains a few
13// high-order bits of each hash to distinguish the entries
14// within a single bucket.
15//
16// If more than 8 keys hash to a bucket, we chain on
17// extra buckets.
18//
19// When the hashtable grows, we allocate a new array
20// of buckets twice as big. Buckets are incrementally
21// copied from the old bucket array to the new bucket array.
22//
23// Map iterators walk through the array of buckets and
24// return the keys in walk order (bucket #, then overflow
25// chain order, then bucket index).  To maintain iteration
26// semantics, we never move keys within their bucket (if
27// we did, keys might be returned 0 or 2 times).  When
28// growing the table, iterators remain iterating through the
29// old table and must check the new table if the bucket
30// they are iterating through has been moved ("evacuated")
31// to the new table.
32
33// Picking loadFactor: too large and we have lots of overflow
34// buckets, too small and we waste a lot of space. I wrote
35// a simple program to check some stats for different loads:
36// (64-bit, 8 byte keys and elems)
37//  loadFactor    %overflow  bytes/entry     hitprobe    missprobe
38//        4.00         2.13        20.77         3.00         4.00
39//        4.50         4.05        17.30         3.25         4.50
40//        5.00         6.85        14.77         3.50         5.00
41//        5.50        10.55        12.94         3.75         5.50
42//        6.00        15.27        11.67         4.00         6.00
43//        6.50        20.90        10.79         4.25         6.50
44//        7.00        27.14        10.15         4.50         7.00
45//        7.50        34.03         9.73         4.75         7.50
46//        8.00        41.10         9.40         5.00         8.00
47//
48// %overflow   = percentage of buckets which have an overflow bucket
49// bytes/entry = overhead bytes used per key/elem pair
50// hitprobe    = # of entries to check when looking up a present key
51// missprobe   = # of entries to check when looking up an absent key
52//
53// Keep in mind this data is for maximally loaded tables, i.e. just
54// before the table grows. Typical tables will be somewhat less loaded.
55
56import (
57	"runtime/internal/atomic"
58	"runtime/internal/math"
59	"runtime/internal/sys"
60	"unsafe"
61)
62
63const (
64	// Maximum number of key/elem pairs a bucket can hold.
65	bucketCntBits = 3
66	bucketCnt     = 1 << bucketCntBits
67
68	// Maximum average load of a bucket that triggers growth is 6.5.
69	// Represent as loadFactorNum/loadFactDen, to allow integer math.
70	loadFactorNum = 13
71	loadFactorDen = 2
72
73	// Maximum key or elem size to keep inline (instead of mallocing per element).
74	// Must fit in a uint8.
75	// Fast versions cannot handle big elems - the cutoff size for
76	// fast versions in cmd/compile/internal/gc/walk.go must be at most this elem.
77	maxKeySize  = 128
78	maxElemSize = 128
79
80	// data offset should be the size of the bmap struct, but needs to be
81	// aligned correctly. For amd64p32 this means 64-bit alignment
82	// even though pointers are 32 bit.
83	dataOffset = unsafe.Offsetof(struct {
84		b bmap
85		v int64
86	}{}.v)
87
88	// Possible tophash values. We reserve a few possibilities for special marks.
89	// Each bucket (including its overflow buckets, if any) will have either all or none of its
90	// entries in the evacuated* states (except during the evacuate() method, which only happens
91	// during map writes and thus no one else can observe the map during that time).
92	emptyRest      = 0 // this cell is empty, and there are no more non-empty cells at higher indexes or overflows.
93	emptyOne       = 1 // this cell is empty
94	evacuatedX     = 2 // key/elem is valid.  Entry has been evacuated to first half of larger table.
95	evacuatedY     = 3 // same as above, but evacuated to second half of larger table.
96	evacuatedEmpty = 4 // cell is empty, bucket is evacuated.
97	minTopHash     = 5 // minimum tophash for a normal filled cell.
98
99	// flags
100	iterator     = 1 // there may be an iterator using buckets
101	oldIterator  = 2 // there may be an iterator using oldbuckets
102	hashWriting  = 4 // a goroutine is writing to the map
103	sameSizeGrow = 8 // the current map growth is to a new map of the same size
104
105	// sentinel bucket ID for iterator checks
106	noCheck = 1<<(8*sys.PtrSize) - 1
107)
108
109// isEmpty reports whether the given tophash array entry represents an empty bucket entry.
110func isEmpty(x uint8) bool {
111	return x <= emptyOne
112}
113
114// A header for a Go map.
115type hmap struct {
116	// Note: the format of the hmap is also encoded in cmd/compile/internal/gc/reflect.go.
117	// Make sure this stays in sync with the compiler's definition.
118	count     int // # live cells == size of map.  Must be first (used by len() builtin)
119	flags     uint8
120	B         uint8  // log_2 of # of buckets (can hold up to loadFactor * 2^B items)
121	noverflow uint16 // approximate number of overflow buckets; see incrnoverflow for details
122	hash0     uint32 // hash seed
123
124	buckets    unsafe.Pointer // array of 2^B Buckets. may be nil if count==0.
125	oldbuckets unsafe.Pointer // previous bucket array of half the size, non-nil only when growing
126	nevacuate  uintptr        // progress counter for evacuation (buckets less than this have been evacuated)
127
128	extra *mapextra // optional fields
129}
130
131// mapextra holds fields that are not present on all maps.
132type mapextra struct {
133	// If both key and elem do not contain pointers and are inline, then we mark bucket
134	// type as containing no pointers. This avoids scanning such maps.
135	// However, bmap.overflow is a pointer. In order to keep overflow buckets
136	// alive, we store pointers to all overflow buckets in hmap.extra.overflow and hmap.extra.oldoverflow.
137	// overflow and oldoverflow are only used if key and elem do not contain pointers.
138	// overflow contains overflow buckets for hmap.buckets.
139	// oldoverflow contains overflow buckets for hmap.oldbuckets.
140	// The indirection allows to store a pointer to the slice in hiter.
141	overflow    *[]*bmap
142	oldoverflow *[]*bmap
143
144	// nextOverflow holds a pointer to a free overflow bucket.
145	nextOverflow *bmap
146}
147
148// A bucket for a Go map.
149type bmap struct {
150	// tophash generally contains the top byte of the hash value
151	// for each key in this bucket. If tophash[0] < minTopHash,
152	// tophash[0] is a bucket evacuation state instead.
