1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::Legalize method.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/RuntimeLibcalls.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/CodeGen/SelectionDAGNodes.h"
28 #include "llvm/CodeGen/TargetFrameLowering.h"
29 #include "llvm/CodeGen/TargetLowering.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/ValueTypes.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstdint>
51 #include <tuple>
52 #include <utility>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "legalizedag"
57 
58 namespace {
59 
60 /// Keeps track of state when getting the sign of a floating-point value as an
61 /// integer.
62 struct FloatSignAsInt {
63   EVT FloatVT;
64   SDValue Chain;
65   SDValue FloatPtr;
66   SDValue IntPtr;
67   MachinePointerInfo IntPointerInfo;
68   MachinePointerInfo FloatPointerInfo;
69   SDValue IntValue;
70   APInt SignMask;
71   uint8_t SignBit;
72 };
73 
74 //===----------------------------------------------------------------------===//
75 /// This takes an arbitrary SelectionDAG as input and
76 /// hacks on it until the target machine can handle it.  This involves
77 /// eliminating value sizes the machine cannot handle (promoting small sizes to
78 /// large sizes or splitting up large values into small values) as well as
79 /// eliminating operations the machine cannot handle.
80 ///
81 /// This code also does a small amount of optimization and recognition of idioms
82 /// as part of its processing.  For example, if a target does not support a
83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
84 /// will attempt merge setcc and brc instructions into brcc's.
85 class SelectionDAGLegalize {
86   const TargetMachine &TM;
87   const TargetLowering &TLI;
88   SelectionDAG &DAG;
89 
90   /// The set of nodes which have already been legalized. We hold a
91   /// reference to it in order to update as necessary on node deletion.
92   SmallPtrSetImpl<SDNode *> &LegalizedNodes;
93 
94   /// A set of all the nodes updated during legalization.
95   SmallSetVector<SDNode *, 16> *UpdatedNodes;
96 
getSetCCResultType(EVT VT) const97   EVT getSetCCResultType(EVT VT) const {
98     return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
99   }
100 
101   // Libcall insertion helpers.
102 
103 public:
SelectionDAGLegalize(SelectionDAG & DAG,SmallPtrSetImpl<SDNode * > & LegalizedNodes,SmallSetVector<SDNode *,16> * UpdatedNodes=nullptr)104   SelectionDAGLegalize(SelectionDAG &DAG,
105                        SmallPtrSetImpl<SDNode *> &LegalizedNodes,
106                        SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
107       : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
108         LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
109 
110   /// Legalizes the given operation.
111   void LegalizeOp(SDNode *Node);
112 
113 private:
114   SDValue OptimizeFloatStore(StoreSDNode *ST);
115 
116   void LegalizeLoadOps(SDNode *Node);
117   void LegalizeStoreOps(SDNode *Node);
118 
119   /// Some targets cannot handle a variable
120   /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
121   /// is necessary to spill the vector being inserted into to memory, perform
122   /// the insert there, and then read the result back.
123   SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
124                                          const SDLoc &dl);
125   SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx,
126                                   const SDLoc &dl);
127 
128   /// Return a vector shuffle operation which
129   /// performs the same shuffe in terms of order or result bytes, but on a type
130   /// whose vector element type is narrower than the original shuffle type.
131   /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
132   SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl,
133                                      SDValue N1, SDValue N2,
134                                      ArrayRef<int> Mask) const;
135 
136   SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
137 
138   void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall LC,
139                        SmallVectorImpl<SDValue> &Results);
140   void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
141                        RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
142                        RTLIB::Libcall Call_F128,
143                        RTLIB::Libcall Call_PPCF128,
144                        SmallVectorImpl<SDValue> &Results);
145   SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
146                            RTLIB::Libcall Call_I8,
147                            RTLIB::Libcall Call_I16,
148                            RTLIB::Libcall Call_I32,
149                            RTLIB::Libcall Call_I64,
150                            RTLIB::Libcall Call_I128);
151   void ExpandArgFPLibCall(SDNode *Node,
152                           RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64,
153                           RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128,
154                           RTLIB::Libcall Call_PPCF128,
155                           SmallVectorImpl<SDValue> &Results);
156   void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
157   void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
158 
159   SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
160                            const SDLoc &dl);
161   SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
162                            const SDLoc &dl, SDValue ChainIn);
163   SDValue ExpandBUILD_VECTOR(SDNode *Node);
164   SDValue ExpandSPLAT_VECTOR(SDNode *Node);
165   SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
166   void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
167                                 SmallVectorImpl<SDValue> &Results);
168   void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL,
169                          SDValue Value) const;
170   SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL,
171                           SDValue NewIntValue) const;
172   SDValue ExpandFCOPYSIGN(SDNode *Node) const;
173   SDValue ExpandFABS(SDNode *Node) const;
174   SDValue ExpandFNEG(SDNode *Node) const;
175   SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain);
176   void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl,
177                              SmallVectorImpl<SDValue> &Results);
178   void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
179                              SmallVectorImpl<SDValue> &Results);
180   SDValue PromoteLegalFP_TO_INT_SAT(SDNode *Node, const SDLoc &dl);
181 
182   SDValue ExpandPARITY(SDValue Op, const SDLoc &dl);
183 
184   SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
185   SDValue ExpandInsertToVectorThroughStack(SDValue Op);
186   SDValue ExpandVectorBuildThroughStack(SDNode* Node);
187 
188   SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
189   SDValue ExpandConstant(ConstantSDNode *CP);
190 
191   // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
192   bool ExpandNode(SDNode *Node);
193   void ConvertNodeToLibcall(SDNode *Node);
194   void PromoteNode(SDNode *Node);
195 
196 public:
197   // Node replacement helpers
198 
ReplacedNode(SDNode * N)199   void ReplacedNode(SDNode *N) {
200     LegalizedNodes.erase(N);
201     if (UpdatedNodes)
202       UpdatedNodes->insert(N);
203   }
204 
ReplaceNode(SDNode * Old,SDNode * New)205   void ReplaceNode(SDNode *Old, SDNode *New) {
206     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
207                dbgs() << "     with:      "; New->dump(&DAG));
208 
209     assert(Old->getNumValues() == New->getNumValues() &&
210            "Replacing one node with another that produces a different number "
211            "of values!");
212     DAG.ReplaceAllUsesWith(Old, New);
213     if (UpdatedNodes)
214       UpdatedNodes->insert(New);
215     ReplacedNode(Old);
216   }
217 
ReplaceNode(SDValue Old,SDValue New)218   void ReplaceNode(SDValue Old, SDValue New) {
219     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
220                dbgs() << "     with:      "; New->dump(&DAG));
221 
222     DAG.ReplaceAllUsesWith(Old, New);
223     if (UpdatedNodes)
224       UpdatedNodes->insert(New.getNode());
225     ReplacedNode(Old.getNode());
226   }
227 
ReplaceNode(SDNode * Old,const SDValue * New)228   void ReplaceNode(SDNode *Old, const SDValue *New) {
229     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
230 
231     DAG.ReplaceAllUsesWith(Old, New);
232     for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
233       LLVM_DEBUG(dbgs() << (i == 0 ? "     with:      " : "      and:      ");
234                  New[i]->dump(&DAG));
235       if (UpdatedNodes)
236         UpdatedNodes->insert(New[i].getNode());
237     }
238     ReplacedNode(Old);
239   }
240 
ReplaceNodeWithValue(SDValue Old,SDValue New)241   void ReplaceNodeWithValue(SDValue Old, SDValue New) {
242     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
243                dbgs() << "     with:      "; New->dump(&DAG));
244 
245     DAG.ReplaceAllUsesOfValueWith(Old, New);
246     if (UpdatedNodes)
247       UpdatedNodes->insert(New.getNode());
248     ReplacedNode(Old.getNode());
249   }
250 };
251 
252 } // end anonymous namespace
253 
254 /// Return a vector shuffle operation which
255 /// performs the same shuffle in terms of order or result bytes, but on a type
256 /// whose vector element type is narrower than the original shuffle type.
257 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
ShuffleWithNarrowerEltType(EVT NVT,EVT VT,const SDLoc & dl,SDValue N1,SDValue N2,ArrayRef<int> Mask) const258 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(
259     EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
260     ArrayRef<int> Mask) const {
261   unsigned NumMaskElts = VT.getVectorNumElements();
262   unsigned NumDestElts = NVT.getVectorNumElements();
263   unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
264 
265   assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
266 
267   if (NumEltsGrowth == 1)
268     return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask);
269 
270   SmallVector<int, 8> NewMask;
271   for (unsigned i = 0; i != NumMaskElts; ++i) {
272     int Idx = Mask[i];
273     for (unsigned j = 0; j != NumEltsGrowth; ++j) {
274       if (Idx < 0)
275         NewMask.push_back(-1);
276       else
277         NewMask.push_back(Idx * NumEltsGrowth + j);
278     }
279   }
280   assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
281   assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
282   return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask);
283 }
284 
285 /// Expands the ConstantFP node to an integer constant or
286 /// a load from the constant pool.
287 SDValue
ExpandConstantFP(ConstantFPSDNode * CFP,bool UseCP)288 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
289   bool Extend = false;
290   SDLoc dl(CFP);
291 
292   // If a FP immediate is precise when represented as a float and if the
293   // target can do an extending load from float to double, we put it into
294   // the constant pool as a float, even if it's is statically typed as a
295   // double.  This shrinks FP constants and canonicalizes them for targets where
296   // an FP extending load is the same cost as a normal load (such as on the x87
297   // fp stack or PPC FP unit).
