1 //===- SyntheticSections.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "SyntheticSections.h"
10 #include "ConcatOutputSection.h"
11 #include "Config.h"
12 #include "ExportTrie.h"
13 #include "InputFiles.h"
14 #include "MachOStructs.h"
15 #include "OutputSegment.h"
16 #include "SymbolTable.h"
17 #include "Symbols.h"
18 
19 #include "lld/Common/ErrorHandler.h"
20 #include "lld/Common/Memory.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/Support/EndianStream.h"
24 #include "llvm/Support/FileSystem.h"
25 #include "llvm/Support/LEB128.h"
26 #include "llvm/Support/Path.h"
27 #include "llvm/Support/SHA256.h"
28 
29 #if defined(__APPLE__)
30 #include <sys/mman.h>
31 #endif
32 
33 #ifdef LLVM_HAVE_LIBXAR
34 #include <fcntl.h>
35 #include <xar/xar.h>
36 #endif
37 
38 using namespace llvm;
39 using namespace llvm::MachO;
40 using namespace llvm::support;
41 using namespace llvm::support::endian;
42 using namespace lld;
43 using namespace lld::macho;
44 
45 InStruct macho::in;
46 std::vector<SyntheticSection *> macho::syntheticSections;
47 
SyntheticSection(const char * segname,const char * name)48 SyntheticSection::SyntheticSection(const char *segname, const char *name)
49     : OutputSection(SyntheticKind, name) {
50   std::tie(this->segname, this->name) = maybeRenameSection({segname, name});
51   isec = make<ConcatInputSection>(segname, name);
52   isec->parent = this;
53   syntheticSections.push_back(this);
54 }
55 
56 // dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts
57 // from the beginning of the file (i.e. the header).
MachHeaderSection()58 MachHeaderSection::MachHeaderSection()
59     : SyntheticSection(segment_names::text, section_names::header) {
60   // XXX: This is a hack. (See D97007)
61   // Setting the index to 1 to pretend that this section is the text
62   // section.
63   index = 1;
64   isec->isFinal = true;
65 }
66 
addLoadCommand(LoadCommand * lc)67 void MachHeaderSection::addLoadCommand(LoadCommand *lc) {
68   loadCommands.push_back(lc);
69   sizeOfCmds += lc->getSize();
70 }
71 
getSize() const72 uint64_t MachHeaderSection::getSize() const {
73   uint64_t size = target->headerSize + sizeOfCmds + config->headerPad;
74   // If we are emitting an encryptable binary, our load commands must have a
75   // separate (non-encrypted) page to themselves.
76   if (config->emitEncryptionInfo)
77     size = alignTo(size, target->getPageSize());
78   return size;
79 }
80 
cpuSubtype()81 static uint32_t cpuSubtype() {
82   uint32_t subtype = target->cpuSubtype;
83 
84   if (config->outputType == MH_EXECUTE && !config->staticLink &&
85       target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL &&
86       config->platform() == PlatformKind::macOS &&
87       config->platformInfo.minimum >= VersionTuple(10, 5))
88     subtype |= CPU_SUBTYPE_LIB64;
89 
90   return subtype;
91 }
92 
writeTo(uint8_t * buf) const93 void MachHeaderSection::writeTo(uint8_t *buf) const {
94   auto *hdr = reinterpret_cast<mach_header *>(buf);
95   hdr->magic = target->magic;
96   hdr->cputype = target->cpuType;
97   hdr->cpusubtype = cpuSubtype();
98   hdr->filetype = config->outputType;
99   hdr->ncmds = loadCommands.size();
100   hdr->sizeofcmds = sizeOfCmds;
101   hdr->flags = MH_DYLDLINK;
102 
103   if (config->namespaceKind == NamespaceKind::twolevel)
104     hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL;
105 
106   if (config->outputType == MH_DYLIB && !config->hasReexports)
107     hdr->flags |= MH_NO_REEXPORTED_DYLIBS;
108 
109   if (config->markDeadStrippableDylib)
110     hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB;
111 
112   if (config->outputType == MH_EXECUTE && config->isPic)
113     hdr->flags |= MH_PIE;
114 
115   if (config->outputType == MH_DYLIB && config->applicationExtension)
116     hdr->flags |= MH_APP_EXTENSION_SAFE;
117 
118   if (in.exports->hasWeakSymbol || in.weakBinding->hasNonWeakDefinition())
119     hdr->flags |= MH_WEAK_DEFINES;
120 
121   if (in.exports->hasWeakSymbol || in.weakBinding->hasEntry())
122     hdr->flags |= MH_BINDS_TO_WEAK;
123 
124   for (const OutputSegment *seg : outputSegments) {
125     for (const OutputSection *osec : seg->getSections()) {
126       if (isThreadLocalVariables(osec->flags)) {
127         hdr->flags |= MH_HAS_TLV_DESCRIPTORS;
128         break;
129       }
130     }
131   }
132 
133   uint8_t *p = reinterpret_cast<uint8_t *>(hdr) + target->headerSize;
134   for (const LoadCommand *lc : loadCommands) {
135     lc->writeTo(p);
136     p += lc->getSize();
137   }
138 }
139 
PageZeroSection()140 PageZeroSection::PageZeroSection()
141     : SyntheticSection(segment_names::pageZero, section_names::pageZero) {}
142 
RebaseSection()143 RebaseSection::RebaseSection()
144     : LinkEditSection(segment_names::linkEdit, section_names::rebase) {}
145 
146 namespace {
147 struct Rebase {
148   OutputSegment *segment = nullptr;
149   uint64_t offset = 0;
150   uint64_t consecutiveCount = 0;
151 };
152 } // namespace
153 
154 // Rebase opcodes allow us to describe a contiguous sequence of rebase location
155 // using a single DO_REBASE opcode. To take advantage of it, we delay emitting
156 // `DO_REBASE` until we have reached the end of a contiguous sequence.
