1#!perl -w
2use 5.015;
3use strict;
4use warnings;
5use Unicode::UCD qw(prop_aliases
6                    prop_values
7                    prop_value_aliases
8                    prop_invlist
9                    prop_invmap search_invlist
10                    charprop
11                    num
12                    charblock
13                   );
14require './regen/regen_lib.pl';
15require './regen/charset_translations.pl';
16require './lib/unicore/UCD.pl';
17use re "/aa";
18
19# This program outputs charclass_invlists.h, which contains various inversion
20# lists in the form of C arrays that are to be used as-is for inversion lists.
21# Thus, the lists it contains are essentially pre-compiled, and need only a
22# light-weight fast wrapper to make them usable at run-time.
23
24# As such, this code knows about the internal structure of these lists, and
25# any change made to that has to be done here as well.  A random number stored
26# in the headers is used to minimize the possibility of things getting
27# out-of-sync, or the wrong data structure being passed.  Currently that
28# random number is:
29
30my $VERSION_DATA_STRUCTURE_TYPE = 148565664;
31
32# charclass_invlists.h now also contains inversion maps and enum definitions
33# for those maps that have a finite number of possible values
34
35# integer or float (no exponent)
36my $integer_or_float_re = qr/ ^ -? \d+ (:? \. \d+ )? $ /x;
37
38# Also includes rationals
39my $numeric_re = qr! $integer_or_float_re | ^ -? \d+ / \d+ $ !x;
40
41# More than one code point may have the same code point as their fold.  This
42# gives the maximum number in the current Unicode release.  (The folded-to
43# code point is not included in this count.)  Most folds are pairs of code
44# points, like 'B' and 'b', so this number is at least one.
45my $max_fold_froms = 1;
46
47my %keywords;
48my $table_name_prefix = "UNI_";
49
50# Matches valid C language enum names: begins with ASCII alphabetic, then any
51# ASCII \w
52my $enum_name_re = qr / ^ [[:alpha:]] \w* $ /ax;
53
54my $out_fh = open_new('charclass_invlists.h', '>',
55                      {style => '*', by => 'regen/mk_invlists.pl',
56                      from => "Unicode::UCD"});
57
58my $in_file_pound_if = "";
59
60my $max_hdr_len = 3;    # In headings, how wide a name is allowed?
61
62print $out_fh "/* See the generating file for comments */\n\n";
63
64print $out_fh <<'EOF';
65/* This gives the number of code points that can be in the bitmap of an ANYOF
66 * node.  The shift number must currently be one of: 8..12.  It can't be less
67 * than 8 (256) because some code relies on it being at least that.  Above 12
68 * (4096), and you start running into warnings that some data structure widths
69 * have been exceeded, though the test suite as of this writing still passes
70 * for up through 16, which is as high as anyone would ever want to go,
71 * encompassing all of the Unicode BMP, and thus including all the economically
72 * important world scripts.  At 12 most of them are: including Arabic,
73 * Cyrillic, Greek, Hebrew, Indian subcontinent, Latin, and Thai; but not Han,
74 * Japanese, nor Korean.  (The regarglen structure in regnodes.h is a U8, and
75 * the trie types TRIEC and AHOCORASICKC are larger than U8 for shift values
76 * above 12.)  Be sure to benchmark before changing, as larger sizes do
77 * significantly slow down the test suite */
78
79EOF
80
81my $num_anyof_code_points = '(1 << 8)';
82
83print $out_fh "#define NUM_ANYOF_CODE_POINTS   $num_anyof_code_points\n\n";
84
85$num_anyof_code_points = eval $num_anyof_code_points;
86
87no warnings 'once';
88print $out_fh <<"EOF";
89/* The precision to use in "%.*e" formats */
90#define PL_E_FORMAT_PRECISION $Unicode::UCD::e_precision
91EOF
92
93# enums that should be made public
94my %public_enums = (
95                    _Perl_SCX => 1
96                    );
97
98# The symbols generated by this program are all currently defined only in a
99# single dot c each.  The code knows where most of them go, but this hash
100# gives overrides for the exceptions to the typical place
101my %exceptions_to_where_to_define =
102                        (
103                            #_Perl_IVCF => 'PERL_IN_REGCOMP_C',
104                        );
105
106my %where_to_define_enums = ();
107
108my $applies_to_all_charsets_text = "all charsets";
109
110my %gcb_enums;
111my @gcb_short_enums;
112my %gcb_abbreviations;
113my %lb_enums;
114my @lb_short_enums;
115my %lb_abbreviations;
116my %wb_enums;
117my @wb_short_enums;
118my %wb_abbreviations;
119
120my @a2n;
121
122my %prop_name_aliases;
123# Invert this hash so that for each canonical name, we get a list of things
124# that map to it (excluding itself)
125foreach my $name (sort keys %Unicode::UCD::loose_property_name_of) {
126    my $canonical = $Unicode::UCD::loose_property_name_of{$name};
127    push @{$prop_name_aliases{$canonical}},  $name if $canonical ne $name;
128}
129
130# Output these tables in the same vicinity as each other, so that will get
131# paged in at about the same time.  These are also assumed to be the exact
132# same list as those properties used internally by perl.
133my %keep_together = (
134                        assigned => 1,
135                        ascii => 1,
136                        upper => 1,
137                        lower => 1,
138                        title => 1,
139                        cased => 1,
140                        uppercaseletter => 1,
141                        lowercaseletter => 1,
142                        titlecaseletter => 1,
143                        casedletter => 1,
144                        vertspace => 1,
145                        xposixalnum => 1,
146                        xposixalpha => 1,
147                        xposixblank => 1,
148                        xposixcntrl => 1,
149                        xposixdigit => 1,
150                        xposixgraph => 1,
151                        xposixlower => 1,
152                        xposixprint => 1,
153                        xposixpunct => 1,
154                        xposixspace => 1,
155                        xposixupper => 1,
156                        xposixword => 1,
157                        xposixxdigit => 1,
158                        posixalnum => 1,
159                        posixalpha => 1,
160                        posixblank => 1,
161                        posixcntrl => 1,
162                        posixdigit => 1,
163                        posixgraph => 1,
164                        posixlower => 1,
165                        posixprint => 1,
166                        posixpunct => 1,
167                        posixspace => 1,
168                        posixupper => 1,
169                        posixword => 1,
170                        posixxdigit => 1,
171                        _perl_any_folds => 1,
172                        _perl_folds_to_multi_char => 1,
173                        _perl_is_in_multi_char_fold => 1,
174                        _perl_non_final_folds => 1,
175                        _perl_idstart => 1,
176                        _perl_idcont => 1,
177                        _perl_charname_begin => 1,
178                        _perl_charname_continue => 1,
179                        _perl_problematic_locale_foldeds_start => 1,
180                        _perl_problematic_locale_folds => 1,
181                        _perl_quotemeta => 1,
182                    );
183my %perl_tags;  # So can find synonyms of the above properties
184
185my $unused_table_hdr = 'u';     # Heading for row or column for unused values
186
187sub uniques {
188    # Returns non-duplicated input values.  From "Perl Best Practices:
189    # Encapsulated Cleverness".  p. 455 in first edition.
190
191    my %seen;
192    return grep { ! $seen{$_}++ } @_;
193}
194
195sub caselessly { lc $a cmp lc $b }
196
197sub a2n($) {
198    my $cp = shift;
199
200    # Returns the input Unicode code point translated to native.
201
202    return $cp if $cp !~ $integer_or_float_re || $cp > 255;
203    return $a2n[$cp];
204}
205
206sub end_file_pound_if {
207    if ($in_file_pound_if) {
208        print $out_fh "\n#endif\t/* $in_file_pound_if */\n";
209        $in_file_pound_if = "";
210    }
211}
212
213sub end_charset_pound_if {
214    print $out_fh "\n" . get_conditional_compile_line_end();
215}
216
217sub switch_pound_if ($$;$) {
218    my $name = shift;
219    my $new_pound_if = shift;
220    my $charset = shift;
221
222    my @new_pound_if = ref ($new_pound_if)
223                       ? sort @$new_pound_if
224                       : $new_pound_if;
225
226    # Switch to new #if given by the 2nd argument.  If there is an override
227    # for this, it instead switches to that.  The 1st argument is the
228    # static's name, used only to check if there is an override for this
229    #
230    # The 'charset' parmameter, if present, is used to first end the charset
231    # #if if we actually do a switch, and then restart it afterwards.  This
232    # code, then assumes that the charset #if's are enclosed in the file ones.
233
234    if (exists $exceptions_to_where_to_define{$name}) {
235        @new_pound_if = $exceptions_to_where_to_define{$name};
236    }
237
238    foreach my $element (@new_pound_if) {
239
240        # regcomp.c is arranged so that the tables are not compiled in
241        # re_comp.c, but general enums and defines (which take no space) are
242        # compiled */
243        my $no_xsub = 1 if $name !~ /enum|define/
244                        && $element =~ / PERL_IN_ (?: REGCOMP ) _C /x;
245        $element = "defined($element)";
246        $element = "($element && ! defined(PERL_IN_XSUB_RE))" if $no_xsub;
247    }
248    $new_pound_if = join " || ", @new_pound_if;
249
250    # Change to the new one if different from old
251    if ($in_file_pound_if ne $new_pound_if) {
252
253        end_charset_pound_if() if defined $charset;
254
255        # Exit any current #if
256        if ($in_file_pound_if) {
257            end_file_pound_if;
258        }
259
260        $in_file_pound_if = $new_pound_if;
261        print $out_fh "\n#if $in_file_pound_if\n";
262
263        start_charset_pound_if ($charset, 1) if defined $charset;
264    }
265}
266
267sub start_charset_pound_if ($;$) {
268    print $out_fh "\n" . get_conditional_compile_line_start(shift, shift);
269}
270
271{   # Closure
272    my $fh;
273    my $in_doinit = 0;
274
275    sub output_table_header($$$;$@) {
276
277        # Output to $fh the heading for a table given by the other inputs
278
279        $fh = shift;
280        my ($type,      # typedef of table, like UV, UV*
281            $name,      # name of table
282            $comment,   # Optional comment to put on header line
283            @sizes      # Optional sizes of each array index.  If omitted,
284                        # there is a single index whose size is computed by
285                        # the C compiler.
286            ) = @_;
287
288        $type =~ s/ \s+ $ //x;
289
290        # If a the typedef is a ptr, add in an extra const
291        $type .= " const" if $type =~ / \* $ /x;
292
293        $comment = "" unless defined $comment;
294        $comment = "  /* $comment */" if $comment;
295
296        my $array_declaration;
297        if (@sizes) {
298            $array_declaration = "";
299            $array_declaration .= "[$_]" for @sizes;
300        }
301        else {
302            $array_declaration = '[]';
303        }
304
305        my $declaration = "$type ${name}$array_declaration";
306
307        # Things not matching this are static.  Otherwise, it is an external
308        # constant, initialized only under DOINIT.
309        #
310        # (Currently everything is static)
311        if ($in_file_pound_if !~ / PERL_IN_ (?: ) _C /x) {
312            $in_doinit = 0;
313            print $fh "\nstatic const $declaration = {$comment\n";
314        }
315        else {
316            $in_doinit = 1;
317            print $fh <<EOF;
318
319#    ifndef DOINIT
320
321EXTCONST $declaration;
322
323#    else
324
325EXTCONST $declaration = {$comment
326EOF
327        }
328    }
329
330    sub output_table_trailer() {
331
332        # Close out a table started by output_table_header()
333
334        print $fh "};\n";
335        if ($in_doinit) {
336            print $fh "\n#    endif  /* DOINIT */\n\n";
337            $in_doinit = 0;
338        }
339    }
340} # End closure
341
342
343sub output_invlist ($$;$) {
344    my $name = shift;
345    my $invlist = shift;     # Reference to inversion list array
346    my $charset = shift // "";  # name of character set for comment
347
348    die "No inversion list for $name" unless defined $invlist
349                                             && ref $invlist eq 'ARRAY';
350
351    # Output the inversion list $invlist using the name $name for it.
352    # It is output in the exact internal form for inversion lists.
353
354    # Is the last element of the header 0, or 1 ?
355    my $zero_or_one = 0;
356    if (@$invlist && $invlist->[0] != 0) {
357        unshift @$invlist, 0;
358        $zero_or_one = 1;
359    }
360
361    $charset = "for $charset" if $charset;
362    output_table_header($out_fh, "UV", "${name}_invlist", $charset);
363
364    my $count = @$invlist;
365    print $out_fh <<EOF;
366\t$count,\t/* Number of elements */
367\t$VERSION_DATA_STRUCTURE_TYPE, /* Version and data structure type */
368\t$zero_or_one,\t/* 0 if the list starts at 0;
369\t\t   1 if it starts at the element beyond 0 */
370EOF
371
372    # The main body are the UVs passed in to this routine.  Do the final
373    # element separately
374    for my $i (0 .. @$invlist - 1) {
375        printf $out_fh "\t0x%X", $invlist->[$i];
376        print $out_fh "," if $i < @$invlist - 1;
377        print $out_fh "\n";
378    }
379
380    output_table_trailer();
381}
382
383sub output_invmap ($$$$$$$) {
384    my $name = shift;
385    my $invmap = shift;     # Reference to inversion map array
386    my $prop_name = shift;
387    my $input_format = shift;   # The inversion map's format
388    my $default = shift;        # The property value for code points who
389                                # otherwise don't have a value specified.
390    my $extra_enums = shift;    # comma-separated list of our additions to the
391                                # property's standard possible values
392    my $charset = shift // "";  # name of character set for comment
393
394    # Output the inversion map $invmap for property $prop_name, but use $name
395    # as the actual data structure's name.
396
397    my $count = @$invmap;
398
399    my $output_format;
400    my $invmap_declaration_type;
401    my $enum_declaration_type;
402    my $aux_declaration_type;
403    my %enums;
404    my $name_prefix;
405
406    if ($input_format =~ / ^ [as] l? $ /x) {
407        $prop_name = (prop_aliases($prop_name))[1]
408     // $prop_name =~ s/^_Perl_//r; # Get full name
409        my $short_name = (prop_aliases($prop_name))[0] // $prop_name;
410        my @input_enums;
411
412        # Find all the possible input values.  These become the enum names
413        # that comprise the inversion map.  For inputs that don't have sub
414        # lists, we can just get the unique values.  Otherwise, we have to
415        # expand the sublists first.
416        if ($input_format !~ / ^ a /x) {
417            if ($input_format ne 'sl') {
418                @input_enums = sort caselessly uniques(@$invmap);
419            }
420            else {
421                foreach my $element (@$invmap) {
422                    if (ref $element) {
423                        push @input_enums, @$element;
424                    }
425                    else {
426                        push @input_enums, $element;
427                    }
428                }
429                @input_enums = sort caselessly uniques(@input_enums);
430            }
431        }
432
433        # The internal enums come last, and in the order specified.
434        #
435        # The internal one named EDGE is also used a marker.  Any ones that
436        # come after it are used in the algorithms below, and so must be
437        # defined, even if the release of Unicode this is being compiled for
438        # doesn't use them.   But since no code points are assigned to them in
439        # such a release, those values will never be accessed.  We collapse
440        # all of them into a single placholder row and a column.  The
441        # algorithms below will fill in those cells with essentially garbage,
442        # but they are never read, so it doesn't matter.  This allows the
443        # algorithm to remain the same from release to release.
444        #
445        # In one case, regexec.c also uses a placeholder which must be defined
446        # here, and we put it in the unused row and column as its value is
447        # never read.
448        #
449        my @enums = @input_enums;
450        my @extras;
451        my @unused_enums;
452        my $unused_enum_value = @enums;
453        if ($extra_enums ne "") {
454            @extras = split /,/, $extra_enums;
455            my $seen_EDGE = 0;
456
457            # Don't add if already there.
458            foreach my $this_extra (@extras) {
459                next if grep { $_ eq $this_extra } @enums;
460                if ($this_extra eq 'EDGE') {
461                    push @enums, $this_extra;
462                    $seen_EDGE = 1;
463                }
464                elsif ($seen_EDGE) {
465                    push @unused_enums, $this_extra;
466                }
467                else {
468                    push @enums, $this_extra;
469                }
470            }
471
472            @unused_enums = sort caselessly @unused_enums;
473            $unused_enum_value = @enums;    # All unused have the same value,
474                                            # one beyond the final used one
475        }
476
477        # These properties have extra tables written out for them that we want
478        # to make as compact and legible as possible.  So we find short names
479        # for their property values.  For non-official ones we will need to
480        # add a legend at the top of the table to say what the abbreviation
481        # stands for.
482        my $property_needs_table_re = qr/ ^  _Perl_ (?: GCB | LB | WB ) $ /x;
483
484        my %short_enum_name;
485        my %need_explanation;   # For non-official abbreviations, we will need
486                                # to explain what the one we come up with
487                                # stands for
488        my $type = lc $prop_name;
489        if ($name =~ $property_needs_table_re) {
490            my @short_names;  # List of already used abbreviations, so we
491                              # don't duplicate
492            for my $enum (@enums) {
493                my $short_enum;
494                my $is_official_name = 0;
495
496                # Special case this wb property value to make the
497                # name more clear
498                if ($enum eq 'Perl_Tailored_HSpace') {
499                    $short_enum = 'hs';
500                }
501                else {
502
503                    # Use the official short name, if found.
504                    ($short_enum) = prop_value_aliases($type, $enum);
505                    if ( defined $short_enum) {
506                        $is_official_name = 1;
507                    }
508                    else {
509                        # But if there is no official name, use the name that
510                        # came from the data (if any).  Otherwise, the name
511                        # had to come from the extras list.  There are two
512                        # types of values in that list.
513                        #
514                        # First are those enums that are not part of the
515                        # property, but are defined by the code in this file.
516                        # By convention these have all-caps names.  We use the
517                        # lowercased name for these.