298   EVT VT = CFP->getValueType(0);
299   ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
300   if (!UseCP) {
301     assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
302     return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
303                            (VT == MVT::f64) ? MVT::i64 : MVT::i32);
304   }
305 
306   APFloat APF = CFP->getValueAPF();
307   EVT OrigVT = VT;
308   EVT SVT = VT;
309 
310   // We don't want to shrink SNaNs. Converting the SNaN back to its real type
311   // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
312   if (!APF.isSignaling()) {
313     while (SVT != MVT::f32 && SVT != MVT::f16) {
314       SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
315       if (ConstantFPSDNode::isValueValidForType(SVT, APF) &&
316           // Only do this if the target has a native EXTLOAD instruction from
317           // smaller type.
318           TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
319           TLI.ShouldShrinkFPConstant(OrigVT)) {
320         Type *SType = SVT.getTypeForEVT(*DAG.getContext());
321         LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
322         VT = SVT;
323         Extend = true;
324       }
325     }
326   }
327 
328   SDValue CPIdx =
329       DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
330   Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
331   if (Extend) {
332     SDValue Result = DAG.getExtLoad(
333         ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
334         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
335         Alignment);
336     return Result;
337   }
338   SDValue Result = DAG.getLoad(
339       OrigVT, dl, DAG.getEntryNode(), CPIdx,
340       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
341   return Result;
342 }
343 
344 /// Expands the Constant node to a load from the constant pool.
ExpandConstant(ConstantSDNode * CP)345 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
346   SDLoc dl(CP);
347   EVT VT = CP->getValueType(0);
348   SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(),
349                                       TLI.getPointerTy(DAG.getDataLayout()));
350   Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
351   SDValue Result = DAG.getLoad(
352       VT, dl, DAG.getEntryNode(), CPIdx,
353       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
354   return Result;
355 }
356 
357 /// Some target cannot handle a variable insertion index for the
358 /// INSERT_VECTOR_ELT instruction.  In this case, it
359 /// is necessary to spill the vector being inserted into to memory, perform
360 /// the insert there, and then read the result back.
PerformInsertVectorEltInMemory(SDValue Vec,SDValue Val,SDValue Idx,const SDLoc & dl)361 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec,
362                                                              SDValue Val,
363                                                              SDValue Idx,
364                                                              const SDLoc &dl) {
365   SDValue Tmp1 = Vec;
366   SDValue Tmp2 = Val;
367   SDValue Tmp3 = Idx;
368 
369   // If the target doesn't support this, we have to spill the input vector
370   // to a temporary stack slot, update the element, then reload it.  This is
371   // badness.  We could also load the value into a vector register (either
372   // with a "move to register" or "extload into register" instruction, then
373   // permute it into place, if the idx is a constant and if the idx is
374   // supported by the target.
375   EVT VT    = Tmp1.getValueType();
376   EVT EltVT = VT.getVectorElementType();
377   SDValue StackPtr = DAG.CreateStackTemporary(VT);
378 
379   int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
380 
381   // Store the vector.
382   SDValue Ch = DAG.getStore(
383       DAG.getEntryNode(), dl, Tmp1, StackPtr,
384       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
385 
386   SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3);
387 
388   // Store the scalar value.
389   Ch = DAG.getTruncStore(
390       Ch, dl, Tmp2, StackPtr2,
391       MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT);
392   // Load the updated vector.
393   return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
394                                                DAG.getMachineFunction(), SPFI));
395 }
396 
ExpandINSERT_VECTOR_ELT(SDValue Vec,SDValue Val,SDValue Idx,const SDLoc & dl)397 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
398                                                       SDValue Idx,
399                                                       const SDLoc &dl) {
400   if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
401     // SCALAR_TO_VECTOR requires that the type of the value being inserted
402     // match the element type of the vector being created, except for
403     // integers in which case the inserted value can be over width.
404     EVT EltVT = Vec.getValueType().getVectorElementType();
405     if (Val.getValueType() == EltVT ||
406         (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
407       SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
408                                   Vec.getValueType(), Val);
409 
410       unsigned NumElts = Vec.getValueType().getVectorNumElements();
411       // We generate a shuffle of InVec and ScVec, so the shuffle mask
412       // should be 0,1,2,3,4,5... with the appropriate element replaced with
413       // elt 0 of the RHS.
414       SmallVector<int, 8> ShufOps;
415       for (unsigned i = 0; i != NumElts; ++i)
416         ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
417 
418       return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps);
419     }
420   }
421   return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
422 }
423 
OptimizeFloatStore(StoreSDNode * ST)424 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
425   if (!ISD::isNormalStore(ST))
426     return SDValue();
427 
428   LLVM_DEBUG(dbgs() << "Optimizing float store operations\n");
429   // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
430   // FIXME: move this to the DAG Combiner!  Note that we can't regress due
431   // to phase ordering between legalized code and the dag combiner.  This
432   // probably means that we need to integrate dag combiner and legalizer
433   // together.
434   // We generally can't do this one for long doubles.
435   SDValue Chain = ST->getChain();
436   SDValue Ptr = ST->getBasePtr();
437   SDValue Value = ST->getValue();
438   MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
439   AAMDNodes AAInfo = ST->getAAInfo();
440   SDLoc dl(ST);
441 
442   // Don't optimise TargetConstantFP
443   if (Value.getOpcode() == ISD::TargetConstantFP)
444     return SDValue();
445 
446   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
447     if (CFP->getValueType(0) == MVT::f32 &&
448         TLI.isTypeLegal(MVT::i32)) {
449       SDValue Con = DAG.getConstant(CFP->getValueAPF().
450                                       bitcastToAPInt().zextOrTrunc(32),
451                                     SDLoc(CFP), MVT::i32);
452       return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
453                           ST->getOriginalAlign(), MMOFlags, AAInfo);
454     }
455 
456     if (CFP->getValueType(0) == MVT::f64) {
457       // If this target supports 64-bit registers, do a single 64-bit store.
458       if (TLI.isTypeLegal(MVT::i64)) {
459         SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
460                                       zextOrTrunc(64), SDLoc(CFP), MVT::i64);
461         return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
462                             ST->getOriginalAlign(), MMOFlags, AAInfo);
463       }
464 
465       if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
466         // Otherwise, if the target supports 32-bit registers, use 2 32-bit
467         // stores.  If the target supports neither 32- nor 64-bits, this
468         // xform is certainly not worth it.
469         const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
470         SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
471         SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
472         if (DAG.getDataLayout().isBigEndian())
473           std::swap(Lo, Hi);
474 
475         Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(),
476                           ST->getOriginalAlign(), MMOFlags, AAInfo);
477         Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), dl);
478         Hi = DAG.getStore(Chain, dl, Hi, Ptr,
479                           ST->getPointerInfo().getWithOffset(4),
480                           ST->getOriginalAlign(), MMOFlags, AAInfo);
481 
482         return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
483       }
484     }
485   }
486   return SDValue();
487 }
488 
LegalizeStoreOps(SDNode * Node)489 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
490   StoreSDNode *ST = cast<StoreSDNode>(Node);
491   SDValue Chain = ST->getChain();
492   SDValue Ptr = ST->getBasePtr();
493   SDLoc dl(Node);
494 
495   MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
496   AAMDNodes AAInfo = ST->getAAInfo();
497 
498   if (!ST->isTruncatingStore()) {
499     LLVM_DEBUG(dbgs() << "Legalizing store operation\n");
500     if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
501       ReplaceNode(ST, OptStore);
502       return;
503     }
504 
505     SDValue Value = ST->getValue();
506     MVT VT = Value.getSimpleValueType();
507     switch (TLI.getOperationAction(ISD::STORE, VT)) {
508     default: llvm_unreachable("This action is not supported yet!");
509     case TargetLowering::Legal: {
510       // If this is an unaligned store and the target doesn't support it,
511       // expand it.
512       EVT MemVT = ST->getMemoryVT();
513       const DataLayout &DL = DAG.getDataLayout();
514       if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
515                                               *ST->getMemOperand())) {
516         LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n");
517         SDValue Result = TLI.expandUnalignedStore(ST, DAG);
518         ReplaceNode(SDValue(ST, 0), Result);
519       } else
520         LLVM_DEBUG(dbgs() << "Legal store\n");
521       break;
522     }
523     case TargetLowering::Custom: {
524       LLVM_DEBUG(dbgs() << "Trying custom lowering\n");
525       SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
526       if (Res && Res != SDValue(Node, 0))
527         ReplaceNode(SDValue(Node, 0), Res);
528       return;
529     }
530     case TargetLowering::Promote: {
531       MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
532       assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
533              "Can only promote stores to same size type");
534       Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
535       SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
536                                     ST->getOriginalAlign(), MMOFlags, AAInfo);
537       ReplaceNode(SDValue(Node, 0), Result);
538       break;
539     }
540     }
541     return;
542   }
543 
544   LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n");
545   SDValue Value = ST->getValue();
546   EVT StVT = ST->getMemoryVT();
547   TypeSize StWidth = StVT.getSizeInBits();
548   TypeSize StSize = StVT.getStoreSizeInBits();
549   auto &DL = DAG.getDataLayout();
550 
551   if (StWidth != StSize) {
552     // Promote to a byte-sized store with upper bits zero if not
553     // storing an integral number of bytes.  For example, promote
554     // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
555     EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StSize.getFixedSize());
556     Value = DAG.getZeroExtendInReg(Value, dl, StVT);
557     SDValue Result =
558         DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT,
559                           ST->getOriginalAlign(), MMOFlags, AAInfo);
560     ReplaceNode(SDValue(Node, 0), Result);
561   } else if (!StVT.isVector() && !isPowerOf2_64(StWidth.getFixedSize())) {
562     // If not storing a power-of-2 number of bits, expand as two stores.