encodeDoRebase(Rebase & rebase,raw_svector_ostream & os)157 static void encodeDoRebase(Rebase &rebase, raw_svector_ostream &os) {
158   assert(rebase.consecutiveCount != 0);
159   if (rebase.consecutiveCount <= REBASE_IMMEDIATE_MASK) {
160     os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES |
161                                rebase.consecutiveCount);
162   } else {
163     os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES);
164     encodeULEB128(rebase.consecutiveCount, os);
165   }
166   rebase.consecutiveCount = 0;
167 }
168 
encodeRebase(const OutputSection * osec,uint64_t outSecOff,Rebase & lastRebase,raw_svector_ostream & os)169 static void encodeRebase(const OutputSection *osec, uint64_t outSecOff,
170                          Rebase &lastRebase, raw_svector_ostream &os) {
171   OutputSegment *seg = osec->parent;
172   uint64_t offset = osec->getSegmentOffset() + outSecOff;
173   if (lastRebase.segment != seg || lastRebase.offset != offset) {
174     if (lastRebase.consecutiveCount != 0)
175       encodeDoRebase(lastRebase, os);
176 
177     if (lastRebase.segment != seg) {
178       os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
179                                  seg->index);
180       encodeULEB128(offset, os);
181       lastRebase.segment = seg;
182       lastRebase.offset = offset;
183     } else {
184       assert(lastRebase.offset != offset);
185       os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB);
186       encodeULEB128(offset - lastRebase.offset, os);
187       lastRebase.offset = offset;
188     }
189   }
190   ++lastRebase.consecutiveCount;
191   // DO_REBASE causes dyld to both perform the binding and increment the offset
192   lastRebase.offset += target->wordSize;
193 }
194 
finalizeContents()195 void RebaseSection::finalizeContents() {
196   if (locations.empty())
197     return;
198 
199   raw_svector_ostream os{contents};
200   Rebase lastRebase;
201 
202   os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER);
203 
204   llvm::sort(locations, [](const Location &a, const Location &b) {
205     return a.isec->getVA(a.offset) < b.isec->getVA(b.offset);
206   });
207   for (const Location &loc : locations)
208     encodeRebase(loc.isec->parent, loc.isec->getOffset(loc.offset), lastRebase,
209                  os);
210   if (lastRebase.consecutiveCount != 0)
211     encodeDoRebase(lastRebase, os);
212 
213   os << static_cast<uint8_t>(REBASE_OPCODE_DONE);
214 }
215 
writeTo(uint8_t * buf) const216 void RebaseSection::writeTo(uint8_t *buf) const {
217   memcpy(buf, contents.data(), contents.size());
218 }
219 
NonLazyPointerSectionBase(const char * segname,const char * name)220 NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname,
221                                                      const char *name)
222     : SyntheticSection(segname, name) {
223   align = target->wordSize;
224 }
225 
addNonLazyBindingEntries(const Symbol * sym,const InputSection * isec,uint64_t offset,int64_t addend)226 void macho::addNonLazyBindingEntries(const Symbol *sym,
227                                      const InputSection *isec, uint64_t offset,
228                                      int64_t addend) {
229   if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
230     in.binding->addEntry(dysym, isec, offset, addend);
231     if (dysym->isWeakDef())
232       in.weakBinding->addEntry(sym, isec, offset, addend);
233   } else if (const auto *defined = dyn_cast<Defined>(sym)) {
234     in.rebase->addEntry(isec, offset);
235     if (defined->isExternalWeakDef())
236       in.weakBinding->addEntry(sym, isec, offset, addend);
237   } else {
238     // Undefined symbols are filtered out in scanRelocations(); we should never
239     // get here
240     llvm_unreachable("cannot bind to an undefined symbol");
241   }
242 }
243 
addEntry(Symbol * sym)244 void NonLazyPointerSectionBase::addEntry(Symbol *sym) {
245   if (entries.insert(sym)) {
246     assert(!sym->isInGot());
247     sym->gotIndex = entries.size() - 1;
248 
249     addNonLazyBindingEntries(sym, isec, sym->gotIndex * target->wordSize);
250   }
251 }
252 
writeTo(uint8_t * buf) const253 void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const {
254   for (size_t i = 0, n = entries.size(); i < n; ++i)
255     if (auto *defined = dyn_cast<Defined>(entries[i]))
256       write64le(&buf[i * target->wordSize], defined->getVA());
257 }
258 
GotSection()259 GotSection::GotSection()
260     : NonLazyPointerSectionBase(segment_names::dataConst, section_names::got) {
261   flags = S_NON_LAZY_SYMBOL_POINTERS;
262 }
263 
TlvPointerSection()264 TlvPointerSection::TlvPointerSection()
265     : NonLazyPointerSectionBase(segment_names::data,
266                                 section_names::threadPtrs) {
267   flags = S_THREAD_LOCAL_VARIABLE_POINTERS;
268 }
269 
BindingSection()270 BindingSection::BindingSection()
271     : LinkEditSection(segment_names::linkEdit, section_names::binding) {}
272 
273 namespace {
274 struct Binding {
275   OutputSegment *segment = nullptr;
276   uint64_t offset = 0;
277   int64_t addend = 0;
278 };
279 struct BindIR {
280   // Default value of 0xF0 is not valid opcode and should make the program
281   // scream instead of accidentally writing "valid" values.
282   uint8_t opcode = 0xF0;
283   uint64_t data = 0;
284   uint64_t consecutiveCount = 0;
285 };
286 } // namespace
287 
288 // Encode a sequence of opcodes that tell dyld to write the address of symbol +
289 // addend at osec->addr + outSecOff.
290 //
291 // The bind opcode "interpreter" remembers the values of each binding field, so
292 // we only need to encode the differences between bindings. Hence the use of
293 // lastBinding.
encodeBinding(const OutputSection * osec,uint64_t outSecOff,int64_t addend,Binding & lastBinding,std::vector<BindIR> & opcodes)294 static void encodeBinding(const OutputSection *osec, uint64_t outSecOff,
295                           int64_t addend, Binding &lastBinding,
296                           std::vector<BindIR> &opcodes) {
297   OutputSegment *seg = osec->parent;
298   uint64_t offset = osec->getSegmentOffset() + outSecOff;
299   if (lastBinding.segment != seg) {
300     opcodes.push_back(
301         {static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
302                               seg->index),
303          offset});
304     lastBinding.segment = seg;
305     lastBinding.offset = offset;
306   } else if (lastBinding.offset != offset) {
307     opcodes.push_back({BIND_OPCODE_ADD_ADDR_ULEB, offset - lastBinding.offset});
308     lastBinding.offset = offset;
309   }
310 
311   if (lastBinding.addend != addend) {
312     opcodes.push_back(
313         {BIND_OPCODE_SET_ADDEND_SLEB, static_cast<uint64_t>(addend)});
314     lastBinding.addend = addend;
315   }
316 
317   opcodes.push_back({BIND_OPCODE_DO_BIND, 0});
318   // DO_BIND causes dyld to both perform the binding and increment the offset
319   lastBinding.offset += target->wordSize;
320 }
321 
optimizeOpcodes(std::vector<BindIR> & opcodes)322 static void optimizeOpcodes(std::vector<BindIR> &opcodes) {
323   // Pass 1: Combine bind/add pairs
324   size_t i;
325   int pWrite = 0;
326   for (i = 1; i < opcodes.size(); ++i, ++pWrite) {
327     if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) &&
328         (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) {
329       opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB;
330       opcodes[pWrite].data = opcodes[i].data;
331       ++i;
332     } else {
333       opcodes[pWrite] = opcodes[i - 1];
334     }
335   }
336   if (i == opcodes.size())
337     opcodes[pWrite] = opcodes[i - 1];
338   opcodes.resize(pWrite + 1);
339 
340   // Pass 2: Compress two or more bind_add opcodes
341   pWrite = 0;
342   for (i = 1; i < opcodes.size(); ++i, ++pWrite) {
343     if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
344         (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
345         (opcodes[i].data == opcodes[i - 1].data)) {
346       opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB;
347       opcodes[pWrite].consecutiveCount = 2;
348       opcodes[pWrite].data = opcodes[i].data;
349       ++i;
350       while (i < opcodes.size() &&
351              (opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
352              (opcodes[i].data == opcodes[i - 1].data)) {
353         opcodes[pWrite].consecutiveCount++;
354         ++i;
355       }
356     } else {
357       opcodes[pWrite] = opcodes[i - 1];
358     }
359   }
360   if (i == opcodes.size())
361     opcodes[pWrite] = opcodes[i - 1];
362   opcodes.resize(pWrite + 1);
363 
364   // Pass 3: Use immediate encodings
365   // Every binding is the size of one pointer. If the next binding is a
366   // multiple of wordSize away that is within BIND_IMMEDIATE_MASK, the
367   // opcode can be scaled by wordSize into a single byte and dyld will
368   // expand it to the correct address.
369   for (auto &p : opcodes) {
370     // It's unclear why the check needs to be less than BIND_IMMEDIATE_MASK,
371     // but ld64 currently does this. This could be a potential bug, but
372     // for now, perform the same behavior to prevent mysterious bugs.
