1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Garbage collector: type and heap bitmaps.
6//
7// Stack, data, and bss bitmaps
8//
9// Stack frames and global variables in the data and bss sections are described
10// by 1-bit bitmaps in which 0 means uninteresting and 1 means live pointer
11// to be visited during GC. The bits in each byte are consumed starting with
12// the low bit: 1<<0, 1<<1, and so on.
13//
14// Heap bitmap
15//
16// The heap bitmap comprises 2 bits for each pointer-sized word in the heap,
17// stored in the heapArena metadata backing each heap arena.
18// That is, if ha is the heapArena for the arena starting a start,
19// then ha.bitmap[0] holds the 2-bit entries for the four words start
20// through start+3*ptrSize, ha.bitmap[1] holds the entries for
21// start+4*ptrSize through start+7*ptrSize, and so on.
22//
23// In each 2-bit entry, the lower bit holds the same information as in the 1-bit
24// bitmaps: 0 means uninteresting and 1 means live pointer to be visited during GC.
25// The meaning of the high bit depends on the position of the word being described
26// in its allocated object. In all words *except* the second word, the
27// high bit indicates that the object is still being described. In
28// these words, if a bit pair with a high bit 0 is encountered, the
29// low bit can also be assumed to be 0, and the object description is
30// over. This 00 is called the ``dead'' encoding: it signals that the
31// rest of the words in the object are uninteresting to the garbage
32// collector.
33//
34// In the second word, the high bit is the GC ``checkmarked'' bit (see below).
35//
36// The 2-bit entries are split when written into the byte, so that the top half
37// of the byte contains 4 high bits and the bottom half contains 4 low (pointer)
38// bits.
39// This form allows a copy from the 1-bit to the 4-bit form to keep the
40// pointer bits contiguous, instead of having to space them out.
41//
42// The code makes use of the fact that the zero value for a heap bitmap
43// has no live pointer bit set and is (depending on position), not used,
44// not checkmarked, and is the dead encoding.
45// These properties must be preserved when modifying the encoding.
46//
47// The bitmap for noscan spans is not maintained. Code must ensure
48// that an object is scannable before consulting its bitmap by
49// checking either the noscan bit in the span or by consulting its
50// type's information.
51//
52// Checkmarks
53//
54// In a concurrent garbage collector, one worries about failing to mark
55// a live object due to mutations without write barriers or bugs in the
56// collector implementation. As a sanity check, the GC has a 'checkmark'
57// mode that retraverses the object graph with the world stopped, to make
58// sure that everything that should be marked is marked.
59// In checkmark mode, in the heap bitmap, the high bit of the 2-bit entry
60// for the second word of the object holds the checkmark bit.
61// When not in checkmark mode, this bit is set to 1.
62//
63// The smallest possible allocation is 8 bytes. On a 32-bit machine, that
64// means every allocated object has two words, so there is room for the
65// checkmark bit. On a 64-bit machine, however, the 8-byte allocation is
66// just one word, so the second bit pair is not available for encoding the
67// checkmark. However, because non-pointer allocations are combined
68// into larger 16-byte (maxTinySize) allocations, a plain 8-byte allocation
69// must be a pointer, so the type bit in the first word is not actually needed.
70// It is still used in general, except in checkmark the type bit is repurposed
71// as the checkmark bit and then reinitialized (to 1) as the type bit when
72// finished.
73//
74
75package runtime
76
77import (
78	"runtime/internal/atomic"
79	"runtime/internal/sys"
80	"unsafe"
81)
82
83const (
84	bitPointer = 1 << 0
85	bitScan    = 1 << 4
86
87	heapBitsShift      = 1     // shift offset between successive bitPointer or bitScan entries
88	wordsPerBitmapByte = 8 / 2 // heap words described by one bitmap byte
89
90	// all scan/pointer bits in a byte
91	bitScanAll    = bitScan | bitScan<<heapBitsShift | bitScan<<(2*heapBitsShift) | bitScan<<(3*heapBitsShift)
92	bitPointerAll = bitPointer | bitPointer<<heapBitsShift | bitPointer<<(2*heapBitsShift) | bitPointer<<(3*heapBitsShift)
93)
94
95// addb returns the byte pointer p+n.
96//go:nowritebarrier
97//go:nosplit
98func addb(p *byte, n uintptr) *byte {
99	// Note: wrote out full expression instead of calling add(p, n)
100	// to reduce the number of temporaries generated by the
101	// compiler for this trivial expression during inlining.
102	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + n))
103}
104
105// subtractb returns the byte pointer p-n.
106//go:nowritebarrier
107//go:nosplit
108func subtractb(p *byte, n uintptr) *byte {
109	// Note: wrote out full expression instead of calling add(p, -n)
110	// to reduce the number of temporaries generated by the
111	// compiler for this trivial expression during inlining.
112	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - n))
113}
114
115// add1 returns the byte pointer p+1.
116//go:nowritebarrier
117//go:nosplit
118func add1(p *byte) *byte {
119	// Note: wrote out full expression instead of calling addb(p, 1)
120	// to reduce the number of temporaries generated by the
121	// compiler for this trivial expression during inlining.
122	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + 1))
123}
124
125// subtract1 returns the byte pointer p-1.
126//go:nowritebarrier
127//
128// nosplit because it is used during write barriers and must not be preempted.
129//go:nosplit
130func subtract1(p *byte) *byte {
131	// Note: wrote out full expression instead of calling subtractb(p, 1)
132	// to reduce the number of temporaries generated by the
133	// compiler for this trivial expression during inlining.
134	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - 1))
135}
136
137// heapBits provides access to the bitmap bits for a single heap word.
138// The methods on heapBits take value receivers so that the compiler
139// can more easily inline calls to those methods and registerize the
140// struct fields independently.
141type heapBits struct {
142	bitp  *uint8
143	shift uint32
144	arena uint32 // Index of heap arena containing bitp
145	last  *uint8 // Last byte arena's bitmap
146}
147
148// Make the compiler check that heapBits.arena is large enough to hold
149// the maximum arena frame number.
150var _ = heapBits{arena: (1<<heapAddrBits)/heapArenaBytes - 1}
151
152// markBits provides access to the mark bit for an object in the heap.
153// bytep points to the byte holding the mark bit.
154// mask is a byte with a single bit set that can be &ed with *bytep
155// to see if the bit has been set.
156// *m.byte&m.mask != 0 indicates the mark bit is set.
157// index can be used along with span information to generate
158// the address of the object in the heap.
159// We maintain one set of mark bits for allocation and one for
160// marking purposes.
161type markBits struct {
162	bytep *uint8
163	mask  uint8
164	index uintptr
165}
166
167//go:nosplit
168func (s *mspan) allocBitsForIndex(allocBitIndex uintptr) markBits {
169	bytep, mask := s.allocBits.bitp(allocBitIndex)
170	return markBits{bytep, mask, allocBitIndex}
171}
172
173// refillAllocCache takes 8 bytes s.allocBits starting at whichByte
174// and negates them so that ctz (count trailing zeros) instructions
175// can be used. It then places these 8 bytes into the cached 64 bit
176// s.allocCache.
177func (s *mspan) refillAllocCache(whichByte uintptr) {
178	bytes := (*[8]uint8)(unsafe.Pointer(s.allocBits.bytep(whichByte)))
179	aCache := uint64(0)
180	aCache |= uint64(bytes[0])
181	aCache |= uint64(bytes[1]) << (1 * 8)
182	aCache |= uint64(bytes[2]) << (2 * 8)
183	aCache |= uint64(bytes[3]) << (3 * 8)
184	aCache |= uint64(bytes[4]) << (4 * 8)
185	aCache |= uint64(bytes[5]) << (5 * 8)
186	aCache |= uint64(bytes[6]) << (6 * 8)
187	aCache |= uint64(bytes[7]) << (7 * 8)
188	s.allocCache = ^aCache
189}
190
191// nextFreeIndex returns the index of the next free object in s at
192// or after s.freeindex.
193// There are hardware instructions that can be used to make this
194// faster if profiling warrants it.
195func (s *mspan) nextFreeIndex() uintptr {
196	sfreeindex := s.freeindex
197	snelems := s.nelems
198	if sfreeindex == snelems {
199		return sfreeindex
200	}
201	if sfreeindex > snelems {
202		throw("s.freeindex > s.nelems")
203	}
204
205	aCache := s.allocCache
206
207	bitIndex := sys.Ctz64(aCache)
208	for bitIndex == 64 {
209		// Move index to start of next cached bits.
210		sfreeindex = (sfreeindex + 64) &^ (64 - 1)
211		if sfreeindex >= snelems {
212			s.freeindex = snelems
213			return snelems
214		}
215		whichByte := sfreeindex / 8
216		// Refill s.allocCache with the next 64 alloc bits.
217		s.refillAllocCache(whichByte)
218		aCache = s.allocCache
219		bitIndex = sys.Ctz64(aCache)
220		// nothing available in cached bits
221		// grab the next 8 bytes and try again.
222	}
223	result := sfreeindex + uintptr(bitIndex)
224	if result >= snelems {
225		s.freeindex = snelems
226		return snelems
227	}
228
229	s.allocCache >>= uint(bitIndex + 1)
230	sfreeindex = result + 1
231
232	if sfreeindex%64 == 0 && sfreeindex != snelems {
233		// We just incremented s.freeindex so it isn't 0.
234		// As each 1 in s.allocCache was encountered and used for allocation
235		// it was shifted away. At this point s.allocCache contains all 0s.
236		// Refill s.allocCache so that it corresponds
237		// to the bits at s.allocBits starting at s.freeindex.
238		whichByte := sfreeindex / 8
239		s.refillAllocCache(whichByte)
240	}
241	s.freeindex = sfreeindex
242	return result
243}
244
245// isFree reports whether the index'th object in s is unallocated.
246//
247// The caller must ensure s.state is mSpanInUse, and there must have
248// been no preemption points since ensuring this (which could allow a
249// GC transition, which would allow the state to change).
250func (s *mspan) isFree(index uintptr) bool {
251	if index < s.freeindex {
252		return false
253	}
254	bytep, mask := s.allocBits.bitp(index)
255	return *bytep&mask == 0
256}
257
258func (s *mspan) objIndex(p uintptr) uintptr {
259	byteOffset := p - s.base()
260	if byteOffset == 0 {
261		return 0
262	}
263	if s.baseMask != 0 {
264		// s.baseMask is non-0, elemsize is a power of two, so shift by s.divShift
265		return byteOffset >> s.divShift
266	}
267	return uintptr(((uint64(byteOffset) >> s.divShift) * uint64(s.divMul)) >> s.divShift2)
268}
269
270func markBitsForAddr(p uintptr) markBits {
271	s := spanOf(p)
272	objIndex := s.objIndex(p)
273	return s.markBitsForIndex(objIndex)
274}
275
276func (s *mspan) markBitsForIndex(objIndex uintptr) markBits {
277	bytep, mask := s.gcmarkBits.bitp(objIndex)
278	return markBits{bytep, mask, objIndex}
279}
280
281func (s *mspan) markBitsForBase() markBits {
282	return markBits{(*uint8)(s.gcmarkBits), uint8(1), 0}
283}
284
285// isMarked reports whether mark bit m is set.