153	tophash [bucketCnt]uint8
154	// Followed by bucketCnt keys and then bucketCnt elems.
155	// NOTE: packing all the keys together and then all the elems together makes the
156	// code a bit more complicated than alternating key/elem/key/elem/... but it allows
157	// us to eliminate padding which would be needed for, e.g., map[int64]int8.
158	// Followed by an overflow pointer.
159}
160
161// A hash iteration structure.
162// If you modify hiter, also change cmd/compile/internal/gc/reflect.go to indicate
163// the layout of this structure.
164type hiter struct {
165	key         unsafe.Pointer // Must be in first position.  Write nil to indicate iteration end (see cmd/internal/gc/range.go).
166	elem        unsafe.Pointer // Must be in second position (see cmd/internal/gc/range.go).
167	t           *maptype
168	h           *hmap
169	buckets     unsafe.Pointer // bucket ptr at hash_iter initialization time
170	bptr        *bmap          // current bucket
171	overflow    *[]*bmap       // keeps overflow buckets of hmap.buckets alive
172	oldoverflow *[]*bmap       // keeps overflow buckets of hmap.oldbuckets alive
173	startBucket uintptr        // bucket iteration started at
174	offset      uint8          // intra-bucket offset to start from during iteration (should be big enough to hold bucketCnt-1)
175	wrapped     bool           // already wrapped around from end of bucket array to beginning
176	B           uint8
177	i           uint8
178	bucket      uintptr
179	checkBucket uintptr
180}
181
182// bucketShift returns 1<<b, optimized for code generation.
183func bucketShift(b uint8) uintptr {
184	// Masking the shift amount allows overflow checks to be elided.
185	return uintptr(1) << (b & (sys.PtrSize*8 - 1))
186}
187
188// bucketMask returns 1<<b - 1, optimized for code generation.
189func bucketMask(b uint8) uintptr {
190	return bucketShift(b) - 1
191}
192
193// tophash calculates the tophash value for hash.
194func tophash(hash uintptr) uint8 {
195	top := uint8(hash >> (sys.PtrSize*8 - 8))
196	if top < minTopHash {
197		top += minTopHash
198	}
199	return top
200}
201
202func evacuated(b *bmap) bool {
203	h := b.tophash[0]
204	return h > emptyOne && h < minTopHash
205}
206
207func (b *bmap) overflow(t *maptype) *bmap {
208	return *(**bmap)(add(unsafe.Pointer(b), uintptr(t.bucketsize)-sys.PtrSize))
209}
210
211func (b *bmap) setoverflow(t *maptype, ovf *bmap) {
212	*(**bmap)(add(unsafe.Pointer(b), uintptr(t.bucketsize)-sys.PtrSize)) = ovf
213}
214
215func (b *bmap) keys() unsafe.Pointer {
216	return add(unsafe.Pointer(b), dataOffset)
217}
218
219// incrnoverflow increments h.noverflow.
220// noverflow counts the number of overflow buckets.
221// This is used to trigger same-size map growth.
222// See also tooManyOverflowBuckets.
223// To keep hmap small, noverflow is a uint16.
224// When there are few buckets, noverflow is an exact count.
225// When there are many buckets, noverflow is an approximate count.
226func (h *hmap) incrnoverflow() {
227	// We trigger same-size map growth if there are
228	// as many overflow buckets as buckets.
229	// We need to be able to count to 1<<h.B.
230	if h.B < 16 {
231		h.noverflow++
232		return
233	}
234	// Increment with probability 1/(1<<(h.B-15)).
235	// When we reach 1<<15 - 1, we will have approximately
236	// as many overflow buckets as buckets.
237	mask := uint32(1)<<(h.B-15) - 1
238	// Example: if h.B == 18, then mask == 7,
239	// and fastrand & 7 == 0 with probability 1/8.
240	if fastrand()&mask == 0 {
241		h.noverflow++
242	}
243}
244
245func (h *hmap) newoverflow(t *maptype, b *bmap) *bmap {
246	var ovf *bmap
247	if h.extra != nil && h.extra.nextOverflow != nil {
248		// We have preallocated overflow buckets available.
249		// See makeBucketArray for more details.
250		ovf = h.extra.nextOverflow
251		if ovf.overflow(t) == nil {
252			// We're not at the end of the preallocated overflow buckets. Bump the pointer.
253			h.extra.nextOverflow = (*bmap)(add(unsafe.Pointer(ovf), uintptr(t.bucketsize)))
254		} else {
255			// This is the last preallocated overflow bucket.
256			// Reset the overflow pointer on this bucket,
257			// which was set to a non-nil sentinel value.
258			ovf.setoverflow(t, nil)
259			h.extra.nextOverflow = nil
260		}
261	} else {
262		ovf = (*bmap)(newobject(t.bucket))
263	}
264	h.incrnoverflow()
265	if t.bucket.ptrdata == 0 {
266		h.createOverflow()
267		*h.extra.overflow = append(*h.extra.overflow, ovf)
268	}
269	b.setoverflow(t, ovf)
270	return ovf
271}
272
273func (h *hmap) createOverflow() {
274	if h.extra == nil {
275		h.extra = new(mapextra)
276	}
277	if h.extra.overflow == nil {
278		h.extra.overflow = new([]*bmap)
279	}
280}
281
282func makemap64(t *maptype, hint int64, h *hmap) *hmap {
283	if int64(int(hint)) != hint {
284		hint = 0
285	}
286	return makemap(t, int(hint), h)
287}
288
289// makemap_small implements Go map creation for make(map[k]v) and
290// make(map[k]v, hint) when hint is known to be at most bucketCnt
291// at compile time and the map needs to be allocated on the heap.
292func makemap_small() *hmap {
293	h := new(hmap)
294	h.hash0 = fastrand()
295	return h
296}
297
298// makemap implements Go map creation for make(map[k]v, hint).
299// If the compiler has determined that the map or the first bucket
300// can be created on the stack, h and/or bucket may be non-nil.
301// If h != nil, the map can be created directly in h.
302// If h.buckets != nil, bucket pointed to can be used as the first bucket.
303func makemap(t *maptype, hint int, h *hmap) *hmap {
304	mem, overflow := math.MulUintptr(uintptr(hint), t.bucket.size)
305	if overflow || mem > maxAlloc {
306		hint = 0
307	}
308
309	// initialize Hmap
310	if h == nil {
311		h = new(hmap)
312	}
313	h.hash0 = fastrand()
314
315	// Find the size parameter B which will hold the requested # of elements.