373     if ((p.opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
374         ((p.data / target->wordSize) < BIND_IMMEDIATE_MASK) &&
375         ((p.data % target->wordSize) == 0)) {
376       p.opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED;
377       p.data /= target->wordSize;
378     }
379   }
380 }
381 
flushOpcodes(const BindIR & op,raw_svector_ostream & os)382 static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) {
383   uint8_t opcode = op.opcode & BIND_OPCODE_MASK;
384   switch (opcode) {
385   case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB:
386   case BIND_OPCODE_ADD_ADDR_ULEB:
387   case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB:
388     os << op.opcode;
389     encodeULEB128(op.data, os);
390     break;
391   case BIND_OPCODE_SET_ADDEND_SLEB:
392     os << op.opcode;
393     encodeSLEB128(static_cast<int64_t>(op.data), os);
394     break;
395   case BIND_OPCODE_DO_BIND:
396     os << op.opcode;
397     break;
398   case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB:
399     os << op.opcode;
400     encodeULEB128(op.consecutiveCount, os);
401     encodeULEB128(op.data, os);
402     break;
403   case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED:
404     os << static_cast<uint8_t>(op.opcode | op.data);
405     break;
406   default:
407     llvm_unreachable("cannot bind to an unrecognized symbol");
408   }
409 }
410 
411 // Non-weak bindings need to have their dylib ordinal encoded as well.
ordinalForDylibSymbol(const DylibSymbol & dysym)412 static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) {
413   if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup())
414     return static_cast<int16_t>(BIND_SPECIAL_DYLIB_FLAT_LOOKUP);
415   assert(dysym.getFile()->isReferenced());
416   return dysym.getFile()->ordinal;
417 }
418 
encodeDylibOrdinal(int16_t ordinal,raw_svector_ostream & os)419 static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) {
420   if (ordinal <= 0) {
421     os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM |
422                                (ordinal & BIND_IMMEDIATE_MASK));
423   } else if (ordinal <= BIND_IMMEDIATE_MASK) {
424     os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal);
425   } else {
426     os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB);
427     encodeULEB128(ordinal, os);
428   }
429 }
430 
encodeWeakOverride(const Defined * defined,raw_svector_ostream & os)431 static void encodeWeakOverride(const Defined *defined,
432                                raw_svector_ostream &os) {
433   os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM |
434                              BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION)
435      << defined->getName() << '\0';
436 }
437 
438 // Organize the bindings so we can encoded them with fewer opcodes.
439 //
440 // First, all bindings for a given symbol should be grouped together.
441 // BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it
442 // has an associated symbol string), so we only want to emit it once per symbol.
443 //
444 // Within each group, we sort the bindings by address. Since bindings are
445 // delta-encoded, sorting them allows for a more compact result. Note that
446 // sorting by address alone ensures that bindings for the same segment / section
447 // are located together, minimizing the number of times we have to emit
448 // BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB.
449 //
450 // Finally, we sort the symbols by the address of their first binding, again
451 // to facilitate the delta-encoding process.
452 template <class Sym>
453 std::vector<std::pair<const Sym *, std::vector<BindingEntry>>>
sortBindings(const BindingsMap<const Sym * > & bindingsMap)454 sortBindings(const BindingsMap<const Sym *> &bindingsMap) {
455   std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> bindingsVec(
456       bindingsMap.begin(), bindingsMap.end());
457   for (auto &p : bindingsVec) {
458     std::vector<BindingEntry> &bindings = p.second;
459     llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) {
460       return a.target.getVA() < b.target.getVA();
461     });
462   }
463   llvm::sort(bindingsVec, [](const auto &a, const auto &b) {
464     return a.second[0].target.getVA() < b.second[0].target.getVA();
465   });
466   return bindingsVec;
467 }
468 
469 // Emit bind opcodes, which are a stream of byte-sized opcodes that dyld
470 // interprets to update a record with the following fields:
471 //  * segment index (of the segment to write the symbol addresses to, typically
472 //    the __DATA_CONST segment which contains the GOT)
473 //  * offset within the segment, indicating the next location to write a binding
474 //  * symbol type
475 //  * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command)
476 //  * symbol name
477 //  * addend
478 // When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind
479 // a symbol in the GOT, and increments the segment offset to point to the next
480 // entry. It does *not* clear the record state after doing the bind, so
481 // subsequent opcodes only need to encode the differences between bindings.
finalizeContents()482 void BindingSection::finalizeContents() {
483   raw_svector_ostream os{contents};
484   Binding lastBinding;
485   int16_t lastOrdinal = 0;
486 
487   for (auto &p : sortBindings(bindingsMap)) {
488     const DylibSymbol *sym = p.first;
489     std::vector<BindingEntry> &bindings = p.second;
490     uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
491     if (sym->isWeakRef())
492       flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;
493     os << flags << sym->getName() << '\0'
494        << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER);
495     int16_t ordinal = ordinalForDylibSymbol(*sym);
496     if (ordinal != lastOrdinal) {
497       encodeDylibOrdinal(ordinal, os);
498       lastOrdinal = ordinal;
499     }
500     std::vector<BindIR> opcodes;
501     for (const BindingEntry &b : bindings)
502       encodeBinding(b.target.isec->parent,
503                     b.target.isec->getOffset(b.target.offset), b.addend,
504                     lastBinding, opcodes);
505     if (config->optimize > 1)
506       optimizeOpcodes(opcodes);
507     for (const auto &op : opcodes)
508       flushOpcodes(op, os);
509   }
510   if (!bindingsMap.empty())
511     os << static_cast<uint8_t>(BIND_OPCODE_DONE);
512 }
513 
writeTo(uint8_t * buf) const514 void BindingSection::writeTo(uint8_t *buf) const {
515   memcpy(buf, contents.data(), contents.size());
516 }
517 
WeakBindingSection()518 WeakBindingSection::WeakBindingSection()
519     : LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {}
520 
finalizeContents()521 void WeakBindingSection::finalizeContents() {
522   raw_svector_ostream os{contents};
523   Binding lastBinding;
524 
525   for (const Defined *defined : definitions)
526     encodeWeakOverride(defined, os);
527 
528   for (auto &p : sortBindings(bindingsMap)) {
529     const Symbol *sym = p.first;
530     std::vector<BindingEntry> &bindings = p.second;
531     os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM)
532        << sym->getName() << '\0'
533        << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER);
534     std::vector<BindIR> opcodes;
535     for (const BindingEntry &b : bindings)
536       encodeBinding(b.target.isec->parent,
537                     b.target.isec->getOffset(b.target.offset), b.addend,
538                     lastBinding, opcodes);
539     if (config->optimize > 1)
540       optimizeOpcodes(opcodes);
541     for (const auto &op : opcodes)
542       flushOpcodes(op, os);
543   }
544   if (!bindingsMap.empty() || !definitions.empty())
545     os << static_cast<uint8_t>(BIND_OPCODE_DONE);
546 }
547 
writeTo(uint8_t * buf) const548 void WeakBindingSection::writeTo(uint8_t *buf) const {
549   memcpy(buf, contents.data(), contents.size());
550 }
551 
StubsSection()552 StubsSection::StubsSection()
553     : SyntheticSection(segment_names::text, section_names::stubs) {
554   flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
555   // The stubs section comprises machine instructions, which are aligned to
556   // 4 bytes on the archs we care about.
557   align = 4;
558   reserved2 = target->stubSize;
559 }
560 
getSize() const561 uint64_t StubsSection::getSize() const {
562   return entries.size() * target->stubSize;
563 }
564 
writeTo(uint8_t * buf) const565 void StubsSection::writeTo(uint8_t *buf) const {
566   size_t off = 0;
567   for (const Symbol *sym : entries) {
568     target->writeStub(buf + off, *sym);
569     off += target->stubSize;
570   }
571 }
572 
finalize()573 void StubsSection::finalize() { isFinal = true; }
574 
addEntry(Symbol * sym)575 bool StubsSection::addEntry(Symbol *sym) {
576   bool inserted = entries.insert(sym);
577   if (inserted)
578     sym->stubsIndex = entries.size() - 1;
579   return inserted;
580 }
581 
StubHelperSection()582 StubHelperSection::StubHelperSection()
583     : SyntheticSection(segment_names::text, section_names::stubHelper) {
584   flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
585   align = 4; // This section comprises machine instructions
586 }
587 
getSize() const588 uint64_t StubHelperSection::getSize() const {
589   return target->stubHelperHeaderSize +
590          in.lazyBinding->getEntries().size() * target->stubHelperEntrySize;
591 }
592 
isNeeded() const593 bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); }
594 
writeTo(uint8_t * buf) const595 void StubHelperSection::writeTo(uint8_t *buf) const {
596   target->writeStubHelperHeader(buf);
597   size_t off = target->stubHelperHeaderSize;
598   for (const DylibSymbol *sym : in.lazyBinding->getEntries()) {
599     target->writeStubHelperEntry(buf + off, *sym, addr + off);
600     off += target->stubHelperEntrySize;
601   }
602 }
603 
setup()604 void StubHelperSection::setup() {
605   Symbol *binder = symtab->addUndefined("dyld_stub_binder", /*file=*/nullptr,
606                                         /*isWeakRef=*/false);
607   if (auto *undefined = dyn_cast<Undefined>(binder))
608     treatUndefinedSymbol(*undefined,
609                          "lazy binding (normally in libSystem.dylib)");
610 
611   // treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check.