563     assert(!StVT.isVector() && "Unsupported truncstore!");
564     unsigned StWidthBits = StWidth.getFixedSize();
565     unsigned LogStWidth = Log2_32(StWidthBits);
566     assert(LogStWidth < 32);
567     unsigned RoundWidth = 1 << LogStWidth;
568     assert(RoundWidth < StWidthBits);
569     unsigned ExtraWidth = StWidthBits - RoundWidth;
570     assert(ExtraWidth < RoundWidth);
571     assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
572            "Store size not an integral number of bytes!");
573     EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
574     EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
575     SDValue Lo, Hi;
576     unsigned IncrementSize;
577 
578     if (DL.isLittleEndian()) {
579       // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
580       // Store the bottom RoundWidth bits.
581       Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
582                              RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
583 
584       // Store the remaining ExtraWidth bits.
585       IncrementSize = RoundWidth / 8;
586       Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl);
587       Hi = DAG.getNode(
588           ISD::SRL, dl, Value.getValueType(), Value,
589           DAG.getConstant(RoundWidth, dl,
590                           TLI.getShiftAmountTy(Value.getValueType(), DL)));
591       Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
592                              ST->getPointerInfo().getWithOffset(IncrementSize),
593                              ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
594     } else {
595       // Big endian - avoid unaligned stores.
596       // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
597       // Store the top RoundWidth bits.
598       Hi = DAG.getNode(
599           ISD::SRL, dl, Value.getValueType(), Value,
600           DAG.getConstant(ExtraWidth, dl,
601                           TLI.getShiftAmountTy(Value.getValueType(), DL)));
602       Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT,
603                              ST->getOriginalAlign(), MMOFlags, AAInfo);
604 
605       // Store the remaining ExtraWidth bits.
606       IncrementSize = RoundWidth / 8;
607       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
608                         DAG.getConstant(IncrementSize, dl,
609                                         Ptr.getValueType()));
610       Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
611                              ST->getPointerInfo().getWithOffset(IncrementSize),
612                              ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
613     }
614 
615     // The order of the stores doesn't matter.
616     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
617     ReplaceNode(SDValue(Node, 0), Result);
618   } else {
619     switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
620     default: llvm_unreachable("This action is not supported yet!");
621     case TargetLowering::Legal: {
622       EVT MemVT = ST->getMemoryVT();
623       // If this is an unaligned store and the target doesn't support it,
624       // expand it.
625       if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
626                                               *ST->getMemOperand())) {
627         SDValue Result = TLI.expandUnalignedStore(ST, DAG);
628         ReplaceNode(SDValue(ST, 0), Result);
629       }
630       break;
631     }
632     case TargetLowering::Custom: {
633       SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
634       if (Res && Res != SDValue(Node, 0))
635         ReplaceNode(SDValue(Node, 0), Res);
636       return;
637     }
638     case TargetLowering::Expand:
639       assert(!StVT.isVector() &&
640              "Vector Stores are handled in LegalizeVectorOps");
641 
642       SDValue Result;
643 
644       // TRUNCSTORE:i16 i32 -> STORE i16
645       if (TLI.isTypeLegal(StVT)) {
646         Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
647         Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
648                               ST->getOriginalAlign(), MMOFlags, AAInfo);
649       } else {
650         // The in-memory type isn't legal. Truncate to the type it would promote
651         // to, and then do a truncstore.
652         Value = DAG.getNode(ISD::TRUNCATE, dl,
653                             TLI.getTypeToTransformTo(*DAG.getContext(), StVT),
654                             Value);
655         Result =
656             DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT,
657                               ST->getOriginalAlign(), MMOFlags, AAInfo);
658       }
659 
660       ReplaceNode(SDValue(Node, 0), Result);
661       break;
662     }
663   }
664 }
665 
LegalizeLoadOps(SDNode * Node)666 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
667   LoadSDNode *LD = cast<LoadSDNode>(Node);
668   SDValue Chain = LD->getChain();  // The chain.
669   SDValue Ptr = LD->getBasePtr();  // The base pointer.
670   SDValue Value;                   // The value returned by the load op.
671   SDLoc dl(Node);
672 
673   ISD::LoadExtType ExtType = LD->getExtensionType();
674   if (ExtType == ISD::NON_EXTLOAD) {
675     LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n");
676     MVT VT = Node->getSimpleValueType(0);
677     SDValue RVal = SDValue(Node, 0);
678     SDValue RChain = SDValue(Node, 1);
679 
680     switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
681     default: llvm_unreachable("This action is not supported yet!");
682     case TargetLowering::Legal: {
683       EVT MemVT = LD->getMemoryVT();
684       const DataLayout &DL = DAG.getDataLayout();
685       // If this is an unaligned load and the target doesn't support it,
686       // expand it.
687       if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
688                                               *LD->getMemOperand())) {
689         std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG);
690       }
691       break;
692     }
693     case TargetLowering::Custom:
694       if (SDValue Res = TLI.LowerOperation(RVal, DAG)) {
695         RVal = Res;
696         RChain = Res.getValue(1);
697       }
698       break;
699 
700     case TargetLowering::Promote: {
701       MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
702       assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
703              "Can only promote loads to same size type");
704 
705       SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
706       RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
707       RChain = Res.getValue(1);
708       break;
709     }
710     }
711     if (RChain.getNode() != Node) {
712       assert(RVal.getNode() != Node && "Load must be completely replaced");
713       DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
714       DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
715       if (UpdatedNodes) {
716         UpdatedNodes->insert(RVal.getNode());
717         UpdatedNodes->insert(RChain.getNode());
718       }
719       ReplacedNode(Node);
720     }
721     return;
722   }
723 
724   LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n");
725   EVT SrcVT = LD->getMemoryVT();
726   TypeSize SrcWidth = SrcVT.getSizeInBits();
727   MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
728   AAMDNodes AAInfo = LD->getAAInfo();
729 
730   if (SrcWidth != SrcVT.getStoreSizeInBits() &&
731       // Some targets pretend to have an i1 loading operation, and actually
732       // load an i8.  This trick is correct for ZEXTLOAD because the top 7
733       // bits are guaranteed to be zero; it helps the optimizers understand
734       // that these bits are zero.  It is also useful for EXTLOAD, since it
735       // tells the optimizers that those bits are undefined.  It would be
736       // nice to have an effective generic way of getting these benefits...
737       // Until such a way is found, don't insist on promoting i1 here.
738       (SrcVT != MVT::i1 ||
739        TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
740          TargetLowering::Promote)) {
741     // Promote to a byte-sized load if not loading an integral number of
742     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
743     unsigned NewWidth = SrcVT.getStoreSizeInBits();
744     EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
745     SDValue Ch;
746 
747     // The extra bits are guaranteed to be zero, since we stored them that
748     // way.  A zext load from NVT thus automatically gives zext from SrcVT.
749 
750     ISD::LoadExtType NewExtType =
751       ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
752 
753     SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
754                                     Chain, Ptr, LD->getPointerInfo(), NVT,
755                                     LD->getOriginalAlign(), MMOFlags, AAInfo);
756 
757     Ch = Result.getValue(1); // The chain.
758 
759     if (ExtType == ISD::SEXTLOAD)
760       // Having the top bits zero doesn't help when sign extending.
761       Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
762                            Result.getValueType(),
763                            Result, DAG.getValueType(SrcVT));
764     else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
765       // All the top bits are guaranteed to be zero - inform the optimizers.
766       Result = DAG.getNode(ISD::AssertZext, dl,
767                            Result.getValueType(), Result,
768                            DAG.getValueType(SrcVT));
769 
770     Value = Result;
771     Chain = Ch;
772   } else if (!isPowerOf2_64(SrcWidth.getKnownMinSize())) {
773     // If not loading a power-of-2 number of bits, expand as two loads.
774     assert(!SrcVT.isVector() && "Unsupported extload!");
775     unsigned SrcWidthBits = SrcWidth.getFixedSize();
776     unsigned LogSrcWidth = Log2_32(SrcWidthBits);
777     assert(LogSrcWidth < 32);
778     unsigned RoundWidth = 1 << LogSrcWidth;
779     assert(RoundWidth < SrcWidthBits);
780     unsigned ExtraWidth = SrcWidthBits - RoundWidth;
781     assert(ExtraWidth < RoundWidth);
782     assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
783            "Load size not an integral number of bytes!");
784     EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
785     EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
786     SDValue Lo, Hi, Ch;
787     unsigned IncrementSize;
788     auto &DL = DAG.getDataLayout();
789 
790     if (DL.isLittleEndian()) {
791       // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
792       // Load the bottom RoundWidth bits.
793       Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
794                           LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(),
795                           MMOFlags, AAInfo);
796 
797       // Load the remaining ExtraWidth bits.
798       IncrementSize = RoundWidth / 8;
799       Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl);
800       Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
801                           LD->getPointerInfo().getWithOffset(IncrementSize),
802                           ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo);
803 
804       // Build a factor node to remember that this load is independent of
805       // the other one.
806       Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
807                        Hi.getValue(1));
808 
809       // Move the top bits to the right place.
810       Hi = DAG.getNode(
811           ISD::SHL, dl, Hi.getValueType(), Hi,
812           DAG.getConstant(RoundWidth, dl,
813                           TLI.getShiftAmountTy(Hi.getValueType(), DL)));
814 
815       // Join the hi and lo parts.
816       Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
817     } else {
818       // Big endian - avoid unaligned loads.
819       // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
820       // Load the top RoundWidth bits.
821       Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
822                           LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(),
823                           MMOFlags, AAInfo);
824 
825       // Load the remaining ExtraWidth bits.