316	// For hint < 0 overLoadFactor returns false since hint < bucketCnt.
317	B := uint8(0)
318	for overLoadFactor(hint, B) {
319		B++
320	}
321	h.B = B
322
323	// allocate initial hash table
324	// if B == 0, the buckets field is allocated lazily later (in mapassign)
325	// If hint is large zeroing this memory could take a while.
326	if h.B != 0 {
327		var nextOverflow *bmap
328		h.buckets, nextOverflow = makeBucketArray(t, h.B, nil)
329		if nextOverflow != nil {
330			h.extra = new(mapextra)
331			h.extra.nextOverflow = nextOverflow
332		}
333	}
334
335	return h
336}
337
338// makeBucketArray initializes a backing array for map buckets.
339// 1<<b is the minimum number of buckets to allocate.
340// dirtyalloc should either be nil or a bucket array previously
341// allocated by makeBucketArray with the same t and b parameters.
342// If dirtyalloc is nil a new backing array will be alloced and
343// otherwise dirtyalloc will be cleared and reused as backing array.
344func makeBucketArray(t *maptype, b uint8, dirtyalloc unsafe.Pointer) (buckets unsafe.Pointer, nextOverflow *bmap) {
345	base := bucketShift(b)
346	nbuckets := base
347	// For small b, overflow buckets are unlikely.
348	// Avoid the overhead of the calculation.
349	if b >= 4 {
350		// Add on the estimated number of overflow buckets
351		// required to insert the median number of elements
352		// used with this value of b.
353		nbuckets += bucketShift(b - 4)
354		sz := t.bucket.size * nbuckets
355		up := roundupsize(sz)
356		if up != sz {
357			nbuckets = up / t.bucket.size
358		}
359	}
360
361	if dirtyalloc == nil {
362		buckets = newarray(t.bucket, int(nbuckets))
363	} else {
364		// dirtyalloc was previously generated by
365		// the above newarray(t.bucket, int(nbuckets))
366		// but may not be empty.
367		buckets = dirtyalloc
368		size := t.bucket.size * nbuckets
369		if t.bucket.ptrdata != 0 {
370			memclrHasPointers(buckets, size)
371		} else {
372			memclrNoHeapPointers(buckets, size)
373		}
374	}
375
376	if base != nbuckets {
377		// We preallocated some overflow buckets.
378		// To keep the overhead of tracking these overflow buckets to a minimum,
379		// we use the convention that if a preallocated overflow bucket's overflow
380		// pointer is nil, then there are more available by bumping the pointer.
381		// We need a safe non-nil pointer for the last overflow bucket; just use buckets.
382		nextOverflow = (*bmap)(add(buckets, base*uintptr(t.bucketsize)))
383		last := (*bmap)(add(buckets, (nbuckets-1)*uintptr(t.bucketsize)))
384		last.setoverflow(t, (*bmap)(buckets))
385	}
386	return buckets, nextOverflow
387}
388
389// mapaccess1 returns a pointer to h[key].  Never returns nil, instead
390// it will return a reference to the zero object for the elem type if
391// the key is not in the map.
392// NOTE: The returned pointer may keep the whole map live, so don't
393// hold onto it for very long.
394func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
395	if raceenabled && h != nil {
396		callerpc := getcallerpc()
397		pc := funcPC(mapaccess1)
398		racereadpc(unsafe.Pointer(h), callerpc, pc)
399		raceReadObjectPC(t.key, key, callerpc, pc)
400	}
401	if msanenabled && h != nil {
402		msanread(key, t.key.size)
403	}
404	if h == nil || h.count == 0 {
405		if t.hashMightPanic() {
406			t.hasher(key, 0) // see issue 23734
407		}
408		return unsafe.Pointer(&zeroVal[0])
409	}
410	if h.flags&hashWriting != 0 {
411		throw("concurrent map read and map write")
412	}
413	hash := t.hasher(key, uintptr(h.hash0))
414	m := bucketMask(h.B)
415	b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
416	if c := h.oldbuckets; c != nil {
417		if !h.sameSizeGrow() {
418			// There used to be half as many buckets; mask down one more power of two.
419			m >>= 1
420		}
421		oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize)))
422		if !evacuated(oldb) {
423			b = oldb
424		}
425	}
426	top := tophash(hash)
427bucketloop:
428	for ; b != nil; b = b.overflow(t) {
429		for i := uintptr(0); i < bucketCnt; i++ {
430			if b.tophash[i] != top {
431				if b.tophash[i] == emptyRest {
432					break bucketloop
433				}
434				continue
435			}
436			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
437			if t.indirectkey() {
438				k = *((*unsafe.Pointer)(k))
439			}
440			if t.key.equal(key, k) {
441				e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
442				if t.indirectelem() {
443					e = *((*unsafe.Pointer)(e))
444				}
445				return e
446			}
447		}
448	}
449	return unsafe.Pointer(&zeroVal[0])
450}
451
452func mapaccess2(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, bool) {
453	if raceenabled && h != nil {
454		callerpc := getcallerpc()
455		pc := funcPC(mapaccess2)
456		racereadpc(unsafe.Pointer(h), callerpc, pc)
457		raceReadObjectPC(t.key, key, callerpc, pc)
458	}
459	if msanenabled && h != nil {
460		msanread(key, t.key.size)
461	}
462	if h == nil || h.count == 0 {
463		if t.hashMightPanic() {
464			t.hasher(key, 0) // see issue 23734
465		}
466		return unsafe.Pointer(&zeroVal[0]), false
467	}
468	if h.flags&hashWriting != 0 {
469		throw("concurrent map read and map write")
470	}
471	hash := t.hasher(key, uintptr(h.hash0))
472	m := bucketMask(h.B)
473	b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize)))
474	if c := h.oldbuckets; c != nil {
475		if !h.sameSizeGrow() {
476			// There used to be half as many buckets; mask down one more power of two.