612   stubBinder = dyn_cast_or_null<DylibSymbol>(binder);
613   if (stubBinder == nullptr)
614     return;
615 
616   in.got->addEntry(stubBinder);
617 
618   in.imageLoaderCache->parent =
619       ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache);
620   inputSections.push_back(in.imageLoaderCache);
621   // Since this isn't in the symbol table or in any input file, the noDeadStrip
622   // argument doesn't matter. It's kept alive by ImageLoaderCacheSection()
623   // setting `live` to true on the backing InputSection.
624   dyldPrivate =
625       make<Defined>("__dyld_private", nullptr, in.imageLoaderCache, 0, 0,
626                     /*isWeakDef=*/false,
627                     /*isExternal=*/false, /*isPrivateExtern=*/false,
628                     /*isThumb=*/false, /*isReferencedDynamically=*/false,
629                     /*noDeadStrip=*/false);
630 }
631 
LazyPointerSection()632 LazyPointerSection::LazyPointerSection()
633     : SyntheticSection(segment_names::data, section_names::lazySymbolPtr) {
634   align = target->wordSize;
635   flags = S_LAZY_SYMBOL_POINTERS;
636 }
637 
getSize() const638 uint64_t LazyPointerSection::getSize() const {
639   return in.stubs->getEntries().size() * target->wordSize;
640 }
641 
isNeeded() const642 bool LazyPointerSection::isNeeded() const {
643   return !in.stubs->getEntries().empty();
644 }
645 
writeTo(uint8_t * buf) const646 void LazyPointerSection::writeTo(uint8_t *buf) const {
647   size_t off = 0;
648   for (const Symbol *sym : in.stubs->getEntries()) {
649     if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
650       if (dysym->hasStubsHelper()) {
651         uint64_t stubHelperOffset =
652             target->stubHelperHeaderSize +
653             dysym->stubsHelperIndex * target->stubHelperEntrySize;
654         write64le(buf + off, in.stubHelper->addr + stubHelperOffset);
655       }
656     } else {
657       write64le(buf + off, sym->getVA());
658     }
659     off += target->wordSize;
660   }
661 }
662 
LazyBindingSection()663 LazyBindingSection::LazyBindingSection()
664     : LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {}
665 
finalizeContents()666 void LazyBindingSection::finalizeContents() {
667   // TODO: Just precompute output size here instead of writing to a temporary
668   // buffer
669   for (DylibSymbol *sym : entries)
670     sym->lazyBindOffset = encode(*sym);
671 }
672 
writeTo(uint8_t * buf) const673 void LazyBindingSection::writeTo(uint8_t *buf) const {
674   memcpy(buf, contents.data(), contents.size());
675 }
676 
addEntry(DylibSymbol * dysym)677 void LazyBindingSection::addEntry(DylibSymbol *dysym) {
678   if (entries.insert(dysym)) {
679     dysym->stubsHelperIndex = entries.size() - 1;
680     in.rebase->addEntry(in.lazyPointers->isec,
681                         dysym->stubsIndex * target->wordSize);
682   }
683 }
684 
685 // Unlike the non-lazy binding section, the bind opcodes in this section aren't
686 // interpreted all at once. Rather, dyld will start interpreting opcodes at a
687 // given offset, typically only binding a single symbol before it finds a
688 // BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case,
689 // we cannot encode just the differences between symbols; we have to emit the
690 // complete bind information for each symbol.
encode(const DylibSymbol & sym)691 uint32_t LazyBindingSection::encode(const DylibSymbol &sym) {
692   uint32_t opstreamOffset = contents.size();
693   OutputSegment *dataSeg = in.lazyPointers->parent;
694   os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
695                              dataSeg->index);
696   uint64_t offset = in.lazyPointers->addr - dataSeg->addr +
697                     sym.stubsIndex * target->wordSize;
698   encodeULEB128(offset, os);
699   encodeDylibOrdinal(ordinalForDylibSymbol(sym), os);
700 
701   uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
702   if (sym.isWeakRef())
703     flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;
704 
705   os << flags << sym.getName() << '\0'
706      << static_cast<uint8_t>(BIND_OPCODE_DO_BIND)
707      << static_cast<uint8_t>(BIND_OPCODE_DONE);
708   return opstreamOffset;
709 }
710 
ExportSection()711 ExportSection::ExportSection()
712     : LinkEditSection(segment_names::linkEdit, section_names::export_) {}
713 
finalizeContents()714 void ExportSection::finalizeContents() {
715   trieBuilder.setImageBase(in.header->addr);
716   for (const Symbol *sym : symtab->getSymbols()) {
717     if (const auto *defined = dyn_cast<Defined>(sym)) {
718       if (defined->privateExtern || !defined->isLive())
719         continue;
720       trieBuilder.addSymbol(*defined);
721       hasWeakSymbol = hasWeakSymbol || sym->isWeakDef();
722     }
723   }
724   size = trieBuilder.build();
725 }
726 
writeTo(uint8_t * buf) const727 void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); }
728 
DataInCodeSection()729 DataInCodeSection::DataInCodeSection()
730     : LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {}
731 
732 template <class LP>
collectDataInCodeEntries()733 static std::vector<MachO::data_in_code_entry> collectDataInCodeEntries() {
734   using SegmentCommand = typename LP::segment_command;
735   using Section = typename LP::section;
736 
737   std::vector<MachO::data_in_code_entry> dataInCodeEntries;
738   for (const InputFile *inputFile : inputFiles) {
739     if (!isa<ObjFile>(inputFile))
740       continue;
741     const ObjFile *objFile = cast<ObjFile>(inputFile);
742     const auto *c = reinterpret_cast<const SegmentCommand *>(
743         findCommand(objFile->mb.getBufferStart(), LP::segmentLCType));
744     if (!c)
745       continue;
746     ArrayRef<Section> sections{reinterpret_cast<const Section *>(c + 1),
747                                c->nsects};
748 
749     ArrayRef<MachO::data_in_code_entry> entries = objFile->dataInCodeEntries;
750     if (entries.empty())
751       continue;
752     // For each code subsection find 'data in code' entries residing in it.
753     // Compute the new offset values as
754     // <offset within subsection> + <subsection address> - <__TEXT address>.
755     for (size_t i = 0, n = sections.size(); i < n; ++i) {
756       const SubsectionMap &subsecMap = objFile->subsections[i];
757       for (const SubsectionEntry &subsecEntry : subsecMap) {
758         const InputSection *isec = subsecEntry.isec;
759         if (!isCodeSection(isec))
760           continue;
761         if (cast<ConcatInputSection>(isec)->shouldOmitFromOutput())
762           continue;
763         const uint64_t beginAddr = sections[i].addr + subsecEntry.offset;
764         auto it = llvm::lower_bound(
765             entries, beginAddr,
766             [](const MachO::data_in_code_entry &entry, uint64_t addr) {
767               return entry.offset < addr;
768             });
769         const uint64_t endAddr = beginAddr + isec->getFileSize();
770         for (const auto end = entries.end();
771              it != end && it->offset + it->length <= endAddr; ++it)
772           dataInCodeEntries.push_back(
773               {static_cast<uint32_t>(isec->getVA(it->offset - beginAddr) -
774                                      in.header->addr),
775                it->length, it->kind});
776       }
777     }
778   }
779   return dataInCodeEntries;
780 }
781 
finalizeContents()782 void DataInCodeSection::finalizeContents() {
783   entries = target->wordSize == 8 ? collectDataInCodeEntries<LP64>()
784                                   : collectDataInCodeEntries<ILP32>();
785 }
786 
writeTo(uint8_t * buf) const787 void DataInCodeSection::writeTo(uint8_t *buf) const {
788   if (!entries.empty())
789     memcpy(buf, entries.data(), getRawSize());
790 }
791 
FunctionStartsSection()792 FunctionStartsSection::FunctionStartsSection()
793     : LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {}
794 
finalizeContents()795 void FunctionStartsSection::finalizeContents() {
796   raw_svector_ostream os{contents};
797   std::vector<uint64_t> addrs;
798   for (const Symbol *sym : symtab->getSymbols()) {
799     if (const auto *defined = dyn_cast<Defined>(sym)) {
800       if (!defined->isec || !isCodeSection(defined->isec) || !defined->isLive())
801         continue;
802       if (const auto *concatIsec = dyn_cast<ConcatInputSection>(defined->isec))
803         if (concatIsec->shouldOmitFromOutput())
804           continue;
805       // TODO: Add support for thumbs, in that case
806       // the lowest bit of nextAddr needs to be set to 1.