826       IncrementSize = RoundWidth / 8;
827       Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl);
828       Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
829                           LD->getPointerInfo().getWithOffset(IncrementSize),
830                           ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo);
831 
832       // Build a factor node to remember that this load is independent of
833       // the other one.
834       Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
835                        Hi.getValue(1));
836 
837       // Move the top bits to the right place.
838       Hi = DAG.getNode(
839           ISD::SHL, dl, Hi.getValueType(), Hi,
840           DAG.getConstant(ExtraWidth, dl,
841                           TLI.getShiftAmountTy(Hi.getValueType(), DL)));
842 
843       // Join the hi and lo parts.
844       Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
845     }
846 
847     Chain = Ch;
848   } else {
849     bool isCustom = false;
850     switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
851                                  SrcVT.getSimpleVT())) {
852     default: llvm_unreachable("This action is not supported yet!");
853     case TargetLowering::Custom:
854       isCustom = true;
855       LLVM_FALLTHROUGH;
856     case TargetLowering::Legal:
857       Value = SDValue(Node, 0);
858       Chain = SDValue(Node, 1);
859 
860       if (isCustom) {
861         if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
862           Value = Res;
863           Chain = Res.getValue(1);
864         }
865       } else {
866         // If this is an unaligned load and the target doesn't support it,
867         // expand it.
868         EVT MemVT = LD->getMemoryVT();
869         const DataLayout &DL = DAG.getDataLayout();
870         if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT,
871                                     *LD->getMemOperand())) {
872           std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG);
873         }
874       }
875       break;
876 
877     case TargetLowering::Expand: {
878       EVT DestVT = Node->getValueType(0);
879       if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
880         // If the source type is not legal, see if there is a legal extload to
881         // an intermediate type that we can then extend further.
882         EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
883         if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
884             TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
885           // If we are loading a legal type, this is a non-extload followed by a
886           // full extend.
887           ISD::LoadExtType MidExtType =
888               (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
889 
890           SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
891                                         SrcVT, LD->getMemOperand());
892           unsigned ExtendOp =
893               ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
894           Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
895           Chain = Load.getValue(1);
896           break;
897         }
898 
899         // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
900         // normal undefined upper bits behavior to allow using an in-reg extend
901         // with the illegal FP type, so load as an integer and do the
902         // from-integer conversion.
903         if (SrcVT.getScalarType() == MVT::f16) {
904           EVT ISrcVT = SrcVT.changeTypeToInteger();
905           EVT IDestVT = DestVT.changeTypeToInteger();
906           EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());
907 
908           SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain,
909                                           Ptr, ISrcVT, LD->getMemOperand());
910           Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
911           Chain = Result.getValue(1);
912           break;
913         }
914       }
915 
916       assert(!SrcVT.isVector() &&
917              "Vector Loads are handled in LegalizeVectorOps");
918 
919       // FIXME: This does not work for vectors on most targets.  Sign-
920       // and zero-extend operations are currently folded into extending
921       // loads, whether they are legal or not, and then we end up here
922       // without any support for legalizing them.
923       assert(ExtType != ISD::EXTLOAD &&
924              "EXTLOAD should always be supported!");
925       // Turn the unsupported load into an EXTLOAD followed by an
926       // explicit zero/sign extend inreg.
927       SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
928                                       Node->getValueType(0),
929                                       Chain, Ptr, SrcVT,
930                                       LD->getMemOperand());
931       SDValue ValRes;
932       if (ExtType == ISD::SEXTLOAD)
933         ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
934                              Result.getValueType(),
935                              Result, DAG.getValueType(SrcVT));
936       else
937         ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
938       Value = ValRes;
939       Chain = Result.getValue(1);
940       break;
941     }
942     }
943   }
944 
945   // Since loads produce two values, make sure to remember that we legalized
946   // both of them.
947   if (Chain.getNode() != Node) {
948     assert(Value.getNode() != Node && "Load must be completely replaced");
949     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
950     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
951     if (UpdatedNodes) {
952       UpdatedNodes->insert(Value.getNode());
953       UpdatedNodes->insert(Chain.getNode());
954     }
955     ReplacedNode(Node);
956   }
957 }
958 
959 /// Return a legal replacement for the given operation, with all legal operands.
LegalizeOp(SDNode * Node)960 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
961   LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
962 
963   // Allow illegal target nodes and illegal registers.
964   if (Node->getOpcode() == ISD::TargetConstant ||
965       Node->getOpcode() == ISD::Register)
966     return;
967 
968 #ifndef NDEBUG
969   for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
970     assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
971              TargetLowering::TypeLegal &&
972            "Unexpected illegal type!");
973 
974   for (const SDValue &Op : Node->op_values())
975     assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) ==
976               TargetLowering::TypeLegal ||
977             Op.getOpcode() == ISD::TargetConstant ||
978             Op.getOpcode() == ISD::Register) &&
979             "Unexpected illegal type!");
980 #endif
981 
982   // Figure out the correct action; the way to query this varies by opcode
983   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
984   bool SimpleFinishLegalizing = true;
985   switch (Node->getOpcode()) {
986   case ISD::INTRINSIC_W_CHAIN:
987   case ISD::INTRINSIC_WO_CHAIN:
988   case ISD::INTRINSIC_VOID:
989   case ISD::STACKSAVE:
990     Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
991     break;
992   case ISD::GET_DYNAMIC_AREA_OFFSET:
993     Action = TLI.getOperationAction(Node->getOpcode(),
994                                     Node->getValueType(0));
995     break;
996   case ISD::VAARG:
997     Action = TLI.getOperationAction(Node->getOpcode(),
998                                     Node->getValueType(0));
999     if (Action != TargetLowering::Promote)
1000       Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1001     break;
1002   case ISD::FP_TO_FP16:
1003   case ISD::SINT_TO_FP:
1004   case ISD::UINT_TO_FP:
1005   case ISD::EXTRACT_VECTOR_ELT:
1006   case ISD::LROUND:
1007   case ISD::LLROUND:
1008   case ISD::LRINT:
1009   case ISD::LLRINT:
1010     Action = TLI.getOperationAction(Node->getOpcode(),
1011                                     Node->getOperand(0).getValueType());
1012     break;
1013   case ISD::STRICT_FP_TO_FP16:
1014   case ISD::STRICT_SINT_TO_FP:
1015   case ISD::STRICT_UINT_TO_FP:
1016   case ISD::STRICT_LRINT:
1017   case ISD::STRICT_LLRINT:
1018   case ISD::STRICT_LROUND:
1019   case ISD::STRICT_LLROUND:
1020     // These pseudo-ops are the same as the other STRICT_ ops except
1021     // they are registered with setOperationAction() using the input type
1022     // instead of the output type.
1023     Action = TLI.getOperationAction(Node->getOpcode(),
1024                                     Node->getOperand(1).getValueType());
1025     break;
1026   case ISD::SIGN_EXTEND_INREG: {
1027     EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1028     Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1029     break;
1030   }
1031   case ISD::ATOMIC_STORE:
1032     Action = TLI.getOperationAction(Node->getOpcode(),
1033                                     Node->getOperand(2).getValueType());
1034     break;
1035   case ISD::SELECT_CC:
1036   case ISD::STRICT_FSETCC:
1037   case ISD::STRICT_FSETCCS:
1038   case ISD::SETCC:
1039   case ISD::BR_CC: {
1040     unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1041                          Node->getOpcode() == ISD::STRICT_FSETCC ? 3 :
1042                          Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 :
1043                          Node->getOpcode() == ISD::SETCC ? 2 : 1;
1044     unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 :
1045                               Node->getOpcode() == ISD::STRICT_FSETCC ? 1 :
1046                               Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0;
1047     MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1048     ISD::CondCode CCCode =
1049         cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1050     Action = TLI.getCondCodeAction(CCCode, OpVT);
1051     if (Action == TargetLowering::Legal) {
1052       if (Node->getOpcode() == ISD::SELECT_CC)
1053         Action = TLI.getOperationAction(Node->getOpcode(),
1054                                         Node->getValueType(0));
1055       else
1056         Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1057     }
1058     break;
1059   }
1060   case ISD::LOAD:
1061   case ISD::STORE:
1062     // FIXME: Model these properly.  LOAD and STORE are complicated, and
1063     // STORE expects the unlegalized operand in some cases.
1064     SimpleFinishLegalizing = false;
1065     break;
1066   case ISD::CALLSEQ_START:
1067   case ISD::CALLSEQ_END:
1068     // FIXME: This shouldn't be necessary.  These nodes have special properties
1069     // dealing with the recursive nature of legalization.  Removing this
1070     // special case should be done as part of making LegalizeDAG non-recursive.
1071     SimpleFinishLegalizing = false;
1072     break;
1073   case ISD::EXTRACT_ELEMENT:
1074   case ISD::FLT_ROUNDS_:
1075   case ISD::MERGE_VALUES:
1076   case ISD::EH_RETURN:
1077   case ISD::FRAME_TO_ARGS_OFFSET:
1078   case ISD::EH_DWARF_CFA:
1079   case ISD::EH_SJLJ_SETJMP:
1080   case ISD::EH_SJLJ_LONGJMP:
1081   case ISD::EH_SJLJ_SETUP_DISPATCH:
1082     // These operations lie about being legal: when they claim to be legal,
1083     // they should actually be expanded.
1084     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1085     if (Action == TargetLowering::Legal)
1086       Action = TargetLowering::Expand;
1087     break;
1088   case ISD::INIT_TRAMPOLINE:
1089   case ISD::ADJUST_TRAMPOLINE:
1090   case ISD::FRAMEADDR:
1091   case ISD::RETURNADDR:
1092   case ISD::ADDROFRETURNADDR:
1093   case ISD::SPONENTRY:
1094     // These operations lie about being legal: when they claim to be legal,
1095     // they should actually be custom-lowered.