477			m >>= 1
478		}
479		oldb := (*bmap)(unsafe.Pointer(uintptr(c) + (hash&m)*uintptr(t.bucketsize)))
480		if !evacuated(oldb) {
481			b = oldb
482		}
483	}
484	top := tophash(hash)
485bucketloop:
486	for ; b != nil; b = b.overflow(t) {
487		for i := uintptr(0); i < bucketCnt; i++ {
488			if b.tophash[i] != top {
489				if b.tophash[i] == emptyRest {
490					break bucketloop
491				}
492				continue
493			}
494			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
495			if t.indirectkey() {
496				k = *((*unsafe.Pointer)(k))
497			}
498			if t.key.equal(key, k) {
499				e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
500				if t.indirectelem() {
501					e = *((*unsafe.Pointer)(e))
502				}
503				return e, true
504			}
505		}
506	}
507	return unsafe.Pointer(&zeroVal[0]), false
508}
509
510// returns both key and elem. Used by map iterator
511func mapaccessK(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, unsafe.Pointer) {
512	if h == nil || h.count == 0 {
513		return nil, nil
514	}
515	hash := t.hasher(key, uintptr(h.hash0))
516	m := bucketMask(h.B)
517	b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize)))
518	if c := h.oldbuckets; c != nil {
519		if !h.sameSizeGrow() {
520			// There used to be half as many buckets; mask down one more power of two.
521			m >>= 1
522		}
523		oldb := (*bmap)(unsafe.Pointer(uintptr(c) + (hash&m)*uintptr(t.bucketsize)))
524		if !evacuated(oldb) {
525			b = oldb
526		}
527	}
528	top := tophash(hash)
529bucketloop:
530	for ; b != nil; b = b.overflow(t) {
531		for i := uintptr(0); i < bucketCnt; i++ {
532			if b.tophash[i] != top {
533				if b.tophash[i] == emptyRest {
534					break bucketloop
535				}
536				continue
537			}
538			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
539			if t.indirectkey() {
540				k = *((*unsafe.Pointer)(k))
541			}
542			if t.key.equal(key, k) {
543				e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
544				if t.indirectelem() {
545					e = *((*unsafe.Pointer)(e))
546				}
547				return k, e
548			}
549		}
550	}
551	return nil, nil
552}
553
554func mapaccess1_fat(t *maptype, h *hmap, key, zero unsafe.Pointer) unsafe.Pointer {
555	e := mapaccess1(t, h, key)
556	if e == unsafe.Pointer(&zeroVal[0]) {
557		return zero
558	}
559	return e
560}
561
562func mapaccess2_fat(t *maptype, h *hmap, key, zero unsafe.Pointer) (unsafe.Pointer, bool) {
563	e := mapaccess1(t, h, key)
564	if e == unsafe.Pointer(&zeroVal[0]) {
565		return zero, false
566	}
567	return e, true
568}
569
570// Like mapaccess, but allocates a slot for the key if it is not present in the map.
571func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
572	if h == nil {
573		panic(plainError("assignment to entry in nil map"))
574	}
575	if raceenabled {
576		callerpc := getcallerpc()
577		pc := funcPC(mapassign)
578		racewritepc(unsafe.Pointer(h), callerpc, pc)
579		raceReadObjectPC(t.key, key, callerpc, pc)
580	}
581	if msanenabled {
582		msanread(key, t.key.size)
583	}
584	if h.flags&hashWriting != 0 {
585		throw("concurrent map writes")
586	}
587	hash := t.hasher(key, uintptr(h.hash0))
588
589	// Set hashWriting after calling t.hasher, since t.hasher may panic,
590	// in which case we have not actually done a write.
591	h.flags ^= hashWriting
592
593	if h.buckets == nil {
594		h.buckets = newobject(t.bucket) // newarray(t.bucket, 1)
595	}
596
597again:
598	bucket := hash & bucketMask(h.B)
599	if h.growing() {
600		growWork(t, h, bucket)
601	}
602	b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize)))
603	top := tophash(hash)
604
605	var inserti *uint8
606	var insertk unsafe.Pointer
607	var elem unsafe.Pointer
608bucketloop:
609	for {
610		for i := uintptr(0); i < bucketCnt; i++ {
611			if b.tophash[i] != top {
612				if isEmpty(b.tophash[i]) && inserti == nil {
613					inserti = &b.tophash[i]
614					insertk = add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
615					elem = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
616				}
617				if b.tophash[i] == emptyRest {
618					break bucketloop
619				}
620				continue
621			}
622			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
623			if t.indirectkey() {
624				k = *((*unsafe.Pointer)(k))
625			}
626			if !t.key.equal(key, k) {
627				continue
628			}
629			// already have a mapping for key. Update it.
630			if t.needkeyupdate() {
631				typedmemmove(t.key, k, key)
632			}
633			elem = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
634			goto done
635		}
636		ovf := b.overflow(t)
637		if ovf == nil {
638			break
639		}
640		b = ovf
641	}
642
643	// Did not find mapping for key. Allocate new cell & add entry.
644
645	// If we hit the max load factor or we have too many overflow buckets,
646	// and we're not already in the middle of growing, start growing.
647	if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
648		hashGrow(t, h)
649		goto again // Growing the table invalidates everything, so try again
650	}
651
652	if inserti == nil {
653		// all current buckets are full, allocate a new one.
654		newb := h.newoverflow(t, b)
655		inserti = &newb.tophash[0]
656		insertk = add(unsafe.Pointer(newb), dataOffset)
657		elem = add(insertk, bucketCnt*uintptr(t.keysize))
658	}
659
660	// store new key/elem at insert position
661	if t.indirectkey() {
662		kmem := newobject(t.key)
663		*(*unsafe.Pointer)(insertk) = kmem
664		insertk = kmem
665	}
666	if t.indirectelem() {
667		vmem := newobject(t.elem)
668		*(*unsafe.Pointer)(elem) = vmem
669	}
670	typedmemmove(t.key, insertk, key)
671	*inserti = top
672	h.count++
673
674done:
675	if h.flags&hashWriting == 0 {
676		throw("concurrent map writes")
677	}
678	h.flags &^= hashWriting
679	if t.indirectelem() {
680		elem = *((*unsafe.Pointer)(elem))
681	}
682	return elem
683}
684
685func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
686	if raceenabled && h != nil {
687		callerpc := getcallerpc()
688		pc := funcPC(mapdelete)
689		racewritepc(unsafe.Pointer(h), callerpc, pc)
690		raceReadObjectPC(t.key, key, callerpc, pc)
691	}
692	if msanenabled && h != nil {
693		msanread(key, t.key.size)
694	}
695	if h == nil || h.count == 0 {
696		if t.hashMightPanic() {
697			t.hasher(key, 0) // see issue 23734
698		}
699		return
700	}
701	if h.flags&hashWriting != 0 {
702		throw("concurrent map writes")
703	}
704
705	hash := t.hasher(key, uintptr(h.hash0))
706
707	// Set hashWriting after calling t.hasher, since t.hasher may panic,
708	// in which case we have not actually done a write (delete).