286func (m markBits) isMarked() bool {
287	return *m.bytep&m.mask != 0
288}
289
290// setMarked sets the marked bit in the markbits, atomically.
291func (m markBits) setMarked() {
292	// Might be racing with other updates, so use atomic update always.
293	// We used to be clever here and use a non-atomic update in certain
294	// cases, but it's not worth the risk.
295	atomic.Or8(m.bytep, m.mask)
296}
297
298// setMarkedNonAtomic sets the marked bit in the markbits, non-atomically.
299func (m markBits) setMarkedNonAtomic() {
300	*m.bytep |= m.mask
301}
302
303// clearMarked clears the marked bit in the markbits, atomically.
304func (m markBits) clearMarked() {
305	// Might be racing with other updates, so use atomic update always.
306	// We used to be clever here and use a non-atomic update in certain
307	// cases, but it's not worth the risk.
308	atomic.And8(m.bytep, ^m.mask)
309}
310
311// markBitsForSpan returns the markBits for the span base address base.
312func markBitsForSpan(base uintptr) (mbits markBits) {
313	mbits = markBitsForAddr(base)
314	if mbits.mask != 1 {
315		throw("markBitsForSpan: unaligned start")
316	}
317	return mbits
318}
319
320// advance advances the markBits to the next object in the span.
321func (m *markBits) advance() {
322	if m.mask == 1<<7 {
323		m.bytep = (*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(m.bytep)) + 1))
324		m.mask = 1
325	} else {
326		m.mask = m.mask << 1
327	}
328	m.index++
329}
330
331// heapBitsForAddr returns the heapBits for the address addr.
332// The caller must ensure addr is in an allocated span.
333// In particular, be careful not to point past the end of an object.
334//
335// nosplit because it is used during write barriers and must not be preempted.
336//go:nosplit
337func heapBitsForAddr(addr uintptr) (h heapBits) {
338	// 2 bits per word, 4 pairs per byte, and a mask is hard coded.
339	arena := arenaIndex(addr)
340	ha := mheap_.arenas[arena.l1()][arena.l2()]
341	// The compiler uses a load for nil checking ha, but in this
342	// case we'll almost never hit that cache line again, so it
343	// makes more sense to do a value check.
344	if ha == nil {
345		// addr is not in the heap. Return nil heapBits, which
346		// we expect to crash in the caller.
347		return
348	}
349	h.bitp = &ha.bitmap[(addr/(sys.PtrSize*4))%heapArenaBitmapBytes]
350	h.shift = uint32((addr / sys.PtrSize) & 3)
351	h.arena = uint32(arena)
352	h.last = &ha.bitmap[len(ha.bitmap)-1]
353	return
354}
355
356// badPointer throws bad pointer in heap panic.
357func badPointer(s *mspan, p, refBase, refOff uintptr) {
358	// Typically this indicates an incorrect use
359	// of unsafe or cgo to store a bad pointer in
360	// the Go heap. It may also indicate a runtime
361	// bug.
362	//
363	// TODO(austin): We could be more aggressive
364	// and detect pointers to unallocated objects
365	// in allocated spans.
366	printlock()
367	print("runtime: pointer ", hex(p))
368	state := s.state.get()
369	if state != mSpanInUse {
370		print(" to unallocated span")
371	} else {
372		print(" to unused region of span")
373	}
374	print(" span.base()=", hex(s.base()), " span.limit=", hex(s.limit), " span.state=", state, "\n")
375	if refBase != 0 {
376		print("runtime: found in object at *(", hex(refBase), "+", hex(refOff), ")\n")
377		gcDumpObject("object", refBase, refOff)
378	}
379	getg().m.traceback = 2
380	throw("found bad pointer in Go heap (incorrect use of unsafe or cgo?)")
381}
382
383// findObject returns the base address for the heap object containing
384// the address p, the object's span, and the index of the object in s.
385// If p does not point into a heap object, it returns base == 0.
386//
387// If p points is an invalid heap pointer and debug.invalidptr != 0,
388// findObject panics.
389//
390// refBase and refOff optionally give the base address of the object
391// in which the pointer p was found and the byte offset at which it
392// was found. These are used for error reporting.
393//
394// It is nosplit so it is safe for p to be a pointer to the current goroutine's stack.
395// Since p is a uintptr, it would not be adjusted if the stack were to move.
396//go:nosplit
397func findObject(p, refBase, refOff uintptr) (base uintptr, s *mspan, objIndex uintptr) {
398	s = spanOf(p)
399	// If s is nil, the virtual address has never been part of the heap.
400	// This pointer may be to some mmap'd region, so we allow it.
401	if s == nil {
402		return
403	}
404	// If p is a bad pointer, it may not be in s's bounds.
405	//
406	// Check s.state to synchronize with span initialization
407	// before checking other fields. See also spanOfHeap.
408	if state := s.state.get(); state != mSpanInUse || p < s.base() || p >= s.limit {
409		// Pointers into stacks are also ok, the runtime manages these explicitly.
410		if state == mSpanManual {
411			return
412		}
413		// The following ensures that we are rigorous about what data
414		// structures hold valid pointers.
415		if debug.invalidptr != 0 {
416			badPointer(s, p, refBase, refOff)
417		}
418		return
419	}
420	// If this span holds object of a power of 2 size, just mask off the bits to
421	// the interior of the object. Otherwise use the size to get the base.
422	if s.baseMask != 0 {
423		// optimize for power of 2 sized objects.
424		base = s.base()
425		base = base + (p-base)&uintptr(s.baseMask)
426		objIndex = (base - s.base()) >> s.divShift
427		// base = p & s.baseMask is faster for small spans,
428		// but doesn't work for large spans.
429		// Overall, it's faster to use the more general computation above.
430	} else {
431		base = s.base()
432		if p-base >= s.elemsize {
433			// n := (p - base) / s.elemsize, using division by multiplication
434			objIndex = uintptr(p-base) >> s.divShift * uintptr(s.divMul) >> s.divShift2
435			base += objIndex * s.elemsize
436		}
437	}
438	return
439}
440
441// next returns the heapBits describing the next pointer-sized word in memory.
442// That is, if h describes address p, h.next() describes p+ptrSize.
443// Note that next does not modify h. The caller must record the result.
444//
445// nosplit because it is used during write barriers and must not be preempted.
446//go:nosplit
447func (h heapBits) next() heapBits {
448	if h.shift < 3*heapBitsShift {
449		h.shift += heapBitsShift
450	} else if h.bitp != h.last {
451		h.bitp, h.shift = add1(h.bitp), 0
452	} else {
453		// Move to the next arena.
454		return h.nextArena()
455	}
456	return h
457}
458
459// nextArena advances h to the beginning of the next heap arena.
460//
461// This is a slow-path helper to next. gc's inliner knows that
462// heapBits.next can be inlined even though it calls this. This is
463// marked noinline so it doesn't get inlined into next and cause next
464// to be too big to inline.
465//
466//go:nosplit
467//go:noinline
468func (h heapBits) nextArena() heapBits {
469	h.arena++
470	ai := arenaIdx(h.arena)
471	l2 := mheap_.arenas[ai.l1()]
472	if l2 == nil {
473		// We just passed the end of the object, which
474		// was also the end of the heap. Poison h. It
475		// should never be dereferenced at this point.
476		return heapBits{}
477	}
478	ha := l2[ai.l2()]
479	if ha == nil {
480		return heapBits{}
481	}
482	h.bitp, h.shift = &ha.bitmap[0], 0
483	h.last = &ha.bitmap[len(ha.bitmap)-1]
484	return h
485}
486
487// forward returns the heapBits describing n pointer-sized words ahead of h in memory.
488// That is, if h describes address p, h.forward(n) describes p+n*ptrSize.
489// h.forward(1) is equivalent to h.next(), just slower.
490// Note that forward does not modify h. The caller must record the result.
491// bits returns the heap bits for the current word.
492//go:nosplit
493func (h heapBits) forward(n uintptr) heapBits {
494	n += uintptr(h.shift) / heapBitsShift
495	nbitp := uintptr(unsafe.Pointer(h.bitp)) + n/4
496	h.shift = uint32(n%4) * heapBitsShift
497	if nbitp <= uintptr(unsafe.Pointer(h.last)) {
498		h.bitp = (*uint8)(unsafe.Pointer(nbitp))
499		return h
500	}
501
502	// We're in a new heap arena.
503	past := nbitp - (uintptr(unsafe.Pointer(h.last)) + 1)
504	h.arena += 1 + uint32(past/heapArenaBitmapBytes)
505	ai := arenaIdx(h.arena)
506	if l2 := mheap_.arenas[ai.l1()]; l2 != nil && l2[ai.l2()] != nil {
507		a := l2[ai.l2()]
508		h.bitp = &a.bitmap[past%heapArenaBitmapBytes]
509		h.last = &a.bitmap[len(a.bitmap)-1]
510	} else {
511		h.bitp, h.last = nil, nil
512	}
513	return h
514}
515
516// forwardOrBoundary is like forward, but stops at boundaries between
517// contiguous sections of the bitmap. It returns the number of words
518// advanced over, which will be <= n.
519func (h heapBits) forwardOrBoundary(n uintptr) (heapBits, uintptr) {
520	maxn := 4 * ((uintptr(unsafe.Pointer(h.last)) + 1) - uintptr(unsafe.Pointer(h.bitp)))
521	if n > maxn {
522		n = maxn
523	}
524	return h.forward(n), n
525}
526
527// The caller can test morePointers and isPointer by &-ing with bitScan and bitPointer.
528// The result includes in its higher bits the bits for subsequent words
529// described by the same bitmap byte.
530//
531// nosplit because it is used during write barriers and must not be preempted.
532//go:nosplit
533func (h heapBits) bits() uint32 {
534	// The (shift & 31) eliminates a test and conditional branch
535	// from the generated code.
536	return uint32(*h.bitp) >> (h.shift & 31)
537}
538
539// morePointers reports whether this word and all remaining words in this object
540// are scalars.
541// h must not describe the second word of the object.