1096     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1097     if (Action == TargetLowering::Legal)
1098       Action = TargetLowering::Custom;
1099     break;
1100   case ISD::READCYCLECOUNTER:
1101     // READCYCLECOUNTER returns an i64, even if type legalization might have
1102     // expanded that to several smaller types.
1103     Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
1104     break;
1105   case ISD::READ_REGISTER:
1106   case ISD::WRITE_REGISTER:
1107     // Named register is legal in the DAG, but blocked by register name
1108     // selection if not implemented by target (to chose the correct register)
1109     // They'll be converted to Copy(To/From)Reg.
1110     Action = TargetLowering::Legal;
1111     break;
1112   case ISD::UBSANTRAP:
1113     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1114     if (Action == TargetLowering::Expand) {
1115       // replace ISD::UBSANTRAP with ISD::TRAP
1116       SDValue NewVal;
1117       NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1118                            Node->getOperand(0));
1119       ReplaceNode(Node, NewVal.getNode());
1120       LegalizeOp(NewVal.getNode());
1121       return;
1122     }
1123     break;
1124   case ISD::DEBUGTRAP:
1125     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1126     if (Action == TargetLowering::Expand) {
1127       // replace ISD::DEBUGTRAP with ISD::TRAP
1128       SDValue NewVal;
1129       NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1130                            Node->getOperand(0));
1131       ReplaceNode(Node, NewVal.getNode());
1132       LegalizeOp(NewVal.getNode());
1133       return;
1134     }
1135     break;
1136   case ISD::SADDSAT:
1137   case ISD::UADDSAT:
1138   case ISD::SSUBSAT:
1139   case ISD::USUBSAT:
1140   case ISD::SSHLSAT:
1141   case ISD::USHLSAT:
1142   case ISD::FP_TO_SINT_SAT:
1143   case ISD::FP_TO_UINT_SAT:
1144     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1145     break;
1146   case ISD::SMULFIX:
1147   case ISD::SMULFIXSAT:
1148   case ISD::UMULFIX:
1149   case ISD::UMULFIXSAT:
1150   case ISD::SDIVFIX:
1151   case ISD::SDIVFIXSAT:
1152   case ISD::UDIVFIX:
1153   case ISD::UDIVFIXSAT: {
1154     unsigned Scale = Node->getConstantOperandVal(2);
1155     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
1156                                               Node->getValueType(0), Scale);
1157     break;
1158   }
1159   case ISD::MSCATTER:
1160     Action = TLI.getOperationAction(Node->getOpcode(),
1161                     cast<MaskedScatterSDNode>(Node)->getValue().getValueType());
1162     break;
1163   case ISD::MSTORE:
1164     Action = TLI.getOperationAction(Node->getOpcode(),
1165                     cast<MaskedStoreSDNode>(Node)->getValue().getValueType());
1166     break;
1167   case ISD::VECREDUCE_FADD:
1168   case ISD::VECREDUCE_FMUL:
1169   case ISD::VECREDUCE_ADD:
1170   case ISD::VECREDUCE_MUL:
1171   case ISD::VECREDUCE_AND:
1172   case ISD::VECREDUCE_OR:
1173   case ISD::VECREDUCE_XOR:
1174   case ISD::VECREDUCE_SMAX:
1175   case ISD::VECREDUCE_SMIN:
1176   case ISD::VECREDUCE_UMAX:
1177   case ISD::VECREDUCE_UMIN:
1178   case ISD::VECREDUCE_FMAX:
1179   case ISD::VECREDUCE_FMIN:
1180     Action = TLI.getOperationAction(
1181         Node->getOpcode(), Node->getOperand(0).getValueType());
1182     break;
1183   case ISD::VECREDUCE_SEQ_FADD:
1184     Action = TLI.getOperationAction(
1185         Node->getOpcode(), Node->getOperand(1).getValueType());
1186     break;
1187   default:
1188     if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1189       Action = TargetLowering::Legal;
1190     } else {
1191       Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1192     }
1193     break;
1194   }
1195 
1196   if (SimpleFinishLegalizing) {
1197     SDNode *NewNode = Node;
1198     switch (Node->getOpcode()) {
1199     default: break;
1200     case ISD::SHL:
1201     case ISD::SRL:
1202     case ISD::SRA:
1203     case ISD::ROTL:
1204     case ISD::ROTR: {
1205       // Legalizing shifts/rotates requires adjusting the shift amount
1206       // to the appropriate width.
1207       SDValue Op0 = Node->getOperand(0);
1208       SDValue Op1 = Node->getOperand(1);
1209       if (!Op1.getValueType().isVector()) {
1210         SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1);
1211         // The getShiftAmountOperand() may create a new operand node or
1212         // return the existing one. If new operand is created we need
1213         // to update the parent node.
1214         // Do not try to legalize SAO here! It will be automatically legalized
1215         // in the next round.
1216         if (SAO != Op1)
1217           NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO);
1218       }
1219     }
1220     break;
1221     case ISD::FSHL:
1222     case ISD::FSHR:
1223     case ISD::SRL_PARTS:
1224     case ISD::SRA_PARTS:
1225     case ISD::SHL_PARTS: {
1226       // Legalizing shifts/rotates requires adjusting the shift amount
1227       // to the appropriate width.
1228       SDValue Op0 = Node->getOperand(0);
1229       SDValue Op1 = Node->getOperand(1);
1230       SDValue Op2 = Node->getOperand(2);
1231       if (!Op2.getValueType().isVector()) {
1232         SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2);
1233         // The getShiftAmountOperand() may create a new operand node or
1234         // return the existing one. If new operand is created we need
1235         // to update the parent node.
1236         if (SAO != Op2)
1237           NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO);
1238       }
1239       break;
1240     }
1241     }
1242 
1243     if (NewNode != Node) {
1244       ReplaceNode(Node, NewNode);
1245       Node = NewNode;
1246     }
1247     switch (Action) {
1248     case TargetLowering::Legal:
1249       LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
1250       return;
1251     case TargetLowering::Custom:
1252       LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
1253       // FIXME: The handling for custom lowering with multiple results is
1254       // a complete mess.
1255       if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
1256         if (!(Res.getNode() != Node || Res.getResNo() != 0))
1257           return;
1258 
1259         if (Node->getNumValues() == 1) {
1260           // Verify the new types match the original. Glue is waived because
1261           // ISD::ADDC can be legalized by replacing Glue with an integer type.
1262           assert((Res.getValueType() == Node->getValueType(0) ||
1263                   Node->getValueType(0) == MVT::Glue) &&
1264                  "Type mismatch for custom legalized operation");
1265           LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1266           // We can just directly replace this node with the lowered value.
1267           ReplaceNode(SDValue(Node, 0), Res);
1268           return;
1269         }
1270 
1271         SmallVector<SDValue, 8> ResultVals;
1272         for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
1273           // Verify the new types match the original. Glue is waived because
1274           // ISD::ADDC can be legalized by replacing Glue with an integer type.
1275           assert((Res->getValueType(i) == Node->getValueType(i) ||
1276                   Node->getValueType(i) == MVT::Glue) &&
1277                  "Type mismatch for custom legalized operation");
1278           ResultVals.push_back(Res.getValue(i));
1279         }
1280         LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1281         ReplaceNode(Node, ResultVals.data());
1282         return;
1283       }
1284       LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
1285       LLVM_FALLTHROUGH;
1286     case TargetLowering::Expand:
1287       if (ExpandNode(Node))
1288         return;
1289       LLVM_FALLTHROUGH;
1290     case TargetLowering::LibCall:
1291       ConvertNodeToLibcall(Node);
1292       return;
1293     case TargetLowering::Promote:
1294       PromoteNode(Node);
1295       return;
1296     }
1297   }
1298 
1299   switch (Node->getOpcode()) {
1300   default:
1301 #ifndef NDEBUG
1302     dbgs() << "NODE: ";
1303     Node->dump( &DAG);
1304     dbgs() << "\n";
1305 #endif
1306     llvm_unreachable("Do not know how to legalize this operator!");
1307 
1308   case ISD::CALLSEQ_START:
1309   case ISD::CALLSEQ_END:
1310     break;
1311   case ISD::LOAD:
1312     return LegalizeLoadOps(Node);
1313   case ISD::STORE:
1314     return LegalizeStoreOps(Node);
1315   }
1316 }
1317 
ExpandExtractFromVectorThroughStack(SDValue Op)1318 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1319   SDValue Vec = Op.getOperand(0);
1320   SDValue Idx = Op.getOperand(1);
1321   SDLoc dl(Op);
1322 
1323   // Before we generate a new store to a temporary stack slot, see if there is
1324   // already one that we can use. There often is because when we scalarize
1325   // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1326   // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1327   // the vector. If all are expanded here, we don't want one store per vector
1328   // element.
1329 
1330   // Caches for hasPredecessorHelper
1331   SmallPtrSet<const SDNode *, 32> Visited;
1332   SmallVector<const SDNode *, 16> Worklist;
1333   Visited.insert(Op.getNode());
1334   Worklist.push_back(Idx.getNode());
1335   SDValue StackPtr, Ch;
1336   for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
1337        UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
1338     SDNode *User = *UI;
1339     if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
1340       if (ST->isIndexed() || ST->isTruncatingStore() ||
1341           ST->getValue() != Vec)
1342         continue;
1343 
1344       // Make sure that nothing else could have stored into the destination of
1345       // this store.