807       addrs.push_back(defined->getVA());
808     }
809   }
810   llvm::sort(addrs);
811   uint64_t addr = in.header->addr;
812   for (uint64_t nextAddr : addrs) {
813     uint64_t delta = nextAddr - addr;
814     if (delta == 0)
815       continue;
816     encodeULEB128(delta, os);
817     addr = nextAddr;
818   }
819   os << '\0';
820 }
821 
writeTo(uint8_t * buf) const822 void FunctionStartsSection::writeTo(uint8_t *buf) const {
823   memcpy(buf, contents.data(), contents.size());
824 }
825 
SymtabSection(StringTableSection & stringTableSection)826 SymtabSection::SymtabSection(StringTableSection &stringTableSection)
827     : LinkEditSection(segment_names::linkEdit, section_names::symbolTable),
828       stringTableSection(stringTableSection) {}
829 
emitBeginSourceStab(DWARFUnit * compileUnit)830 void SymtabSection::emitBeginSourceStab(DWARFUnit *compileUnit) {
831   StabsEntry stab(N_SO);
832   SmallString<261> dir(compileUnit->getCompilationDir());
833   StringRef sep = sys::path::get_separator();
834   // We don't use `path::append` here because we want an empty `dir` to result
835   // in an absolute path. `append` would give us a relative path for that case.
836   if (!dir.endswith(sep))
837     dir += sep;
838   stab.strx = stringTableSection.addString(
839       saver.save(dir + compileUnit->getUnitDIE().getShortName()));
840   stabs.emplace_back(std::move(stab));
841 }
842 
emitEndSourceStab()843 void SymtabSection::emitEndSourceStab() {
844   StabsEntry stab(N_SO);
845   stab.sect = 1;
846   stabs.emplace_back(std::move(stab));
847 }
848 
emitObjectFileStab(ObjFile * file)849 void SymtabSection::emitObjectFileStab(ObjFile *file) {
850   StabsEntry stab(N_OSO);
851   stab.sect = target->cpuSubtype;
852   SmallString<261> path(!file->archiveName.empty() ? file->archiveName
853                                                    : file->getName());
854   std::error_code ec = sys::fs::make_absolute(path);
855   if (ec)
856     fatal("failed to get absolute path for " + path);
857 
858   if (!file->archiveName.empty())
859     path.append({"(", file->getName(), ")"});
860 
861   stab.strx = stringTableSection.addString(saver.save(path.str()));
862   stab.desc = 1;
863   stab.value = file->modTime;
864   stabs.emplace_back(std::move(stab));
865 }
866 
emitEndFunStab(Defined * defined)867 void SymtabSection::emitEndFunStab(Defined *defined) {
868   StabsEntry stab(N_FUN);
869   stab.value = defined->size;
870   stabs.emplace_back(std::move(stab));
871 }
872 
emitStabs()873 void SymtabSection::emitStabs() {
874   for (const std::string &s : config->astPaths) {
875     StabsEntry astStab(N_AST);
876     astStab.strx = stringTableSection.addString(s);
877     stabs.emplace_back(std::move(astStab));
878   }
879 
880   std::vector<Defined *> symbolsNeedingStabs;
881   for (const SymtabEntry &entry :
882        concat<SymtabEntry>(localSymbols, externalSymbols)) {
883     Symbol *sym = entry.sym;
884     assert(sym->isLive() &&
885            "dead symbols should not be in localSymbols, externalSymbols");
886     if (auto *defined = dyn_cast<Defined>(sym)) {
887       if (defined->isAbsolute())
888         continue;
889       InputSection *isec = defined->isec;
890       ObjFile *file = dyn_cast_or_null<ObjFile>(isec->getFile());
891       if (!file || !file->compileUnit)
892         continue;
893       symbolsNeedingStabs.push_back(defined);
894     }
895   }
896 
897   llvm::stable_sort(symbolsNeedingStabs, [&](Defined *a, Defined *b) {
898     return a->isec->getFile()->id < b->isec->getFile()->id;
899   });
900 
901   // Emit STABS symbols so that dsymutil and/or the debugger can map address
902   // regions in the final binary to the source and object files from which they
903   // originated.
904   InputFile *lastFile = nullptr;
905   for (Defined *defined : symbolsNeedingStabs) {
906     InputSection *isec = defined->isec;
907     ObjFile *file = cast<ObjFile>(isec->getFile());
908 
909     if (lastFile == nullptr || lastFile != file) {
910       if (lastFile != nullptr)
911         emitEndSourceStab();
912       lastFile = file;
913 
914       emitBeginSourceStab(file->compileUnit);
915       emitObjectFileStab(file);
916     }
917 
918     StabsEntry symStab;
919     symStab.sect = defined->isec->canonical()->parent->index;
920     symStab.strx = stringTableSection.addString(defined->getName());
921     symStab.value = defined->getVA();
922 
923     if (isCodeSection(isec)) {
924       symStab.type = N_FUN;
925       stabs.emplace_back(std::move(symStab));
926       emitEndFunStab(defined);
927     } else {
928       symStab.type = defined->isExternal() ? N_GSYM : N_STSYM;
929       stabs.emplace_back(std::move(symStab));
930     }
931   }
932 
933   if (!stabs.empty())
934     emitEndSourceStab();
935 }
936 
finalizeContents()937 void SymtabSection::finalizeContents() {
938   auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) {
939     uint32_t strx = stringTableSection.addString(sym->getName());
940     symbols.push_back({sym, strx});
941   };
942 
943   // Local symbols aren't in the SymbolTable, so we walk the list of object
944   // files to gather them.
945   for (const InputFile *file : inputFiles) {
946     if (auto *objFile = dyn_cast<ObjFile>(file)) {
947       for (Symbol *sym : objFile->symbols) {
948         if (auto *defined = dyn_cast_or_null<Defined>(sym)) {
949           if (!defined->isExternal() && defined->isLive()) {
950             StringRef name = defined->getName();
951             if (!name.startswith("l") && !name.startswith("L"))
952               addSymbol(localSymbols, sym);
953           }
954         }
955       }
956     }
957   }
958 
959   // __dyld_private is a local symbol too. It's linker-created and doesn't
960   // exist in any object file.
961   if (Defined *dyldPrivate = in.stubHelper->dyldPrivate)
962     addSymbol(localSymbols, dyldPrivate);
963 
964   for (Symbol *sym : symtab->getSymbols()) {
965     if (!sym->isLive())
966       continue;
967     if (auto *defined = dyn_cast<Defined>(sym)) {
968       if (!defined->includeInSymtab)
969         continue;
970       assert(defined->isExternal());
971       if (defined->privateExtern)
972         addSymbol(localSymbols, defined);
973       else
974         addSymbol(externalSymbols, defined);
975     } else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
976       if (dysym->isReferenced())
977         addSymbol(undefinedSymbols, sym);
978     }
979   }
980 
981   emitStabs();
982   uint32_t symtabIndex = stabs.size();
983   for (const SymtabEntry &entry :
984        concat<SymtabEntry>(localSymbols, externalSymbols, undefinedSymbols)) {
985     entry.sym->symtabIndex = symtabIndex++;
986   }
987 }
988 
getNumSymbols() const989 uint32_t SymtabSection::getNumSymbols() const {
990   return stabs.size() + localSymbols.size() + externalSymbols.size() +
991          undefinedSymbols.size();
992 }
993 
994 // This serves to hide (type-erase) the template parameter from SymtabSection.