542func (h heapBits) morePointers() bool {
543	return h.bits()&bitScan != 0
544}
545
546// isPointer reports whether the heap bits describe a pointer word.
547//
548// nosplit because it is used during write barriers and must not be preempted.
549//go:nosplit
550func (h heapBits) isPointer() bool {
551	return h.bits()&bitPointer != 0
552}
553
554// isCheckmarked reports whether the heap bits have the checkmarked bit set.
555// It must be told how large the object at h is, because the encoding of the
556// checkmark bit varies by size.
557// h must describe the initial word of the object.
558func (h heapBits) isCheckmarked(size uintptr) bool {
559	if size == sys.PtrSize {
560		return (*h.bitp>>h.shift)&bitPointer != 0
561	}
562	// All multiword objects are 2-word aligned,
563	// so we know that the initial word's 2-bit pair
564	// and the second word's 2-bit pair are in the
565	// same heap bitmap byte, *h.bitp.
566	return (*h.bitp>>(heapBitsShift+h.shift))&bitScan != 0
567}
568
569// setCheckmarked sets the checkmarked bit.
570// It must be told how large the object at h is, because the encoding of the
571// checkmark bit varies by size.
572// h must describe the initial word of the object.
573func (h heapBits) setCheckmarked(size uintptr) {
574	if size == sys.PtrSize {
575		atomic.Or8(h.bitp, bitPointer<<h.shift)
576		return
577	}
578	atomic.Or8(h.bitp, bitScan<<(heapBitsShift+h.shift))
579}
580
581// bulkBarrierPreWrite executes a write barrier
582// for every pointer slot in the memory range [src, src+size),
583// using pointer/scalar information from [dst, dst+size).
584// This executes the write barriers necessary before a memmove.
585// src, dst, and size must be pointer-aligned.
586// The range [dst, dst+size) must lie within a single object.
587// It does not perform the actual writes.
588//
589// As a special case, src == 0 indicates that this is being used for a
590// memclr. bulkBarrierPreWrite will pass 0 for the src of each write
591// barrier.
592//
593// Callers should call bulkBarrierPreWrite immediately before
594// calling memmove(dst, src, size). This function is marked nosplit
595// to avoid being preempted; the GC must not stop the goroutine
596// between the memmove and the execution of the barriers.
597// The caller is also responsible for cgo pointer checks if this
598// may be writing Go pointers into non-Go memory.
599//
600// The pointer bitmap is not maintained for allocations containing
601// no pointers at all; any caller of bulkBarrierPreWrite must first
602// make sure the underlying allocation contains pointers, usually
603// by checking typ.ptrdata.
604//
605// Callers must perform cgo checks if writeBarrier.cgo.
606//
607//go:nosplit
608func bulkBarrierPreWrite(dst, src, size uintptr) {
609	if (dst|src|size)&(sys.PtrSize-1) != 0 {
610		throw("bulkBarrierPreWrite: unaligned arguments")
611	}
612	if !writeBarrier.needed {
613		return
614	}
615	if s := spanOf(dst); s == nil {
616		// If dst is a global, use the data or BSS bitmaps to
617		// execute write barriers.
618		for _, datap := range activeModules() {
619			if datap.data <= dst && dst < datap.edata {
620				bulkBarrierBitmap(dst, src, size, dst-datap.data, datap.gcdatamask.bytedata)
621				return
622			}
623		}
624		for _, datap := range activeModules() {
625			if datap.bss <= dst && dst < datap.ebss {
626				bulkBarrierBitmap(dst, src, size, dst-datap.bss, datap.gcbssmask.bytedata)
627				return
628			}
629		}
630		return
631	} else if s.state.get() != mSpanInUse || dst < s.base() || s.limit <= dst {
632		// dst was heap memory at some point, but isn't now.
633		// It can't be a global. It must be either our stack,
634		// or in the case of direct channel sends, it could be
635		// another stack. Either way, no need for barriers.
636		// This will also catch if dst is in a freed span,
637		// though that should never have.
638		return
639	}
640
641	buf := &getg().m.p.ptr().wbBuf
642	h := heapBitsForAddr(dst)
643	if src == 0 {
644		for i := uintptr(0); i < size; i += sys.PtrSize {
645			if h.isPointer() {
646				dstx := (*uintptr)(unsafe.Pointer(dst + i))
647				if !buf.putFast(*dstx, 0) {
648					wbBufFlush(nil, 0)
649				}
650			}
651			h = h.next()
652		}
653	} else {
654		for i := uintptr(0); i < size; i += sys.PtrSize {
655			if h.isPointer() {
656				dstx := (*uintptr)(unsafe.Pointer(dst + i))
657				srcx := (*uintptr)(unsafe.Pointer(src + i))
658				if !buf.putFast(*dstx, *srcx) {
659					wbBufFlush(nil, 0)
660				}
661			}
662			h = h.next()
663		}
664	}
665}
666
667// bulkBarrierPreWriteSrcOnly is like bulkBarrierPreWrite but
668// does not execute write barriers for [dst, dst+size).
669//
670// In addition to the requirements of bulkBarrierPreWrite
671// callers need to ensure [dst, dst+size) is zeroed.
672//
673// This is used for special cases where e.g. dst was just
674// created and zeroed with malloc.
675//go:nosplit
676func bulkBarrierPreWriteSrcOnly(dst, src, size uintptr) {
677	if (dst|src|size)&(sys.PtrSize-1) != 0 {
678		throw("bulkBarrierPreWrite: unaligned arguments")
679	}
680	if !writeBarrier.needed {
681		return
682	}
683	buf := &getg().m.p.ptr().wbBuf
684	h := heapBitsForAddr(dst)
685	for i := uintptr(0); i < size; i += sys.PtrSize {
686		if h.isPointer() {
687			srcx := (*uintptr)(unsafe.Pointer(src + i))
688			if !buf.putFast(0, *srcx) {
689				wbBufFlush(nil, 0)
690			}
691		}
692		h = h.next()
693	}
694}
695
696// bulkBarrierBitmap executes write barriers for copying from [src,
697// src+size) to [dst, dst+size) using a 1-bit pointer bitmap. src is
698// assumed to start maskOffset bytes into the data covered by the
699// bitmap in bits (which may not be a multiple of 8).
700//
701// This is used by bulkBarrierPreWrite for writes to data and BSS.
702//
703//go:nosplit
704func bulkBarrierBitmap(dst, src, size, maskOffset uintptr, bits *uint8) {
705	word := maskOffset / sys.PtrSize
706	bits = addb(bits, word/8)
707	mask := uint8(1) << (word % 8)
708
709	buf := &getg().m.p.ptr().wbBuf
710	for i := uintptr(0); i < size; i += sys.PtrSize {
711		if mask == 0 {
712			bits = addb(bits, 1)
713			if *bits == 0 {
714				// Skip 8 words.
715				i += 7 * sys.PtrSize
716				continue
717			}
718			mask = 1
719		}
720		if *bits&mask != 0 {
721			dstx := (*uintptr)(unsafe.Pointer(dst + i))
722			if src == 0 {
723				if !buf.putFast(*dstx, 0) {
724					wbBufFlush(nil, 0)
725				}
726			} else {
727				srcx := (*uintptr)(unsafe.Pointer(src + i))
728				if !buf.putFast(*dstx, *srcx) {
729					wbBufFlush(nil, 0)
730				}
731			}
732		}
733		mask <<= 1
734	}
735}
736
737// typeBitsBulkBarrier executes a write barrier for every
738// pointer that would be copied from [src, src+size) to [dst,
739// dst+size) by a memmove using the type bitmap to locate those
740// pointer slots.
741//
742// The type typ must correspond exactly to [src, src+size) and [dst, dst+size).
743// dst, src, and size must be pointer-aligned.
744// The type typ must have a plain bitmap, not a GC program.
745// The only use of this function is in channel sends, and the
746// 64 kB channel element limit takes care of this for us.
747//
748// Must not be preempted because it typically runs right before memmove,
749// and the GC must observe them as an atomic action.
750//
751// Callers must perform cgo checks if writeBarrier.cgo.
752//
753//go:nosplit
754func typeBitsBulkBarrier(typ *_type, dst, src, size uintptr) {
755	if typ == nil {
756		throw("runtime: typeBitsBulkBarrier without type")
757	}
758	if typ.size != size {
759		println("runtime: typeBitsBulkBarrier with type ", typ.string(), " of size ", typ.size, " but memory size", size)
760		throw("runtime: invalid typeBitsBulkBarrier")
761	}
762	if typ.kind&kindGCProg != 0 {
763		println("runtime: typeBitsBulkBarrier with type ", typ.string(), " with GC prog")
764		throw("runtime: invalid typeBitsBulkBarrier")
765	}
766	if !writeBarrier.needed {
767		return
768	}
769	ptrmask := typ.gcdata
770	buf := &getg().m.p.ptr().wbBuf
771	var bits uint32
772	for i := uintptr(0); i < typ.ptrdata; i += sys.PtrSize {
773		if i&(sys.PtrSize*8-1) == 0 {
774			bits = uint32(*ptrmask)
775			ptrmask = addb(ptrmask, 1)
776		} else {
777			bits = bits >> 1
778		}
779		if bits&1 != 0 {
780			dstx := (*uintptr)(unsafe.Pointer(dst + i))
781			srcx := (*uintptr)(unsafe.Pointer(src + i))
782			if !buf.putFast(*dstx, *srcx) {
783				wbBufFlush(nil, 0)
784			}
785		}
786	}
787}
788
789// The methods operating on spans all require that h has been returned
790// by heapBitsForSpan and that size, n, total are the span layout description
791// returned by the mspan's layout method.
792// If total > size*n, it means that there is extra leftover memory in the span,
793// usually due to rounding.
794//
795// TODO(rsc): Perhaps introduce a different heapBitsSpan type.
796
797// initSpan initializes the heap bitmap for a span.
798// It clears all checkmark bits.
799// If this is a span of pointer-sized objects, it initializes all
800// words to pointer/scan.
801// Otherwise, it initializes all words to scalar/dead.
802func (h heapBits) initSpan(s *mspan) {
803	// Clear bits corresponding to objects.
804	nw := (s.npages << _PageShift) / sys.PtrSize
805	if nw%wordsPerBitmapByte != 0 {
806		throw("initSpan: unaligned length")
807	}
808	if h.shift != 0 {
809		throw("initSpan: unaligned base")
810	}
811	isPtrs := sys.PtrSize == 8 && s.elemsize == sys.PtrSize
812	for nw > 0 {
813		hNext, anw := h.forwardOrBoundary(nw)
814		nbyte := anw / wordsPerBitmapByte
815		if isPtrs {
816			bitp := h.bitp
817			for i := uintptr(0); i < nbyte; i++ {
818				*bitp = bitPointerAll | bitScanAll
819				bitp = add1(bitp)
820			}
821		} else {
822			memclrNoHeapPointers(unsafe.Pointer(h.bitp), nbyte)
823		}
824		h = hNext
825		nw -= anw
826	}
827}
828
829// initCheckmarkSpan initializes a span for being checkmarked.