1346       if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
1347         continue;
1348 
1349       // If the index is dependent on the store we will introduce a cycle when
1350       // creating the load (the load uses the index, and by replacing the chain
1351       // we will make the index dependent on the load). Also, the store might be
1352       // dependent on the extractelement and introduce a cycle when creating
1353       // the load.
1354       if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) ||
1355           ST->hasPredecessor(Op.getNode()))
1356         continue;
1357 
1358       StackPtr = ST->getBasePtr();
1359       Ch = SDValue(ST, 0);
1360       break;
1361     }
1362   }
1363 
1364   EVT VecVT = Vec.getValueType();
1365 
1366   if (!Ch.getNode()) {
1367     // Store the value to a temporary stack slot, then LOAD the returned part.
1368     StackPtr = DAG.CreateStackTemporary(VecVT);
1369     Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1370                       MachinePointerInfo());
1371   }
1372 
1373   SDValue NewLoad;
1374 
1375   if (Op.getValueType().isVector()) {
1376     StackPtr = TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT,
1377                                           Op.getValueType(), Idx);
1378     NewLoad =
1379         DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo());
1380   } else {
1381     StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1382     NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1383                              MachinePointerInfo(),
1384                              VecVT.getVectorElementType());
1385   }
1386 
1387   // Replace the chain going out of the store, by the one out of the load.
1388   DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
1389 
1390   // We introduced a cycle though, so update the loads operands, making sure
1391   // to use the original store's chain as an incoming chain.
1392   SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
1393                                           NewLoad->op_end());
1394   NewLoadOperands[0] = Ch;
1395   NewLoad =
1396       SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
1397   return NewLoad;
1398 }
1399 
ExpandInsertToVectorThroughStack(SDValue Op)1400 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1401   assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1402 
1403   SDValue Vec  = Op.getOperand(0);
1404   SDValue Part = Op.getOperand(1);
1405   SDValue Idx  = Op.getOperand(2);
1406   SDLoc dl(Op);
1407 
1408   // Store the value to a temporary stack slot, then LOAD the returned part.
1409   EVT VecVT = Vec.getValueType();
1410   EVT SubVecVT = Part.getValueType();
1411   SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1412   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1413   MachinePointerInfo PtrInfo =
1414       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1415 
1416   // First store the whole vector.
1417   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo);
1418 
1419   // Then store the inserted part.
1420   SDValue SubStackPtr =
1421       TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, SubVecVT, Idx);
1422 
1423   // Store the subvector.
1424   Ch = DAG.getStore(
1425       Ch, dl, Part, SubStackPtr,
1426       MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1427 
1428   // Finally, load the updated vector.
1429   return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo);
1430 }
1431 
ExpandVectorBuildThroughStack(SDNode * Node)1432 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1433   assert((Node->getOpcode() == ISD::BUILD_VECTOR ||
1434           Node->getOpcode() == ISD::CONCAT_VECTORS) &&
1435          "Unexpected opcode!");
1436 
1437   // We can't handle this case efficiently.  Allocate a sufficiently
1438   // aligned object on the stack, store each operand into it, then load
1439   // the result as a vector.
1440   // Create the stack frame object.
1441   EVT VT = Node->getValueType(0);
1442   EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType()
1443                                            : Node->getOperand(0).getValueType();
1444   SDLoc dl(Node);
1445   SDValue FIPtr = DAG.CreateStackTemporary(VT);
1446   int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1447   MachinePointerInfo PtrInfo =
1448       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1449 
1450   // Emit a store of each element to the stack slot.
1451   SmallVector<SDValue, 8> Stores;
1452   unsigned TypeByteSize = MemVT.getSizeInBits() / 8;
1453   assert(TypeByteSize > 0 && "Vector element type too small for stack store!");
1454 
1455   // If the destination vector element type of a BUILD_VECTOR is narrower than
1456   // the source element type, only store the bits necessary.
1457   bool Truncate = isa<BuildVectorSDNode>(Node) &&
1458                   MemVT.bitsLT(Node->getOperand(0).getValueType());
1459 
1460   // Store (in the right endianness) the elements to memory.
1461   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1462     // Ignore undef elements.
1463     if (Node->getOperand(i).isUndef()) continue;
1464 
1465     unsigned Offset = TypeByteSize*i;
1466 
1467     SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, TypeSize::Fixed(Offset), dl);
1468 
1469     if (Truncate)
1470       Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1471                                          Node->getOperand(i), Idx,
1472                                          PtrInfo.getWithOffset(Offset), MemVT));
1473     else
1474       Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1475                                     Idx, PtrInfo.getWithOffset(Offset)));
1476   }
1477 
1478   SDValue StoreChain;
1479   if (!Stores.empty())    // Not all undef elements?
1480     StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
1481   else
1482     StoreChain = DAG.getEntryNode();
1483 
1484   // Result is a load from the stack slot.
1485   return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo);
1486 }
1487 
1488 /// Bitcast a floating-point value to an integer value. Only bitcast the part
1489 /// containing the sign bit if the target has no integer value capable of
1490 /// holding all bits of the floating-point value.
getSignAsIntValue(FloatSignAsInt & State,const SDLoc & DL,SDValue Value) const1491 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
1492                                              const SDLoc &DL,
1493                                              SDValue Value) const {
1494   EVT FloatVT = Value.getValueType();
1495   unsigned NumBits = FloatVT.getScalarSizeInBits();
1496   State.FloatVT = FloatVT;
1497   EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
1498   // Convert to an integer of the same size.
1499   if (TLI.isTypeLegal(IVT)) {
1500     State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
1501     State.SignMask = APInt::getSignMask(NumBits);
1502     State.SignBit = NumBits - 1;
1503     return;
1504   }
1505 
1506   auto &DataLayout = DAG.getDataLayout();
1507   // Store the float to memory, then load the sign part out as an integer.
1508   MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
1509   // First create a temporary that is aligned for both the load and store.
1510   SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1511   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1512   // Then store the float to it.
1513   State.FloatPtr = StackPtr;
1514   MachineFunction &MF = DAG.getMachineFunction();
1515   State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
1516   State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
1517                              State.FloatPointerInfo);
1518 
1519   SDValue IntPtr;
1520   if (DataLayout.isBigEndian()) {
1521     assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1522     // Load out a legal integer with the same sign bit as the float.
1523     IntPtr = StackPtr;
1524     State.IntPointerInfo = State.FloatPointerInfo;
1525   } else {
1526     // Advance the pointer so that the loaded byte will contain the sign bit.
1527     unsigned ByteOffset = (NumBits / 8) - 1;
1528     IntPtr =
1529         DAG.getMemBasePlusOffset(StackPtr, TypeSize::Fixed(ByteOffset), DL);
1530     State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
1531                                                              ByteOffset);
1532   }
1533 
1534   State.IntPtr = IntPtr;
1535   State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr,
1536                                   State.IntPointerInfo, MVT::i8);
1537   State.SignMask = APInt::getOneBitSet(LoadTy.getScalarSizeInBits(), 7);
1538   State.SignBit = 7;
1539 }
1540 
1541 /// Replace the integer value produced by getSignAsIntValue() with a new value
1542 /// and cast the result back to a floating-point type.
modifySignAsInt(const FloatSignAsInt & State,const SDLoc & DL,SDValue NewIntValue) const1543 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
1544                                               const SDLoc &DL,
1545                                               SDValue NewIntValue) const {
1546   if (!State.Chain)
1547     return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);
1548 
1549   // Override the part containing the sign bit in the value stored on the stack.
1550   SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
1551                                     State.IntPointerInfo, MVT::i8);
1552   return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
1553                      State.FloatPointerInfo);
1554 }
1555 
ExpandFCOPYSIGN(SDNode * Node) const1556 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
1557   SDLoc DL(Node);
1558   SDValue Mag = Node->getOperand(0);
1559   SDValue Sign = Node->getOperand(1);
1560 
1561   // Get sign bit into an integer value.
1562   FloatSignAsInt SignAsInt;
1563   getSignAsIntValue(SignAsInt, DL, Sign);
1564 
1565   EVT IntVT = SignAsInt.IntValue.getValueType();
1566   SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1567   SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
1568                                 SignMask);
1569 
1570   // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1571   EVT FloatVT = Mag.getValueType();
1572   if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
1573       TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
1574     SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
1575     SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
1576     SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
1577                                 DAG.getConstant(0, DL, IntVT), ISD::SETNE);
1578     return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
1579   }
1580 
1581   // Transform Mag value to integer, and clear the sign bit.
1582   FloatSignAsInt MagAsInt;
1583   getSignAsIntValue(MagAsInt, DL, Mag);
1584   EVT MagVT = MagAsInt.IntValue.getValueType();
1585   SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT);
1586   SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue,
1587                                     ClearSignMask);
1588 
1589   // Get the signbit at the right position for MagAsInt.
1590   int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
1591   EVT ShiftVT = IntVT;
1592   if (SignBit.getScalarValueSizeInBits() <
1593       ClearedSign.getScalarValueSizeInBits()) {
1594     SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit);
1595     ShiftVT = MagVT;
1596   }
1597   if (ShiftAmount > 0) {
1598     SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT);
1599     SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst);
1600   } else if (ShiftAmount < 0) {
1601     SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT);
1602     SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst);
1603   }
1604   if (SignBit.getScalarValueSizeInBits() >
1605       ClearedSign.getScalarValueSizeInBits()) {
1606     SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit);
1607   }
1608 
1609   // Store the part with the modified sign and convert back to float.
1610   SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit);
1611   return modifySignAsInt(MagAsInt, DL, CopiedSign);
1612 }
1613 
ExpandFNEG(SDNode * Node) const1614 SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const {
1615   // Get the sign bit as an integer.