709	h.flags ^= hashWriting
710
711	bucket := hash & bucketMask(h.B)
712	if h.growing() {
713		growWork(t, h, bucket)
714	}
715	b := (*bmap)(add(h.buckets, bucket*uintptr(t.bucketsize)))
716	bOrig := b
717	top := tophash(hash)
718search:
719	for ; b != nil; b = b.overflow(t) {
720		for i := uintptr(0); i < bucketCnt; i++ {
721			if b.tophash[i] != top {
722				if b.tophash[i] == emptyRest {
723					break search
724				}
725				continue
726			}
727			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
728			k2 := k
729			if t.indirectkey() {
730				k2 = *((*unsafe.Pointer)(k2))
731			}
732			if !t.key.equal(key, k2) {
733				continue
734			}
735			// Only clear key if there are pointers in it.
736			if t.indirectkey() {
737				*(*unsafe.Pointer)(k) = nil
738			} else if t.key.ptrdata != 0 {
739				memclrHasPointers(k, t.key.size)
740			}
741			e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
742			if t.indirectelem() {
743				*(*unsafe.Pointer)(e) = nil
744			} else if t.elem.ptrdata != 0 {
745				memclrHasPointers(e, t.elem.size)
746			} else {
747				memclrNoHeapPointers(e, t.elem.size)
748			}
749			b.tophash[i] = emptyOne
750			// If the bucket now ends in a bunch of emptyOne states,
751			// change those to emptyRest states.
752			// It would be nice to make this a separate function, but
753			// for loops are not currently inlineable.
754			if i == bucketCnt-1 {
755				if b.overflow(t) != nil && b.overflow(t).tophash[0] != emptyRest {
756					goto notLast
757				}
758			} else {
759				if b.tophash[i+1] != emptyRest {
760					goto notLast
761				}
762			}
763			for {
764				b.tophash[i] = emptyRest
765				if i == 0 {
766					if b == bOrig {
767						break // beginning of initial bucket, we're done.
768					}
769					// Find previous bucket, continue at its last entry.
770					c := b
771					for b = bOrig; b.overflow(t) != c; b = b.overflow(t) {
772					}
773					i = bucketCnt - 1
774				} else {
775					i--
776				}
777				if b.tophash[i] != emptyOne {
778					break
779				}
780			}
781		notLast:
782			h.count--
783			break search
784		}
785	}
786
787	if h.flags&hashWriting == 0 {
788		throw("concurrent map writes")
789	}
790	h.flags &^= hashWriting
791}
792
793// mapiterinit initializes the hiter struct used for ranging over maps.
794// The hiter struct pointed to by 'it' is allocated on the stack
795// by the compilers order pass or on the heap by reflect_mapiterinit.
796// Both need to have zeroed hiter since the struct contains pointers.
797func mapiterinit(t *maptype, h *hmap, it *hiter) {
798	if raceenabled && h != nil {
799		callerpc := getcallerpc()
800		racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiterinit))
801	}
802
803	if h == nil || h.count == 0 {
804		return
805	}
806
807	if unsafe.Sizeof(hiter{})/sys.PtrSize != 12 {
808		throw("hash_iter size incorrect") // see cmd/compile/internal/gc/reflect.go
809	}
810	it.t = t
811	it.h = h
812
813	// grab snapshot of bucket state
814	it.B = h.B
815	it.buckets = h.buckets
816	if t.bucket.ptrdata == 0 {
817		// Allocate the current slice and remember pointers to both current and old.
818		// This preserves all relevant overflow buckets alive even if
819		// the table grows and/or overflow buckets are added to the table
820		// while we are iterating.
821		h.createOverflow()
822		it.overflow = h.extra.overflow
823		it.oldoverflow = h.extra.oldoverflow
824	}
825
826	// decide where to start
827	r := uintptr(fastrand())
828	if h.B > 31-bucketCntBits {
829		r += uintptr(fastrand()) << 31
830	}
831	it.startBucket = r & bucketMask(h.B)
832	it.offset = uint8(r >> h.B & (bucketCnt - 1))
833
834	// iterator state
835	it.bucket = it.startBucket
836
837	// Remember we have an iterator.
838	// Can run concurrently with another mapiterinit().
839	if old := h.flags; old&(iterator|oldIterator) != iterator|oldIterator {
840		atomic.Or8(&h.flags, iterator|oldIterator)
841	}
842
843	mapiternext(it)
844}
845
846func mapiternext(it *hiter) {
847	h := it.h
848	if raceenabled {
849		callerpc := getcallerpc()
850		racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiternext))
851	}
852	if h.flags&hashWriting != 0 {
853		throw("concurrent map iteration and map write")
854	}
855	t := it.t
856	bucket := it.bucket
857	b := it.bptr
858	i := it.i
859	checkBucket := it.checkBucket
860
861next:
862	if b == nil {
863		if bucket == it.startBucket && it.wrapped {
864			// end of iteration
865			it.key = nil
866			it.elem = nil
867			return
868		}
869		if h.growing() && it.B == h.B {
870			// Iterator was started in the middle of a grow, and the grow isn't done yet.
871			// If the bucket we're looking at hasn't been filled in yet (i.e. the old
872			// bucket hasn't been evacuated) then we need to iterate through the old
873			// bucket and only return the ones that will be migrated to this bucket.
874			oldbucket := bucket & it.h.oldbucketmask()
875			b = (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
876			if !evacuated(b) {
877				checkBucket = bucket
878			} else {
879				b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize)))
880				checkBucket = noCheck
881			}
882		} else {
883			b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize)))
884			checkBucket = noCheck
885		}
886		bucket++
887		if bucket == bucketShift(it.B) {
888			bucket = 0
889			it.wrapped = true
890		}
891		i = 0
892	}
893	for ; i < bucketCnt; i++ {
894		offi := (i + it.offset) & (bucketCnt - 1)
895		if isEmpty(b.tophash[offi]) || b.tophash[offi] == evacuatedEmpty {
896			// TODO: emptyRest is hard to use here, as we start iterating
897			// in the middle of a bucket. It's feasible, just tricky.