830// It clears the checkmark bits, which are set to 1 in normal operation.
831func (h heapBits) initCheckmarkSpan(size, n, total uintptr) {
832	// The ptrSize == 8 is a compile-time constant false on 32-bit and eliminates this code entirely.
833	if sys.PtrSize == 8 && size == sys.PtrSize {
834		// Checkmark bit is type bit, bottom bit of every 2-bit entry.
835		// Only possible on 64-bit system, since minimum size is 8.
836		// Must clear type bit (checkmark bit) of every word.
837		// The type bit is the lower of every two-bit pair.
838		for i := uintptr(0); i < n; i += wordsPerBitmapByte {
839			*h.bitp &^= bitPointerAll
840			h = h.forward(wordsPerBitmapByte)
841		}
842		return
843	}
844	for i := uintptr(0); i < n; i++ {
845		*h.bitp &^= bitScan << (heapBitsShift + h.shift)
846		h = h.forward(size / sys.PtrSize)
847	}
848}
849
850// clearCheckmarkSpan undoes all the checkmarking in a span.
851// The actual checkmark bits are ignored, so the only work to do
852// is to fix the pointer bits. (Pointer bits are ignored by scanobject
853// but consulted by typedmemmove.)
854func (h heapBits) clearCheckmarkSpan(size, n, total uintptr) {
855	// The ptrSize == 8 is a compile-time constant false on 32-bit and eliminates this code entirely.
856	if sys.PtrSize == 8 && size == sys.PtrSize {
857		// Checkmark bit is type bit, bottom bit of every 2-bit entry.
858		// Only possible on 64-bit system, since minimum size is 8.
859		// Must clear type bit (checkmark bit) of every word.
860		// The type bit is the lower of every two-bit pair.
861		for i := uintptr(0); i < n; i += wordsPerBitmapByte {
862			*h.bitp |= bitPointerAll
863			h = h.forward(wordsPerBitmapByte)
864		}
865	}
866}
867
868// oneBitCount is indexed by byte and produces the
869// number of 1 bits in that byte. For example 128 has 1 bit set
870// and oneBitCount[128] will holds 1.
871var oneBitCount = [256]uint8{
872	0, 1, 1, 2, 1, 2, 2, 3,
873	1, 2, 2, 3, 2, 3, 3, 4,
874	1, 2, 2, 3, 2, 3, 3, 4,
875	2, 3, 3, 4, 3, 4, 4, 5,
876	1, 2, 2, 3, 2, 3, 3, 4,
877	2, 3, 3, 4, 3, 4, 4, 5,
878	2, 3, 3, 4, 3, 4, 4, 5,
879	3, 4, 4, 5, 4, 5, 5, 6,
880	1, 2, 2, 3, 2, 3, 3, 4,
881	2, 3, 3, 4, 3, 4, 4, 5,
882	2, 3, 3, 4, 3, 4, 4, 5,
883	3, 4, 4, 5, 4, 5, 5, 6,
884	2, 3, 3, 4, 3, 4, 4, 5,
885	3, 4, 4, 5, 4, 5, 5, 6,
886	3, 4, 4, 5, 4, 5, 5, 6,
887	4, 5, 5, 6, 5, 6, 6, 7,
888	1, 2, 2, 3, 2, 3, 3, 4,
889	2, 3, 3, 4, 3, 4, 4, 5,
890	2, 3, 3, 4, 3, 4, 4, 5,
891	3, 4, 4, 5, 4, 5, 5, 6,
892	2, 3, 3, 4, 3, 4, 4, 5,
893	3, 4, 4, 5, 4, 5, 5, 6,
894	3, 4, 4, 5, 4, 5, 5, 6,
895	4, 5, 5, 6, 5, 6, 6, 7,
896	2, 3, 3, 4, 3, 4, 4, 5,
897	3, 4, 4, 5, 4, 5, 5, 6,
898	3, 4, 4, 5, 4, 5, 5, 6,
899	4, 5, 5, 6, 5, 6, 6, 7,
900	3, 4, 4, 5, 4, 5, 5, 6,
901	4, 5, 5, 6, 5, 6, 6, 7,
902	4, 5, 5, 6, 5, 6, 6, 7,
903	5, 6, 6, 7, 6, 7, 7, 8}
904
905// countAlloc returns the number of objects allocated in span s by
906// scanning the allocation bitmap.
907// TODO:(rlh) Use popcount intrinsic.
908func (s *mspan) countAlloc() int {
909	count := 0
910	maxIndex := s.nelems / 8
911	for i := uintptr(0); i < maxIndex; i++ {
912		mrkBits := *s.gcmarkBits.bytep(i)
913		count += int(oneBitCount[mrkBits])
914	}
915	if bitsInLastByte := s.nelems % 8; bitsInLastByte != 0 {
916		mrkBits := *s.gcmarkBits.bytep(maxIndex)
917		mask := uint8((1 << bitsInLastByte) - 1)
918		bits := mrkBits & mask
919		count += int(oneBitCount[bits])
920	}
921	return count
922}
923
924// heapBitsSetType records that the new allocation [x, x+size)
925// holds in [x, x+dataSize) one or more values of type typ.
926// (The number of values is given by dataSize / typ.size.)
927// If dataSize < size, the fragment [x+dataSize, x+size) is
928// recorded as non-pointer data.
929// It is known that the type has pointers somewhere;
930// malloc does not call heapBitsSetType when there are no pointers,
931// because all free objects are marked as noscan during
932// heapBitsSweepSpan.
933//
934// There can only be one allocation from a given span active at a time,
935// and the bitmap for a span always falls on byte boundaries,
936// so there are no write-write races for access to the heap bitmap.
937// Hence, heapBitsSetType can access the bitmap without atomics.
938//
939// There can be read-write races between heapBitsSetType and things
940// that read the heap bitmap like scanobject. However, since
941// heapBitsSetType is only used for objects that have not yet been
942// made reachable, readers will ignore bits being modified by this
943// function. This does mean this function cannot transiently modify
944// bits that belong to neighboring objects. Also, on weakly-ordered
945// machines, callers must execute a store/store (publication) barrier
946// between calling this function and making the object reachable.
947func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
948	const doubleCheck = false // slow but helpful; enable to test modifications to this code
949
950	// dataSize is always size rounded up to the next malloc size class,
951	// except in the case of allocating a defer block, in which case
952	// size is sizeof(_defer{}) (at least 6 words) and dataSize may be
953	// arbitrarily larger.
954	//
955	// The checks for size == sys.PtrSize and size == 2*sys.PtrSize can therefore
956	// assume that dataSize == size without checking it explicitly.
957
958	if sys.PtrSize == 8 && size == sys.PtrSize {
959		// It's one word and it has pointers, it must be a pointer.
960		// Since all allocated one-word objects are pointers
961		// (non-pointers are aggregated into tinySize allocations),
962		// initSpan sets the pointer bits for us. Nothing to do here.
963		if doubleCheck {
964			h := heapBitsForAddr(x)
965			if !h.isPointer() {
966				throw("heapBitsSetType: pointer bit missing")
967			}
968			if !h.morePointers() {
969				throw("heapBitsSetType: scan bit missing")
970			}
971		}
972		return
973	}
974
975	h := heapBitsForAddr(x)
976	ptrmask := typ.gcdata // start of 1-bit pointer mask (or GC program, handled below)
977
978	// Heap bitmap bits for 2-word object are only 4 bits,
979	// so also shared with objects next to it.
980	// This is called out as a special case primarily for 32-bit systems,
981	// so that on 32-bit systems the code below can assume all objects
982	// are 4-word aligned (because they're all 16-byte aligned).
983	if size == 2*sys.PtrSize {
984		if typ.size == sys.PtrSize {
985			// We're allocating a block big enough to hold two pointers.
986			// On 64-bit, that means the actual object must be two pointers,
987			// or else we'd have used the one-pointer-sized block.
988			// On 32-bit, however, this is the 8-byte block, the smallest one.
989			// So it could be that we're allocating one pointer and this was
990			// just the smallest block available. Distinguish by checking dataSize.
991			// (In general the number of instances of typ being allocated is
992			// dataSize/typ.size.)
993			if sys.PtrSize == 4 && dataSize == sys.PtrSize {
994				// 1 pointer object. On 32-bit machines clear the bit for the
995				// unused second word.
996				*h.bitp &^= (bitPointer | bitScan | ((bitPointer | bitScan) << heapBitsShift)) << h.shift
997				*h.bitp |= (bitPointer | bitScan) << h.shift
998			} else {
999				// 2-element slice of pointer.
1000				*h.bitp |= (bitPointer | bitScan | bitPointer<<heapBitsShift) << h.shift
1001			}
1002			return
1003		}
1004		// Otherwise typ.size must be 2*sys.PtrSize,
1005		// and typ.kind&kindGCProg == 0.
1006		if doubleCheck {
1007			if typ.size != 2*sys.PtrSize || typ.kind&kindGCProg != 0 {
1008				print("runtime: heapBitsSetType size=", size, " but typ.size=", typ.size, " gcprog=", typ.kind&kindGCProg != 0, "\n")
1009				throw("heapBitsSetType")
1010			}
1011		}
1012		b := uint32(*ptrmask)
1013		hb := (b & 3) | bitScan
1014		// bitPointer == 1, bitScan is 1 << 4, heapBitsShift is 1.
1015		// 110011 is shifted h.shift and complemented.
1016		// This clears out the bits that are about to be
1017		// ored into *h.hbitp in the next instructions.
1018		*h.bitp &^= (bitPointer | bitScan | ((bitPointer | bitScan) << heapBitsShift)) << h.shift
1019		*h.bitp |= uint8(hb << h.shift)
1020		return
1021	}
1022
1023	// Copy from 1-bit ptrmask into 2-bit bitmap.
1024	// The basic approach is to use a single uintptr as a bit buffer,
1025	// alternating between reloading the buffer and writing bitmap bytes.
1026	// In general, one load can supply two bitmap byte writes.
1027	// This is a lot of lines of code, but it compiles into relatively few
1028	// machine instructions.