518                        #
519                        # Second are enums that are needed to get the
520                        # algorithms below to work and/or to get regexec.c to
521                        # compile, but don't exist in all Unicode releases.
522                        # These are handled outside this loop as
523                        # 'unused_enums' (as they are unused they all get
524                        # collapsed into a single column, and their names
525                        # don't matter)
526                        if (grep { $_ eq $enum } @input_enums) {
527                            $short_enum = $enum
528                        }
529                        else {
530                            $short_enum = lc $enum;
531                        }
532                    }
533
534                    # If our short name is too long, or we already know that
535                    # the name is an abbreviation, truncate to make sure it's
536                    # short enough, and remember that we did this so we can
537                    # later add a comment in the generated file
538                    if (length $short_enum > $max_hdr_len) {
539                        # First try using just the uppercase letters of the name;
540                        # if it is something like FooBar, FB is a better
541                        # abbreviation than Foo.  That's not the case if it is
542                        # entirely lowercase.
543                        my $uc = $short_enum;
544                        $uc =~ s/[[:^upper:]]//g;
545                        $short_enum = $uc if length $uc > 1
546                                          && length $uc < length $short_enum;
547
548                        $short_enum = substr($short_enum, 0, $max_hdr_len);
549                        $is_official_name = 0;
550                    }
551                }
552
553                # If the name we are to display conflicts, try another.
554                if (grep { $_ eq $short_enum } @short_names) {
555                    $is_official_name = 0;
556                    do { # The increment operator on strings doesn't work on
557                         # those containing an '_', so get rid of any final
558                         # portion.
559                        $short_enum =~ s/_//g;
560                        $short_enum++;
561                    } while grep { $_ eq $short_enum } @short_names;
562                }
563
564                push @short_names, $short_enum;
565                $short_enum_name{$enum} = $short_enum;
566                $need_explanation{$enum} = $short_enum unless $is_official_name;
567            }
568        } # End of calculating short enum names for certain properties
569
570        # Assign a value to each element of the enum type we are creating.
571        # The default value always gets 0; the others are arbitrarily
572        # assigned, but for the properties which have the extra table, it is
573        # in the order we have computed above so the rows and columns appear
574        # alphabetically by heading abbreviation.
575        my $enum_val = 0;
576        my $canonical_default = prop_value_aliases($prop_name, $default);
577        $default = $canonical_default if defined $canonical_default;
578        $enums{$default} = $enum_val++;
579
580        for my $enum (sort { ($name =~ $property_needs_table_re)
581                             ?     lc $short_enum_name{$a}
582                               cmp lc $short_enum_name{$b}
583                             : lc $a cmp lc $b
584                           } @enums)
585        {
586            $enums{$enum} = $enum_val++ unless exists $enums{$enum};
587        }
588
589        # Now calculate the data for the special tables output for these
590        # properties.
591        if ($name =~ $property_needs_table_re) {
592
593            # The data includes the hashes %gcb_enums, %lb_enums, etc.
594            # Similarly we calculate column headings for the tables.
595            #
596            # We use string evals to allow the same code to work on
597            # all the tables
598
599            # Skip if we've already done this code, which populated
600            # this hash
601            if (eval "! \%${type}_enums") {
602
603                # For each enum in the type ...
604                foreach my $enum (keys %enums) {
605                    my $value = $enums{$enum};
606                    my $short_enum = $short_enum_name{$enum};
607
608                    # Remember the mapping from the property value
609                    # (enum) name to its value.
610                    eval "\$${type}_enums{$enum} = $value";
611                    die $@ if $@;
612
613                    # Remember the inverse mapping to the short name
614                    # so that we can properly label the generated
615                    # table's rows and columns
616                    eval "\$${type}_short_enums[$value] = '$short_enum'";
617                    die $@ if $@;
618
619                    # And note the abbreviations that need explanation
620                    if ($need_explanation{$enum}) {
621                        eval "\$${type}_abbreviations{$short_enum} = '$enum'";
622                        die $@ if $@;
623                    }
624                }
625
626                # Each unused enum has the same value.  They all are collapsed
627                # into one row and one column, named $unused_table_hdr.
628                if (@unused_enums) {
629                    eval "\$${type}_short_enums['$unused_enum_value'] = '$unused_table_hdr'";
630                    die $@ if $@;
631
632                    foreach my $enum (@unused_enums) {
633                        eval "\$${type}_enums{$enum} = $unused_enum_value";
634                        die $@ if $@;
635                    }
636                }
637            }
638        }
639
640        # The short property names tend to be two lower case letters, but it
641        # looks better for those if they are upper. XXX
642        $short_name = uc($short_name) if length($short_name) < 3
643                                || substr($short_name, 0, 1) =~ /[[:lower:]]/;
644        $name_prefix = "${short_name}_";
645
646        # Start the enum definition for this map
647        my @enum_definition;
648        my @enum_list;
649        foreach my $enum (keys %enums) {
650            $enum_list[$enums{$enum}] = $enum;
651        }
652        foreach my $i (0 .. @enum_list - 1) {
653            push @enum_definition, ",\n" if $i > 0;
654
655            my $name = $enum_list[$i];
656            push @enum_definition, "\t${name_prefix}$name = $i";
657        }
658        if (@unused_enums) {
659            foreach my $unused (@unused_enums) {
660                push @enum_definition,
661                            ",\n\t${name_prefix}$unused = $unused_enum_value";
662            }
663        }
664
665        # For an 'l' property, we need extra enums, because some of the
666        # elements are lists.  Each such distinct list is placed in its own
667        # auxiliary map table.  Here, we go through the inversion map, and for
668        # each distinct list found, create an enum value for it, numbered -1,
669        # -2, ....
670        my %multiples;
671        my $aux_table_prefix = "AUX_TABLE_";
672        if ($input_format =~ /l/) {
673            foreach my $element (@$invmap) {
674
675                # A regular scalar is not one of the lists we're looking for
676                # at this stage.
677                next unless ref $element;
678
679                my $joined;
680                if ($input_format =~ /a/) { # These are already ordered
681                    $joined = join ",", @$element;
682                }
683                else {
684                    $joined = join ",", sort caselessly @$element;
685                }
686                my $already_found = exists $multiples{$joined};
687
688                my $i;
689                if ($already_found) {   # Use any existing one
690                    $i = $multiples{$joined};
691                }
692                else {  # Otherwise increment to get a new table number
693                    $i = keys(%multiples) + 1;
694                    $multiples{$joined} = $i;
695                }
696
697                # This changes the inversion map for this entry to not be the
698                # list
699                $element = "use_$aux_table_prefix$i";
700
701                # And add to the enum values
702                if (! $already_found) {
703                    push @enum_definition, ",\n\t${name_prefix}$element = -$i";
704                }
705            }
706        }
707
708        $enum_declaration_type = "${name_prefix}enum";
709
710        # Finished with the enum definition.  Inversion map stuff is used only
711        # by regexec or utf-8 (if it is for code points) , unless it is in the
712        # enum exception list
713        my $where = (exists $where_to_define_enums{$name})
714                    ? $where_to_define_enums{$name}
715                    : ($input_format =~ /a/)
716                       ? 'PERL_IN_UTF8_C'
717                       : 'PERL_IN_REGEXEC_C';
718
719        if (! exists $public_enums{$name}) {
720            switch_pound_if($name, $where, $charset);
721        }
722        else {
723            end_charset_pound_if;
724            end_file_pound_if;
725            start_charset_pound_if($charset, 1);
726        }
727
728        # If the enum only contains one element, that is a dummy, default one
729        if (scalar @enum_definition > 1) {
730
731            # Currently unneeded
732            #print $out_fh "\n#define ${name_prefix}ENUM_COUNT ",
733            #                                   ..scalar keys %enums, "\n";
734
735            if ($input_format =~ /l/) {
736                print $out_fh
737                "\n",
738                "/* Negative enum values indicate the need to use an",
739                    " auxiliary table\n",
740                " * consisting of the list of enums this one expands to.",
741                    "  The absolute\n",
742                " * values of the negative enums are indices into a table",
743                    " of the auxiliary\n",
744                " * tables' addresses */";
745            }
746            print $out_fh "\ntypedef enum {\n";
747            print $out_fh join "", @enum_definition;
748            print $out_fh "\n";
749            print $out_fh "} $enum_declaration_type;\n";
750        }
751
752        switch_pound_if($name, $where, $charset);
753
754        # The inversion lists here have to be UV because inversion lists are
755        # capable of storing any code point, and even though the the ones here
756        # are only Unicode ones, which need just 21 bits, they are linked to
757        # directly, rather than copied.  The inversion map and aux tables also
758        # only need be 21 bits, and so we can get away with declaring them
759        # 32-bits to save a little space and memory (on some 64-bit
760        # platforms), as they are copied.
761        $invmap_declaration_type = ($input_format =~ /s/)
762                                 ? $enum_declaration_type
763                                 : "I32";
764        $aux_declaration_type = ($input_format =~ /s/)
765                                 ? $enum_declaration_type
766                                 : "U32";
767
768        $output_format = "${name_prefix}%s";
769
770        # If there are auxiliary tables, output them.
771        if (%multiples) {
772
773            print $out_fh "\n#define HAS_${name_prefix}AUX_TABLES\n";
774
775            # Invert keys and values
776            my %inverted_mults;
777            while (my ($key, $value) = each %multiples) {
778                $inverted_mults{$value} = $key;
779            }
780
781            # Output them in sorted order
782            my @sorted_table_list = sort { $a <=> $b } keys %inverted_mults;
783
784            # Keep track of how big each aux table is
785            my @aux_counts;
786
787            # Output each aux table.
788            foreach my $table_number (@sorted_table_list) {
789                my $table = $inverted_mults{$table_number};
790                output_table_header($out_fh,
791                                $aux_declaration_type,
792                                "$name_prefix$aux_table_prefix$table_number");
793
794                # Earlier, we joined the elements of this table together with
795                # a comma
796                my @elements = split ",", $table;
797
798                $aux_counts[$table_number] = scalar @elements;
799                for my $i (0 .. @elements - 1) {
800                    print $out_fh  ",\n" if $i > 0;
801                    if ($input_format =~ /a/) {
802                        printf $out_fh "\t0x%X", $elements[$i];
803                    }
804                    else {
805                        print $out_fh "\t${name_prefix}$elements[$i]";
806                    }
807                }
808
809                print $out_fh "\n";
810                output_table_trailer();
811            }
812
813            # Output the table that is indexed by the absolute value of the
814            # aux table enum and contains pointers to the tables output just
815            # above
816            output_table_header($out_fh, "$aux_declaration_type *",
817                                   "${name_prefix}${aux_table_prefix}ptrs");
818            print $out_fh "\tNULL,\t/* Placeholder */\n";
819            for my $i (1 .. @sorted_table_list) {
820                print $out_fh  ",\n" if $i > 1;
821                print $out_fh  "\t$name_prefix$aux_table_prefix$i";
822            }
823            print $out_fh "\n";
824            output_table_trailer();
825
826            print $out_fh
827              "\n/* Parallel table to the above, giving the number of elements"
828            . " in each table\n * pointed to */\n";
829            output_table_header($out_fh, "U8",
830                                   "${name_prefix}${aux_table_prefix}lengths");
831            print $out_fh "\t0,\t/* Placeholder */\n";
832            for my $i (1 .. @sorted_table_list) {
833                print $out_fh ",\n" if $i > 1;
834                print $out_fh
835                    "\t$aux_counts[$i]\t/* $name_prefix$aux_table_prefix$i */";
836            }
837            print $out_fh "\n";
838            output_table_trailer();
839        } # End of outputting the auxiliary and associated tables
840
841        # The scx property used in regexec.c needs a specialized table which
842        # is most convenient to output here, while the data structures set up
843        # above are still extant.  This table contains the code point that is
844        # the zero digit of each script, indexed by script enum value.
845        if (lc $short_name eq 'scx') {
846            my @decimals_invlist = prop_invlist("Numeric_Type=Decimal");
847            my %script_zeros;
848
849            # Find all the decimal digits.  The 0 of each range is always the
850            # 0th element, except in some early Unicode releases, so check for
851            # that.
852            for (my $i = 0; $i < @decimals_invlist; $i += 2) {
853                my $code_point = $decimals_invlist[$i];
854                next if num(chr($code_point)) ne '0';
855
856                # Turn the scripts this zero is in into a list.
857                my @scripts = split ",",
858                  charprop($code_point, "_Perl_SCX", '_perl_core_internal_ok');
859                $code_point = sprintf("0x%x", $code_point);
860
861                foreach my $script (@scripts) {
862                    if (! exists $script_zeros{$script}) {
863                        $script_zeros{$script} = $code_point;
864                    }
865                    elsif (ref $script_zeros{$script}) {
866                        push $script_zeros{$script}->@*, $code_point;
867                    }
868                    else {  # Turn into a list if this is the 2nd zero of the
869                            # script
870                        my $existing = $script_zeros{$script};
871                        undef $script_zeros{$script};
872                        push $script_zeros{$script}->@*, $existing, $code_point;
873                    }
874                }
875            }
876
877            # @script_zeros contains the zero, sorted by the script's enum
878            # value
879            my @script_zeros;
880            foreach my $script (keys %script_zeros) {
881                my $enum_value = $enums{$script};
882                $script_zeros[$enum_value] = $script_zeros{$script};
883            }
884
885            print $out_fh
886            "\n/* This table, indexed by the script enum, gives the zero"
887          . " code point for that\n * script; 0 if the script has multiple"
888          . " digit sequences.  Scripts without a\n * digit sequence use"
889          . " ASCII [0-9], hence are marked '0' */\n";
890            output_table_header($out_fh, "UV", "script_zeros");
891            for my $i (0 .. @script_zeros - 1) {
892                my $code_point = $script_zeros[$i];
893                if (defined $code_point) {
894                    $code_point = " 0" if ref $code_point;
895                    print $out_fh "\t$code_point";
896                }
897                elsif (lc $enum_list[$i] eq 'inherited') {
898                    print $out_fh "\t 0";
899                }
900                else {  # The only digits a script without its own set accepts
901                        # is [0-9]
902                    print $out_fh "\t'0'";
903                }
904                print $out_fh "," if $i < @script_zeros - 1;
905                print $out_fh "\t/* $enum_list[$i] */";
906                print $out_fh "\n";
907            }
908            output_table_trailer();
909        } # End of special handling of scx
910    }
911    else {
912        die "'$input_format' invmap() format for '$prop_name' unimplemented";
913    }
914
915    die "No inversion map for $prop_name" unless defined $invmap
916                                             && ref $invmap eq 'ARRAY'
917                                             && $count;
918
919    # Now output the inversion map proper
920    $charset = "for $charset" if $charset;
921    output_table_header($out_fh, $invmap_declaration_type,
922                                    "${name}_invmap",
923                                    $charset);
924
925    # The main body are the scalars passed in to this routine.
926    for my $i (0 .. $count - 1) {
927        my $element = $invmap->[$i];
928        my $full_element_name = prop_value_aliases($prop_name, $element);
929        if ($input_format =~ /a/ && $element !~ /\D/) {
930            $element = ($element == 0)
931                       ? 0
932                       : sprintf("0x%X", $element);
933        }
934        else {
935        $element = $full_element_name if defined $full_element_name;
936        $element = $name_prefix . $element;
937        }
938        print $out_fh "\t$element";
939        print $out_fh "," if $i < $count - 1;
940        print $out_fh  "\n";
941    }
942    output_table_trailer();
943}
944
945sub mk_invlist_from_sorted_cp_list {
946
947    # Returns an inversion list constructed from the sorted input array of
948    # code points
949
950    my $list_ref = shift;
951
952    return unless @$list_ref;
953
954    # Initialize to just the first element
955    my @invlist = ( $list_ref->[0], $list_ref->[0] + 1);
956
957    # For each succeeding element, if it extends the previous range, adjust
958    # up, otherwise add it.
959    for my $i (1 .. @$list_ref - 1) {
960        if ($invlist[-1] == $list_ref->[$i]) {
961            $invlist[-1]++;
962        }
963        else {
964            push @invlist, $list_ref->[$i], $list_ref->[$i] + 1;
965        }
966    }
967    return @invlist;
968}
969
970# Read in the Case Folding rules, and construct arrays of code points for the
971# properties we need.
972my ($cp_ref, $folds_ref, $format, $default) = prop_invmap("Case_Folding");
973die "Could not find inversion map for Case_Folding" unless defined $format;
974die "Incorrect format '$format' for Case_Folding inversion map"
975                                                    unless $format eq 'al'
976                                                           || $format eq 'a';
977sub _Perl_IVCF {
978
979    # This creates a map of the inversion of case folding. i.e., given a
980    # character, it gives all the other characters that fold to it.
981    #
982    # Inversion maps function kind of like a hash, with the inversion list
983    # specifying the buckets (keys) and the inversion maps specifying the
984    # contents of the corresponding bucket.  Effectively this function just
985    # swaps the keys and values of the case fold hash.  But there are
986    # complications.  Most importantly, More than one character can each have
987    # the same fold.  This is solved by having a list of characters that fold
988    # to a given one.
989
990    my %new;
991
992    # Go through the inversion list.
993    for (my $i = 0; $i < @$cp_ref; $i++) {
994
995        # Skip if nothing folds to this
996        next if $folds_ref->[$i] == 0;
997
998        # This entry which is valid from here to up (but not including) the
999        # next entry is for the next $count characters, so that, for example,
1000        # A-Z is represented by one entry.
1001        my $cur_list = $cp_ref->[$i];
1002        my $count = $cp_ref->[$i+1] - $cur_list;
1003
1004        # The fold of [$i] can be not just a single character, but a sequence
1005        # of multiple ones.  We deal with those here by just creating a string
1006        # consisting of them.  Otherwise, we use the single code point [$i]
1007        # folds to.