1616   SDLoc DL(Node);
1617   FloatSignAsInt SignAsInt;
1618   getSignAsIntValue(SignAsInt, DL, Node->getOperand(0));
1619   EVT IntVT = SignAsInt.IntValue.getValueType();
1620 
1621   // Flip the sign.
1622   SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1623   SDValue SignFlip =
1624       DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask);
1625 
1626   // Convert back to float.
1627   return modifySignAsInt(SignAsInt, DL, SignFlip);
1628 }
1629 
ExpandFABS(SDNode * Node) const1630 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
1631   SDLoc DL(Node);
1632   SDValue Value = Node->getOperand(0);
1633 
1634   // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1635   EVT FloatVT = Value.getValueType();
1636   if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
1637     SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
1638     return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
1639   }
1640 
1641   // Transform value to integer, clear the sign bit and transform back.
1642   FloatSignAsInt ValueAsInt;
1643   getSignAsIntValue(ValueAsInt, DL, Value);
1644   EVT IntVT = ValueAsInt.IntValue.getValueType();
1645   SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
1646   SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
1647                                     ClearSignMask);
1648   return modifySignAsInt(ValueAsInt, DL, ClearedSign);
1649 }
1650 
ExpandDYNAMIC_STACKALLOC(SDNode * Node,SmallVectorImpl<SDValue> & Results)1651 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1652                                            SmallVectorImpl<SDValue> &Results) {
1653   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
1654   assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1655           " not tell us which reg is the stack pointer!");
1656   SDLoc dl(Node);
1657   EVT VT = Node->getValueType(0);
1658   SDValue Tmp1 = SDValue(Node, 0);
1659   SDValue Tmp2 = SDValue(Node, 1);
1660   SDValue Tmp3 = Node->getOperand(2);
1661   SDValue Chain = Tmp1.getOperand(0);
1662 
1663   // Chain the dynamic stack allocation so that it doesn't modify the stack
1664   // pointer when other instructions are using the stack.
1665   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
1666 
1667   SDValue Size  = Tmp2.getOperand(1);
1668   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1669   Chain = SP.getValue(1);
1670   Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue();
1671   const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering();
1672   unsigned Opc =
1673     TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
1674     ISD::ADD : ISD::SUB;
1675 
1676   Align StackAlign = TFL->getStackAlign();
1677   Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size);       // Value
1678   if (Alignment > StackAlign)
1679     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1680                        DAG.getConstant(-Alignment.value(), dl, VT));
1681   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1682 
1683   Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
1684                             DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
1685 
1686   Results.push_back(Tmp1);
1687   Results.push_back(Tmp2);
1688 }
1689 
1690 /// Emit a store/load combination to the stack.  This stores
1691 /// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1692 /// a load from the stack slot to DestVT, extending it if needed.
1693 /// The resultant code need not be legal.
EmitStackConvert(SDValue SrcOp,EVT SlotVT,EVT DestVT,const SDLoc & dl)1694 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1695                                                EVT DestVT, const SDLoc &dl) {
1696   return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode());
1697 }
1698 
EmitStackConvert(SDValue SrcOp,EVT SlotVT,EVT DestVT,const SDLoc & dl,SDValue Chain)1699 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1700                                                EVT DestVT, const SDLoc &dl,
1701                                                SDValue Chain) {
1702   unsigned SrcSize = SrcOp.getValueSizeInBits();
1703   unsigned SlotSize = SlotVT.getSizeInBits();
1704   unsigned DestSize = DestVT.getSizeInBits();
1705   Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1706   Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType);
1707 
1708   // Don't convert with stack if the load/store is expensive.
1709   if ((SrcSize > SlotSize &&
1710        !TLI.isTruncStoreLegalOrCustom(SrcOp.getValueType(), SlotVT)) ||
1711       (SlotSize < DestSize &&
1712        !TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, DestVT, SlotVT)))
1713     return SDValue();
1714 
1715   // Create the stack frame object.
1716   Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign(
1717       SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
1718   SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign);
1719 
1720   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1721   int SPFI = StackPtrFI->getIndex();
1722   MachinePointerInfo PtrInfo =
1723       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
1724 
1725   // Emit a store to the stack slot.  Use a truncstore if the input value is
1726   // later than DestVT.
1727   SDValue Store;
1728 
1729   if (SrcSize > SlotSize)
1730     Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo,
1731                               SlotVT, SrcAlign);
1732   else {
1733     assert(SrcSize == SlotSize && "Invalid store");
1734     Store =
1735         DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign);
1736   }
1737 
1738   // Result is a load from the stack slot.
1739   if (SlotSize == DestSize)
1740     return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign);
1741 
1742   assert(SlotSize < DestSize && "Unknown extension!");
1743   return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT,
1744                         DestAlign);
1745 }
1746 
ExpandSCALAR_TO_VECTOR(SDNode * Node)1747 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1748   SDLoc dl(Node);
1749   // Create a vector sized/aligned stack slot, store the value to element #0,
1750   // then load the whole vector back out.
1751   SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1752 
1753   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1754   int SPFI = StackPtrFI->getIndex();
1755 
1756   SDValue Ch = DAG.getTruncStore(
1757       DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
1758       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
1759       Node->getValueType(0).getVectorElementType());
1760   return DAG.getLoad(
1761       Node->getValueType(0), dl, Ch, StackPtr,
1762       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
1763 }
1764 
1765 static bool
ExpandBVWithShuffles(SDNode * Node,SelectionDAG & DAG,const TargetLowering & TLI,SDValue & Res)1766 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
1767                      const TargetLowering &TLI, SDValue &Res) {
1768   unsigned NumElems = Node->getNumOperands();
1769   SDLoc dl(Node);
1770   EVT VT = Node->getValueType(0);
1771 
1772   // Try to group the scalars into pairs, shuffle the pairs together, then
1773   // shuffle the pairs of pairs together, etc. until the vector has
1774   // been built. This will work only if all of the necessary shuffle masks
1775   // are legal.
1776 
1777   // We do this in two phases; first to check the legality of the shuffles,
1778   // and next, assuming that all shuffles are legal, to create the new nodes.
1779   for (int Phase = 0; Phase < 2; ++Phase) {
1780     SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals,
1781                                                               NewIntermedVals;
1782     for (unsigned i = 0; i < NumElems; ++i) {
1783       SDValue V = Node->getOperand(i);
1784       if (V.isUndef())
1785         continue;
1786 
1787       SDValue Vec;
1788       if (Phase)
1789         Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
1790       IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
1791     }
1792 
1793     while (IntermedVals.size() > 2) {
1794       NewIntermedVals.clear();
1795       for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
1796         // This vector and the next vector are shuffled together (simply to
1797         // append the one to the other).
1798         SmallVector<int, 16> ShuffleVec(NumElems, -1);
1799 
1800         SmallVector<int, 16> FinalIndices;
1801         FinalIndices.reserve(IntermedVals[i].second.size() +
1802                              IntermedVals[i+1].second.size());
1803 
1804         int k = 0;
1805         for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
1806              ++j, ++k) {
1807           ShuffleVec[k] = j;
1808           FinalIndices.push_back(IntermedVals[i].second[j]);
1809         }
1810         for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
1811              ++j, ++k) {
1812           ShuffleVec[k] = NumElems + j;
1813           FinalIndices.push_back(IntermedVals[i+1].second[j]);
1814         }
1815 
1816         SDValue Shuffle;
1817         if (Phase)
1818           Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
1819                                          IntermedVals[i+1].first,
1820                                          ShuffleVec);
1821         else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1822           return false;
1823         NewIntermedVals.push_back(
1824             std::make_pair(Shuffle, std::move(FinalIndices)));
1825       }
1826 
1827       // If we had an odd number of defined values, then append the last
1828       // element to the array of new vectors.
1829       if ((IntermedVals.size() & 1) != 0)
1830         NewIntermedVals.push_back(IntermedVals.back());
1831 
1832       IntermedVals.swap(NewIntermedVals);
1833     }
1834 
1835     assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
1836            "Invalid number of intermediate vectors");
1837     SDValue Vec1 = IntermedVals[0].first;
1838     SDValue Vec2;
1839     if (IntermedVals.size() > 1)
1840       Vec2 = IntermedVals[1].first;
1841     else if (Phase)
1842       Vec2 = DAG.getUNDEF(VT);
1843 
1844     SmallVector<int, 16> ShuffleVec(NumElems, -1);
1845     for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
1846       ShuffleVec[IntermedVals[0].second[i]] = i;
1847     for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
1848       ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
1849 
1850     if (Phase)
1851       Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1852     else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1853       return false;
1854   }
1855 
1856   return true;
1857 }
1858 
1859 /// Expand a BUILD_VECTOR node on targets that don't
1860 /// support the operation, but do support the resultant vector type.
ExpandBUILD_VECTOR(SDNode * Node)1861 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1862   unsigned NumElems = Node->getNumOperands();
1863   SDValue Value1, Value2;
1864   SDLoc dl(Node);
1865   EVT VT = Node->getValueType(0);
1866   EVT OpVT = Node->getOperand(0).getValueType();
1867   EVT EltVT = VT.getVectorElementType();
1868 
1869   // If the only non-undef value is the low element, turn this into a
1870   // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1871   bool isOnlyLowElement = true;
1872   bool MoreThanTwoValues = false;
1873   bool isConstant = true;
1874   for (unsigned i = 0; i < NumElems; ++i) {
1875     SDValue V = Node->getOperand(i);
1876     if (V.isUndef())
1877       continue;
1878     if (i > 0)
1879       isOnlyLowElement = false;
1880     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1881       isConstant = false;
1882 
1883     if (!Value1.getNode()) {
1884       Value1 = V;
1885     } else if (!Value2.getNode()) {
1886       if (V != Value1)
1887         Value2 = V;
1888     } else if (V != Value1 && V != Value2) {
1889       MoreThanTwoValues = true;
1890     }
1891   }
1892 
1893   if (!Value1.getNode())
1894     return DAG.getUNDEF(VT);
1895 
1896   if (isOnlyLowElement)
1897     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1898 
1899   // If all elements are constants, create a load from the constant pool.