1029
1030	outOfPlace := false
1031	if arenaIndex(x+size-1) != arenaIdx(h.arena) || (doubleCheck && fastrand()%2 == 0) {
1032		// This object spans heap arenas, so the bitmap may be
1033		// discontiguous. Unroll it into the object instead
1034		// and then copy it out.
1035		//
1036		// In doubleCheck mode, we randomly do this anyway to
1037		// stress test the bitmap copying path.
1038		outOfPlace = true
1039		h.bitp = (*uint8)(unsafe.Pointer(x))
1040		h.last = nil
1041	}
1042
1043	var (
1044		// Ptrmask input.
1045		p     *byte   // last ptrmask byte read
1046		b     uintptr // ptrmask bits already loaded
1047		nb    uintptr // number of bits in b at next read
1048		endp  *byte   // final ptrmask byte to read (then repeat)
1049		endnb uintptr // number of valid bits in *endp
1050		pbits uintptr // alternate source of bits
1051
1052		// Heap bitmap output.
1053		w     uintptr // words processed
1054		nw    uintptr // number of words to process
1055		hbitp *byte   // next heap bitmap byte to write
1056		hb    uintptr // bits being prepared for *hbitp
1057	)
1058
1059	hbitp = h.bitp
1060
1061	// Handle GC program. Delayed until this part of the code
1062	// so that we can use the same double-checking mechanism
1063	// as the 1-bit case. Nothing above could have encountered
1064	// GC programs: the cases were all too small.
1065	if typ.kind&kindGCProg != 0 {
1066		heapBitsSetTypeGCProg(h, typ.ptrdata, typ.size, dataSize, size, addb(typ.gcdata, 4))
1067		if doubleCheck {
1068			// Double-check the heap bits written by GC program
1069			// by running the GC program to create a 1-bit pointer mask
1070			// and then jumping to the double-check code below.
1071			// This doesn't catch bugs shared between the 1-bit and 4-bit
1072			// GC program execution, but it does catch mistakes specific
1073			// to just one of those and bugs in heapBitsSetTypeGCProg's
1074			// implementation of arrays.
1075			lock(&debugPtrmask.lock)
1076			if debugPtrmask.data == nil {
1077				debugPtrmask.data = (*byte)(persistentalloc(1<<20, 1, &memstats.other_sys))
1078			}
1079			ptrmask = debugPtrmask.data
1080			runGCProg(addb(typ.gcdata, 4), nil, ptrmask, 1)
1081		}
1082		goto Phase4
1083	}
1084
1085	// Note about sizes:
1086	//
1087	// typ.size is the number of words in the object,
1088	// and typ.ptrdata is the number of words in the prefix
1089	// of the object that contains pointers. That is, the final
1090	// typ.size - typ.ptrdata words contain no pointers.
1091	// This allows optimization of a common pattern where
1092	// an object has a small header followed by a large scalar
1093	// buffer. If we know the pointers are over, we don't have
1094	// to scan the buffer's heap bitmap at all.
1095	// The 1-bit ptrmasks are sized to contain only bits for
1096	// the typ.ptrdata prefix, zero padded out to a full byte
1097	// of bitmap. This code sets nw (below) so that heap bitmap
1098	// bits are only written for the typ.ptrdata prefix; if there is
1099	// more room in the allocated object, the next heap bitmap
1100	// entry is a 00, indicating that there are no more pointers
1101	// to scan. So only the ptrmask for the ptrdata bytes is needed.
1102	//
1103	// Replicated copies are not as nice: if there is an array of
1104	// objects with scalar tails, all but the last tail does have to
1105	// be initialized, because there is no way to say "skip forward".
1106	// However, because of the possibility of a repeated type with
1107	// size not a multiple of 4 pointers (one heap bitmap byte),
1108	// the code already must handle the last ptrmask byte specially
1109	// by treating it as containing only the bits for endnb pointers,
1110	// where endnb <= 4. We represent large scalar tails that must
1111	// be expanded in the replication by setting endnb larger than 4.
1112	// This will have the effect of reading many bits out of b,
1113	// but once the real bits are shifted out, b will supply as many
1114	// zero bits as we try to read, which is exactly what we need.
1115
1116	p = ptrmask
1117	if typ.size < dataSize {
1118		// Filling in bits for an array of typ.
1119		// Set up for repetition of ptrmask during main loop.
1120		// Note that ptrmask describes only a prefix of
1121		const maxBits = sys.PtrSize*8 - 7
1122		if typ.ptrdata/sys.PtrSize <= maxBits {
1123			// Entire ptrmask fits in uintptr with room for a byte fragment.
1124			// Load into pbits and never read from ptrmask again.
1125			// This is especially important when the ptrmask has
1126			// fewer than 8 bits in it; otherwise the reload in the middle
1127			// of the Phase 2 loop would itself need to loop to gather
1128			// at least 8 bits.
1129
1130			// Accumulate ptrmask into b.
1131			// ptrmask is sized to describe only typ.ptrdata, but we record
1132			// it as describing typ.size bytes, since all the high bits are zero.
1133			nb = typ.ptrdata / sys.PtrSize
1134			for i := uintptr(0); i < nb; i += 8 {
1135				b |= uintptr(*p) << i
1136				p = add1(p)
1137			}
1138			nb = typ.size / sys.PtrSize
1139
1140			// Replicate ptrmask to fill entire pbits uintptr.
1141			// Doubling and truncating is fewer steps than
1142			// iterating by nb each time. (nb could be 1.)
1143			// Since we loaded typ.ptrdata/sys.PtrSize bits
1144			// but are pretending to have typ.size/sys.PtrSize,
1145			// there might be no replication necessary/possible.
1146			pbits = b
1147			endnb = nb
1148			if nb+nb <= maxBits {
1149				for endnb <= sys.PtrSize*8 {
1150					pbits |= pbits << endnb
1151					endnb += endnb
1152				}
1153				// Truncate to a multiple of original ptrmask.
1154				// Because nb+nb <= maxBits, nb fits in a byte.
1155				// Byte division is cheaper than uintptr division.
1156				endnb = uintptr(maxBits/byte(nb)) * nb
1157				pbits &= 1<<endnb - 1
1158				b = pbits
1159				nb = endnb
1160			}
1161
1162			// Clear p and endp as sentinel for using pbits.
1163			// Checked during Phase 2 loop.
1164			p = nil
1165			endp = nil
1166		} else {
1167			// Ptrmask is larger. Read it multiple times.
1168			n := (typ.ptrdata/sys.PtrSize+7)/8 - 1
1169			endp = addb(ptrmask, n)
1170			endnb = typ.size/sys.PtrSize - n*8
1171		}
1172	}
1173	if p != nil {
1174		b = uintptr(*p)
1175		p = add1(p)
1176		nb = 8
1177	}
1178
1179	if typ.size == dataSize {
1180		// Single entry: can stop once we reach the non-pointer data.
1181		nw = typ.ptrdata / sys.PtrSize
1182	} else {
1183		// Repeated instances of typ in an array.
1184		// Have to process first N-1 entries in full, but can stop
1185		// once we reach the non-pointer data in the final entry.
1186		nw = ((dataSize/typ.size-1)*typ.size + typ.ptrdata) / sys.PtrSize
1187	}
1188	if nw == 0 {
1189		// No pointers! Caller was supposed to check.
1190		println("runtime: invalid type ", typ.string())
1191		throw("heapBitsSetType: called with non-pointer type")
1192		return
1193	}
1194	if nw < 2 {
1195		// Must write at least 2 words, because the "no scan"
1196		// encoding doesn't take effect until the third word.
1197		nw = 2
1198	}
1199
1200	// Phase 1: Special case for leading byte (shift==0) or half-byte (shift==2).
1201	// The leading byte is special because it contains the bits for word 1,
1202	// which does not have the scan bit set.
1203	// The leading half-byte is special because it's a half a byte,
1204	// so we have to be careful with the bits already there.
1205	switch {
1206	default:
1207		throw("heapBitsSetType: unexpected shift")
1208
1209	case h.shift == 0:
1210		// Ptrmask and heap bitmap are aligned.
1211		// Handle first byte of bitmap specially.
1212		//
1213		// The first byte we write out covers the first four
1214		// words of the object. The scan/dead bit on the first
1215		// word must be set to scan since there are pointers
1216		// somewhere in the object. The scan/dead bit on the
1217		// second word is the checkmark, so we don't set it.
1218		// In all following words, we set the scan/dead
1219		// appropriately to indicate that the object contains
1220		// to the next 2-bit entry in the bitmap.
1221		//
1222		// TODO: It doesn't matter if we set the checkmark, so
1223		// maybe this case isn't needed any more.
1224		hb = b & bitPointerAll
1225		hb |= bitScan | bitScan<<(2*heapBitsShift) | bitScan<<(3*heapBitsShift)
1226		if w += 4; w >= nw {
1227			goto Phase3
1228		}
1229		*hbitp = uint8(hb)
1230		hbitp = add1(hbitp)
1231		b >>= 4
1232		nb -= 4
1233
1234	case sys.PtrSize == 8 && h.shift == 2:
1235		// Ptrmask and heap bitmap are misaligned.
1236		// The bits for the first two words are in a byte shared
1237		// with another object, so we must be careful with the bits
1238		// already there.
1239		// We took care of 1-word and 2-word objects above,
1240		// so this is at least a 6-word object.
1241		hb = (b & (bitPointer | bitPointer<<heapBitsShift)) << (2 * heapBitsShift)
1242		// This is not noscan, so set the scan bit in the
1243		// first word.
1244		hb |= bitScan << (2 * heapBitsShift)
1245		b >>= 2
1246		nb -= 2
1247		// Note: no bitScan for second word because that's
1248		// the checkmark.
1249		*hbitp &^= uint8((bitPointer | bitScan | (bitPointer << heapBitsShift)) << (2 * heapBitsShift))
1250		*hbitp |= uint8(hb)
1251		hbitp = add1(hbitp)
1252		if w += 2; w >= nw {
1253			// We know that there is more data, because we handled 2-word objects above.
1254			// This must be at least a 6-word object. If we're out of pointer words,
1255			// mark no scan in next bitmap byte and finish.
1256			hb = 0
1257			w += 4
1258			goto Phase3
1259		}
1260	}
1261
1262	// Phase 2: Full bytes in bitmap, up to but not including write to last byte (full or partial) in bitmap.
1263	// The loop computes the bits for that last write but does not execute the write;
1264	// it leaves the bits in hb for processing by phase 3.
1265	// To avoid repeated adjustment of nb, we subtract out the 4 bits we're going to
1266	// use in the first half of the loop right now, and then we only adjust nb explicitly
1267	// if the 8 bits used by each iteration isn't balanced by 8 bits loaded mid-loop.
1268	nb -= 4
1269	for {
1270		// Emit bitmap byte.