898			continue
899		}
900		k := add(unsafe.Pointer(b), dataOffset+uintptr(offi)*uintptr(t.keysize))
901		if t.indirectkey() {
902			k = *((*unsafe.Pointer)(k))
903		}
904		e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+uintptr(offi)*uintptr(t.elemsize))
905		if checkBucket != noCheck && !h.sameSizeGrow() {
906			// Special case: iterator was started during a grow to a larger size
907			// and the grow is not done yet. We're working on a bucket whose
908			// oldbucket has not been evacuated yet. Or at least, it wasn't
909			// evacuated when we started the bucket. So we're iterating
910			// through the oldbucket, skipping any keys that will go
911			// to the other new bucket (each oldbucket expands to two
912			// buckets during a grow).
913			if t.reflexivekey() || t.key.equal(k, k) {
914				// If the item in the oldbucket is not destined for
915				// the current new bucket in the iteration, skip it.
916				hash := t.hasher(k, uintptr(h.hash0))
917				if hash&bucketMask(it.B) != checkBucket {
918					continue
919				}
920			} else {
921				// Hash isn't repeatable if k != k (NaNs).  We need a
922				// repeatable and randomish choice of which direction
923				// to send NaNs during evacuation. We'll use the low
924				// bit of tophash to decide which way NaNs go.
925				// NOTE: this case is why we need two evacuate tophash
926				// values, evacuatedX and evacuatedY, that differ in
927				// their low bit.
928				if checkBucket>>(it.B-1) != uintptr(b.tophash[offi]&1) {
929					continue
930				}
931			}
932		}
933		if (b.tophash[offi] != evacuatedX && b.tophash[offi] != evacuatedY) ||
934			!(t.reflexivekey() || t.key.equal(k, k)) {
935			// This is the golden data, we can return it.
936			// OR
937			// key!=key, so the entry can't be deleted or updated, so we can just return it.
938			// That's lucky for us because when key!=key we can't look it up successfully.
939			it.key = k
940			if t.indirectelem() {
941				e = *((*unsafe.Pointer)(e))
942			}
943			it.elem = e
944		} else {
945			// The hash table has grown since the iterator was started.
946			// The golden data for this key is now somewhere else.
947			// Check the current hash table for the data.
948			// This code handles the case where the key
949			// has been deleted, updated, or deleted and reinserted.
950			// NOTE: we need to regrab the key as it has potentially been
951			// updated to an equal() but not identical key (e.g. +0.0 vs -0.0).
952			rk, re := mapaccessK(t, h, k)
953			if rk == nil {
954				continue // key has been deleted
955			}
956			it.key = rk
957			it.elem = re
958		}
959		it.bucket = bucket
960		if it.bptr != b { // avoid unnecessary write barrier; see issue 14921
961			it.bptr = b
962		}
963		it.i = i + 1
964		it.checkBucket = checkBucket
965		return
966	}
967	b = b.overflow(t)
968	i = 0
969	goto next
970}
971
972// mapclear deletes all keys from a map.
973func mapclear(t *maptype, h *hmap) {
974	if raceenabled && h != nil {
975		callerpc := getcallerpc()
976		pc := funcPC(mapclear)
977		racewritepc(unsafe.Pointer(h), callerpc, pc)
978	}
979
980	if h == nil || h.count == 0 {
981		return
982	}
983
984	if h.flags&hashWriting != 0 {
985		throw("concurrent map writes")
986	}
987
988	h.flags ^= hashWriting
989
990	h.flags &^= sameSizeGrow
991	h.oldbuckets = nil
992	h.nevacuate = 0
993	h.noverflow = 0
994	h.count = 0
995
996	// Keep the mapextra allocation but clear any extra information.
997	if h.extra != nil {
998		*h.extra = mapextra{}
999	}
1000
1001	// makeBucketArray clears the memory pointed to by h.buckets
1002	// and recovers any overflow buckets by generating them
1003	// as if h.buckets was newly alloced.
1004	_, nextOverflow := makeBucketArray(t, h.B, h.buckets)
1005	if nextOverflow != nil {
1006		// If overflow buckets are created then h.extra
1007		// will have been allocated during initial bucket creation.
1008		h.extra.nextOverflow = nextOverflow
1009	}
1010
1011	if h.flags&hashWriting == 0 {
1012		throw("concurrent map writes")
1013	}
1014	h.flags &^= hashWriting
1015}
1016
1017func hashGrow(t *maptype, h *hmap) {
1018	// If we've hit the load factor, get bigger.
1019	// Otherwise, there are too many overflow buckets,
1020	// so keep the same number of buckets and "grow" laterally.
1021	bigger := uint8(1)
1022	if !overLoadFactor(h.count+1, h.B) {
1023		bigger = 0
1024		h.flags |= sameSizeGrow
1025	}
1026	oldbuckets := h.buckets
1027	newbuckets, nextOverflow := makeBucketArray(t, h.B+bigger, nil)
1028
1029	flags := h.flags &^ (iterator | oldIterator)
1030	if h.flags&iterator != 0 {
1031		flags |= oldIterator
1032	}
1033	// commit the grow (atomic wrt gc)
1034	h.B += bigger
1035	h.flags = flags
1036	h.oldbuckets = oldbuckets
1037	h.buckets = newbuckets
1038	h.nevacuate = 0
1039	h.noverflow = 0
1040
1041	if h.extra != nil && h.extra.overflow != nil {
1042		// Promote current overflow buckets to the old generation.
1043		if h.extra.oldoverflow != nil {
1044			throw("oldoverflow is not nil")
1045		}
1046		h.extra.oldoverflow = h.extra.overflow
1047		h.extra.overflow = nil
1048	}
1049	if nextOverflow != nil {
1050		if h.extra == nil {
1051			h.extra = new(mapextra)
1052		}
1053		h.extra.nextOverflow = nextOverflow
1054	}
1055
1056	// the actual copying of the hash table data is done incrementally
1057	// by growWork() and evacuate().
1058}
1059
1060// overLoadFactor reports whether count items placed in 1<<B buckets is over loadFactor.
1061func overLoadFactor(count int, B uint8) bool {
1062	return count > bucketCnt && uintptr(count) > loadFactorNum*(bucketShift(B)/loadFactorDen)
1063}
1064
1065// tooManyOverflowBuckets reports whether noverflow buckets is too many for a map with 1<<B buckets.