1008        my $cur_map = (ref $folds_ref->[$i])
1009                       ? join "", map { chr } $folds_ref->[$i]->@*
1010                       : $folds_ref->[$i];
1011
1012        # Expand out this range
1013        while ($count > 0) {
1014            push @{$new{$cur_map}}, $cur_list;
1015
1016            # A multiple-character fold is a string, and shouldn't need
1017            # incrementing anyway
1018            if (ref $folds_ref->[$i]) {
1019                die sprintf("Case fold for %x is multiple chars; should have"
1020                          . " a count of 1, but instead it was $count", $count)
1021                                                            unless $count == 1;
1022            }
1023            else {
1024                $cur_map++;
1025                $cur_list++;
1026            }
1027            $count--;
1028        }
1029    }
1030
1031    # Now go through and make some adjustments.  We add synthetic entries for
1032    # three cases.
1033    # 1) If the fold of a Latin1-range character is above that range, some
1034    #    coding in regexec.c can be saved by creating a reverse map here.  The
1035    #    impetus for this is that U+B5 (MICRO SIGN) folds to the Greek small
1036    #    mu (U+3BC).  That fold isn't done at regex pattern compilation time
1037    #    if it means that the pattern would have to be translated into UTF-8,
1038    #    whose operation is slower.  At run time, having this reverse
1039    #    translation eliminates some special cases in the code.
1040    # 2) Two or more code points can fold to the same multiple character,
1041    #    sequence, as U+FB05 and U+FB06 both fold to 'st'.  This code is only
1042    #    for single character folds, but FB05 and FB06 are single characters
1043    #    that are equivalent folded, so we add entries so that they are
1044    #    considered to fold to each other
1045    # 3) If two or more above-Latin1 code points fold to the same Latin1 range
1046    #    one, we also add entries so that they are considered to fold to each
1047    #    other.  This is so that under /aa or /l matching, where folding to
1048    #    their Latin1 range code point is illegal, they still can fold to each
1049    #    other.  This situation happens in Unicode 3.0.1, but probably no
1050    #    other version.
1051    foreach my $fold (keys %new) {
1052        my $folds_to_string = $fold =~ /\D/;
1053
1054        # If the bucket contains only one element, convert from an array to a
1055        # scalar
1056        if (scalar $new{$fold}->@* == 1) {
1057            $new{$fold} = $new{$fold}[0];
1058
1059            # Handle case 1) above: if there were a Latin1 range code point
1060            # whose fold is above that range, this creates an extra entry that
1061            # maps the other direction, and would save some special case code.
1062            # (The one current case of this is handled in the else clause
1063            # below.)
1064            $new{$new{$fold}} = $fold if $new{$fold} < 256 && $fold > 255;
1065        }
1066        else {
1067
1068            # Handle case 1) when there are multiple things that fold to an
1069            # above-Latin1 code point, at least one of which is in Latin1.
1070            if (! $folds_to_string && $fold > 255) {
1071                foreach my $cp ($new{$fold}->@*) {
1072                    if ($cp < 256) {
1073                        my @new_entry = grep { $_ != $cp } $new{$fold}->@*;
1074                        push @new_entry, $fold;
1075                        $new{$cp}->@* = @new_entry;
1076                    }
1077                }
1078            }
1079
1080            # Otherwise, sort numerically.  This places the highest code point
1081            # in the list at the tail end.  This is because Unicode keeps the
1082            # lowercase code points as higher ordinals than the uppercase, at
1083            # least for the ones that matter so far.  These are synthetic
1084            # entries, and we want to predictably have the lowercase (which is
1085            # more likely to be what gets folded to) in the same corresponding
1086            # position, so that other code can rely on that.  If some new
1087            # version of Unicode came along that violated this, we might have
1088            # to change so that the sort is based on upper vs lower instead.
1089            # (The lower-comes-after isn't true of native EBCDIC, but here we
1090            # are dealing strictly with Unicode values).
1091            @{$new{$fold}} = sort { $a <=> $b } $new{$fold}->@*
1092                                                        unless $folds_to_string;
1093            # We will be working with a copy of this sorted entry.
1094            my @source_list = $new{$fold}->@*;
1095            if (! $folds_to_string) {
1096
1097                # This handles situation 2) listed above, which only arises if
1098                # what is being folded-to (the fold) is in the Latin1 range.
1099                if ($fold > 255 ) {
1100                    undef @source_list;
1101                }
1102                else {
1103                    # And it only arises if there are two or more folders that
1104                    # fold to it above Latin1.  We look at just those.
1105                    @source_list = grep { $_ > 255 } @source_list;
1106                    undef @source_list if @source_list == 1;
1107                }
1108            }
1109
1110            # Here, we've found the items we want to set up synthetic folds
1111            # for.  Add entries so that each folds to each other.
1112            foreach my $cp (@source_list) {
1113                my @rest = grep { $cp != $_ } @source_list;
1114                if (@rest == 1) {
1115                    $new{$cp} = $rest[0];
1116                }
1117                else {
1118                    push @{$new{$cp}}, @rest;
1119                }
1120            }
1121        }
1122
1123        # We don't otherwise deal with multiple-character folds
1124        delete $new{$fold} if $folds_to_string;
1125    }
1126
1127
1128    # Now we have a hash that is the inversion of the case fold property.
1129    # First find the maximum number of code points that fold to the same one.
1130    foreach my $fold_to (keys %new) {
1131        if (ref $new{$fold_to}) {
1132            my $folders_count = scalar @{$new{$fold_to}};
1133            $max_fold_froms = $folders_count if $folders_count > $max_fold_froms;
1134        }
1135    }
1136
1137    # Then convert the hash to an inversion map.
1138    my @sorted_folds = sort { $a <=> $b } keys %new;
1139    my (@invlist, @invmap);
1140
1141    # We know that nothing folds to the controls (whose ordinals start at 0).
1142    # And the first real entries are the lowest in the hash.
1143    push @invlist, 0, $sorted_folds[0];
1144    push @invmap, 0, $new{$sorted_folds[0]};
1145
1146    # Go through the remainder of the hash keys (which are the folded code
1147    # points)
1148    for (my $i = 1; $i < @sorted_folds; $i++) {
1149
1150        # Get the current one, and the one prior to it.
1151        my $fold = $sorted_folds[$i];
1152        my $prev_fold = $sorted_folds[$i-1];
1153
1154        # If the current one is not just 1 away from the prior one, we close
1155        # out the range containing the previous fold, and know that the gap
1156        # doesn't have anything that folds.
1157        if ($fold - 1 != $prev_fold) {
1158            push @invlist, $prev_fold + 1;
1159            push @invmap, 0;
1160
1161            # And start a new range
1162            push @invlist, $fold;
1163            push @invmap, $new{$fold};
1164        }
1165        elsif ($new{$fold} - 1 != $new{$prev_fold}) {
1166
1167            # Here the current fold is just 1 greater than the previous, but
1168            # the new map isn't correspondingly 1 greater than the previous,
1169            # the old range is ended, but since there is no gap, we don't have
1170            # to insert anything else.
1171            push @invlist, $fold;
1172            push @invmap, $new{$fold};
1173
1174        } # else { Otherwise, this new entry just extends the previous }
1175
1176        die "In IVCF: $invlist[-1] <= $invlist[-2]"
1177                                               if $invlist[-1] <= $invlist[-2];
1178    }
1179
1180    # And add an entry that indicates that everything above this, to infinity,
1181    # does not have a case fold.
1182    push @invlist, $sorted_folds[-1] + 1;
1183    push @invmap, 0;
1184
1185    push @invlist, 0x110000;
1186    push @invmap, 0;
1187
1188    # All Unicode versions have some places where multiple code points map to
1189    # the same one, so the format always has an 'l'
1190    return \@invlist, \@invmap, 'al', $default;
1191}
1192
1193sub prop_name_for_cmp ($) { # Sort helper
1194    my $name = shift;
1195
1196    # Returns the input lowercased, with non-alphas removed, as well as
1197    # everything starting with a comma
1198
1199    $name =~ s/,.*//;
1200    $name =~ s/[[:^alpha:]]//g;
1201    return lc $name;
1202}
1203
1204sub UpperLatin1 {
1205    my @return = mk_invlist_from_sorted_cp_list([ 128 .. 255 ]);
1206    return \@return;
1207}
1208
1209sub _Perl_CCC_non0_non230 {
1210
1211    # Create an inversion list of code points with non-zero canonical
1212    # combining class that also don't have 230 as the class number.  This is
1213    # part of a Unicode Standard rule
1214
1215    my @nonzeros = prop_invlist("ccc=0");
1216    shift @nonzeros;    # Invert so is "ccc != 0"
1217
1218    my @return;
1219
1220    # Expand into list of code points, while excluding those with ccc == 230
1221    for (my $i = 0; $i < @nonzeros; $i += 2) {
1222        my $upper = ($i + 1) < @nonzeros
1223                    ? $nonzeros[$i+1] - 1      # In range
1224                    : $Unicode::UCD::MAX_CP;  # To infinity.
1225        for my $j ($nonzeros[$i] .. $upper) {
1226            my @ccc_names = prop_value_aliases("ccc", charprop($j, "ccc"));
1227
1228            # Final element in @ccc_names will be all numeric
1229            push @return, $j if $ccc_names[-1] != 230;
1230        }
1231    }
1232
1233    @return = sort { $a <=> $b } @return;
1234    @return = mk_invlist_from_sorted_cp_list(\@return);
1235    return \@return;
1236}
1237
1238sub output_table_common {
1239
1240    # Common subroutine to actually output the generated rules table.
1241
1242    my ($property,
1243        $table_value_defines_ref,
1244        $table_ref,
1245        $names_ref,
1246        $abbreviations_ref) = @_;
1247    my $size = @$table_ref;
1248
1249    # Output the #define list, sorted by numeric value
1250    if ($table_value_defines_ref) {
1251        my $max_name_length = 0;
1252        my @defines;
1253
1254        # Put in order, and at the same time find the longest name
1255        while (my ($enum, $value) = each %$table_value_defines_ref) {
1256            $defines[$value] = $enum;
1257
1258            my $length = length $enum;
1259            $max_name_length = $length if $length > $max_name_length;
1260        }
1261
1262        print $out_fh "\n";
1263
1264        # Output, so that the values are vertically aligned in a column after
1265        # the longest name
1266        foreach my $i (0 .. @defines - 1) {
1267            next unless defined $defines[$i];
1268            printf $out_fh "#define %-*s  %2d\n",
1269                                      $max_name_length,
1270                                       $defines[$i],
1271                                          $i;
1272        }
1273    }
1274
1275    my $column_width = 2;   # We currently allow 2 digits for the number
1276
1277    # Being above a U8 is not currently handled
1278    my $table_type = 'U8';
1279
1280    # If a name is longer than the width set aside for a column, its column
1281    # needs to have increased spacing so that the name doesn't get truncated
1282    # nor run into an adjacent column
1283    my @spacers;
1284
1285    # Is there a row and column for unused values in this release?
1286    my $has_unused = $names_ref->[$size-1] eq $unused_table_hdr;
1287
1288    for my $i (0 .. $size - 1) {
1289        no warnings 'numeric';
1290        $spacers[$i] = " " x (length($names_ref->[$i]) - $column_width);
1291    }
1292
1293    output_table_header($out_fh, $table_type, "${property}_table", undef,
1294                        $size, $size);
1295
1296    # Calculate the column heading line
1297    my $header_line = "/* "
1298                    . (" " x $max_hdr_len)  # We let the row heading meld to
1299                                            # the '*/' for those that are at
1300                                            # the max
1301                    . " " x 3;    # Space for '*/ '
1302    # Now each column
1303    for my $i (0 .. $size - 1) {
1304        $header_line .= sprintf "%s%*s",
1305                                $spacers[$i],
1306                                    $column_width + 1, # 1 for the ','
1307                                     $names_ref->[$i];
1308    }
1309    $header_line .= " */\n";
1310
1311    # If we have annotations, output it now.
1312    if ($has_unused || scalar %$abbreviations_ref) {
1313        my $text = "";
1314        foreach my $abbr (sort caselessly keys %$abbreviations_ref) {
1315            $text .= "; " if $text;
1316            $text .= "'$abbr' stands for '$abbreviations_ref->{$abbr}'";
1317        }
1318        if ($has_unused) {
1319            $text .= "; $unused_table_hdr stands for 'unused in this Unicode"
1320                   . " release (and the data in its row and column are garbage)"
1321        }
1322
1323        my $indent = " " x 3;
1324        $text = $indent . "/* $text */";
1325
1326        # Wrap the text so that it is no wider than the table, which the
1327        # header line gives.
1328        my $output_width = length $header_line;
1329        while (length $text > $output_width) {
1330            my $cur_line = substr($text, 0, $output_width);
1331
1332            # Find the first blank back from the right end to wrap at.
1333            for (my $i = $output_width -1; $i > 0; $i--) {
1334                if (substr($text, $i, 1) eq " ") {
1335                    print $out_fh substr($text, 0, $i), "\n";
1336
1337                    # Set so will look at just the remaining tail (which will
1338                    # be indented and have a '*' after the indent
1339                    $text = $indent . " * " . substr($text, $i + 1);
1340                    last;
1341                }
1342            }
1343        }
1344
1345        # And any remaining
1346        print $out_fh $text, "\n" if $text;
1347    }
1348
1349    # We calculated the header line earlier just to get its width so that we
1350    # could make sure the annotations fit into that.
1351    print $out_fh $header_line;
1352
1353    # Now output the bulk of the table.
1354    for my $i (0 .. $size - 1) {
1355
1356        # First the row heading.
1357        printf $out_fh "/* %-*s*/ ", $max_hdr_len, $names_ref->[$i];
1358        print $out_fh "{";  # Then the brace for this row
1359
1360        # Then each column
1361        for my $j (0 .. $size -1) {
1362            print $out_fh $spacers[$j];
1363            printf $out_fh "%*d", $column_width, $table_ref->[$i][$j];
1364            print $out_fh "," if $j < $size - 1;
1365        }
1366        print $out_fh " }";
1367        print $out_fh "," if $i < $size - 1;
1368        print $out_fh "\n";
1369    }
1370
1371    output_table_trailer();
1372}
1373
1374sub output_GCB_table() {
1375
1376    # Create and output the pair table for use in determining Grapheme Cluster
1377    # Breaks, given in http://www.unicode.org/reports/tr29/.
1378    my %gcb_actions = (
1379        GCB_NOBREAK                      => 0,
1380        GCB_BREAKABLE                    => 1,
1381        GCB_RI_then_RI                   => 2,   # Rules 12 and 13
1382        GCB_EX_then_EM                   => 3,   # Rule 10
1383        GCB_Maybe_Emoji_NonBreak         => 4,
1384    );
1385
1386    # The table is constructed in reverse order of the rules, to make the
1387    # lower-numbered, higher priority ones override the later ones, as the
1388    # algorithm stops at the earliest matching rule
1389
1390    my @gcb_table;
1391    my $table_size = @gcb_short_enums;
1392
1393    # Otherwise, break everywhere.
1394    # GB99   Any ÷  Any
1395    for my $i (0 .. $table_size - 1) {
1396        for my $j (0 .. $table_size - 1) {
1397            $gcb_table[$i][$j] = 1;
1398        }
1399    }
1400
1401    # Do not break within emoji flag sequences. That is, do not break between
1402    # regional indicator (RI) symbols if there is an odd number of RI
1403    # characters before the break point.  Must be resolved in runtime code.
1404    #
1405    # GB12 sot (RI RI)* RI × RI
1406    # GB13 [^RI] (RI RI)* RI × RI
1407    $gcb_table[$gcb_enums{'Regional_Indicator'}]
1408              [$gcb_enums{'Regional_Indicator'}] = $gcb_actions{GCB_RI_then_RI};
1409
1410    # Post 11.0: GB11  \p{Extended_Pictographic} Extend* ZWJ
1411    #                                               × \p{Extended_Pictographic}
1412    $gcb_table[$gcb_enums{'ZWJ'}][$gcb_enums{'ExtPict_XX'}] =
1413                                         $gcb_actions{GCB_Maybe_Emoji_NonBreak};
1414
1415    # This and the rule GB10 obsolete starting with Unicode 11.0, can be left
1416    # in as there are no code points that match, so the code won't ever get
1417    # executed.
1418    # Do not break within emoji modifier sequences or emoji zwj sequences.
1419    # Pre 11.0: GB11  ZWJ  × ( Glue_After_Zwj | E_Base_GAZ )
1420    $gcb_table[$gcb_enums{'ZWJ'}][$gcb_enums{'Glue_After_Zwj'}] = 0;
1421    $gcb_table[$gcb_enums{'ZWJ'}][$gcb_enums{'E_Base_GAZ'}] = 0;
1422
1423    # GB10  ( E_Base | E_Base_GAZ ) Extend* ×  E_Modifier
1424    $gcb_table[$gcb_enums{'Extend'}][$gcb_enums{'E_Modifier'}]
1425                                                = $gcb_actions{GCB_EX_then_EM};
1426    $gcb_table[$gcb_enums{'E_Base'}][$gcb_enums{'E_Modifier'}] = 0;
1427    $gcb_table[$gcb_enums{'E_Base_GAZ'}][$gcb_enums{'E_Modifier'}] = 0;
1428
1429    # Do not break before extending characters or ZWJ.
1430    # Do not break before SpacingMarks, or after Prepend characters.
1431    # GB9b  Prepend  ×
1432    # GB9a  × SpacingMark
1433    # GB9   ×  ( Extend | ZWJ )
1434    for my $i (0 .. @gcb_table - 1) {
1435        $gcb_table[$gcb_enums{'Prepend'}][$i] = 0;
1436        $gcb_table[$i][$gcb_enums{'SpacingMark'}] = 0;
1437        $gcb_table[$i][$gcb_enums{'Extend'}] = 0;
1438        $gcb_table[$i][$gcb_enums{'ZWJ'}] = 0;
1439    }
1440
1441    # Do not break Hangul syllable sequences.