1271		// b has at least nb+4 bits, with one exception:
1272		// if w+4 >= nw, then b has only nw-w bits,
1273		// but we'll stop at the break and then truncate
1274		// appropriately in Phase 3.
1275		hb = b & bitPointerAll
1276		hb |= bitScanAll
1277		if w += 4; w >= nw {
1278			break
1279		}
1280		*hbitp = uint8(hb)
1281		hbitp = add1(hbitp)
1282		b >>= 4
1283
1284		// Load more bits. b has nb right now.
1285		if p != endp {
1286			// Fast path: keep reading from ptrmask.
1287			// nb unmodified: we just loaded 8 bits,
1288			// and the next iteration will consume 8 bits,
1289			// leaving us with the same nb the next time we're here.
1290			if nb < 8 {
1291				b |= uintptr(*p) << nb
1292				p = add1(p)
1293			} else {
1294				// Reduce the number of bits in b.
1295				// This is important if we skipped
1296				// over a scalar tail, since nb could
1297				// be larger than the bit width of b.
1298				nb -= 8
1299			}
1300		} else if p == nil {
1301			// Almost as fast path: track bit count and refill from pbits.
1302			// For short repetitions.
1303			if nb < 8 {
1304				b |= pbits << nb
1305				nb += endnb
1306			}
1307			nb -= 8 // for next iteration
1308		} else {
1309			// Slow path: reached end of ptrmask.
1310			// Process final partial byte and rewind to start.
1311			b |= uintptr(*p) << nb
1312			nb += endnb
1313			if nb < 8 {
1314				b |= uintptr(*ptrmask) << nb
1315				p = add1(ptrmask)
1316			} else {
1317				nb -= 8
1318				p = ptrmask
1319			}
1320		}
1321
1322		// Emit bitmap byte.
1323		hb = b & bitPointerAll
1324		hb |= bitScanAll
1325		if w += 4; w >= nw {
1326			break
1327		}
1328		*hbitp = uint8(hb)
1329		hbitp = add1(hbitp)
1330		b >>= 4
1331	}
1332
1333Phase3:
1334	// Phase 3: Write last byte or partial byte and zero the rest of the bitmap entries.
1335	if w > nw {
1336		// Counting the 4 entries in hb not yet written to memory,
1337		// there are more entries than possible pointer slots.
1338		// Discard the excess entries (can't be more than 3).
1339		mask := uintptr(1)<<(4-(w-nw)) - 1
1340		hb &= mask | mask<<4 // apply mask to both pointer bits and scan bits
1341	}
1342
1343	// Change nw from counting possibly-pointer words to total words in allocation.
1344	nw = size / sys.PtrSize
1345
1346	// Write whole bitmap bytes.
1347	// The first is hb, the rest are zero.
1348	if w <= nw {
1349		*hbitp = uint8(hb)
1350		hbitp = add1(hbitp)
1351		hb = 0 // for possible final half-byte below
1352		for w += 4; w <= nw; w += 4 {
1353			*hbitp = 0
1354			hbitp = add1(hbitp)
1355		}
1356	}
1357
1358	// Write final partial bitmap byte if any.
1359	// We know w > nw, or else we'd still be in the loop above.
1360	// It can be bigger only due to the 4 entries in hb that it counts.
1361	// If w == nw+4 then there's nothing left to do: we wrote all nw entries
1362	// and can discard the 4 sitting in hb.
1363	// But if w == nw+2, we need to write first two in hb.
1364	// The byte is shared with the next object, so be careful with
1365	// existing bits.
1366	if w == nw+2 {
1367		*hbitp = *hbitp&^(bitPointer|bitScan|(bitPointer|bitScan)<<heapBitsShift) | uint8(hb)
1368	}
1369
1370Phase4:
1371	// Phase 4: Copy unrolled bitmap to per-arena bitmaps, if necessary.
1372	if outOfPlace {
1373		// TODO: We could probably make this faster by
1374		// handling [x+dataSize, x+size) specially.
1375		h := heapBitsForAddr(x)
1376		// cnw is the number of heap words, or bit pairs
1377		// remaining (like nw above).
1378		cnw := size / sys.PtrSize
1379		src := (*uint8)(unsafe.Pointer(x))
1380		// We know the first and last byte of the bitmap are
1381		// not the same, but it's still possible for small
1382		// objects span arenas, so it may share bitmap bytes
1383		// with neighboring objects.
1384		//
1385		// Handle the first byte specially if it's shared. See
1386		// Phase 1 for why this is the only special case we need.
1387		if doubleCheck {
1388			if !(h.shift == 0 || (sys.PtrSize == 8 && h.shift == 2)) {
1389				print("x=", x, " size=", size, " cnw=", h.shift, "\n")
1390				throw("bad start shift")
1391			}
1392		}
1393		if sys.PtrSize == 8 && h.shift == 2 {
1394			*h.bitp = *h.bitp&^((bitPointer|bitScan|(bitPointer|bitScan)<<heapBitsShift)<<(2*heapBitsShift)) | *src
1395			h = h.next().next()
1396			cnw -= 2
1397			src = addb(src, 1)
1398		}
1399		// We're now byte aligned. Copy out to per-arena
1400		// bitmaps until the last byte (which may again be
1401		// partial).
1402		for cnw >= 4 {
1403			// This loop processes four words at a time,
1404			// so round cnw down accordingly.
1405			hNext, words := h.forwardOrBoundary(cnw / 4 * 4)
1406
1407			// n is the number of bitmap bytes to copy.
1408			n := words / 4
1409			memmove(unsafe.Pointer(h.bitp), unsafe.Pointer(src), n)
1410			cnw -= words
1411			h = hNext
1412			src = addb(src, n)
1413		}
1414		if doubleCheck && h.shift != 0 {
1415			print("cnw=", cnw, " h.shift=", h.shift, "\n")
1416			throw("bad shift after block copy")
1417		}
1418		// Handle the last byte if it's shared.
1419		if cnw == 2 {
1420			*h.bitp = *h.bitp&^(bitPointer|bitScan|(bitPointer|bitScan)<<heapBitsShift) | *src
1421			src = addb(src, 1)
1422			h = h.next().next()
1423		}
1424		if doubleCheck {
1425			if uintptr(unsafe.Pointer(src)) > x+size {
1426				throw("copy exceeded object size")
1427			}
1428			if !(cnw == 0 || cnw == 2) {
1429				print("x=", x, " size=", size, " cnw=", cnw, "\n")
1430				throw("bad number of remaining words")
1431			}
1432			// Set up hbitp so doubleCheck code below can check it.
1433			hbitp = h.bitp
1434		}
1435		// Zero the object where we wrote the bitmap.
1436		memclrNoHeapPointers(unsafe.Pointer(x), uintptr(unsafe.Pointer(src))-x)
1437	}
1438
1439	// Double check the whole bitmap.
1440	if doubleCheck {
1441		// x+size may not point to the heap, so back up one
1442		// word and then call next().
1443		end := heapBitsForAddr(x + size - sys.PtrSize).next()
1444		endAI := arenaIdx(end.arena)
1445		if !outOfPlace && (end.bitp == nil || (end.shift == 0 && end.bitp == &mheap_.arenas[endAI.l1()][endAI.l2()].bitmap[0])) {
1446			// The unrolling code above walks hbitp just
1447			// past the bitmap without moving to the next
1448			// arena. Synthesize this for end.bitp.
1449			end.arena--
1450			endAI = arenaIdx(end.arena)
1451			end.bitp = addb(&mheap_.arenas[endAI.l1()][endAI.l2()].bitmap[0], heapArenaBitmapBytes)
1452			end.last = nil
1453		}
1454		if typ.kind&kindGCProg == 0 && (hbitp != end.bitp || (w == nw+2) != (end.shift == 2)) {
1455			println("ended at wrong bitmap byte for", typ.string(), "x", dataSize/typ.size)
1456			print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n")
1457			print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n")
1458			h0 := heapBitsForAddr(x)
1459			print("initial bits h0.bitp=", h0.bitp, " h0.shift=", h0.shift, "\n")
1460			print("ended at hbitp=", hbitp, " but next starts at bitp=", end.bitp, " shift=", end.shift, "\n")
1461			throw("bad heapBitsSetType")
1462		}
1463
1464		// Double-check that bits to be written were written correctly.
1465		// Does not check that other bits were not written, unfortunately.
1466		h := heapBitsForAddr(x)
1467		nptr := typ.ptrdata / sys.PtrSize
1468		ndata := typ.size / sys.PtrSize
1469		count := dataSize / typ.size
1470		totalptr := ((count-1)*typ.size + typ.ptrdata) / sys.PtrSize
1471		for i := uintptr(0); i < size/sys.PtrSize; i++ {
1472			j := i % ndata
1473			var have, want uint8
1474			have = (*h.bitp >> h.shift) & (bitPointer | bitScan)
1475			if i >= totalptr {
1476				want = 0 // deadmarker
1477				if typ.kind&kindGCProg != 0 && i < (totalptr+3)/4*4 {
1478					want = bitScan
1479				}
1480			} else {
1481				if j < nptr && (*addb(ptrmask, j/8)>>(j%8))&1 != 0 {
1482					want |= bitPointer
1483				}
1484				if i != 1 {
1485					want |= bitScan
1486				} else {
1487					have &^= bitScan
1488				}
1489			}
1490			if have != want {
1491				println("mismatch writing bits for", typ.string(), "x", dataSize/typ.size)
1492				print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n")
1493				print("kindGCProg=", typ.kind&kindGCProg != 0, " outOfPlace=", outOfPlace, "\n")
1494				print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n")
1495				h0 := heapBitsForAddr(x)
1496				print("initial bits h0.bitp=", h0.bitp, " h0.shift=", h0.shift, "\n")
1497				print("current bits h.bitp=", h.bitp, " h.shift=", h.shift, " *h.bitp=", hex(*h.bitp), "\n")
1498				print("ptrmask=", ptrmask, " p=", p, " endp=", endp, " endnb=", endnb, " pbits=", hex(pbits), " b=", hex(b), " nb=", nb, "\n")
1499				println("at word", i, "offset", i*sys.PtrSize, "have", hex(have), "want", hex(want))
1500				if typ.kind&kindGCProg != 0 {
1501					println("GC program:")
1502					dumpGCProg(addb(typ.gcdata, 4))
1503				}
1504				throw("bad heapBitsSetType")
1505			}
1506			h = h.next()
1507		}
1508		if ptrmask == debugPtrmask.data {
1509			unlock(&debugPtrmask.lock)
1510		}
1511	}
1512}
1513
1514var debugPtrmask struct {
1515	lock mutex
1516	data *byte
1517}
1518
1519// heapBitsSetTypeGCProg implements heapBitsSetType using a GC program.