995 template <class LP> class SymtabSectionImpl final : public SymtabSection {
996 public:
SymtabSectionImpl(StringTableSection & stringTableSection)997   SymtabSectionImpl(StringTableSection &stringTableSection)
998       : SymtabSection(stringTableSection) {}
999   uint64_t getRawSize() const override;
1000   void writeTo(uint8_t *buf) const override;
1001 };
1002 
getRawSize() const1003 template <class LP> uint64_t SymtabSectionImpl<LP>::getRawSize() const {
1004   return getNumSymbols() * sizeof(typename LP::nlist);
1005 }
1006 
writeTo(uint8_t * buf) const1007 template <class LP> void SymtabSectionImpl<LP>::writeTo(uint8_t *buf) const {
1008   auto *nList = reinterpret_cast<typename LP::nlist *>(buf);
1009   // Emit the stabs entries before the "real" symbols. We cannot emit them
1010   // after as that would render Symbol::symtabIndex inaccurate.
1011   for (const StabsEntry &entry : stabs) {
1012     nList->n_strx = entry.strx;
1013     nList->n_type = entry.type;
1014     nList->n_sect = entry.sect;
1015     nList->n_desc = entry.desc;
1016     nList->n_value = entry.value;
1017     ++nList;
1018   }
1019 
1020   for (const SymtabEntry &entry : concat<const SymtabEntry>(
1021            localSymbols, externalSymbols, undefinedSymbols)) {
1022     nList->n_strx = entry.strx;
1023     // TODO populate n_desc with more flags
1024     if (auto *defined = dyn_cast<Defined>(entry.sym)) {
1025       uint8_t scope = 0;
1026       if (defined->privateExtern) {
1027         // Private external -- dylib scoped symbol.
1028         // Promote to non-external at link time.
1029         scope = N_PEXT;
1030       } else if (defined->isExternal()) {
1031         // Normal global symbol.
1032         scope = N_EXT;
1033       } else {
1034         // TU-local symbol from localSymbols.
1035         scope = 0;
1036       }
1037 
1038       if (defined->isAbsolute()) {
1039         nList->n_type = scope | N_ABS;
1040         nList->n_sect = NO_SECT;
1041         nList->n_value = defined->value;
1042       } else {
1043         nList->n_type = scope | N_SECT;
1044         nList->n_sect = defined->isec->canonical()->parent->index;
1045         // For the N_SECT symbol type, n_value is the address of the symbol
1046         nList->n_value = defined->getVA();
1047       }
1048       nList->n_desc |= defined->thumb ? N_ARM_THUMB_DEF : 0;
1049       nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0;
1050       nList->n_desc |=
1051           defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0;
1052     } else if (auto *dysym = dyn_cast<DylibSymbol>(entry.sym)) {
1053       uint16_t n_desc = nList->n_desc;
1054       int16_t ordinal = ordinalForDylibSymbol(*dysym);
1055       if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP)
1056         SET_LIBRARY_ORDINAL(n_desc, DYNAMIC_LOOKUP_ORDINAL);
1057       else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE)
1058         SET_LIBRARY_ORDINAL(n_desc, EXECUTABLE_ORDINAL);
1059       else {
1060         assert(ordinal > 0);
1061         SET_LIBRARY_ORDINAL(n_desc, static_cast<uint8_t>(ordinal));
1062       }
1063 
1064       nList->n_type = N_EXT;
1065       n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0;
1066       n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0;
1067       nList->n_desc = n_desc;
1068     }
1069     ++nList;
1070   }
1071 }
1072 
1073 template <class LP>
1074 SymtabSection *
makeSymtabSection(StringTableSection & stringTableSection)1075 macho::makeSymtabSection(StringTableSection &stringTableSection) {
1076   return make<SymtabSectionImpl<LP>>(stringTableSection);
1077 }
1078 
IndirectSymtabSection()1079 IndirectSymtabSection::IndirectSymtabSection()
1080     : LinkEditSection(segment_names::linkEdit,
1081                       section_names::indirectSymbolTable) {}
1082 
getNumSymbols() const1083 uint32_t IndirectSymtabSection::getNumSymbols() const {
1084   return in.got->getEntries().size() + in.tlvPointers->getEntries().size() +
1085          2 * in.stubs->getEntries().size();
1086 }
1087 
isNeeded() const1088 bool IndirectSymtabSection::isNeeded() const {
1089   return in.got->isNeeded() || in.tlvPointers->isNeeded() ||
1090          in.stubs->isNeeded();
1091 }
1092 
finalizeContents()1093 void IndirectSymtabSection::finalizeContents() {
1094   uint32_t off = 0;
1095   in.got->reserved1 = off;
1096   off += in.got->getEntries().size();
1097   in.tlvPointers->reserved1 = off;
1098   off += in.tlvPointers->getEntries().size();
1099   in.stubs->reserved1 = off;
1100   off += in.stubs->getEntries().size();
1101   in.lazyPointers->reserved1 = off;
1102 }
1103 
indirectValue(const Symbol * sym)1104 static uint32_t indirectValue(const Symbol *sym) {
1105   return sym->symtabIndex != UINT32_MAX ? sym->symtabIndex
1106                                         : INDIRECT_SYMBOL_LOCAL;
1107 }
1108 
writeTo(uint8_t * buf) const1109 void IndirectSymtabSection::writeTo(uint8_t *buf) const {
1110   uint32_t off = 0;
1111   for (const Symbol *sym : in.got->getEntries()) {
1112     write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1113     ++off;
1114   }
1115   for (const Symbol *sym : in.tlvPointers->getEntries()) {
1116     write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1117     ++off;
1118   }
1119   for (const Symbol *sym : in.stubs->getEntries()) {
1120     write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1121     ++off;
1122   }
1123   // There is a 1:1 correspondence between stubs and LazyPointerSection
1124   // entries. But giving __stubs and __la_symbol_ptr the same reserved1
1125   // (the offset into the indirect symbol table) so that they both refer
1126   // to the same range of offsets confuses `strip`, so write the stubs
1127   // symbol table offsets a second time.
1128   for (const Symbol *sym : in.stubs->getEntries()) {
1129     write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1130     ++off;
1131   }
1132 }
1133 
StringTableSection()1134 StringTableSection::StringTableSection()
1135     : LinkEditSection(segment_names::linkEdit, section_names::stringTable) {}
1136 
addString(StringRef str)1137 uint32_t StringTableSection::addString(StringRef str) {
1138   uint32_t strx = size;
1139   strings.push_back(str); // TODO: consider deduplicating strings
1140   size += str.size() + 1; // account for null terminator
1141   return strx;
1142 }
1143 
writeTo(uint8_t * buf) const1144 void StringTableSection::writeTo(uint8_t *buf) const {
1145   uint32_t off = 0;
1146   for (StringRef str : strings) {
1147     memcpy(buf + off, str.data(), str.size());
1148     off += str.size() + 1; // account for null terminator
1149   }
1150 }
1151 
1152 static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0, "");
1153 static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0, "");
1154 
CodeSignatureSection()1155 CodeSignatureSection::CodeSignatureSection()
1156     : LinkEditSection(segment_names::linkEdit, section_names::codeSignature) {
1157   align = 16; // required by libstuff
1158   // FIXME: Consider using finalOutput instead of outputFile.