1442    # GB8  ( LVT | T)  ×  T
1443    $gcb_table[$gcb_enums{'LVT'}][$gcb_enums{'T'}] = 0;
1444    $gcb_table[$gcb_enums{'T'}][$gcb_enums{'T'}] = 0;
1445
1446    # GB7  ( LV | V )  ×  ( V | T )
1447    $gcb_table[$gcb_enums{'LV'}][$gcb_enums{'V'}] = 0;
1448    $gcb_table[$gcb_enums{'LV'}][$gcb_enums{'T'}] = 0;
1449    $gcb_table[$gcb_enums{'V'}][$gcb_enums{'V'}] = 0;
1450    $gcb_table[$gcb_enums{'V'}][$gcb_enums{'T'}] = 0;
1451
1452    # GB6  L  ×  ( L | V | LV | LVT )
1453    $gcb_table[$gcb_enums{'L'}][$gcb_enums{'L'}] = 0;
1454    $gcb_table[$gcb_enums{'L'}][$gcb_enums{'V'}] = 0;
1455    $gcb_table[$gcb_enums{'L'}][$gcb_enums{'LV'}] = 0;
1456    $gcb_table[$gcb_enums{'L'}][$gcb_enums{'LVT'}] = 0;
1457
1458    # Do not break between a CR and LF. Otherwise, break before and after
1459    # controls.
1460    # GB5   ÷  ( Control | CR | LF )
1461    # GB4  ( Control | CR | LF )  ÷
1462    for my $i (0 .. @gcb_table - 1) {
1463        $gcb_table[$i][$gcb_enums{'Control'}] = 1;
1464        $gcb_table[$i][$gcb_enums{'CR'}] = 1;
1465        $gcb_table[$i][$gcb_enums{'LF'}] = 1;
1466        $gcb_table[$gcb_enums{'Control'}][$i] = 1;
1467        $gcb_table[$gcb_enums{'CR'}][$i] = 1;
1468        $gcb_table[$gcb_enums{'LF'}][$i] = 1;
1469    }
1470
1471    # GB3  CR  ×  LF
1472    $gcb_table[$gcb_enums{'CR'}][$gcb_enums{'LF'}] = 0;
1473
1474    # Break at the start and end of text, unless the text is empty
1475    # GB1  sot  ÷
1476    # GB2   ÷  eot
1477    for my $i (0 .. @gcb_table - 1) {
1478        $gcb_table[$i][$gcb_enums{'EDGE'}] = 1;
1479        $gcb_table[$gcb_enums{'EDGE'}][$i] = 1;
1480    }
1481    $gcb_table[$gcb_enums{'EDGE'}][$gcb_enums{'EDGE'}] = 0;
1482
1483    output_table_common('GCB', \%gcb_actions,
1484                        \@gcb_table, \@gcb_short_enums, \%gcb_abbreviations);
1485}
1486
1487sub output_LB_table() {
1488
1489    # Create and output the enums, #defines, and pair table for use in
1490    # determining Line Breaks.  This uses the default line break algorithm,
1491    # given in http://www.unicode.org/reports/tr14/, but tailored by example 7
1492    # in that page, as the Unicode-furnished tests assume that tailoring.
1493
1494    # The result is really just true or false.  But we follow along with tr14,
1495    # creating a rule which is false for something like X SP* X.  That gets
1496    # encoding 2.  The rest of the actions are synthetic ones that indicate
1497    # some context handling is required.  These each are added to the
1498    # underlying 0, 1, or 2, instead of replacing them, so that the underlying
1499    # value can be retrieved.  Actually only rules from 7 through 18 (which
1500    # are the ones where space matter) are possible to have 2 added to them.
1501    # The others below add just 0 or 1.  It might be possible for one
1502    # synthetic rule to be added to another, yielding a larger value.  This
1503    # doesn't happen in the Unicode 8.0 rule set, and as you can see from the
1504    # names of the middle grouping below, it is impossible for that to occur
1505    # for them because they all start with mutually exclusive classes.  That
1506    # the final rule can't be added to any of the others isn't obvious from
1507    # its name, so it is assigned a power of 2 higher than the others can get
1508    # to so any addition would preserve all data.  (And the code will reach an
1509    # assert(0) on debugging builds should this happen.)
1510    my %lb_actions = (
1511        LB_NOBREAK                      => 0,
1512        LB_BREAKABLE                    => 1,
1513        LB_NOBREAK_EVEN_WITH_SP_BETWEEN => 2,
1514
1515        LB_CM_ZWJ_foo                   => 3,   # Rule 9
1516        LB_SP_foo                       => 6,   # Rule 18
1517        LB_PR_or_PO_then_OP_or_HY       => 9,   # Rule 25
1518        LB_SY_or_IS_then_various        => 11,  # Rule 25
1519        LB_HY_or_BA_then_foo            => 13,  # Rule 21
1520        LB_RI_then_RI	                => 15,  # Rule 30a
1521
1522        LB_various_then_PO_or_PR        => (1<<5),  # Rule 25
1523    );
1524
1525    # Construct the LB pair table.  This is based on the rules in
1526    # http://www.unicode.org/reports/tr14/, but modified as those rules are
1527    # designed for someone taking a string of text and sequentially going
1528    # through it to find the break opportunities, whereas, Perl requires
1529    # determining if a given random spot is a break opportunity, without
1530    # knowing all the entire string before it.
1531    #
1532    # The table is constructed in reverse order of the rules, to make the
1533    # lower-numbered, higher priority ones override the later ones, as the
1534    # algorithm stops at the earliest matching rule
1535
1536    my @lb_table;
1537    my $table_size = @lb_short_enums;
1538
1539    # LB31. Break everywhere else
1540    for my $i (0 .. $table_size - 1) {
1541        for my $j (0 .. $table_size - 1) {
1542            $lb_table[$i][$j] = $lb_actions{'LB_BREAKABLE'};
1543        }
1544    }
1545
1546    # LB30b Do not break between an emoji base (or potential emoji) and an
1547    # emoji modifier.
1548
1549    # EB × EM
1550    # [\p{Extended_Pictographic}&\p{Cn}] × EM
1551    $lb_table[$lb_enums{'E_Base'}][$lb_enums{'E_Modifier'}]
1552                                                = $lb_actions{'LB_NOBREAK'};
1553    $lb_table[$lb_enums{'Unassigned_Extended_Pictographic_Ideographic'}]
1554                      [$lb_enums{'E_Modifier'}] = $lb_actions{'LB_NOBREAK'};
1555
1556    # LB30a Break between two regional indicator symbols if and only if there
1557    # are an even number of regional indicators preceding the position of the
1558    # break.
1559    # sot (RI RI)* RI × RI
1560    # [^RI] (RI RI)* RI × RI
1561    $lb_table[$lb_enums{'Regional_Indicator'}]
1562             [$lb_enums{'Regional_Indicator'}] = $lb_actions{'LB_RI_then_RI'};
1563
1564    # LB30 Do not break between letters, numbers, or ordinary symbols and
1565    # non-East-Asian opening punctuation nor non-East-Asian closing
1566    # parentheses.
1567
1568    # (AL | HL | NU) × [OP-[\p{ea=F}\p{ea=W}\p{ea=H}]]
1569    # (what we call CP and OP here have already been modified by mktables to
1570    # exclude the ea items
1571    $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Open_Punctuation'}]
1572                                                = $lb_actions{'LB_NOBREAK'};
1573    $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Open_Punctuation'}]
1574                                                = $lb_actions{'LB_NOBREAK'};
1575    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Open_Punctuation'}]
1576                                                = $lb_actions{'LB_NOBREAK'};
1577
1578    # [CP-[\p{ea=F}\p{ea=W}\p{ea=H}]] × (AL | HL | NU)
1579    $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Alphabetic'}]
1580                                                = $lb_actions{'LB_NOBREAK'};
1581    $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Hebrew_Letter'}]
1582                                                = $lb_actions{'LB_NOBREAK'};
1583    $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Numeric'}]
1584                                                = $lb_actions{'LB_NOBREAK'};
1585
1586    # LB29 Do not break between numeric punctuation and alphabetics (“e.g.”).
1587    # IS × (AL | HL)
1588    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Alphabetic'}]
1589                                                = $lb_actions{'LB_NOBREAK'};
1590    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Hebrew_Letter'}]
1591                                                = $lb_actions{'LB_NOBREAK'};
1592
1593    # LB28 Do not break between alphabetics (“at”).
1594    # (AL | HL) × (AL | HL)
1595    $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Alphabetic'}]
1596                                                = $lb_actions{'LB_NOBREAK'};
1597    $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Alphabetic'}]
1598                                                = $lb_actions{'LB_NOBREAK'};
1599    $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Hebrew_Letter'}]
1600                                                = $lb_actions{'LB_NOBREAK'};
1601    $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Hebrew_Letter'}]
1602                                                = $lb_actions{'LB_NOBREAK'};
1603
1604    # LB27 Treat a Korean Syllable Block the same as ID.
1605    # (JL | JV | JT | H2 | H3) × PO
1606    $lb_table[$lb_enums{'JL'}][$lb_enums{'Postfix_Numeric'}]
1607                                                = $lb_actions{'LB_NOBREAK'};
1608    $lb_table[$lb_enums{'JV'}][$lb_enums{'Postfix_Numeric'}]
1609                                                = $lb_actions{'LB_NOBREAK'};
1610    $lb_table[$lb_enums{'JT'}][$lb_enums{'Postfix_Numeric'}]
1611                                                = $lb_actions{'LB_NOBREAK'};
1612    $lb_table[$lb_enums{'H2'}][$lb_enums{'Postfix_Numeric'}]
1613                                                = $lb_actions{'LB_NOBREAK'};
1614    $lb_table[$lb_enums{'H3'}][$lb_enums{'Postfix_Numeric'}]
1615                                                = $lb_actions{'LB_NOBREAK'};
1616
1617    # PR × (JL | JV | JT | H2 | H3)
1618    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JL'}]
1619                                                = $lb_actions{'LB_NOBREAK'};
1620    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JV'}]
1621                                                = $lb_actions{'LB_NOBREAK'};
1622    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JT'}]
1623                                                = $lb_actions{'LB_NOBREAK'};
1624    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'H2'}]
1625                                                = $lb_actions{'LB_NOBREAK'};
1626    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'H3'}]
1627                                                = $lb_actions{'LB_NOBREAK'};
1628
1629    # LB26 Do not break a Korean syllable.
1630    # JL × (JL | JV | H2 | H3)
1631    $lb_table[$lb_enums{'JL'}][$lb_enums{'JL'}] = $lb_actions{'LB_NOBREAK'};
1632    $lb_table[$lb_enums{'JL'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'};
1633    $lb_table[$lb_enums{'JL'}][$lb_enums{'H2'}] = $lb_actions{'LB_NOBREAK'};
1634    $lb_table[$lb_enums{'JL'}][$lb_enums{'H3'}] = $lb_actions{'LB_NOBREAK'};
1635
1636    # (JV | H2) × (JV | JT)
1637    $lb_table[$lb_enums{'JV'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'};
1638    $lb_table[$lb_enums{'H2'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'};
1639    $lb_table[$lb_enums{'JV'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};
1640    $lb_table[$lb_enums{'H2'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};
1641
1642    # (JT | H3) × JT
1643    $lb_table[$lb_enums{'JT'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};
1644    $lb_table[$lb_enums{'H3'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};
1645
1646    # LB25 Do not break between the following pairs of classes relevant to
1647    # numbers, as tailored by example 7 in
1648    # http://www.unicode.org/reports/tr14/#Examples
1649    # We follow that tailoring because Unicode's test cases expect it
1650    # (PR | PO) × ( OP | HY )? NU
1651    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Numeric'}]
1652                                                = $lb_actions{'LB_NOBREAK'};
1653    $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Numeric'}]
1654                                                = $lb_actions{'LB_NOBREAK'};
1655
1656        # Given that (OP | HY )? is optional, we have to test for it in code.
1657        # We add in the action (instead of overriding) for this, so that in
1658        # the code we can recover the underlying break value.
1659    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Open_Punctuation'}]
1660                                    += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
1661    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'East_Asian_OP'}]
1662                                    += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
1663    $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Open_Punctuation'}]
1664                                    += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
1665    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Hyphen'}]
1666                                    += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
1667    $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Hyphen'}]
1668                                    += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
1669
1670    # ( OP | HY ) × NU
1671    $lb_table[$lb_enums{'Open_Punctuation'}][$lb_enums{'Numeric'}]
1672                                                = $lb_actions{'LB_NOBREAK'};
1673    $lb_table[$lb_enums{'East_Asian_OP'}][$lb_enums{'Numeric'}]
1674                                                = $lb_actions{'LB_NOBREAK'};
1675    $lb_table[$lb_enums{'Hyphen'}][$lb_enums{'Numeric'}]
1676                                                = $lb_actions{'LB_NOBREAK'};
1677
1678    # NU (NU | SY | IS)* × (NU | SY | IS | CL | CP )
1679    # which can be rewritten as:
1680    # NU (SY | IS)* × (NU | SY | IS | CL | CP )
1681    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Numeric'}]
1682                                                = $lb_actions{'LB_NOBREAK'};
1683    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Break_Symbols'}]
1684                                                = $lb_actions{'LB_NOBREAK'};
1685    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Infix_Numeric'}]
1686                                                = $lb_actions{'LB_NOBREAK'};
1687    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Close_Punctuation'}]
1688                                                = $lb_actions{'LB_NOBREAK'};
1689    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Close_Parenthesis'}]
1690                                                = $lb_actions{'LB_NOBREAK'};
1691    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'East_Asian_CP'}]
1692                                                = $lb_actions{'LB_NOBREAK'};
1693
1694        # Like earlier where we have to test in code, we add in the action so
1695        # that we can recover the underlying values.  This is done in rules
1696        # below, as well.  The code assumes that we haven't added 2 actions.
1697        # Shoul a later Unicode release break that assumption, then tests
1698        # should start failing.
1699    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Numeric'}]
1700                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1701    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Break_Symbols'}]
1702                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1703    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Infix_Numeric'}]
1704                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1705    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Close_Punctuation'}]
1706                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1707    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Close_Parenthesis'}]
1708                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1709    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'East_Asian_CP'}]
1710                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1711    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Numeric'}]
1712                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1713    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Break_Symbols'}]
1714                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1715    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Infix_Numeric'}]
1716                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1717    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Close_Punctuation'}]
1718                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1719    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Close_Parenthesis'}]
1720                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1721    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'East_Asian_CP'}]
1722                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1723
1724    # NU (NU | SY | IS)* (CL | CP)? × (PO | PR)
1725    # which can be rewritten as:
1726    # NU (SY | IS)* (CL | CP)? × (PO | PR)
1727    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Postfix_Numeric'}]
1728                                                = $lb_actions{'LB_NOBREAK'};
1729    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Prefix_Numeric'}]
1730                                                = $lb_actions{'LB_NOBREAK'};
1731
1732    $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Postfix_Numeric'}]
1733                                    += $lb_actions{'LB_various_then_PO_or_PR'};
1734    $lb_table[$lb_enums{'East_Asian_CP'}][$lb_enums{'Postfix_Numeric'}]
1735                                    += $lb_actions{'LB_various_then_PO_or_PR'};
1736    $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Postfix_Numeric'}]
1737                                    += $lb_actions{'LB_various_then_PO_or_PR'};
1738    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Postfix_Numeric'}]
1739                                    += $lb_actions{'LB_various_then_PO_or_PR'};
1740    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Postfix_Numeric'}]
1741                                    += $lb_actions{'LB_various_then_PO_or_PR'};
1742
1743    $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Prefix_Numeric'}]
1744                                    += $lb_actions{'LB_various_then_PO_or_PR'};
1745    $lb_table[$lb_enums{'East_Asian_CP'}][$lb_enums{'Prefix_Numeric'}]
1746                                    += $lb_actions{'LB_various_then_PO_or_PR'};
1747    $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Prefix_Numeric'}]
1748                                    += $lb_actions{'LB_various_then_PO_or_PR'};
1749    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Prefix_Numeric'}]
1750                                    += $lb_actions{'LB_various_then_PO_or_PR'};
1751    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Prefix_Numeric'}]
1752                                    += $lb_actions{'LB_various_then_PO_or_PR'};
1753
1754    # LB24 Do not break between numeric prefix/postfix and letters, or between
1755    # letters and prefix/postfix.
1756    # (PR | PO) × (AL | HL)
1757    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Alphabetic'}]
1758                                                = $lb_actions{'LB_NOBREAK'};
1759    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Hebrew_Letter'}]
1760                                                = $lb_actions{'LB_NOBREAK'};
1761    $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Alphabetic'}]
1762                                                = $lb_actions{'LB_NOBREAK'};
1763    $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Hebrew_Letter'}]
1764                                                = $lb_actions{'LB_NOBREAK'};
1765
1766    # (AL | HL) × (PR | PO)
1767    $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Prefix_Numeric'}]
1768                                                = $lb_actions{'LB_NOBREAK'};
1769    $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Prefix_Numeric'}]
1770                                                = $lb_actions{'LB_NOBREAK'};
1771    $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Postfix_Numeric'}]
1772                                                = $lb_actions{'LB_NOBREAK'};
1773    $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Postfix_Numeric'}]
1774                                                = $lb_actions{'LB_NOBREAK'};
1775
1776    # LB23a Do not break between numeric prefixes and ideographs, or between
1777    # ideographs and numeric postfixes.