1520// progSize is the size of the memory described by the program.
1521// elemSize is the size of the element that the GC program describes (a prefix of).
1522// dataSize is the total size of the intended data, a multiple of elemSize.
1523// allocSize is the total size of the allocated memory.
1524//
1525// GC programs are only used for large allocations.
1526// heapBitsSetType requires that allocSize is a multiple of 4 words,
1527// so that the relevant bitmap bytes are not shared with surrounding
1528// objects.
1529func heapBitsSetTypeGCProg(h heapBits, progSize, elemSize, dataSize, allocSize uintptr, prog *byte) {
1530	if sys.PtrSize == 8 && allocSize%(4*sys.PtrSize) != 0 {
1531		// Alignment will be wrong.
1532		throw("heapBitsSetTypeGCProg: small allocation")
1533	}
1534	var totalBits uintptr
1535	if elemSize == dataSize {
1536		totalBits = runGCProg(prog, nil, h.bitp, 2)
1537		if totalBits*sys.PtrSize != progSize {
1538			println("runtime: heapBitsSetTypeGCProg: total bits", totalBits, "but progSize", progSize)
1539			throw("heapBitsSetTypeGCProg: unexpected bit count")
1540		}
1541	} else {
1542		count := dataSize / elemSize
1543
1544		// Piece together program trailer to run after prog that does:
1545		//	literal(0)
1546		//	repeat(1, elemSize-progSize-1) // zeros to fill element size
1547		//	repeat(elemSize, count-1) // repeat that element for count
1548		// This zero-pads the data remaining in the first element and then
1549		// repeats that first element to fill the array.
1550		var trailer [40]byte // 3 varints (max 10 each) + some bytes
1551		i := 0
1552		if n := elemSize/sys.PtrSize - progSize/sys.PtrSize; n > 0 {
1553			// literal(0)
1554			trailer[i] = 0x01
1555			i++
1556			trailer[i] = 0
1557			i++
1558			if n > 1 {
1559				// repeat(1, n-1)
1560				trailer[i] = 0x81
1561				i++
1562				n--
1563				for ; n >= 0x80; n >>= 7 {
1564					trailer[i] = byte(n | 0x80)
1565					i++
1566				}
1567				trailer[i] = byte(n)
1568				i++
1569			}
1570		}
1571		// repeat(elemSize/ptrSize, count-1)
1572		trailer[i] = 0x80
1573		i++
1574		n := elemSize / sys.PtrSize
1575		for ; n >= 0x80; n >>= 7 {
1576			trailer[i] = byte(n | 0x80)
1577			i++
1578		}
1579		trailer[i] = byte(n)
1580		i++
1581		n = count - 1
1582		for ; n >= 0x80; n >>= 7 {
1583			trailer[i] = byte(n | 0x80)
1584			i++
1585		}
1586		trailer[i] = byte(n)
1587		i++
1588		trailer[i] = 0
1589		i++
1590
1591		runGCProg(prog, &trailer[0], h.bitp, 2)
1592
1593		// Even though we filled in the full array just now,
1594		// record that we only filled in up to the ptrdata of the
1595		// last element. This will cause the code below to
1596		// memclr the dead section of the final array element,
1597		// so that scanobject can stop early in the final element.
1598		totalBits = (elemSize*(count-1) + progSize) / sys.PtrSize
1599	}
1600	endProg := unsafe.Pointer(addb(h.bitp, (totalBits+3)/4))
1601	endAlloc := unsafe.Pointer(addb(h.bitp, allocSize/sys.PtrSize/wordsPerBitmapByte))
1602	memclrNoHeapPointers(endProg, uintptr(endAlloc)-uintptr(endProg))
1603}
1604
1605// progToPointerMask returns the 1-bit pointer mask output by the GC program prog.
1606// size the size of the region described by prog, in bytes.
1607// The resulting bitvector will have no more than size/sys.PtrSize bits.
1608func progToPointerMask(prog *byte, size uintptr) bitvector {
1609	n := (size/sys.PtrSize + 7) / 8
1610	x := (*[1 << 30]byte)(persistentalloc(n+1, 1, &memstats.buckhash_sys))[:n+1]
1611	x[len(x)-1] = 0xa1 // overflow check sentinel
1612	n = runGCProg(prog, nil, &x[0], 1)
1613	if x[len(x)-1] != 0xa1 {
1614		throw("progToPointerMask: overflow")
1615	}
1616	return bitvector{int32(n), &x[0]}
1617}
1618
1619// Packed GC pointer bitmaps, aka GC programs.
1620//
1621// For large types containing arrays, the type information has a
1622// natural repetition that can be encoded to save space in the
1623// binary and in the memory representation of the type information.
1624//
1625// The encoding is a simple Lempel-Ziv style bytecode machine
1626// with the following instructions:
1627//
1628//	00000000: stop
1629//	0nnnnnnn: emit n bits copied from the next (n+7)/8 bytes
1630//	10000000 n c: repeat the previous n bits c times; n, c are varints
1631//	1nnnnnnn c: repeat the previous n bits c times; c is a varint
1632
1633// runGCProg executes the GC program prog, and then trailer if non-nil,
1634// writing to dst with entries of the given size.
1635// If size == 1, dst is a 1-bit pointer mask laid out moving forward from dst.
1636// If size == 2, dst is the 2-bit heap bitmap, and writes move backward
1637// starting at dst (because the heap bitmap does). In this case, the caller guarantees
1638// that only whole bytes in dst need to be written.
1639//
1640// runGCProg returns the number of 1- or 2-bit entries written to memory.
1641func runGCProg(prog, trailer, dst *byte, size int) uintptr {
1642	dstStart := dst
1643
1644	// Bits waiting to be written to memory.
1645	var bits uintptr
1646	var nbits uintptr
1647
1648	p := prog
1649Run:
1650	for {
1651		// Flush accumulated full bytes.
1652		// The rest of the loop assumes that nbits <= 7.
1653		for ; nbits >= 8; nbits -= 8 {
1654			if size == 1 {
1655				*dst = uint8(bits)
1656				dst = add1(dst)
1657				bits >>= 8
1658			} else {
1659				v := bits&bitPointerAll | bitScanAll
1660				*dst = uint8(v)
1661				dst = add1(dst)
1662				bits >>= 4
1663				v = bits&bitPointerAll | bitScanAll
1664				*dst = uint8(v)
1665				dst = add1(dst)
1666				bits >>= 4
1667			}
1668		}
1669
1670		// Process one instruction.
1671		inst := uintptr(*p)
1672		p = add1(p)
1673		n := inst & 0x7F
1674		if inst&0x80 == 0 {
1675			// Literal bits; n == 0 means end of program.
1676			if n == 0 {
1677				// Program is over; continue in trailer if present.
1678				if trailer != nil {
1679					p = trailer
1680					trailer = nil
1681					continue
1682				}
1683				break Run
1684			}
1685			nbyte := n / 8
1686			for i := uintptr(0); i < nbyte; i++ {
1687				bits |= uintptr(*p) << nbits
1688				p = add1(p)
1689				if size == 1 {
1690					*dst = uint8(bits)
1691					dst = add1(dst)
1692					bits >>= 8
1693				} else {
1694					v := bits&0xf | bitScanAll
1695					*dst = uint8(v)
1696					dst = add1(dst)
1697					bits >>= 4
1698					v = bits&0xf | bitScanAll
1699					*dst = uint8(v)
1700					dst = add1(dst)
1701					bits >>= 4
1702				}
1703			}
1704			if n %= 8; n > 0 {
1705				bits |= uintptr(*p) << nbits
1706				p = add1(p)
1707				nbits += n
1708			}
1709			continue Run
1710		}
1711
1712		// Repeat. If n == 0, it is encoded in a varint in the next bytes.
1713		if n == 0 {
1714			for off := uint(0); ; off += 7 {
1715				x := uintptr(*p)
1716				p = add1(p)
1717				n |= (x & 0x7F) << off
1718				if x&0x80 == 0 {
1719					break
1720				}
1721			}
1722		}
1723
1724		// Count is encoded in a varint in the next bytes.
1725		c := uintptr(0)
1726		for off := uint(0); ; off += 7 {
1727			x := uintptr(*p)
1728			p = add1(p)
1729			c |= (x & 0x7F) << off
1730			if x&0x80 == 0 {
1731				break
1732			}
1733		}
1734		c *= n // now total number of bits to copy
1735
1736		// If the number of bits being repeated is small, load them
1737		// into a register and use that register for the entire loop
1738		// instead of repeatedly reading from memory.
1739		// Handling fewer than 8 bits here makes the general loop simpler.
1740		// The cutoff is sys.PtrSize*8 - 7 to guarantee that when we add
1741		// the pattern to a bit buffer holding at most 7 bits (a partial byte)
1742		// it will not overflow.
1743		src := dst
1744		const maxBits = sys.PtrSize*8 - 7
1745		if n <= maxBits {
1746			// Start with bits in output buffer.
1747			pattern := bits
1748			npattern := nbits
1749
1750			// If we need more bits, fetch them from memory.
1751			if size == 1 {
1752				src = subtract1(src)
1753				for npattern < n {
1754					pattern <<= 8
1755					pattern |= uintptr(*src)
1756					src = subtract1(src)
1757					npattern += 8
1758				}
1759			} else {
1760				src = subtract1(src)
1761				for npattern < n {
1762					pattern <<= 4
1763					pattern |= uintptr(*src) & 0xf
1764					src = subtract1(src)
1765					npattern += 4
1766				}
1767			}
1768
1769			// We started with the whole bit output buffer,
1770			// and then we loaded bits from whole bytes.
1771			// Either way, we might now have too many instead of too few.
1772			// Discard the extra.
1773			if npattern > n {
1774				pattern >>= npattern - n
1775				npattern = n
1776			}
1777
1778			// Replicate pattern to at most maxBits.
1779			if npattern == 1 {
1780				// One bit being repeated.
1781				// If the bit is 1, make the pattern all 1s.
1782				// If the bit is 0, the pattern is already all 0s,
1783				// but we can claim that the number of bits
1784				// in the word is equal to the number we need (c),
1785				// because right shift of bits will zero fill.
1786				if pattern == 1 {
1787					pattern = 1<<maxBits - 1
1788					npattern = maxBits
1789				} else {
1790					npattern = c
1791				}
1792			} else {
1793				b := pattern
1794				nb := npattern
1795				if nb+nb <= maxBits {
1796					// Double pattern until the whole uintptr is filled.