1159   fileName = config->outputFile;
1160   size_t slashIndex = fileName.rfind("/");
1161   if (slashIndex != std::string::npos)
1162     fileName = fileName.drop_front(slashIndex + 1);
1163   allHeadersSize = alignTo<16>(fixedHeadersSize + fileName.size() + 1);
1164   fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size();
1165 }
1166 
getBlockCount() const1167 uint32_t CodeSignatureSection::getBlockCount() const {
1168   return (fileOff + blockSize - 1) / blockSize;
1169 }
1170 
getRawSize() const1171 uint64_t CodeSignatureSection::getRawSize() const {
1172   return allHeadersSize + getBlockCount() * hashSize;
1173 }
1174 
writeHashes(uint8_t * buf) const1175 void CodeSignatureSection::writeHashes(uint8_t *buf) const {
1176   uint8_t *code = buf;
1177   uint8_t *codeEnd = buf + fileOff;
1178   uint8_t *hashes = codeEnd + allHeadersSize;
1179   while (code < codeEnd) {
1180     StringRef block(reinterpret_cast<char *>(code),
1181                     std::min(codeEnd - code, static_cast<ssize_t>(blockSize)));
1182     SHA256 hasher;
1183     hasher.update(block);
1184     StringRef hash = hasher.final();
1185     assert(hash.size() == hashSize);
1186     memcpy(hashes, hash.data(), hashSize);
1187     code += blockSize;
1188     hashes += hashSize;
1189   }
1190 #if defined(__APPLE__)
1191   // This is macOS-specific work-around and makes no sense for any
1192   // other host OS. See https://openradar.appspot.com/FB8914231
1193   //
1194   // The macOS kernel maintains a signature-verification cache to
1195   // quickly validate applications at time of execve(2).  The trouble
1196   // is that for the kernel creates the cache entry at the time of the
1197   // mmap(2) call, before we have a chance to write either the code to
1198   // sign or the signature header+hashes.  The fix is to invalidate
1199   // all cached data associated with the output file, thus discarding
1200   // the bogus prematurely-cached signature.
1201   msync(buf, fileOff + getSize(), MS_INVALIDATE);
1202 #endif
1203 }
1204 
writeTo(uint8_t * buf) const1205 void CodeSignatureSection::writeTo(uint8_t *buf) const {
1206   uint32_t signatureSize = static_cast<uint32_t>(getSize());
1207   auto *superBlob = reinterpret_cast<CS_SuperBlob *>(buf);
1208   write32be(&superBlob->magic, CSMAGIC_EMBEDDED_SIGNATURE);
1209   write32be(&superBlob->length, signatureSize);
1210   write32be(&superBlob->count, 1);
1211   auto *blobIndex = reinterpret_cast<CS_BlobIndex *>(&superBlob[1]);
1212   write32be(&blobIndex->type, CSSLOT_CODEDIRECTORY);
1213   write32be(&blobIndex->offset, blobHeadersSize);
1214   auto *codeDirectory =
1215       reinterpret_cast<CS_CodeDirectory *>(buf + blobHeadersSize);
1216   write32be(&codeDirectory->magic, CSMAGIC_CODEDIRECTORY);
1217   write32be(&codeDirectory->length, signatureSize - blobHeadersSize);
1218   write32be(&codeDirectory->version, CS_SUPPORTSEXECSEG);
1219   write32be(&codeDirectory->flags, CS_ADHOC | CS_LINKER_SIGNED);
1220   write32be(&codeDirectory->hashOffset,
1221             sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad);
1222   write32be(&codeDirectory->identOffset, sizeof(CS_CodeDirectory));
1223   codeDirectory->nSpecialSlots = 0;
1224   write32be(&codeDirectory->nCodeSlots, getBlockCount());
1225   write32be(&codeDirectory->codeLimit, fileOff);
1226   codeDirectory->hashSize = static_cast<uint8_t>(hashSize);
1227   codeDirectory->hashType = kSecCodeSignatureHashSHA256;
1228   codeDirectory->platform = 0;
1229   codeDirectory->pageSize = blockSizeShift;
1230   codeDirectory->spare2 = 0;
1231   codeDirectory->scatterOffset = 0;
1232   codeDirectory->teamOffset = 0;
1233   codeDirectory->spare3 = 0;
1234   codeDirectory->codeLimit64 = 0;
1235   OutputSegment *textSeg = getOrCreateOutputSegment(segment_names::text);
1236   write64be(&codeDirectory->execSegBase, textSeg->fileOff);
1237   write64be(&codeDirectory->execSegLimit, textSeg->fileSize);
1238   write64be(&codeDirectory->execSegFlags,
1239             config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0);
1240   auto *id = reinterpret_cast<char *>(&codeDirectory[1]);
1241   memcpy(id, fileName.begin(), fileName.size());
1242   memset(id + fileName.size(), 0, fileNamePad);
1243 }
1244 
BitcodeBundleSection()1245 BitcodeBundleSection::BitcodeBundleSection()
1246     : SyntheticSection(segment_names::llvm, section_names::bitcodeBundle) {}
1247 
1248 class ErrorCodeWrapper {
1249 public:
ErrorCodeWrapper(std::error_code ec)1250   explicit ErrorCodeWrapper(std::error_code ec) : errorCode(ec.value()) {}
ErrorCodeWrapper(int ec)1251   explicit ErrorCodeWrapper(int ec) : errorCode(ec) {}
operator int() const1252   operator int() const { return errorCode; }
1253 
1254 private:
1255   int errorCode;
1256 };
1257 
1258 #define CHECK_EC(exp)                                                          \
1259   do {                                                                         \
1260     ErrorCodeWrapper ec(exp);                                                  \
1261     if (ec)                                                                    \
1262       fatal(Twine("operation failed with error code ") + Twine(ec) + ": " +    \
1263             #exp);                                                             \
1264   } while (0);
1265 
finalize()1266 void BitcodeBundleSection::finalize() {
1267 #ifdef LLVM_HAVE_LIBXAR
1268   using namespace llvm::sys::fs;
1269   CHECK_EC(createTemporaryFile("bitcode-bundle", "xar", xarPath));
1270 
1271   xar_t xar(xar_open(xarPath.data(), O_RDWR));
1272   if (!xar)
1273     fatal("failed to open XAR temporary file at " + xarPath);
1274   CHECK_EC(xar_opt_set(xar, XAR_OPT_COMPRESSION, XAR_OPT_VAL_NONE));
1275   // FIXME: add more data to XAR
1276   CHECK_EC(xar_close(xar));
1277 
1278   file_size(xarPath, xarSize);
1279 #endif // defined(LLVM_HAVE_LIBXAR)
1280 }
1281 
writeTo(uint8_t * buf) const1282 void BitcodeBundleSection::writeTo(uint8_t *buf) const {
1283   using namespace llvm::sys::fs;
1284   file_t handle =
1285       CHECK(openNativeFile(xarPath, CD_OpenExisting, FA_Read, OF_None),
1286             "failed to open XAR file");
1287   std::error_code ec;
1288   mapped_file_region xarMap(handle, mapped_file_region::mapmode::readonly,
1289                             xarSize, 0, ec);
1290   if (ec)
1291     fatal("failed to map XAR file");
1292   memcpy(buf, xarMap.const_data(), xarSize);
1293 
1294   closeFile(handle);
1295   remove(xarPath);
1296 }
1297 
CStringSection()1298 CStringSection::CStringSection()
1299     : SyntheticSection(segment_names::text, section_names::cString) {
1300   flags = S_CSTRING_LITERALS;
1301 }
1302 
addInput(CStringInputSection * isec)1303 void CStringSection::addInput(CStringInputSection *isec) {
1304   isec->parent = this;
1305   inputs.push_back(isec);
1306   if (isec->align > align)
1307     align = isec->align;
1308 }
1309 
writeTo(uint8_t * buf) const1310 void CStringSection::writeTo(uint8_t *buf) const {
1311   for (const CStringInputSection *isec : inputs) {
1312     for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) {
1313       if (!isec->pieces[i].live)
1314         continue;
1315       StringRef string = isec->getStringRef(i);
1316       memcpy(buf + isec->pieces[i].outSecOff, string.data(), string.size());
1317     }
1318   }
1319 }
1320 
finalizeContents()1321 void CStringSection::finalizeContents() {
1322   uint64_t offset = 0;
1323   for (CStringInputSection *isec : inputs) {
1324     for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) {
1325       if (!isec->pieces[i].live)
1326         continue;
1327       uint32_t pieceAlign = MinAlign(isec->pieces[i].inSecOff, align);
1328       offset = alignTo(offset, pieceAlign);
1329       isec->pieces[i].outSecOff = offset;
1330       isec->isFinal = true;
1331       StringRef string = isec->getStringRef(i);
1332       offset += string.size();
1333     }
1334   }
1335   size = offset;
1336 }
1337 // Mergeable cstring literals are found under the __TEXT,__cstring section. In
1338 // contrast to ELF, which puts strings that need different alignments into
1339 // different sections, clang's Mach-O backend puts them all in one section.