1778    # PR × (ID | EB | EM)
1779    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Ideographic'}]
1780                                                = $lb_actions{'LB_NOBREAK'};
1781    $lb_table[$lb_enums{'Prefix_Numeric'}]
1782        [$lb_enums{'Unassigned_Extended_Pictographic_Ideographic'}]
1783                                                = $lb_actions{'LB_NOBREAK'};
1784    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'E_Base'}]
1785                                                = $lb_actions{'LB_NOBREAK'};
1786    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'E_Modifier'}]
1787                                                = $lb_actions{'LB_NOBREAK'};
1788
1789    # (ID | EB | EM) × PO
1790    $lb_table[$lb_enums{'Ideographic'}][$lb_enums{'Postfix_Numeric'}]
1791                                                = $lb_actions{'LB_NOBREAK'};
1792    $lb_table[$lb_enums{'Unassigned_Extended_Pictographic_Ideographic'}]
1793                 [$lb_enums{'Postfix_Numeric'}] = $lb_actions{'LB_NOBREAK'};
1794    $lb_table[$lb_enums{'E_Base'}][$lb_enums{'Postfix_Numeric'}]
1795                                                = $lb_actions{'LB_NOBREAK'};
1796    $lb_table[$lb_enums{'E_Modifier'}][$lb_enums{'Postfix_Numeric'}]
1797                                                = $lb_actions{'LB_NOBREAK'};
1798
1799    # LB23 Do not break between digits and letters
1800    # (AL | HL) × NU
1801    $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Numeric'}]
1802                                                = $lb_actions{'LB_NOBREAK'};
1803    $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Numeric'}]
1804                                                = $lb_actions{'LB_NOBREAK'};
1805
1806    # NU × (AL | HL)
1807    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Alphabetic'}]
1808                                                = $lb_actions{'LB_NOBREAK'};
1809    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Hebrew_Letter'}]
1810                                                = $lb_actions{'LB_NOBREAK'};
1811
1812    # LB22 Do not break before ellipses
1813    for my $i (0 .. @lb_table - 1) {
1814        $lb_table[$i][$lb_enums{'Inseparable'}] = $lb_actions{'LB_NOBREAK'};
1815    }
1816
1817    # LB21b Don’t break between Solidus and Hebrew letters.
1818    # SY × HL
1819    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Hebrew_Letter'}]
1820                                                = $lb_actions{'LB_NOBREAK'};
1821
1822    # LB21a Don't break after Hebrew + Hyphen.
1823    # HL (HY | BA) ×
1824    for my $i (0 .. @lb_table - 1) {
1825        $lb_table[$lb_enums{'Hyphen'}][$i]
1826                                        += $lb_actions{'LB_HY_or_BA_then_foo'};
1827        $lb_table[$lb_enums{'Break_After'}][$i]
1828                                        += $lb_actions{'LB_HY_or_BA_then_foo'};
1829    }
1830
1831    # LB21 Do not break before hyphen-minus, other hyphens, fixed-width
1832    # spaces, small kana, and other non-starters, or after acute accents.
1833    # × BA
1834    # × HY
1835    # × NS
1836    # BB ×
1837    for my $i (0 .. @lb_table - 1) {
1838        $lb_table[$i][$lb_enums{'Break_After'}] = $lb_actions{'LB_NOBREAK'};
1839        $lb_table[$i][$lb_enums{'Hyphen'}] = $lb_actions{'LB_NOBREAK'};
1840        $lb_table[$i][$lb_enums{'Nonstarter'}] = $lb_actions{'LB_NOBREAK'};
1841        $lb_table[$lb_enums{'Break_Before'}][$i] = $lb_actions{'LB_NOBREAK'};
1842    }
1843
1844    # LB20 Break before and after unresolved CB.
1845    # ÷ CB
1846    # CB ÷
1847    # Conditional breaks should be resolved external to the line breaking
1848    # rules. However, the default action is to treat unresolved CB as breaking
1849    # before and after.
1850    for my $i (0 .. @lb_table - 1) {
1851        $lb_table[$i][$lb_enums{'Contingent_Break'}]
1852                                                = $lb_actions{'LB_BREAKABLE'};
1853        $lb_table[$lb_enums{'Contingent_Break'}][$i]
1854                                                = $lb_actions{'LB_BREAKABLE'};
1855    }
1856
1857    # LB19 Do not break before or after quotation marks, such as ‘ ” ’.
1858    # × QU
1859    # QU ×
1860    for my $i (0 .. @lb_table - 1) {
1861        $lb_table[$i][$lb_enums{'Quotation'}] = $lb_actions{'LB_NOBREAK'};
1862        $lb_table[$lb_enums{'Quotation'}][$i] = $lb_actions{'LB_NOBREAK'};
1863    }
1864
1865    # LB18 Break after spaces
1866    # SP ÷
1867    for my $i (0 .. @lb_table - 1) {
1868        $lb_table[$lb_enums{'Space'}][$i] = $lb_actions{'LB_BREAKABLE'};
1869    }
1870
1871    # LB17 Do not break within ‘——’, even with intervening spaces.
1872    # B2 SP* × B2
1873    $lb_table[$lb_enums{'Break_Both'}][$lb_enums{'Break_Both'}]
1874                           = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1875
1876    # LB16 Do not break between closing punctuation and a nonstarter even with
1877    # intervening spaces.
1878    # (CL | CP) SP* × NS
1879    $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Nonstarter'}]
1880                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1881    $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Nonstarter'}]
1882                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1883    $lb_table[$lb_enums{'East_Asian_CP'}][$lb_enums{'Nonstarter'}]
1884                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1885
1886
1887    # LB15 Do not break within ‘”[’, even with intervening spaces.
1888    # QU SP* × OP
1889    $lb_table[$lb_enums{'Quotation'}][$lb_enums{'Open_Punctuation'}]
1890                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1891    $lb_table[$lb_enums{'Quotation'}][$lb_enums{'East_Asian_OP'}]
1892                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1893
1894    # LB14 Do not break after ‘[’, even after spaces.
1895    # OP SP* ×
1896    for my $i (0 .. @lb_table - 1) {
1897        $lb_table[$lb_enums{'Open_Punctuation'}][$i]
1898                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1899        $lb_table[$lb_enums{'East_Asian_OP'}][$i]
1900                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1901    }
1902
1903    # LB13 Do not break before ‘]’ or ‘!’ or ‘;’ or ‘/’, even after spaces, as
1904    # tailored by example 7 in http://www.unicode.org/reports/tr14/#Examples
1905    # [^NU] × CL
1906    # [^NU] × CP
1907    # × EX
1908    # [^NU] × IS
1909    # [^NU] × SY
1910    for my $i (0 .. @lb_table - 1) {
1911        $lb_table[$i][$lb_enums{'Exclamation'}]
1912                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1913
1914        next if $i == $lb_enums{'Numeric'};
1915
1916        $lb_table[$i][$lb_enums{'Close_Punctuation'}]
1917                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1918        $lb_table[$i][$lb_enums{'Close_Parenthesis'}]
1919                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1920        $lb_table[$i][$lb_enums{'East_Asian_CP'}]
1921                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1922        $lb_table[$i][$lb_enums{'Infix_Numeric'}]
1923                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1924        $lb_table[$i][$lb_enums{'Break_Symbols'}]
1925                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1926    }
1927
1928    # LB12a Do not break before NBSP and related characters, except after
1929    # spaces and hyphens.
1930    # [^SP BA HY] × GL
1931    for my $i (0 .. @lb_table - 1) {
1932        next if    $i == $lb_enums{'Space'}
1933                || $i == $lb_enums{'Break_After'}
1934                || $i == $lb_enums{'Hyphen'};
1935
1936        # We don't break, but if a property above has said don't break even
1937        # with space between, don't override that (also in the next few rules)
1938        next if $lb_table[$i][$lb_enums{'Glue'}]
1939                            == $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1940        $lb_table[$i][$lb_enums{'Glue'}] = $lb_actions{'LB_NOBREAK'};
1941    }
1942
1943    # LB12 Do not break after NBSP and related characters.
1944    # GL ×
1945    for my $i (0 .. @lb_table - 1) {
1946        next if $lb_table[$lb_enums{'Glue'}][$i]
1947                            == $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1948        $lb_table[$lb_enums{'Glue'}][$i] = $lb_actions{'LB_NOBREAK'};
1949    }
1950
1951    # LB11 Do not break before or after Word joiner and related characters.
1952    # × WJ
1953    # WJ ×
1954    for my $i (0 .. @lb_table - 1) {
1955        if ($lb_table[$i][$lb_enums{'Word_Joiner'}]
1956                        != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
1957        {
1958            $lb_table[$i][$lb_enums{'Word_Joiner'}] = $lb_actions{'LB_NOBREAK'};
1959        }
1960        if ($lb_table[$lb_enums{'Word_Joiner'}][$i]
1961                        != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
1962        {
1963            $lb_table[$lb_enums{'Word_Joiner'}][$i] = $lb_actions{'LB_NOBREAK'};
1964        }
1965    }
1966
1967    # Special case this here to avoid having to do a special case in the code,
1968    # by making this the same as other things with a SP in front of them that
1969    # don't break, we avoid an extra test
1970    $lb_table[$lb_enums{'Space'}][$lb_enums{'Word_Joiner'}]
1971                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1972
1973    # LB9 and LB10 are done in the same loop
1974    #
1975    # LB9 Do not break a combining character sequence; treat it as if it has
1976    # the line breaking class of the base character in all of the
1977    # higher-numbered rules.  Treat ZWJ as if it were CM
1978    # Treat X (CM|ZWJ)* as if it were X.
1979    # where X is any line break class except BK, CR, LF, NL, SP, or ZW.
1980
1981    # LB10 Treat any remaining combining mark or ZWJ as AL.  This catches the
1982    # case where a CM or ZWJ is the first character on the line or follows SP,
1983    # BK, CR, LF, NL, or ZW.
1984    for my $i (0 .. @lb_table - 1) {
1985
1986        # When the CM or ZWJ is the first in the pair, we don't know without
1987        # looking behind whether the CM or ZWJ is going to attach to an
1988        # earlier character, or not.  So have to figure this out at runtime in
1989        # the code
1990        $lb_table[$lb_enums{'Combining_Mark'}][$i]
1991                                        = $lb_actions{'LB_CM_ZWJ_foo'};
1992        $lb_table[$lb_enums{'ZWJ'}][$i] = $lb_actions{'LB_CM_ZWJ_foo'};
1993
1994        if (   $i == $lb_enums{'Mandatory_Break'}
1995            || $i == $lb_enums{'EDGE'}
1996            || $i == $lb_enums{'Carriage_Return'}
1997            || $i == $lb_enums{'Line_Feed'}
1998            || $i == $lb_enums{'Next_Line'}
1999            || $i == $lb_enums{'Space'}
2000            || $i == $lb_enums{'ZWSpace'})
2001        {
2002            # For these classes, a following CM doesn't combine, and should do
2003            # whatever 'Alphabetic' would do.
2004            $lb_table[$i][$lb_enums{'Combining_Mark'}]
2005                                    = $lb_table[$i][$lb_enums{'Alphabetic'}];
2006            $lb_table[$i][$lb_enums{'ZWJ'}]
2007                                    = $lb_table[$i][$lb_enums{'Alphabetic'}];
2008        }
2009        else {
2010            # For these classes, the CM or ZWJ combines, so doesn't break,
2011            # inheriting the type of nobreak from the master character.
2012            if ($lb_table[$i][$lb_enums{'Combining_Mark'}]
2013                            != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
2014            {
2015                $lb_table[$i][$lb_enums{'Combining_Mark'}]
2016                                        = $lb_actions{'LB_NOBREAK'};
2017            }
2018            if ($lb_table[$i][$lb_enums{'ZWJ'}]
2019                            != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
2020            {
2021                $lb_table[$i][$lb_enums{'ZWJ'}]
2022                                        = $lb_actions{'LB_NOBREAK'};
2023            }
2024        }
2025    }
2026
2027    # LB8a Do not break after a zero width joiner
2028    # ZWJ ×
2029    for my $i (0 .. @lb_table - 1) {
2030        $lb_table[$lb_enums{'ZWJ'}][$i] = $lb_actions{'LB_NOBREAK'};
2031    }
2032
2033    # LB8 Break before any character following a zero-width space, even if one
2034    # or more spaces intervene.
2035    # ZW SP* ÷
2036    for my $i (0 .. @lb_table - 1) {
2037        $lb_table[$lb_enums{'ZWSpace'}][$i] = $lb_actions{'LB_BREAKABLE'};
2038    }
2039
2040    # Because of LB8-10, we need to look at context for "SP x", and this must
2041    # be done in the code.  So override the existing rules for that, by adding
2042    # a constant to get new rules that tell the code it needs to look at
2043    # context.  By adding this action instead of replacing the existing one,
2044    # we can get back to the original rule if necessary.
2045    for my $i (0 .. @lb_table - 1) {
2046        $lb_table[$lb_enums{'Space'}][$i] += $lb_actions{'LB_SP_foo'};
2047    }
2048
2049    # LB7 Do not break before spaces or zero width space.
2050    # × SP
2051    # × ZW
2052    for my $i (0 .. @lb_table - 1) {
2053        $lb_table[$i][$lb_enums{'Space'}] = $lb_actions{'LB_NOBREAK'};
2054        $lb_table[$i][$lb_enums{'ZWSpace'}] = $lb_actions{'LB_NOBREAK'};
2055    }
2056
2057    # LB6 Do not break before hard line breaks.
2058    # × ( BK | CR | LF | NL )
2059    for my $i (0 .. @lb_table - 1) {
2060        $lb_table[$i][$lb_enums{'Mandatory_Break'}] = $lb_actions{'LB_NOBREAK'};
2061        $lb_table[$i][$lb_enums{'Carriage_Return'}] = $lb_actions{'LB_NOBREAK'};
2062        $lb_table[$i][$lb_enums{'Line_Feed'}] = $lb_actions{'LB_NOBREAK'};
2063        $lb_table[$i][$lb_enums{'Next_Line'}] = $lb_actions{'LB_NOBREAK'};
2064    }
2065
2066    # LB5 Treat CR followed by LF, as well as CR, LF, and NL as hard line breaks.
2067    # CR × LF
2068    # CR !
2069    # LF !
2070    # NL !
2071    for my $i (0 .. @lb_table - 1) {
2072        $lb_table[$lb_enums{'Carriage_Return'}][$i]
2073                                = $lb_actions{'LB_BREAKABLE'};
2074        $lb_table[$lb_enums{'Line_Feed'}][$i] = $lb_actions{'LB_BREAKABLE'};
2075        $lb_table[$lb_enums{'Next_Line'}][$i] = $lb_actions{'LB_BREAKABLE'};
2076    }
2077    $lb_table[$lb_enums{'Carriage_Return'}][$lb_enums{'Line_Feed'}]
2078                            = $lb_actions{'LB_NOBREAK'};
2079
2080    # LB4 Always break after hard line breaks.
2081    # BK !
2082    for my $i (0 .. @lb_table - 1) {
2083        $lb_table[$lb_enums{'Mandatory_Break'}][$i]
2084                                = $lb_actions{'LB_BREAKABLE'};
2085    }
2086
2087    # LB3 Always break at the end of text.
2088    # ! eot
2089    # LB2 Never break at the start of text.
2090    # sot ×
2091    for my $i (0 .. @lb_table - 1) {
2092        $lb_table[$i][$lb_enums{'EDGE'}] = $lb_actions{'LB_BREAKABLE'};
2093        $lb_table[$lb_enums{'EDGE'}][$i] = $lb_actions{'LB_NOBREAK'};
2094    }
2095
2096    # LB1 Assign a line breaking class to each code point of the input.
2097    # Resolve AI, CB, CJ, SA, SG, and XX into other line breaking classes
2098    # depending on criteria outside the scope of this algorithm.
2099    #
2100    # In the absence of such criteria all characters with a specific
2101    # combination of original class and General_Category property value are
2102    # resolved as follows:
2103    # Original 	   Resolved  General_Category
2104    # AI, SG, XX      AL      Any
2105    # SA              CM      Only Mn or Mc
2106    # SA              AL      Any except Mn and Mc
2107    # CJ              NS      Any
2108    #
2109    # This is done in mktables, so we never see any of the remapped-from
2110    # classes.
2111
2112    output_table_common('LB', \%lb_actions,
2113                        \@lb_table, \@lb_short_enums, \%lb_abbreviations);
2114}
2115
2116sub output_WB_table() {
2117
2118    # Create and output the enums, #defines, and pair table for use in
2119    # determining Word Breaks, given in http://www.unicode.org/reports/tr29/.
2120
2121    # This uses the same mechanism in the other bounds tables generated by
2122    # this file.  The actions that could override a 0 or 1 are added to those
2123    # numbers; the actions that clearly don't depend on the underlying rule
2124    # simply overwrite
2125    my %wb_actions = (
2126        WB_NOBREAK                      => 0,
2127        WB_BREAKABLE                    => 1,
2128        WB_hs_then_hs                   => 2,
2129        WB_Ex_or_FO_or_ZWJ_then_foo	=> 3,
2130        WB_DQ_then_HL	                => 4,
2131        WB_HL_then_DQ	                => 6,
2132        WB_LE_or_HL_then_MB_or_ML_or_SQ	=> 8,
2133        WB_MB_or_ML_or_SQ_then_LE_or_HL	=> 10,
2134        WB_MB_or_MN_or_SQ_then_NU	=> 12,
2135        WB_NU_then_MB_or_MN_or_SQ	=> 14,
2136        WB_RI_then_RI	                => 16,
2137    );
2138
2139    # Construct the WB pair table.
2140    # The table is constructed in reverse order of the rules, to make the
2141    # lower-numbered, higher priority ones override the later ones, as the
2142    # algorithm stops at the earliest matching rule
2143
2144    my @wb_table;
2145    my $table_size = @wb_short_enums;
2146
2147    # Otherwise, break everywhere (including around ideographs).
2148    # WB99  Any  ÷  Any
2149    for my $i (0 .. $table_size - 1) {
2150        for my $j (0 .. $table_size - 1) {
2151            $wb_table[$i][$j] = $wb_actions{'WB_BREAKABLE'};
2152        }
2153    }
2154
2155    # Do not break within emoji flag sequences. That is, do not break between
2156    # regional indicator (RI) symbols if there is an odd number of RI
2157    # characters before the break point.