1797					for nb <= sys.PtrSize*8 {
1798						b |= b << nb
1799						nb += nb
1800					}
1801					// Trim away incomplete copy of original pattern in high bits.
1802					// TODO(rsc): Replace with table lookup or loop on systems without divide?
1803					nb = maxBits / npattern * npattern
1804					b &= 1<<nb - 1
1805					pattern = b
1806					npattern = nb
1807				}
1808			}
1809
1810			// Add pattern to bit buffer and flush bit buffer, c/npattern times.
1811			// Since pattern contains >8 bits, there will be full bytes to flush
1812			// on each iteration.
1813			for ; c >= npattern; c -= npattern {
1814				bits |= pattern << nbits
1815				nbits += npattern
1816				if size == 1 {
1817					for nbits >= 8 {
1818						*dst = uint8(bits)
1819						dst = add1(dst)
1820						bits >>= 8
1821						nbits -= 8
1822					}
1823				} else {
1824					for nbits >= 4 {
1825						*dst = uint8(bits&0xf | bitScanAll)
1826						dst = add1(dst)
1827						bits >>= 4
1828						nbits -= 4
1829					}
1830				}
1831			}
1832
1833			// Add final fragment to bit buffer.
1834			if c > 0 {
1835				pattern &= 1<<c - 1
1836				bits |= pattern << nbits
1837				nbits += c
1838			}
1839			continue Run
1840		}
1841
1842		// Repeat; n too large to fit in a register.
1843		// Since nbits <= 7, we know the first few bytes of repeated data
1844		// are already written to memory.
1845		off := n - nbits // n > nbits because n > maxBits and nbits <= 7
1846		if size == 1 {
1847			// Leading src fragment.
1848			src = subtractb(src, (off+7)/8)
1849			if frag := off & 7; frag != 0 {
1850				bits |= uintptr(*src) >> (8 - frag) << nbits
1851				src = add1(src)
1852				nbits += frag
1853				c -= frag
1854			}
1855			// Main loop: load one byte, write another.
1856			// The bits are rotating through the bit buffer.
1857			for i := c / 8; i > 0; i-- {
1858				bits |= uintptr(*src) << nbits
1859				src = add1(src)
1860				*dst = uint8(bits)
1861				dst = add1(dst)
1862				bits >>= 8
1863			}
1864			// Final src fragment.
1865			if c %= 8; c > 0 {
1866				bits |= (uintptr(*src) & (1<<c - 1)) << nbits
1867				nbits += c
1868			}
1869		} else {
1870			// Leading src fragment.
1871			src = subtractb(src, (off+3)/4)
1872			if frag := off & 3; frag != 0 {
1873				bits |= (uintptr(*src) & 0xf) >> (4 - frag) << nbits
1874				src = add1(src)
1875				nbits += frag
1876				c -= frag
1877			}
1878			// Main loop: load one byte, write another.
1879			// The bits are rotating through the bit buffer.
1880			for i := c / 4; i > 0; i-- {
1881				bits |= (uintptr(*src) & 0xf) << nbits
1882				src = add1(src)
1883				*dst = uint8(bits&0xf | bitScanAll)
1884				dst = add1(dst)
1885				bits >>= 4
1886			}
1887			// Final src fragment.
1888			if c %= 4; c > 0 {
1889				bits |= (uintptr(*src) & (1<<c - 1)) << nbits
1890				nbits += c
1891			}
1892		}
1893	}
1894
1895	// Write any final bits out, using full-byte writes, even for the final byte.
1896	var totalBits uintptr
1897	if size == 1 {
1898		totalBits = (uintptr(unsafe.Pointer(dst))-uintptr(unsafe.Pointer(dstStart)))*8 + nbits
1899		nbits += -nbits & 7
1900		for ; nbits > 0; nbits -= 8 {
1901			*dst = uint8(bits)
1902			dst = add1(dst)
1903			bits >>= 8
1904		}
1905	} else {
1906		totalBits = (uintptr(unsafe.Pointer(dst))-uintptr(unsafe.Pointer(dstStart)))*4 + nbits
1907		nbits += -nbits & 3
1908		for ; nbits > 0; nbits -= 4 {
1909			v := bits&0xf | bitScanAll
1910			*dst = uint8(v)
1911			dst = add1(dst)
1912			bits >>= 4
1913		}
1914	}
1915	return totalBits
1916}
1917
1918// materializeGCProg allocates space for the (1-bit) pointer bitmask
1919// for an object of size ptrdata.  Then it fills that space with the
1920// pointer bitmask specified by the program prog.
1921// The bitmask starts at s.startAddr.
1922// The result must be deallocated with dematerializeGCProg.
1923func materializeGCProg(ptrdata uintptr, prog *byte) *mspan {
1924	s := mheap_.allocManual((ptrdata/(8*sys.PtrSize)+pageSize-1)/pageSize, &memstats.gc_sys)
1925	runGCProg(addb(prog, 4), nil, (*byte)(unsafe.Pointer(s.startAddr)), 1)
1926	return s
1927}
1928func dematerializeGCProg(s *mspan) {
1929	mheap_.freeManual(s, &memstats.gc_sys)
1930}
1931
1932func dumpGCProg(p *byte) {
1933	nptr := 0
1934	for {
1935		x := *p
1936		p = add1(p)
1937		if x == 0 {
1938			print("\t", nptr, " end\n")
1939			break
1940		}
1941		if x&0x80 == 0 {
1942			print("\t", nptr, " lit ", x, ":")
1943			n := int(x+7) / 8
1944			for i := 0; i < n; i++ {
1945				print(" ", hex(*p))
1946				p = add1(p)
1947			}
1948			print("\n")
1949			nptr += int(x)
1950		} else {
1951			nbit := int(x &^ 0x80)
1952			if nbit == 0 {
1953				for nb := uint(0); ; nb += 7 {
1954					x := *p
1955					p = add1(p)
1956					nbit |= int(x&0x7f) << nb
1957					if x&0x80 == 0 {
1958						break
1959					}
1960				}
1961			}
1962			count := 0
1963			for nb := uint(0); ; nb += 7 {
1964				x := *p
1965				p = add1(p)
1966				count |= int(x&0x7f) << nb
1967				if x&0x80 == 0 {
1968					break
1969				}
1970			}
1971			print("\t", nptr, " repeat ", nbit, " × ", count, "\n")
1972			nptr += nbit * count
1973		}
1974	}
1975}
1976
1977// Testing.
1978
1979func getgcmaskcb(frame *stkframe, ctxt unsafe.Pointer) bool {
1980	target := (*stkframe)(ctxt)
1981	if frame.sp <= target.sp && target.sp < frame.varp {
1982		*target = *frame
1983		return false
1984	}
1985	return true
1986}
1987
1988// gcbits returns the GC type info for x, for testing.
1989// The result is the bitmap entries (0 or 1), one entry per byte.
1990//go:linkname reflect_gcbits reflect.gcbits
1991func reflect_gcbits(x interface{}) []byte {
1992	ret := getgcmask(x)
1993	typ := (*ptrtype)(unsafe.Pointer(efaceOf(&x)._type)).elem
1994	nptr := typ.ptrdata / sys.PtrSize
1995	for uintptr(len(ret)) > nptr && ret[len(ret)-1] == 0 {
1996		ret = ret[:len(ret)-1]
1997	}
1998	return ret
1999}
2000
2001// Returns GC type info for the pointer stored in ep for testing.
2002// If ep points to the stack, only static live information will be returned
2003// (i.e. not for objects which are only dynamically live stack objects).
2004func getgcmask(ep interface{}) (mask []byte) {
2005	e := *efaceOf(&ep)
2006	p := e.data
2007	t := e._type
2008	// data or bss
2009	for _, datap := range activeModules() {
2010		// data
2011		if datap.data <= uintptr(p) && uintptr(p) < datap.edata {
2012			bitmap := datap.gcdatamask.bytedata
2013			n := (*ptrtype)(unsafe.Pointer(t)).elem.size
2014			mask = make([]byte, n/sys.PtrSize)
2015			for i := uintptr(0); i < n; i += sys.PtrSize {
2016				off := (uintptr(p) + i - datap.data) / sys.PtrSize
2017				mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
2018			}
2019			return
2020		}
2021
2022		// bss
2023		if datap.bss <= uintptr(p) && uintptr(p) < datap.ebss {
2024			bitmap := datap.gcbssmask.bytedata
2025			n := (*ptrtype)(unsafe.Pointer(t)).elem.size
2026			mask = make([]byte, n/sys.PtrSize)
2027			for i := uintptr(0); i < n; i += sys.PtrSize {
2028				off := (uintptr(p) + i - datap.bss) / sys.PtrSize
2029				mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
2030			}
2031			return
2032		}
2033	}
2034
2035	// heap
2036	if base, s, _ := findObject(uintptr(p), 0, 0); base != 0 {
2037		hbits := heapBitsForAddr(base)
2038		n := s.elemsize
2039		mask = make([]byte, n/sys.PtrSize)
2040		for i := uintptr(0); i < n; i += sys.PtrSize {
2041			if hbits.isPointer() {
2042				mask[i/sys.PtrSize] = 1
2043			}
2044			if i != 1*sys.PtrSize && !hbits.morePointers() {
2045				mask = mask[:i/sys.PtrSize]
2046				break
2047			}
2048			hbits = hbits.next()
2049		}
2050		return
2051	}
2052
2053	// stack
2054	if _g_ := getg(); _g_.m.curg.stack.lo <= uintptr(p) && uintptr(p) < _g_.m.curg.stack.hi {
2055		var frame stkframe
2056		frame.sp = uintptr(p)
2057		_g_ := getg()
2058		gentraceback(_g_.m.curg.sched.pc, _g_.m.curg.sched.sp, 0, _g_.m.curg, 0, nil, 1000, getgcmaskcb, noescape(unsafe.Pointer(&frame)), 0)
2059		if frame.fn.valid() {
2060			locals, _, _ := getStackMap(&frame, nil, false)
2061			if locals.n == 0 {
2062				return
2063			}
2064			size := uintptr(locals.n) * sys.PtrSize
2065			n := (*ptrtype)(unsafe.Pointer(t)).elem.size
2066			mask = make([]byte, n/sys.PtrSize)
2067			for i := uintptr(0); i < n; i += sys.PtrSize {
2068				off := (uintptr(p) + i - frame.varp + size) / sys.PtrSize
2069				mask[i/sys.PtrSize] = locals.ptrbit(off)
2070			}
2071		}
2072		return
2073	}
2074
2075	// otherwise, not something the GC knows about.
2076	// possibly read-only data, like malloc(0).
2077	// must not have pointers
2078	return
2079}
2080