1340 // Strings that need to be aligned have the .p2align directive emitted before
1341 // them, which simply translates into zero padding in the object file.
1342 //
1343 // I *think* ld64 extracts the desired per-string alignment from this data by
1344 // preserving each string's offset from the last section-aligned address. I'm
1345 // not entirely certain since it doesn't seem consistent about doing this, and
1346 // in fact doesn't seem to be correct in general: we can in fact can induce ld64
1347 // to produce a crashing binary just by linking in an additional object file
1348 // that only contains a duplicate cstring at a different alignment. See PR50563
1349 // for details.
1350 //
1351 // On x86_64, the cstrings we've seen so far that require special alignment are
1352 // all accessed by SIMD operations -- x86_64 requires SIMD accesses to be
1353 // 16-byte-aligned. arm64 also seems to require 16-byte-alignment in some cases
1354 // (PR50791), but I haven't tracked down the root cause. So for now, I'm just
1355 // aligning all strings to 16 bytes.  This is indeed wasteful, but
1356 // implementation-wise it's simpler than preserving per-string
1357 // alignment+offsets. It also avoids the aforementioned crash after
1358 // deduplication of differently-aligned strings.  Finally, the overhead is not
1359 // huge: using 16-byte alignment (vs no alignment) is only a 0.5% size overhead
1360 // when linking chromium_framework on x86_64.
DeduplicatedCStringSection()1361 DeduplicatedCStringSection::DeduplicatedCStringSection()
1362     : builder(StringTableBuilder::RAW, /*Alignment=*/16) {}
1363 
finalizeContents()1364 void DeduplicatedCStringSection::finalizeContents() {
1365   // Add all string pieces to the string table builder to create section
1366   // contents.
1367   for (const CStringInputSection *isec : inputs)
1368     for (size_t i = 0, e = isec->pieces.size(); i != e; ++i)
1369       if (isec->pieces[i].live)
1370         builder.add(isec->getCachedHashStringRef(i));
1371 
1372   // Fix the string table content. After this, the contents will never change.
1373   builder.finalizeInOrder();
1374 
1375   // finalize() fixed tail-optimized strings, so we can now get
1376   // offsets of strings. Get an offset for each string and save it
1377   // to a corresponding SectionPiece for easy access.
1378   for (CStringInputSection *isec : inputs) {
1379     for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) {
1380       if (!isec->pieces[i].live)
1381         continue;
1382       isec->pieces[i].outSecOff =
1383           builder.getOffset(isec->getCachedHashStringRef(i));
1384       isec->isFinal = true;
1385     }
1386   }
1387 }
1388 
1389 // This section is actually emitted as __TEXT,__const by ld64, but clang may
1390 // emit input sections of that name, and LLD doesn't currently support mixing
1391 // synthetic and concat-type OutputSections. To work around this, I've given
1392 // our merged-literals section a different name.
WordLiteralSection()1393 WordLiteralSection::WordLiteralSection()
1394     : SyntheticSection(segment_names::text, section_names::literals) {
1395   align = 16;
1396 }
1397 
addInput(WordLiteralInputSection * isec)1398 void WordLiteralSection::addInput(WordLiteralInputSection *isec) {
1399   isec->parent = this;
1400   inputs.push_back(isec);
1401 }
1402 
finalizeContents()1403 void WordLiteralSection::finalizeContents() {
1404   for (WordLiteralInputSection *isec : inputs) {
1405     // We do all processing of the InputSection here, so it will be effectively
1406     // finalized.
1407     isec->isFinal = true;
1408     const uint8_t *buf = isec->data.data();
1409     switch (sectionType(isec->getFlags())) {
1410     case S_4BYTE_LITERALS: {
1411       for (size_t off = 0, e = isec->data.size(); off < e; off += 4) {
1412         if (!isec->isLive(off))
1413           continue;
1414         uint32_t value = *reinterpret_cast<const uint32_t *>(buf + off);
1415         literal4Map.emplace(value, literal4Map.size());
1416       }
1417       break;
1418     }
1419     case S_8BYTE_LITERALS: {
1420       for (size_t off = 0, e = isec->data.size(); off < e; off += 8) {
1421         if (!isec->isLive(off))
1422           continue;
1423         uint64_t value = *reinterpret_cast<const uint64_t *>(buf + off);
1424         literal8Map.emplace(value, literal8Map.size());
1425       }
1426       break;
1427     }
1428     case S_16BYTE_LITERALS: {
1429       for (size_t off = 0, e = isec->data.size(); off < e; off += 16) {
1430         if (!isec->isLive(off))
1431           continue;
1432         UInt128 value = *reinterpret_cast<const UInt128 *>(buf + off);
1433         literal16Map.emplace(value, literal16Map.size());
1434       }
1435       break;
1436     }
1437     default:
1438       llvm_unreachable("invalid literal section type");
1439     }
1440   }
1441 }
1442 
writeTo(uint8_t * buf) const1443 void WordLiteralSection::writeTo(uint8_t *buf) const {
1444   // Note that we don't attempt to do any endianness conversion in addInput(),
1445   // so we don't do it here either -- just write out the original value,
1446   // byte-for-byte.
1447   for (const auto &p : literal16Map)
1448     memcpy(buf + p.second * 16, &p.first, 16);
1449   buf += literal16Map.size() * 16;
1450 
1451   for (const auto &p : literal8Map)
1452     memcpy(buf + p.second * 8, &p.first, 8);
1453   buf += literal8Map.size() * 8;
1454 
1455   for (const auto &p : literal4Map)
1456     memcpy(buf + p.second * 4, &p.first, 4);
1457 }
1458 
createSyntheticSymbols()1459 void macho::createSyntheticSymbols() {
1460   auto addHeaderSymbol = [](const char *name) {
1461     symtab->addSynthetic(name, in.header->isec, /*value=*/0,
1462                          /*privateExtern=*/true, /*includeInSymtab=*/false,
1463                          /*referencedDynamically=*/false);
1464   };
1465 
1466   switch (config->outputType) {
1467     // FIXME: Assign the right address value for these symbols
1468     // (rather than 0). But we need to do that after assignAddresses().
1469   case MH_EXECUTE:
1470     // If linking PIE, __mh_execute_header is a defined symbol in
1471     //  __TEXT, __text)
1472     // Otherwise, it's an absolute symbol.
1473     if (config->isPic)
1474       symtab->addSynthetic("__mh_execute_header", in.header->isec, /*value=*/0,
1475                            /*privateExtern=*/false, /*includeInSymtab=*/true,
1476                            /*referencedDynamically=*/true);
1477     else
1478       symtab->addSynthetic("__mh_execute_header", /*isec=*/nullptr, /*value=*/0,
1479                            /*privateExtern=*/false, /*includeInSymtab=*/true,
1480                            /*referencedDynamically=*/true);
1481     break;
1482 
1483     // The following symbols are N_SECT symbols, even though the header is not
1484     // part of any section and that they are private to the bundle/dylib/object
1485     // they are part of.
1486   case MH_BUNDLE:
1487     addHeaderSymbol("__mh_bundle_header");
1488     break;
1489   case MH_DYLIB:
1490     addHeaderSymbol("__mh_dylib_header");
1491     break;
1492   case MH_DYLINKER:
1493     addHeaderSymbol("__mh_dylinker_header");
1494     break;
1495   case MH_OBJECT:
1496     addHeaderSymbol("__mh_object_header");
1497     break;
1498   default:
1499     llvm_unreachable("unexpected outputType");
1500     break;
1501   }
1502 
1503   // The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit
1504   // which does e.g. cleanup of static global variables. The ABI document
1505   // says that the pointer can point to any address in one of the dylib's
1506   // segments, but in practice ld64 seems to set it to point to the header,
1507   // so that's what's implemented here.
1508   addHeaderSymbol("___dso_handle");
1509 }
1510 
1511 template SymtabSection *macho::makeSymtabSection<LP64>(StringTableSection &);
1512 template SymtabSection *macho::makeSymtabSection<ILP32>(StringTableSection &);
1513