1066// Note that most of these overflow buckets must be in sparse use;
1067// if use was dense, then we'd have already triggered regular map growth.
1068func tooManyOverflowBuckets(noverflow uint16, B uint8) bool {
1069	// If the threshold is too low, we do extraneous work.
1070	// If the threshold is too high, maps that grow and shrink can hold on to lots of unused memory.
1071	// "too many" means (approximately) as many overflow buckets as regular buckets.
1072	// See incrnoverflow for more details.
1073	if B > 15 {
1074		B = 15
1075	}
1076	// The compiler doesn't see here that B < 16; mask B to generate shorter shift code.
1077	return noverflow >= uint16(1)<<(B&15)
1078}
1079
1080// growing reports whether h is growing. The growth may be to the same size or bigger.
1081func (h *hmap) growing() bool {
1082	return h.oldbuckets != nil
1083}
1084
1085// sameSizeGrow reports whether the current growth is to a map of the same size.
1086func (h *hmap) sameSizeGrow() bool {
1087	return h.flags&sameSizeGrow != 0
1088}
1089
1090// noldbuckets calculates the number of buckets prior to the current map growth.
1091func (h *hmap) noldbuckets() uintptr {
1092	oldB := h.B
1093	if !h.sameSizeGrow() {
1094		oldB--
1095	}
1096	return bucketShift(oldB)
1097}
1098
1099// oldbucketmask provides a mask that can be applied to calculate n % noldbuckets().
1100func (h *hmap) oldbucketmask() uintptr {
1101	return h.noldbuckets() - 1
1102}
1103
1104func growWork(t *maptype, h *hmap, bucket uintptr) {
1105	// make sure we evacuate the oldbucket corresponding
1106	// to the bucket we're about to use
1107	evacuate(t, h, bucket&h.oldbucketmask())
1108
1109	// evacuate one more oldbucket to make progress on growing
1110	if h.growing() {
1111		evacuate(t, h, h.nevacuate)
1112	}
1113}
1114
1115func bucketEvacuated(t *maptype, h *hmap, bucket uintptr) bool {
1116	b := (*bmap)(add(h.oldbuckets, bucket*uintptr(t.bucketsize)))
1117	return evacuated(b)
1118}
1119
1120// evacDst is an evacuation destination.
1121type evacDst struct {
1122	b *bmap          // current destination bucket
1123	i int            // key/elem index into b
1124	k unsafe.Pointer // pointer to current key storage
1125	e unsafe.Pointer // pointer to current elem storage
1126}
1127
1128func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
1129	b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
1130	newbit := h.noldbuckets()
1131	if !evacuated(b) {
1132		// TODO: reuse overflow buckets instead of using new ones, if there
1133		// is no iterator using the old buckets.  (If !oldIterator.)
1134
1135		// xy contains the x and y (low and high) evacuation destinations.
1136		var xy [2]evacDst
1137		x := &xy[0]
1138		x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize)))
1139		x.k = add(unsafe.Pointer(x.b), dataOffset)
1140		x.e = add(x.k, bucketCnt*uintptr(t.keysize))
1141
1142		if !h.sameSizeGrow() {
1143			// Only calculate y pointers if we're growing bigger.
1144			// Otherwise GC can see bad pointers.
1145			y := &xy[1]
1146			y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize)))
1147			y.k = add(unsafe.Pointer(y.b), dataOffset)
1148			y.e = add(y.k, bucketCnt*uintptr(t.keysize))
1149		}
1150
1151		for ; b != nil; b = b.overflow(t) {
1152			k := add(unsafe.Pointer(b), dataOffset)
1153			e := add(k, bucketCnt*uintptr(t.keysize))
1154			for i := 0; i < bucketCnt; i, k, e = i+1, add(k, uintptr(t.keysize)), add(e, uintptr(t.elemsize)) {
1155				top := b.tophash[i]
1156				if isEmpty(top) {
1157					b.tophash[i] = evacuatedEmpty
1158					continue
1159				}
1160				if top < minTopHash {
1161					throw("bad map state")
1162				}
1163				k2 := k
1164				if t.indirectkey() {
1165					k2 = *((*unsafe.Pointer)(k2))
1166				}
1167				var useY uint8
1168				if !h.sameSizeGrow() {
1169					// Compute hash to make our evacuation decision (whether we need
1170					// to send this key/elem to bucket x or bucket y).
1171					hash := t.hasher(k2, uintptr(h.hash0))
1172					if h.flags&iterator != 0 && !t.reflexivekey() && !t.key.equal(k2, k2) {
1173						// If key != key (NaNs), then the hash could be (and probably
1174						// will be) entirely different from the old hash. Moreover,
1175						// it isn't reproducible. Reproducibility is required in the
1176						// presence of iterators, as our evacuation decision must
1177						// match whatever decision the iterator made.
1178						// Fortunately, we have the freedom to send these keys either
1179						// way. Also, tophash is meaningless for these kinds of keys.
1180						// We let the low bit of tophash drive the evacuation decision.
1181						// We recompute a new random tophash for the next level so
1182						// these keys will get evenly distributed across all buckets
1183						// after multiple grows.
1184						useY = top & 1
1185						top = tophash(hash)
1186					} else {
1187						if hash&newbit != 0 {
1188							useY = 1
1189						}
1190					}
1191				}
1192
1193				if evacuatedX+1 != evacuatedY || evacuatedX^1 != evacuatedY {
1194					throw("bad evacuatedN")
1195				}
1196
1197				b.tophash[i] = evacuatedX + useY // evacuatedX + 1 == evacuatedY
1198				dst := &xy[useY]                 // evacuation destination
1199
1200				if dst.i == bucketCnt {
1201					dst.b = h.newoverflow(t, dst.b)
1202					dst.i = 0
1203					dst.k = add(unsafe.Pointer(dst.b), dataOffset)
1204					dst.e = add(dst.k, bucketCnt*uintptr(t.keysize))
1205				}
1206				dst.b.tophash[dst.i&(bucketCnt-1)] = top // mask dst.i as an optimization, to avoid a bounds check
1207				if t.indirectkey() {
1208					*(*unsafe.Pointer)(dst.k) = k2 // copy pointer
1209				} else {
1210					typedmemmove(t.key, dst.k, k) // copy elem
1211				}
1212				if t.indirectelem() {
1213					*(*unsafe.Pointer)(dst.e) = *(*unsafe.Pointer)(e)
1214				} else {
1215					typedmemmove(t.elem, dst.e, e)
1216				}
1217				dst.i++
1218				// These updates might push these pointers past the end of the
1219				// key or elem arrays.  That's ok, as we have the overflow pointer
1220				// at the end of the bucket to protect against pointing past the
1221				// end of the bucket.