2158    # WB16  [^RI] (RI RI)* RI × RI
2159    # WB15   sot    (RI RI)* RI × RI
2160    $wb_table[$wb_enums{'Regional_Indicator'}]
2161             [$wb_enums{'Regional_Indicator'}] = $wb_actions{'WB_RI_then_RI'};
2162
2163    # Do not break within emoji modifier sequences.
2164    # WB14  ( E_Base | EBG )  ×  E_Modifier
2165    $wb_table[$wb_enums{'E_Base'}][$wb_enums{'E_Modifier'}]
2166                                                    = $wb_actions{'WB_NOBREAK'};
2167    $wb_table[$wb_enums{'E_Base_GAZ'}][$wb_enums{'E_Modifier'}]
2168                                                    = $wb_actions{'WB_NOBREAK'};
2169
2170    # Do not break from extenders.
2171    # WB13b  ExtendNumLet  ×  (ALetter | Hebrew_Letter | Numeric | Katakana)
2172    $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'ALetter'}]
2173                                                = $wb_actions{'WB_NOBREAK'};
2174    $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'ExtPict_LE'}]
2175                                                = $wb_actions{'WB_NOBREAK'};
2176    $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Hebrew_Letter'}]
2177                                                = $wb_actions{'WB_NOBREAK'};
2178    $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Numeric'}]
2179                                                = $wb_actions{'WB_NOBREAK'};
2180    $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Katakana'}]
2181                                                = $wb_actions{'WB_NOBREAK'};
2182
2183    # WB13a  (ALetter | Hebrew_Letter | Numeric | Katakana | ExtendNumLet)
2184    #        × ExtendNumLet
2185    $wb_table[$wb_enums{'ALetter'}][$wb_enums{'ExtendNumLet'}]
2186                                                = $wb_actions{'WB_NOBREAK'};
2187    $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'ExtendNumLet'}]
2188                                                = $wb_actions{'WB_NOBREAK'};
2189    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'ExtendNumLet'}]
2190                                                = $wb_actions{'WB_NOBREAK'};
2191    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'ExtendNumLet'}]
2192                                                = $wb_actions{'WB_NOBREAK'};
2193    $wb_table[$wb_enums{'Katakana'}][$wb_enums{'ExtendNumLet'}]
2194                                                = $wb_actions{'WB_NOBREAK'};
2195    $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'ExtendNumLet'}]
2196                                                = $wb_actions{'WB_NOBREAK'};
2197
2198    # Do not break between Katakana.
2199    # WB13  Katakana  ×  Katakana
2200    $wb_table[$wb_enums{'Katakana'}][$wb_enums{'Katakana'}]
2201                                                = $wb_actions{'WB_NOBREAK'};
2202
2203    # Do not break within sequences, such as “3.2” or “3,456.789”.
2204    # WB12  Numeric  ×  (MidNum | MidNumLet | Single_Quote) Numeric
2205    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'MidNumLet'}]
2206                                    += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'};
2207    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'MidNum'}]
2208                                    += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'};
2209    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Single_Quote'}]
2210                                    += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'};
2211
2212    # WB11  Numeric (MidNum | (MidNumLet | Single_Quote))  ×  Numeric
2213    $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'Numeric'}]
2214                                    += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'};
2215    $wb_table[$wb_enums{'MidNum'}][$wb_enums{'Numeric'}]
2216                                    += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'};
2217    $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'Numeric'}]
2218                                    += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'};
2219
2220    # Do not break within sequences of digits, or digits adjacent to letters
2221    # (“3a”, or “A3”).
2222    # WB10  Numeric  ×  (ALetter | Hebrew_Letter)
2223    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'ALetter'}]
2224                                                = $wb_actions{'WB_NOBREAK'};
2225    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'ExtPict_LE'}]
2226                                                = $wb_actions{'WB_NOBREAK'};
2227    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Hebrew_Letter'}]
2228                                                = $wb_actions{'WB_NOBREAK'};
2229
2230    # WB9  (ALetter | Hebrew_Letter)  ×  Numeric
2231    $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Numeric'}]
2232                                                = $wb_actions{'WB_NOBREAK'};
2233    $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'Numeric'}]
2234                                                = $wb_actions{'WB_NOBREAK'};
2235    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Numeric'}]
2236                                                = $wb_actions{'WB_NOBREAK'};
2237
2238    # WB8  Numeric  ×  Numeric
2239    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Numeric'}]
2240                                                = $wb_actions{'WB_NOBREAK'};
2241
2242    # Do not break letters across certain punctuation.
2243    # WB7c  Hebrew_Letter Double_Quote  ×  Hebrew_Letter
2244    $wb_table[$wb_enums{'Double_Quote'}][$wb_enums{'Hebrew_Letter'}]
2245                                            += $wb_actions{'WB_DQ_then_HL'};
2246
2247    # WB7b  Hebrew_Letter  ×  Double_Quote Hebrew_Letter
2248    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Double_Quote'}]
2249                                            += $wb_actions{'WB_HL_then_DQ'};
2250
2251    # WB7a  Hebrew_Letter  ×  Single_Quote
2252    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Single_Quote'}]
2253                                                = $wb_actions{'WB_NOBREAK'};
2254
2255    # WB7  (ALetter | Hebrew_Letter) (MidLetter | MidNumLet | Single_Quote)
2256    #       × (ALetter | Hebrew_Letter)
2257    $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'ALetter'}]
2258                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
2259    $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'ExtPict_LE'}]
2260                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
2261    $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'Hebrew_Letter'}]
2262                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
2263    $wb_table[$wb_enums{'MidLetter'}][$wb_enums{'ALetter'}]
2264                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
2265    $wb_table[$wb_enums{'MidLetter'}][$wb_enums{'ExtPict_LE'}]
2266                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
2267    $wb_table[$wb_enums{'MidLetter'}][$wb_enums{'Hebrew_Letter'}]
2268                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
2269    $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'ALetter'}]
2270                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
2271    $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'ExtPict_LE'}]
2272                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
2273    $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'Hebrew_Letter'}]
2274                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
2275
2276    # WB6  (ALetter | Hebrew_Letter)  ×  (MidLetter | MidNumLet
2277    #       | Single_Quote) (ALetter | Hebrew_Letter)
2278    $wb_table[$wb_enums{'ALetter'}][$wb_enums{'MidNumLet'}]
2279                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
2280    $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'MidNumLet'}]
2281                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
2282    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'MidNumLet'}]
2283                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
2284    $wb_table[$wb_enums{'ALetter'}][$wb_enums{'MidLetter'}]
2285                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
2286    $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'MidLetter'}]
2287                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
2288    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'MidLetter'}]
2289                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
2290    $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Single_Quote'}]
2291                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
2292    $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'Single_Quote'}]
2293                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
2294    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Single_Quote'}]
2295                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
2296
2297    # Do not break between most letters.
2298    # WB5  (ALetter | Hebrew_Letter)  ×  (ALetter | Hebrew_Letter)
2299    $wb_table[$wb_enums{'ALetter'}][$wb_enums{'ALetter'}]
2300                                                    = $wb_actions{'WB_NOBREAK'};
2301    $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'ALetter'}]
2302                                                    = $wb_actions{'WB_NOBREAK'};
2303    $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Hebrew_Letter'}]
2304                                                    = $wb_actions{'WB_NOBREAK'};
2305    $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'Hebrew_Letter'}]
2306                                                    = $wb_actions{'WB_NOBREAK'};
2307    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'ALetter'}]
2308                                                    = $wb_actions{'WB_NOBREAK'};
2309    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'ExtPict_LE'}]
2310                                                    = $wb_actions{'WB_NOBREAK'};
2311    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Hebrew_Letter'}]
2312                                                    = $wb_actions{'WB_NOBREAK'};
2313    $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'ExtPict_LE'}]
2314                                                    = $wb_actions{'WB_NOBREAK'};
2315
2316    # Ignore Format and Extend characters, except after sot, CR, LF, and
2317    # Newline.  This also has the effect of: Any × (Format | Extend | ZWJ)
2318    # WB4  X (Extend | Format | ZWJ)* → X
2319    for my $i (0 .. @wb_table - 1) {
2320        $wb_table[$wb_enums{'Extend'}][$i]
2321                                = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'};
2322        $wb_table[$wb_enums{'Format'}][$i]
2323                                = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'};
2324        $wb_table[$wb_enums{'ZWJ'}][$i]
2325                                = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'};
2326    }
2327    for my $i (0 .. @wb_table - 1) {
2328        $wb_table[$i][$wb_enums{'Extend'}] = $wb_actions{'WB_NOBREAK'};
2329        $wb_table[$i][$wb_enums{'Format'}] = $wb_actions{'WB_NOBREAK'};
2330        $wb_table[$i][$wb_enums{'ZWJ'}]    = $wb_actions{'WB_NOBREAK'};
2331    }
2332
2333    # Implied is that these attach to the character before them, except for
2334    # the characters that mark the end of a region of text.  The rules below
2335    # override the ones set up here, for all the characters that need
2336    # overriding.
2337    for my $i (0 .. @wb_table - 1) {
2338        $wb_table[$i][$wb_enums{'Extend'}] = $wb_actions{'WB_NOBREAK'};
2339        $wb_table[$i][$wb_enums{'Format'}] = $wb_actions{'WB_NOBREAK'};
2340    }
2341
2342    # Keep horizontal whitespace together
2343    # Use perl's tailoring instead
2344    # WB3d WSegSpace × WSegSpace
2345    #$wb_table[$wb_enums{'WSegSpace'}][$wb_enums{'WSegSpace'}]
2346    #                                               = $wb_actions{'WB_NOBREAK'};
2347
2348    # Do not break within emoji zwj sequences.
2349    # WB3c ZWJ × ( Glue_After_Zwj | EBG )
2350    $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'Glue_After_Zwj'}]
2351                                                = $wb_actions{'WB_NOBREAK'};
2352    $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'E_Base_GAZ'}]
2353                                                = $wb_actions{'WB_NOBREAK'};
2354    $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'ExtPict_XX'}]
2355                                                = $wb_actions{'WB_NOBREAK'};
2356    $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'ExtPict_LE'}]
2357                                                = $wb_actions{'WB_NOBREAK'};
2358
2359    # Break before and after newlines
2360    # WB3b     ÷  (Newline | CR | LF)
2361    # WB3a  (Newline | CR | LF)  ÷
2362    # et. al.
2363    for my $i ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') {
2364        for my $j (0 .. @wb_table - 1) {
2365            $wb_table[$j][$wb_enums{$i}] = $wb_actions{'WB_BREAKABLE'};
2366            $wb_table[$wb_enums{$i}][$j] = $wb_actions{'WB_BREAKABLE'};
2367        }
2368    }
2369
2370    # But do not break within white space.
2371    # WB3  CR  ×  LF
2372    # et.al.
2373    for my $i ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') {
2374        for my $j ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') {
2375            $wb_table[$wb_enums{$i}][$wb_enums{$j}] = $wb_actions{'WB_NOBREAK'};
2376        }
2377    }
2378
2379    # And do not break horizontal space followed by Extend or Format or ZWJ
2380    $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'Extend'}]
2381                                                    = $wb_actions{'WB_NOBREAK'};
2382    $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'Format'}]
2383                                                    = $wb_actions{'WB_NOBREAK'};
2384    $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'ZWJ'}]
2385                                                    = $wb_actions{'WB_NOBREAK'};
2386    $wb_table[$wb_enums{'Perl_Tailored_HSpace'}]
2387              [$wb_enums{'Perl_Tailored_HSpace'}]
2388                                                = $wb_actions{'WB_hs_then_hs'};
2389
2390    # Break at the start and end of text, unless the text is empty
2391    # WB2  Any  ÷  eot
2392    # WB1  sot  ÷  Any
2393    for my $i (0 .. @wb_table - 1) {
2394        $wb_table[$i][$wb_enums{'EDGE'}] = $wb_actions{'WB_BREAKABLE'};
2395        $wb_table[$wb_enums{'EDGE'}][$i] = $wb_actions{'WB_BREAKABLE'};
2396    }
2397    $wb_table[$wb_enums{'EDGE'}][$wb_enums{'EDGE'}] = 0;
2398
2399    output_table_common('WB', \%wb_actions,
2400                        \@wb_table, \@wb_short_enums, \%wb_abbreviations);
2401}
2402
2403sub sanitize_name ($) {
2404    # Change the non-word characters in the input string to standardized word
2405    # equivalents
2406    #
2407    my $sanitized = shift;
2408    $sanitized =~ s/=/__/;
2409    $sanitized =~ s/&/_AMP_/;
2410    $sanitized =~ s/\./_DOT_/;
2411    $sanitized =~ s/-/_MINUS_/;
2412    $sanitized =~ s!/!_SLASH_!;
2413
2414    return $sanitized;
2415}
2416
2417switch_pound_if ('ALL', 'PERL_IN_REGCOMP_C');
2418
2419output_invlist("Latin1", [ 0, 256 ]);
2420output_invlist("AboveLatin1", [ 256 ]);
2421
2422if ($num_anyof_code_points == 256) {    # Same as Latin1
2423    print $out_fh
2424            "\nstatic const UV * const InBitmap_invlist = Latin1_invlist;\n";
2425}
2426else {
2427    output_invlist("InBitmap", [ 0, $num_anyof_code_points ]);
2428}
2429
2430end_file_pound_if;
2431
2432# We construct lists for all the POSIX and backslash sequence character
2433# classes in two forms:
2434#   1) ones which match only in the ASCII range
2435#   2) ones which match either in the Latin1 range, or the entire Unicode range
2436#
2437# These get compiled in, and hence affect the memory footprint of every Perl
2438# program, even those not using Unicode.  To minimize the size, currently
2439# the Latin1 version is generated for the beyond ASCII range except for those
2440# lists that are quite small for the entire range, such as for \s, which is 22
2441# UVs long plus 4 UVs (currently) for the header.
2442#
2443# To save even more memory, the ASCII versions could be derived from the
2444# larger ones at runtime, saving some memory (minus the expense of the machine
2445# instructions to do so), but these are all small anyway, so their total is
2446# about 100 UVs.
2447#
2448# In the list of properties below that get generated, the L1 prefix is a fake
2449# property that means just the Latin1 range of the full property (whose name
2450# has an X prefix instead of L1).
2451#
2452# An initial & means to use the subroutine from this file instead of an
2453# official inversion list.
2454
2455# Below is the list of property names to generate.  '&' means to use the
2456# subroutine to generate the inversion list instead of the generic code
2457# below.  Some properties have a comma-separated list after the name,
2458# These are extra enums to add to those found in the Unicode tables.
2459no warnings 'qw';
2460                        # Ignore non-alpha in sort
2461my @props;
2462push @props, sort { prop_name_for_cmp($a) cmp prop_name_for_cmp($b) } qw(
2463                    &UpperLatin1
2464                    _Perl_GCB,EDGE,E_Base,E_Base_GAZ,E_Modifier,Glue_After_Zwj,LV,Prepend,Regional_Indicator,SpacingMark,ZWJ,ExtPict_XX
2465                    _Perl_LB,EDGE,Close_Parenthesis,Hebrew_Letter,Next_Line,Regional_Indicator,ZWJ,Contingent_Break,E_Base,E_Modifier,H2,H3,JL,JT,JV,Word_Joiner,East_Asian_CP,East_Asian_OP,Unassigned_Extended_Pictographic_Ideographic
2466                    _Perl_SB,EDGE,SContinue,CR,Extend,LF
2467                    _Perl_WB,Perl_Tailored_HSpace,EDGE,UNKNOWN,CR,Double_Quote,E_Base,E_Base_GAZ,E_Modifier,Extend,Glue_After_Zwj,Hebrew_Letter,LF,MidNumLet,Newline,Regional_Indicator,Single_Quote,ZWJ,ExtPict_XX,ExtPict_LE
2468                    _Perl_SCX,Latin,Inherited,Unknown,Kore,Jpan,Hanb,INVALID
2469                    Lowercase_Mapping
2470                    Titlecase_Mapping
2471                    Uppercase_Mapping
2472                    Simple_Case_Folding
2473                    Case_Folding
2474                    &_Perl_IVCF
2475                    &_Perl_CCC_non0_non230
2476                );
2477                # NOTE that the convention is that extra enum values come
2478                # after the property name, separated by commas, with the enums
2479                # that aren't ever defined by Unicode (with some exceptions)
2480                # containing at least 4 all-uppercase characters.
2481
2482                # Some of the enums are current official property values that
2483                # are needed for the rules in constructing certain tables in
2484                # this file, and perhaps in regexec.c as well.  They are here
2485                # so that things don't crash when compiled on earlier Unicode
2486                # releases where they don't exist.  Thus the rules that use
2487                # them still get compiled, but no code point actually uses
2488                # them, hence they won't get exercized on such Unicode
2489                # versions, but the code will still compile and run, though
2490                # may not give the precise results that those versions would
2491                # expect, but reasonable results nonetheless.
2492                #
2493                # Other enums are due to the fact that Unicode has in more
2494                # recent versions added criteria to the rules in these extra
2495                # tables that are based on factors outside the property
2496                # values.  And those have to be accounted for, essentially by
2497                # here splitting certain enum equivalence classes based on
2498                # those extra rules.
2499                #
2500                # EDGE is supposed to be a boundary between some types of
2501                # enums, but khw thinks that isn't valid any more.
2502
2503my @bin_props;
2504my @perl_prop_synonyms;
2505my %enums;
2506my @deprecated_messages = "";   # Element [0] is a placeholder
2507my %deprecated_tags;
2508
2509my $float_e_format = qr/ ^ -? \d \. \d+ e [-+] \d+ $ /x;
2510
2511# Create another hash that maps floating point x.yyEzz representation to what
2512# %stricter_to_file_of does for the equivalent rational.  A typical entry in
2513# the latter hash is
2514#
2515#    'nv=1/2' => 'Nv/1_2',
2516#
2517# From that, this loop creates an entry
2518#
2519#    'nv=5.00e-01' => 'Nv/1_2',
2520#
2521# %stricter_to_file_of contains far more than just the rationals.  Instead we
2522# use %Unicode::UCD::nv_floating_to_rational which should have an entry for each
2523# nv in the former hash.