1222				dst.k = add(dst.k, uintptr(t.keysize))
1223				dst.e = add(dst.e, uintptr(t.elemsize))
1224			}
1225		}
1226		// Unlink the overflow buckets & clear key/elem to help GC.
1227		if h.flags&oldIterator == 0 && t.bucket.ptrdata != 0 {
1228			b := add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))
1229			// Preserve b.tophash because the evacuation
1230			// state is maintained there.
1231			ptr := add(b, dataOffset)
1232			n := uintptr(t.bucketsize) - dataOffset
1233			memclrHasPointers(ptr, n)
1234		}
1235	}
1236
1237	if oldbucket == h.nevacuate {
1238		advanceEvacuationMark(h, t, newbit)
1239	}
1240}
1241
1242func advanceEvacuationMark(h *hmap, t *maptype, newbit uintptr) {
1243	h.nevacuate++
1244	// Experiments suggest that 1024 is overkill by at least an order of magnitude.
1245	// Put it in there as a safeguard anyway, to ensure O(1) behavior.
1246	stop := h.nevacuate + 1024
1247	if stop > newbit {
1248		stop = newbit
1249	}
1250	for h.nevacuate != stop && bucketEvacuated(t, h, h.nevacuate) {
1251		h.nevacuate++
1252	}
1253	if h.nevacuate == newbit { // newbit == # of oldbuckets
1254		// Growing is all done. Free old main bucket array.
1255		h.oldbuckets = nil
1256		// Can discard old overflow buckets as well.
1257		// If they are still referenced by an iterator,
1258		// then the iterator holds a pointers to the slice.
1259		if h.extra != nil {
1260			h.extra.oldoverflow = nil
1261		}
1262		h.flags &^= sameSizeGrow
1263	}
1264}
1265
1266// Reflect stubs. Called from ../reflect/asm_*.s
1267
1268//go:linkname reflect_makemap reflect.makemap
1269func reflect_makemap(t *maptype, cap int) *hmap {
1270	// Check invariants and reflects math.
1271	if t.key.equal == nil {
1272		throw("runtime.reflect_makemap: unsupported map key type")
1273	}
1274	if t.key.size > maxKeySize && (!t.indirectkey() || t.keysize != uint8(sys.PtrSize)) ||
1275		t.key.size <= maxKeySize && (t.indirectkey() || t.keysize != uint8(t.key.size)) {
1276		throw("key size wrong")
1277	}
1278	if t.elem.size > maxElemSize && (!t.indirectelem() || t.elemsize != uint8(sys.PtrSize)) ||
1279		t.elem.size <= maxElemSize && (t.indirectelem() || t.elemsize != uint8(t.elem.size)) {
1280		throw("elem size wrong")
1281	}
1282	if t.key.align > bucketCnt {
1283		throw("key align too big")
1284	}
1285	if t.elem.align > bucketCnt {
1286		throw("elem align too big")
1287	}
1288	if t.key.size%uintptr(t.key.align) != 0 {
1289		throw("key size not a multiple of key align")
1290	}
1291	if t.elem.size%uintptr(t.elem.align) != 0 {
1292		throw("elem size not a multiple of elem align")
1293	}
1294	if bucketCnt < 8 {
1295		throw("bucketsize too small for proper alignment")
1296	}
1297	if dataOffset%uintptr(t.key.align) != 0 {
1298		throw("need padding in bucket (key)")
1299	}
1300	if dataOffset%uintptr(t.elem.align) != 0 {
1301		throw("need padding in bucket (elem)")
1302	}
1303
1304	return makemap(t, cap, nil)
1305}
1306
1307//go:linkname reflect_mapaccess reflect.mapaccess
1308func reflect_mapaccess(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
1309	elem, ok := mapaccess2(t, h, key)
1310	if !ok {
1311		// reflect wants nil for a missing element
1312		elem = nil
1313	}
1314	return elem
1315}
1316
1317//go:linkname reflect_mapassign reflect.mapassign
1318func reflect_mapassign(t *maptype, h *hmap, key unsafe.Pointer, elem unsafe.Pointer) {
1319	p := mapassign(t, h, key)
1320	typedmemmove(t.elem, p, elem)
1321}
1322
1323//go:linkname reflect_mapdelete reflect.mapdelete
1324func reflect_mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
1325	mapdelete(t, h, key)
1326}
1327
1328//go:linkname reflect_mapiterinit reflect.mapiterinit
1329func reflect_mapiterinit(t *maptype, h *hmap) *hiter {
1330	it := new(hiter)
1331	mapiterinit(t, h, it)
1332	return it
1333}
1334
1335//go:linkname reflect_mapiternext reflect.mapiternext
1336func reflect_mapiternext(it *hiter) {
1337	mapiternext(it)
1338}
1339
1340//go:linkname reflect_mapiterkey reflect.mapiterkey
1341func reflect_mapiterkey(it *hiter) unsafe.Pointer {
1342	return it.key
1343}
1344
1345//go:linkname reflect_mapiterelem reflect.mapiterelem
1346func reflect_mapiterelem(it *hiter) unsafe.Pointer {
1347	return it.elem
1348}
1349
1350//go:linkname reflect_maplen reflect.maplen
1351func reflect_maplen(h *hmap) int {
1352	if h == nil {
1353		return 0
1354	}
1355	if raceenabled {
1356		callerpc := getcallerpc()
1357		racereadpc(unsafe.Pointer(h), callerpc, funcPC(reflect_maplen))
1358	}
1359	return h.count
1360}
1361
1362//go:linkname reflectlite_maplen internal/reflectlite.maplen
1363func reflectlite_maplen(h *hmap) int {
1364	if h == nil {
1365		return 0
1366	}
1367	if raceenabled {
1368		callerpc := getcallerpc()
1369		racereadpc(unsafe.Pointer(h), callerpc, funcPC(reflect_maplen))
1370	}
1371	return h.count
1372}
1373
1374const maxZero = 1024 // must match value in cmd/compile/internal/gc/walk.go:zeroValSize
1375var zeroVal [maxZero]byte
1376