2524my %floating_to_file_of;
2525foreach my $key (keys %Unicode::UCD::nv_floating_to_rational) {
2526    my $value = $Unicode::UCD::nv_floating_to_rational{$key};
2527    $floating_to_file_of{$key} = $Unicode::UCD::stricter_to_file_of{"nv=$value"};
2528}
2529
2530# Properties that are specified with a prop=value syntax
2531my @equals_properties;
2532
2533# Collect all the binary properties from data in lib/unicore
2534# Sort so that complements come after the main table, and the shortest
2535# names first, finally alphabetically.  Also, sort together the tables we want
2536# to be kept together, and prefer those with 'posix' in their names, which is
2537# what the C code is expecting their names to be.
2538foreach my $property (sort
2539        {   exists $keep_together{lc $b} <=> exists $keep_together{lc $a}
2540         or $b =~ /posix/i <=> $a =~ /posix/i
2541         or $b =~ /perl/i <=> $a =~ /perl/i
2542         or $a =~ $float_e_format <=> $b =~ $float_e_format
2543         or $a =~ /!/ <=> $b =~ /!/
2544         or length $a <=> length $b
2545         or $a cmp $b
2546        }   keys %Unicode::UCD::loose_to_file_of,
2547            keys %Unicode::UCD::stricter_to_file_of,
2548            keys %floating_to_file_of
2549) {
2550
2551    # These two hashes map properties to values that can be considered to
2552    # be checksums.  If two properties have the same checksum, they have
2553    # identical entries.  Otherwise they differ in some way.
2554    my $tag = $Unicode::UCD::loose_to_file_of{$property};
2555    $tag = $Unicode::UCD::stricter_to_file_of{$property} unless defined $tag;
2556    $tag = $floating_to_file_of{$property} unless defined $tag;
2557
2558    # The tag may contain an '!' meaning it is identical to the one formed
2559    # by removing the !, except that it is inverted.
2560    my $inverted = $tag =~ s/!//;
2561
2562    # This hash is lacking the property name
2563    $property = "nv=$property" if $property =~ $float_e_format;
2564
2565    # The list of 'prop=value' entries that this single entry expands to
2566    my @this_entries;
2567
2568    # Split 'property=value' on the equals sign, with $lhs being the whole
2569    # thing if there is no '='
2570    my ($lhs, $rhs) = $property =~ / ( [^=]* ) ( =? .*) /x;
2571
2572    # $lhs then becomes the property name.
2573    my $prop_value = $rhs =~ s/ ^ = //rx;
2574
2575    push @equals_properties, $lhs if $prop_value ne "";
2576
2577    # See if there are any synonyms for this property.
2578    if (exists $prop_name_aliases{$lhs}) {
2579
2580        # If so, do the combinatorics so that a new entry is added for
2581        # each legal property combined with the property value (which is
2582        # $rhs)
2583        foreach my $alias (@{$prop_name_aliases{$lhs}}) {
2584
2585            # But, there are some ambiguities, like 'script' is a synonym
2586            # for 'sc', and 'sc' can stand alone, meaning something
2587            # entirely different than 'script'.  'script' cannot stand
2588            # alone.  Don't add if the potential new lhs is in the hash of
2589            # stand-alone properties.
2590            no warnings 'once';
2591            next if $rhs eq "" &&  grep { $alias eq $_ }
2592                                    keys %Unicode::UCD::loose_property_to_file_of;
2593
2594            my $new_entry = $alias . $rhs;
2595            push @this_entries, $new_entry;
2596        }
2597    }
2598
2599    # Above, we added the synonyms for the base entry we're now
2600    # processing.  But we haven't dealt with it yet.  If we already have a
2601    # property with the identical characteristics, this becomes just a
2602    # synonym for it.
2603
2604    if (exists $enums{$tag}) {
2605        push @this_entries, $property;
2606    }
2607    else { # Otherwise, create a new entry.
2608
2609        # Add to the list of properties to generate inversion lists for.
2610        push @bin_props, uc $property;
2611
2612        # Create a rule for the parser
2613        if (! exists $keywords{$property}) {
2614            $keywords{$property} = token_name($property);
2615        }
2616
2617        # And create an enum for it.
2618        $enums{$tag} = $table_name_prefix . uc sanitize_name($property);
2619
2620        $perl_tags{$tag} = 1 if exists $keep_together{lc $property};
2621
2622        # Some properties are deprecated.  This hash tells us so, and the
2623        # warning message to raise if they are used.
2624        if (exists $Unicode::UCD::why_deprecated{$tag}) {
2625            $deprecated_tags{$enums{$tag}} = scalar @deprecated_messages;
2626            push @deprecated_messages, $Unicode::UCD::why_deprecated{$tag};
2627        }
2628
2629        # Our sort above should have made sure that we see the
2630        # non-inverted version first, but this makes sure.
2631        warn "$property is inverted!!!" if $inverted;
2632    }
2633
2634    # Everything else is #defined to be the base enum, inversion is
2635    # indicated by negating the value.
2636    my $defined_to = "";
2637    $defined_to .= "-" if $inverted;
2638    $defined_to .= $enums{$tag};
2639
2640    # Go through the entries that evaluate to this.
2641    @this_entries = uniques @this_entries;
2642    foreach my $define (@this_entries) {
2643
2644        # There is a rule for the parser for each.
2645        $keywords{$define} = $defined_to;
2646
2647        # And a #define for all simple names equivalent to a perl property,
2648        # except those that begin with 'is' or 'in';
2649        if (exists $perl_tags{$tag} && $property !~ / ^ i[ns] | = /x) {
2650            push @perl_prop_synonyms, "#define "
2651                                    . $table_name_prefix
2652                                    . uc(sanitize_name($define))
2653                                    . "   $defined_to";
2654        }
2655    }
2656}
2657
2658@bin_props = sort { exists $keep_together{lc $b} <=> exists $keep_together{lc $a}
2659                   or $a cmp $b
2660                  } @bin_props;
2661@perl_prop_synonyms = sort(uniques(@perl_prop_synonyms));
2662push @props, @bin_props;
2663
2664foreach my $prop (@props) {
2665
2666    # For the Latin1 properties, we change to use the eXtended version of the
2667    # base property, then go through the result and get rid of everything not
2668    # in Latin1 (above 255).  Actually, we retain the element for the range
2669    # that crosses the 255/256 boundary if it is one that matches the
2670    # property.  For example, in the Word property, there is a range of code
2671    # points that start at U+00F8 and goes through U+02C1.  Instead of
2672    # artificially cutting that off at 256 because 256 is the first code point
2673    # above Latin1, we let the range go to its natural ending.  That gives us
2674    # extra information with no added space taken.  But if the range that
2675    # crosses the boundary is one that doesn't match the property, we don't
2676    # start a new range above 255, as that could be construed as going to
2677    # infinity.  For example, the Upper property doesn't include the character
2678    # at 255, but does include the one at 256.  We don't include the 256 one.
2679    my $prop_name = $prop;
2680    my $is_local_sub = $prop_name =~ s/^&//;
2681    my $extra_enums = "";
2682    $extra_enums = $1 if $prop_name =~ s/, ( .* ) //x;
2683    my $lookup_prop = $prop_name;
2684    $prop_name = sanitize_name($prop_name);
2685    $prop_name = $table_name_prefix . $prop_name
2686                                if grep { lc $lookup_prop eq lc $_ } @bin_props;
2687    my $l1_only = ($lookup_prop =~ s/^L1Posix/XPosix/
2688                    or $lookup_prop =~ s/^L1//);
2689    my $nonl1_only = 0;
2690    $nonl1_only = $lookup_prop =~ s/^NonL1// unless $l1_only;
2691    ($lookup_prop, my $has_suffixes) = $lookup_prop =~ / (.*) ( , .* )? /x;
2692
2693    for my $charset (get_supported_code_pages()) {
2694        @a2n = @{get_a2n($charset)};
2695
2696        my @invlist;
2697        my @invmap;
2698        my $map_format = 0;;
2699        my $map_default;
2700        my $maps_to_code_point = 0;
2701        my $to_adjust = 0;
2702        my $same_in_all_code_pages;
2703        if ($is_local_sub) {
2704            my @return = eval $lookup_prop;
2705            die $@ if $@;
2706            my $invlist_ref = shift @return;
2707            @invlist = @$invlist_ref;
2708            if (@return) {  # If has other values returned , must be an
2709                            # inversion map
2710                my $invmap_ref = shift @return;
2711                @invmap = @$invmap_ref;
2712                $map_format = shift @return;
2713                $map_default = shift @return;
2714            }
2715        }
2716        else {
2717            @invlist = prop_invlist($lookup_prop, '_perl_core_internal_ok');
2718            if (! @invlist) {
2719
2720                # If couldn't find a non-empty inversion list, see if it is
2721                # instead an inversion map
2722                my ($list_ref, $map_ref, $format, $default)
2723                          = prop_invmap($lookup_prop, '_perl_core_internal_ok');
2724                if (! $list_ref) {
2725                    # An empty return here could mean an unknown property, or
2726                    # merely that the original inversion list is empty.  Call
2727                    # in scalar context to differentiate
2728                    my $count = prop_invlist($lookup_prop,
2729                                             '_perl_core_internal_ok');
2730                    if (defined $count) {
2731                        # Short-circuit an empty inversion list.
2732                        output_invlist($prop_name, \@invlist, $charset);
2733                        last;
2734                    }
2735                    die "Could not find inversion list for '$lookup_prop'"
2736                }
2737                else {
2738                    @invlist = @$list_ref;
2739                    @invmap = @$map_ref;
2740                    $map_format = $format;
2741                    $map_default = $default;
2742                }
2743            }
2744        }
2745
2746        if ($map_format) {
2747            $maps_to_code_point = $map_format =~ / a ($ | [^r] ) /x;
2748            $to_adjust = $map_format =~ /a/;
2749        }
2750
2751        # Re-order the Unicode code points to native ones for this platform.
2752        # This is only needed for code points below 256, because native code
2753        # points are only in that range.  For inversion maps of properties
2754        # where the mappings are adjusted (format =~ /a/), this reordering
2755        # could mess up the adjustment pattern that was in the input, so that
2756        # has to be dealt with.
2757        #
2758        # And inversion maps that map to code points need to eventually have
2759        # all those code points remapped to native, and it's better to do that
2760        # here, going through the whole list not just those below 256.  This
2761        # is because some inversion maps have adjustments (format =~ /a/)
2762        # which may be affected by the reordering.  This code needs to be done
2763        # both for when we are translating the inversion lists for < 256, and
2764        # for the inversion maps for everything.  By doing both in this loop,
2765        # we can share that code.
2766        #
2767        # So, we go through everything for an inversion map to code points;
2768        # otherwise, we can skip any remapping at all if we are going to
2769        # output only the above-Latin1 values, or if the range spans the whole
2770        # of 0..256, as the remap will also include all of 0..256  (256 not
2771        # 255 because a re-ordering could cause 256 to need to be in the same
2772        # range as 255.)
2773        if (       (@invmap && $maps_to_code_point)
2774            || (    @invlist
2775                &&  $invlist[0] < 256
2776                && (    $invlist[0] != 0
2777                    || (scalar @invlist != 1 && $invlist[1] < 256))))
2778        {
2779            $same_in_all_code_pages = 0;
2780            if (! @invmap) {    # Straight inversion list
2781                # Look at all the ranges that start before 257.
2782                my @latin1_list;
2783                while (@invlist) {
2784                    last if $invlist[0] > 256;
2785                    my $upper = @invlist > 1
2786                                ? $invlist[1] - 1      # In range
2787
2788                                # To infinity.  You may want to stop much much
2789                                # earlier; going this high may expose perl
2790                                # deficiencies with very large numbers.
2791                                : 256;
2792                    for my $j ($invlist[0] .. $upper) {
2793                        push @latin1_list, a2n($j);
2794                    }
2795
2796                    shift @invlist; # Shift off the range that's in the list
2797                    shift @invlist; # Shift off the range not in the list
2798                }
2799
2800                # Here @invlist contains all the ranges in the original that
2801                # start at code points above 256, and @latin1_list contains
2802                # all the native code points for ranges that start with a
2803                # Unicode code point below 257.  We sort the latter and
2804                # convert it to inversion list format.  Then simply prepend it
2805                # to the list of the higher code points.
2806                @latin1_list = sort { $a <=> $b } @latin1_list;
2807                @latin1_list = mk_invlist_from_sorted_cp_list(\@latin1_list);
2808                unshift @invlist, @latin1_list;
2809            }
2810            else {  # Is an inversion map
2811
2812                # This is a similar procedure as plain inversion list, but has
2813                # multiple buckets.  A plain inversion list just has two
2814                # buckets, 1) 'in' the list; and 2) 'not' in the list, and we
2815                # pretty much can ignore the 2nd bucket, as it is completely
2816                # defined by the 1st.  But here, what we do is create buckets
2817                # which contain the code points that map to each, translated
2818                # to native and turned into an inversion list.  Thus each
2819                # bucket is an inversion list of native code points that map
2820                # to it or don't map to it.  We use these to create an
2821                # inversion map for the whole property.
2822
2823                # As mentioned earlier, we use this procedure to not just
2824                # remap the inversion list to native values, but also the maps
2825                # of code points to native ones.  In the latter case we have
2826                # to look at the whole of the inversion map (or at least to
2827                # above Unicode; as the maps of code points above that should
2828                # all be to the default).
2829                my $upper_limit = (! $maps_to_code_point)
2830                                   ? 256
2831                                   : (Unicode::UCD::UnicodeVersion() eq '1.1.5')
2832                                      ? 0xFFFF
2833                                      : 0x10FFFF;
2834
2835                my %mapped_lists;   # A hash whose keys are the buckets.
2836                while (@invlist) {
2837                    last if $invlist[0] > $upper_limit;
2838
2839                    # This shouldn't actually happen, as prop_invmap() returns
2840                    # an extra element at the end that is beyond $upper_limit
2841                    die "inversion map (for $prop_name) that extends to"
2842                      . " infinity is unimplemented" unless @invlist > 1;
2843
2844                    my $bucket;
2845
2846                    # A hash key can't be a ref (we are only expecting arrays
2847                    # of scalars here), so convert any such to a string that
2848                    # will be converted back later (using a vertical tab as
2849                    # the separator).
2850                    if (ref $invmap[0]) {
2851                        $bucket = join "\cK", map { a2n($_) }  @{$invmap[0]};
2852                    }
2853                    elsif (   $maps_to_code_point
2854                           && $invmap[0] =~ $integer_or_float_re)
2855                    {
2856
2857                        # Do convert to native for maps to single code points.
2858                        # There are some properties that have a few outlier
2859                        # maps that aren't code points, so the above test
2860                        # skips those.  0 is never remapped.
2861                        $bucket = $invmap[0] == 0 ? 0 : a2n($invmap[0]);
2862                    } else {
2863                        $bucket = $invmap[0];
2864                    }
2865
2866                    # We now have the bucket that all code points in the range
2867                    # map to, though possibly they need to be adjusted.  Go
2868                    # through the range and put each translated code point in
2869                    # it into its bucket.
2870                    my $base_map = $invmap[0];
2871                    for my $j ($invlist[0] .. $invlist[1] - 1) {
2872                        if ($to_adjust
2873                               # The 1st code point doesn't need adjusting
2874                            && $j > $invlist[0]
2875
2876                               # Skip any non-numeric maps: these are outliers
2877                               # that aren't code points.
2878                            && $base_map =~ $integer_or_float_re
2879
2880                               #  'ne' because the default can be a string
2881                            && $base_map ne $map_default)
2882                        {
2883                            # We adjust, by incrementing each the bucket and
2884                            # the map.  For code point maps, translate to
2885                            # native
2886                            $base_map++;
2887                            $bucket = ($maps_to_code_point)
2888                                      ? a2n($base_map)
2889                                      : $base_map;
2890                        }
2891
2892                        # Add the native code point to the bucket for the
2893                        # current map
2894                        push @{$mapped_lists{$bucket}}, a2n($j);
2895                    } # End of loop through all code points in the range
2896
2897                    # Get ready for the next range
2898                    shift @invlist;
2899                    shift @invmap;
2900                } # End of loop through all ranges in the map.
2901
2902                # Here, @invlist and @invmap retain all the ranges from the
2903                # originals that start with code points above $upper_limit.
2904                # Each bucket in %mapped_lists contains all the code points
2905                # that map to that bucket.  If the bucket is for a map to a
2906                # single code point, the bucket has been converted to native.
2907                # If something else (including multiple code points), no
2908                # conversion is done.
2909                #
2910                # Now we recreate the inversion map into %xlated, but this
2911                # time for the native character set.
2912                my %xlated;
2913                foreach my $bucket (keys %mapped_lists) {
2914
2915                    # Sort and convert this bucket to an inversion list.  The
2916                    # result will be that ranges that start with even-numbered
2917                    # indexes will be for code points that map to this bucket;
2918                    # odd ones map to some other bucket, and are discarded
2919                    # below.
2920                    @{$mapped_lists{$bucket}}
2921                                    = sort{ $a <=> $b} @{$mapped_lists{$bucket}};
2922                    @{$mapped_lists{$bucket}}
2923                     = mk_invlist_from_sorted_cp_list(
2924                                                    \@{$mapped_lists{$bucket}});
2925
2926                    # Add each even-numbered range in the bucket to %xlated;
2927                    # so that the keys of %xlated become the range start code
2928                    # points, and the values are their corresponding maps.
2929                    while (@{$mapped_lists{$bucket}}) {
2930                        my $range_start = $mapped_lists{$bucket}->[0];
2931                        if ($bucket =~ /\cK/) {
2932                            @{$xlated{$range_start}} = split /\cK/, $bucket;
2933                        }
2934                        else {
2935                            # If adjusting, and there is more than one thing
2936                            # that maps to the same thing, they must be split
2937                            # so that later the adjusting doesn't think the
2938                            # subsequent items can go away because of the
2939                            # adjusting.
2940                            my $range_end = (     $to_adjust
2941                                               && $bucket != $map_default)
2942                                            ? $mapped_lists{$bucket}->[1] - 1
2943                                            : $range_start;
2944                            for my $i ($range_start .. $range_end) {
2945                                $xlated{$i} = $bucket;
2946                            }
2947                        }
2948                        shift @{$mapped_lists{$bucket}}; # Discard odd ranges
2949                        shift @{$mapped_lists{$bucket}}; # Get ready for next
2950                                                         # iteration
2951                    }
2952                } # End of loop through all the buckets.
2953
2954                # Here %xlated's keys are the range starts of all the code
2955                # points in the inversion map.  Construct an inversion list
2956                # from them.
2957                my @new_invlist = sort { $a <=> $b } keys %xlated;
2958
2959                # If the list is adjusted, we want to munge this list so that
2960                # we only have one entry for where consecutive code points map
2961                # to consecutive values.  We just skip the subsequent entries
2962                # where this is the case.
2963                if ($to_adjust) {
2964                    my @temp;
2965                    for my $i (0 .. @new_invlist - 1) {
2966                        next if $i > 0
2967                                && $new_invlist[$i-1] + 1 == $new_invlist[$i]
2968                                && $xlated{$new_invlist[$i-1]}
2969                                                        =~ $integer_or_float_re
2970                                && $xlated{$new_invlist[$i]}
2971                                                        =~ $integer_or_float_re
2972                                && $xlated{$new_invlist[$i-1]} + 1
2973                                                 == $xlated{$new_invlist[$i]};
2974                        push @temp, $new_invlist[$i];
2975                    }
2976                    @new_invlist = @temp;
2977                }
2978
2979                # The inversion map comes from %xlated's values.  We can
2980                # unshift each onto the front of the untouched portion, in
2981                # reverse order of the portion we did process.
2982                foreach my $start (reverse @new_invlist) {
2983                    unshift @invmap, $xlated{$start};
2984                }
2985
2986                # Finally prepend the inversion list we have just constructed
2987                # to the one that contains anything we didn't process.
2988                unshift @invlist, @new_invlist;
2989            }
2990        }
2991        elsif (@invmap) {   # inversion maps can't cope with this variable
2992                            # being true, even if it could be true
2993            $same_in_all_code_pages = 0;
2994        }
2995        else {
2996            $same_in_all_code_pages = 1;
2997        }
2998
2999        # prop_invmap() returns an extra final entry, which we can now
3000        # discard.
3001        if (@invmap) {
3002            pop @invlist;
3003            pop @invmap;
3004        }
3005
3006        if ($l1_only) {
3007            die "Unimplemented to do a Latin-1 only inversion map" if @invmap;
3008            for my $i (0 .. @invlist - 1 - 1) {
3009                if ($invlist[$i] > 255) {
3010
3011                    # In an inversion list, even-numbered elements give the code
3012                    # points that begin ranges that match the property;
3013                    # odd-numbered give ones that begin ranges that don't match.
3014                    # If $i is odd, we are at the first code point above 255 that
3015                    # doesn't match, which means the range it is ending does
3016                    # match, and crosses the 255/256 boundary.  We want to
3017                    # include this ending point, so increment $i, so the
3018                    # splice below includes it.  Conversely, if $i is even, it
3019                    # is the first code point above 255 that matches, which
3020                    # means there was no matching range that crossed the
3021                    # boundary, and we don't want to include this code point,
3022                    # so splice before it.
3023                    $i++ if $i % 2 != 0;
3024
3025                    # Remove everything past this.
3026                    splice @invlist, $i;
3027                    splice @invmap, $i if @invmap;
3028                    last;
3029                }
3030            }
3031        }
3032        elsif ($nonl1_only) {
3033            my $found_nonl1 = 0;
3034            for my $i (0 .. @invlist - 1 - 1) {
3035                next if $invlist[$i] < 256;
3036
3037                # Here, we have the first element in the array that indicates an
3038                # element above Latin1.  Get rid of all previous ones.
3039                splice @invlist, 0, $i;
3040                splice @invmap, 0, $i if @invmap;
3041
3042                # If this one's index is not divisible by 2, it means that this
3043                # element is inverting away from being in the list, which means
3044                # all code points from 256 to this one are in this list (or
3045                # map to the default for inversion maps)
3046                if ($i % 2 != 0) {
3047                    unshift @invlist, 256;
3048                    unshift @invmap, $map_default if @invmap;
3049                }
3050                $found_nonl1 = 1;
3051                last;
3052            }
3053            if (! $found_nonl1) {
3054                warn "No non-Latin1 code points in $prop_name";
3055                output_invlist($prop_name, []);
3056                last;
3057            }
3058        }
3059
3060        switch_pound_if ($prop_name, 'PERL_IN_REGCOMP_C');
3061        start_charset_pound_if($charset, 1) unless $same_in_all_code_pages;
3062
3063        output_invlist($prop_name, \@invlist, ($same_in_all_code_pages)
3064                                              ? $applies_to_all_charsets_text
3065                                              : $charset);
3066
3067        if (@invmap) {
3068            output_invmap($prop_name, \@invmap, $lookup_prop, $map_format,
3069                          $map_default, $extra_enums, $charset);
3070        }
3071
3072        last if $same_in_all_code_pages;
3073        end_charset_pound_if;
3074    }
3075}
3076
3077print $out_fh "\nconst char * const deprecated_property_msgs[] = {\n\t";
3078print $out_fh join ",\n\t", map { "\"$_\"" } @deprecated_messages;
3079print $out_fh "\n};\n";
3080
3081switch_pound_if ('binary_invlist_enum', 'PERL_IN_REGCOMP_C');
3082
3083my @enums = sort values %enums;
3084
3085# Save a copy of these before modification
3086my @invlist_names = map { "${_}_invlist" } @enums;
3087
3088# Post-process the enums for deprecated properties.
3089if (scalar keys %deprecated_tags) {
3090    my $seen_deprecated = 0;
3091    foreach my $enum (@enums) {
3092        if (grep { $_ eq $enum } keys %deprecated_tags) {
3093
3094            # Change the enum name for this deprecated property to a
3095            # munged one to act as a placeholder in the typedef.  Then
3096            # make the real name be a #define whose value is such that
3097            # its modulus with the number of enums yields the index into
3098            # the table occupied by the placeholder.  And so that dividing
3099            # the #define value by the table length gives an index into
3100            # the table of deprecation messages for the corresponding
3101            # warning.
3102            my $revised_enum = "${enum}_perl_aux";
3103            if (! $seen_deprecated) {
3104                $seen_deprecated = 1;
3105                print $out_fh "\n";
3106            }
3107            print $out_fh "#define $enum ($revised_enum + (MAX_UNI_KEYWORD_INDEX * $deprecated_tags{$enum}))\n";
3108            $enum = $revised_enum;
3109        }
3110    }
3111}
3112
3113print $out_fh "\ntypedef enum {\n\tPERL_BIN_PLACEHOLDER = 0,",
3114              " /* So no real value is zero */\n\t";
3115print $out_fh join ",\n\t", @enums;
3116print $out_fh "\n";
3117print $out_fh "} binary_invlist_enum;\n";
3118print $out_fh "\n#define MAX_UNI_KEYWORD_INDEX $enums[-1]\n";
3119
3120switch_pound_if ('binary_property_tables', 'PERL_IN_REGCOMP_C');
3121
3122output_table_header($out_fh, "UV *", "uni_prop_ptrs");
3123print $out_fh "\tNULL,\t/* Placeholder */\n";
3124print $out_fh "\t";
3125print $out_fh join ",\n\t", @invlist_names;
3126print $out_fh "\n";
3127
3128output_table_trailer();
3129
3130switch_pound_if ('synonym defines', 'PERL_IN_REGCOMP_C');
3131
3132print $out_fh join "\n", "\n",
3133                         #'#    ifdef DOINIT',
3134                         #"\n",
3135                         "/* Synonyms for perl properties */",
3136                         @perl_prop_synonyms,
3137                         #"\n",
3138                         #"#    endif  /* DOINIT */",
3139                         "\n";
3140
3141switch_pound_if ('Valid property_values', 'PERL_IN_REGCOMP_C');
3142
3143# Each entry is a pointer to a table of property values for some property.
3144# (Other properties may share this table.  The next two data structures allow
3145# this sharing to be implemented.)
3146my @values_tables = "NULL /* Placeholder so zero index is an error */";
3147
3148# Keys are all the values of a property, strung together.  The value of each
3149# key is its index in @values_tables.  This is because many properties have
3150# the same values, and this allows the data to appear just once.
3151my %joined_values;
3152
3153# #defines for indices into @values_tables, so can have synonyms resolved by
3154# the C compiler.
3155my @values_indices;
3156
3157# Go through each property which is specifiable by \p{prop=value}, and create
3158# a hash with the keys being the canonicalized short property names, and the
3159# values for each property being all possible values that it can take on.
3160# Both the full value and its short, canonicalized into lc, sans punctuation
3161# version are included.
3162my %all_values;
3163for my $property (sort { prop_name_for_cmp($a) cmp prop_name_for_cmp($b) }
3164                 uniques @equals_properties)
3165{
3166    # Get and canonicalize the short name for this property.
3167    my ($short_name) = prop_aliases($property);
3168    $short_name = lc $short_name;
3169    $short_name =~ s/[ _-]//g;
3170
3171    # Now look at each value this property can take on
3172    foreach my $value (prop_values($short_name)) {
3173
3174        # And for each value, look at each synonym for it
3175        foreach my $alias (prop_value_aliases($short_name, $value)) {
3176
3177            # Add each synonym
3178            push @{$all_values{$short_name}}, $alias;
3179
3180            # As well as its canonicalized name.  khw made the decision to not
3181            # support the grandfathered L_ Gc property value
3182            $alias = lc $alias;
3183            $alias =~ s/[ _-]//g unless $alias =~ $numeric_re;
3184            push @{$all_values{$short_name}}, $alias;
3185        }
3186    }
3187}
3188
3189# Also include the old style block names, using the recipe given in
3190# Unicode::UCD
3191foreach my $block (prop_values('block')) {
3192    push @{$all_values{'blk'}}, charblock((prop_invlist("block=$block"))[0]);
3193}
3194
3195# Now create output tables for each property in @equals_properties (the keys
3196# in %all_values) each containing that property's possible values as computed
3197# just above.
3198PROPERTY:
3199for my $property (sort { prop_name_for_cmp($a) cmp prop_name_for_cmp($b)
3200                         or $a cmp $b } keys %all_values)
3201{
3202    @{$all_values{$property}} = uniques(@{$all_values{$property}});
3203
3204    # String together the values for this property, sorted.  This string forms
3205    # a list definition, with each value as an entry in it, indented on a new
3206    # line.  The sorting is used to find properties that take on the exact
3207    # same values to share this string.
3208    my $joined = "\t\"";
3209    $joined .= join "\",\n\t\"",
3210                sort { ($a =~ $numeric_re && $b =~ $numeric_re)
3211                        ? eval $a <=> eval $b
3212                        :    prop_name_for_cmp($a) cmp prop_name_for_cmp($b)
3213                          or $a cmp $b
3214                        } @{$all_values{$property}};
3215    # And add a trailing marker
3216    $joined .= "\",\n\tNULL\n";
3217
3218    my $table_name = $table_name_prefix . $property . "_values";
3219    my $index_name = "${table_name}_index";
3220
3221    # Add a rule for the parser that is just an empty value.  It will need to
3222    # know to look up empty things in the prop_value_ptrs[] table.
3223
3224    $keywords{"$property="} = $index_name;
3225    if (exists $prop_name_aliases{$property}) {
3226        foreach my $alias (@{$prop_name_aliases{$property}}) {
3227            $keywords{"$alias="} = $index_name;
3228        }
3229    }
3230
3231    # Also create rules for the synonyms of this property to point to the same
3232    # thing
3233
3234    # If this property's values are the same as one we've already computed,
3235    # use that instead of creating a duplicate.  But we add a #define to point
3236    # to the proper one.
3237    if (exists $joined_values{$joined}) {
3238        push @values_indices, "#define $index_name  $joined_values{$joined}\n";
3239        next PROPERTY;
3240    }
3241
3242    # And this property, now known to have unique values from any other seen
3243    # so far is about to be pushed onto @values_tables.  Its index is the
3244    # current count.
3245    push @values_indices, "#define $index_name  "
3246                         . scalar @values_tables . "\n";
3247    $joined_values{$joined} = $index_name;
3248    push @values_tables, $table_name;
3249
3250    # Create the table for this set of values.
3251    output_table_header($out_fh, "char *", $table_name);
3252    print $out_fh $joined;
3253    output_table_trailer();
3254} # End of loop through the properties, and their values
3255
3256# We have completely determined the table of the unique property values
3257output_table_header($out_fh, "char * const *",
3258                             "${table_name_prefix}prop_value_ptrs");
3259print $out_fh join ",\n", @values_tables;
3260print $out_fh "\n";
3261output_table_trailer();
3262
3263# And the #defines for the indices in it
3264print $out_fh "\n\n", join "", @values_indices;
3265
3266switch_pound_if('Boundary_pair_tables', 'PERL_IN_REGEXEC_C');
3267
3268output_GCB_table();
3269output_LB_table();
3270output_WB_table();
3271
3272end_file_pound_if;
3273
3274print $out_fh <<"EOF";
3275
3276/* More than one code point may have the same code point as their fold.  This
3277 * gives the maximum number in the current Unicode release.  (The folded-to
3278 * code point is not included in this count.)  For example, both 'S' and
3279 * \\x{17F} fold to 's', so the number for that fold is 2.  Another way to
3280 * look at it is the maximum length of all the IVCF_AUX_TABLE's */
3281#define MAX_FOLD_FROMS $max_fold_froms
3282EOF
3283
3284my $sources_list = "lib/unicore/mktables.lst";
3285my @sources = qw(regen/mk_invlists.pl
3286                 lib/unicore/mktables
3287                 lib/Unicode/UCD.pm
3288                 regen/charset_translations.pl
3289                 regen/mk_PL_charclass.pl
3290               );
3291{
3292    # Depend on mktables’ own sources.  It’s a shorter list of files than
3293    # those that Unicode::UCD uses.
3294    if (! open my $mktables_list, '<', $sources_list) {
3295
3296          # This should force a rebuild once $sources_list exists
3297          push @sources, $sources_list;
3298    }
3299    else {
3300        while(<$mktables_list>) {
3301            last if /===/;
3302            chomp;
3303            push @sources, "lib/unicore/$_" if /^[^#]/;
3304        }
3305    }
3306}
3307
3308read_only_bottom_close_and_rename($out_fh, \@sources);
3309
3310my %name_to_index;
3311for my $i (0 .. @enums - 1) {
3312    my $loose_name = $enums[$i] =~ s/^$table_name_prefix//r;
3313    $loose_name = lc $loose_name;
3314    $loose_name =~ s/__/=/;
3315    $loose_name =~ s/_dot_/./;
3316    $loose_name =~ s/_slash_/\//g;
3317    $name_to_index{$loose_name} = $i + 1;
3318}
3319# unsanitize, exclude &, maybe add these before sanitize
3320for my $i (0 .. @perl_prop_synonyms - 1) {
3321    my $loose_name_pair = $perl_prop_synonyms[$i] =~ s/#\s*define\s*//r;
3322    $loose_name_pair =~ s/\b$table_name_prefix//g;
3323    $loose_name_pair = lc $loose_name_pair;
3324    $loose_name_pair =~ s/__/=/g;
3325    $loose_name_pair =~ s/_dot_/./g;
3326    $loose_name_pair =~ s/_slash_/\//g;
3327    my ($synonym, $primary) = split / +/, $loose_name_pair;
3328    $name_to_index{$synonym} = $name_to_index{$primary};
3329}
3330
3331my $uni_pl = open_new('lib/unicore/uni_keywords.pl', '>',
3332                      {style => '*', by => 'regen/mk_invlists.pl',
3333                      from => "Unicode::UCD"});
3334{
3335    print $uni_pl "\%Unicode::UCD::uni_prop_ptrs_indices = (\n";
3336    for my $name (sort keys %name_to_index) {
3337        print $uni_pl "    '$name' => $name_to_index{$name},\n";
3338    }
3339    print $uni_pl ");\n\n1;\n";
3340}
3341
3342read_only_bottom_close_and_rename($uni_pl, \@sources);
3343
3344require './regen/mph.pl';
3345
3346sub token_name
3347{
3348    my $name = sanitize_name(shift);
3349    warn "$name contains non-word" if $name =~ /\W/;
3350
3351    return "$table_name_prefix\U$name"
3352}
3353
3354my $keywords_fh = open_new('uni_keywords.h', '>',
3355                  {style => '*', by => 'regen/mk_invlists.pl',
3356                  from => "mph.pl"});
3357
3358print $keywords_fh "\n#if defined(PERL_CORE) || defined(PERL_EXT_RE_BUILD)\n\n";
3359
3360my ($second_level, $seed1, $length_all_keys, $smart_blob, $rows)
3361                        = MinimalPerfectHash::make_mph_from_hash(\%keywords);
3362print $keywords_fh MinimalPerfectHash::make_algo($second_level, $seed1,
3363                                                 $length_all_keys, $smart_blob,
3364                                                 $rows, undef, undef, undef,
3365                                                 'match_uniprop' );
3366print $keywords_fh "\n#endif /* #if defined(PERL_CORE) || defined(PERL_EXT_RE_BUILD) */\n";
3367
3368push @sources, 'regen/mph.pl';
3369read_only_bottom_close_and_rename($keywords_fh, \@sources);
3370