1900   if (isConstant) {
1901     SmallVector<Constant*, 16> CV;
1902     for (unsigned i = 0, e = NumElems; i != e; ++i) {
1903       if (ConstantFPSDNode *V =
1904           dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1905         CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1906       } else if (ConstantSDNode *V =
1907                  dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1908         if (OpVT==EltVT)
1909           CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1910         else {
1911           // If OpVT and EltVT don't match, EltVT is not legal and the
1912           // element values have been promoted/truncated earlier.  Undo this;
1913           // we don't want a v16i8 to become a v16i32 for example.
1914           const ConstantInt *CI = V->getConstantIntValue();
1915           CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1916                                         CI->getZExtValue()));
1917         }
1918       } else {
1919         assert(Node->getOperand(i).isUndef());
1920         Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1921         CV.push_back(UndefValue::get(OpNTy));
1922       }
1923     }
1924     Constant *CP = ConstantVector::get(CV);
1925     SDValue CPIdx =
1926         DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
1927     Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
1928     return DAG.getLoad(
1929         VT, dl, DAG.getEntryNode(), CPIdx,
1930         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
1931         Alignment);
1932   }
1933 
1934   SmallSet<SDValue, 16> DefinedValues;
1935   for (unsigned i = 0; i < NumElems; ++i) {
1936     if (Node->getOperand(i).isUndef())
1937       continue;
1938     DefinedValues.insert(Node->getOperand(i));
1939   }
1940 
1941   if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
1942     if (!MoreThanTwoValues) {
1943       SmallVector<int, 8> ShuffleVec(NumElems, -1);
1944       for (unsigned i = 0; i < NumElems; ++i) {
1945         SDValue V = Node->getOperand(i);
1946         if (V.isUndef())
1947           continue;
1948         ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1949       }
1950       if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1951         // Get the splatted value into the low element of a vector register.
1952         SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1953         SDValue Vec2;
1954         if (Value2.getNode())
1955           Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1956         else
1957           Vec2 = DAG.getUNDEF(VT);
1958 
1959         // Return shuffle(LowValVec, undef, <0,0,0,0>)
1960         return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1961       }
1962     } else {
1963       SDValue Res;
1964       if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
1965         return Res;
1966     }
1967   }
1968 
1969   // Otherwise, we can't handle this case efficiently.
1970   return ExpandVectorBuildThroughStack(Node);
1971 }
1972 
ExpandSPLAT_VECTOR(SDNode * Node)1973 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) {
1974   SDLoc DL(Node);
1975   EVT VT = Node->getValueType(0);
1976   SDValue SplatVal = Node->getOperand(0);
1977 
1978   return DAG.getSplatBuildVector(VT, DL, SplatVal);
1979 }
1980 
1981 // Expand a node into a call to a libcall.  If the result value
1982 // does not fit into a register, return the lo part and set the hi part to the
1983 // by-reg argument.  If it does fit into a single register, return the result
1984 // and leave the Hi part unset.
ExpandLibCall(RTLIB::Libcall LC,SDNode * Node,bool isSigned)1985 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1986                                             bool isSigned) {
1987   TargetLowering::ArgListTy Args;
1988   TargetLowering::ArgListEntry Entry;
1989   for (const SDValue &Op : Node->op_values()) {
1990     EVT ArgVT = Op.getValueType();
1991     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1992     Entry.Node = Op;
1993     Entry.Ty = ArgTy;
1994     Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
1995     Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
1996     Args.push_back(Entry);
1997   }
1998   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1999                                          TLI.getPointerTy(DAG.getDataLayout()));
2000 
2001   EVT RetVT = Node->getValueType(0);
2002   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2003 
2004   // By default, the input chain to this libcall is the entry node of the
2005   // function. If the libcall is going to be emitted as a tail call then
2006   // TLI.isUsedByReturnOnly will change it to the right chain if the return
2007   // node which is being folded has a non-entry input chain.
2008   SDValue InChain = DAG.getEntryNode();
2009 
2010   // isTailCall may be true since the callee does not reference caller stack
2011   // frame. Check if it's in the right position and that the return types match.
2012   SDValue TCChain = InChain;
2013   const Function &F = DAG.getMachineFunction().getFunction();
2014   bool isTailCall =
2015       TLI.isInTailCallPosition(DAG, Node, TCChain) &&
2016       (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
2017   if (isTailCall)
2018     InChain = TCChain;
2019 
2020   TargetLowering::CallLoweringInfo CLI(DAG);
2021   bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned);
2022   CLI.setDebugLoc(SDLoc(Node))
2023       .setChain(InChain)
2024       .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2025                     std::move(Args))
2026       .setTailCall(isTailCall)
2027       .setSExtResult(signExtend)
2028       .setZExtResult(!signExtend)
2029       .setIsPostTypeLegalization(true);
2030 
2031   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2032 
2033   if (!CallInfo.second.getNode()) {
2034     LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG));
2035     // It's a tailcall, return the chain (which is the DAG root).
2036     return DAG.getRoot();
2037   }
2038 
2039   LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG));
2040   return CallInfo.first;
2041 }
2042 
ExpandFPLibCall(SDNode * Node,RTLIB::Libcall LC,SmallVectorImpl<SDValue> & Results)2043 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2044                                            RTLIB::Libcall LC,
2045                                            SmallVectorImpl<SDValue> &Results) {
2046   if (LC == RTLIB::UNKNOWN_LIBCALL)
2047     llvm_unreachable("Can't create an unknown libcall!");
2048 
2049   if (Node->isStrictFPOpcode()) {
2050     EVT RetVT = Node->getValueType(0);
2051     SmallVector<SDValue, 4> Ops(drop_begin(Node->ops()));
2052     TargetLowering::MakeLibCallOptions CallOptions;
2053     // FIXME: This doesn't support tail calls.
2054     std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
2055                                                       Ops, CallOptions,
2056                                                       SDLoc(Node),
2057                                                       Node->getOperand(0));
2058     Results.push_back(Tmp.first);
2059     Results.push_back(Tmp.second);
2060   } else {
2061     SDValue Tmp = ExpandLibCall(LC, Node, false);
2062     Results.push_back(Tmp);
2063   }
2064 }
2065 
2066 /// Expand the node to a libcall based on the result type.
ExpandFPLibCall(SDNode * Node,RTLIB::Libcall Call_F32,RTLIB::Libcall Call_F64,RTLIB::Libcall Call_F80,RTLIB::Libcall Call_F128,RTLIB::Libcall Call_PPCF128,SmallVectorImpl<SDValue> & Results)2067 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2068                                            RTLIB::Libcall Call_F32,
2069                                            RTLIB::Libcall Call_F64,
2070                                            RTLIB::Libcall Call_F80,
2071                                            RTLIB::Libcall Call_F128,
2072                                            RTLIB::Libcall Call_PPCF128,
2073                                            SmallVectorImpl<SDValue> &Results) {
2074   RTLIB::Libcall LC = RTLIB::getFPLibCall(Node->getSimpleValueType(0),
2075                                           Call_F32, Call_F64, Call_F80,
2076                                           Call_F128, Call_PPCF128);
2077   ExpandFPLibCall(Node, LC, Results);
2078 }
2079 
ExpandIntLibCall(SDNode * Node,bool isSigned,RTLIB::Libcall Call_I8,RTLIB::Libcall Call_I16,RTLIB::Libcall Call_I32,RTLIB::Libcall Call_I64,RTLIB::Libcall Call_I128)2080 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2081                                                RTLIB::Libcall Call_I8,
2082                                                RTLIB::Libcall Call_I16,
2083                                                RTLIB::Libcall Call_I32,
2084                                                RTLIB::Libcall Call_I64,
2085                                                RTLIB::Libcall Call_I128) {
2086   RTLIB::Libcall LC;
2087   switch (Node->getSimpleValueType(0).SimpleTy) {
2088   default: llvm_unreachable("Unexpected request for libcall!");
2089   case MVT::i8:   LC = Call_I8; break;
2090   case MVT::i16:  LC = Call_I16; break;
2091   case MVT::i32:  LC = Call_I32; break;
2092   case MVT::i64:  LC = Call_I64; break;
2093   case MVT::i128: LC = Call_I128; break;
2094   }
2095   return ExpandLibCall(LC, Node, isSigned);
2096 }
2097 
2098 /// Expand the node to a libcall based on first argument type (for instance
2099 /// lround and its variant).
ExpandArgFPLibCall(SDNode * Node,RTLIB::Libcall Call_F32,RTLIB::Libcall Call_F64,RTLIB::Libcall Call_F80,RTLIB::Libcall Call_F128,RTLIB::Libcall Call_PPCF128,SmallVectorImpl<SDValue> & Results)2100 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node,
2101                                             RTLIB::Libcall Call_F32,
2102                                             RTLIB::Libcall Call_F64,
2103                                             RTLIB::Libcall Call_F80,
2104                                             RTLIB::Libcall Call_F128,
2105                                             RTLIB::Libcall Call_PPCF128,
2106                                             SmallVectorImpl<SDValue> &Results) {
2107   EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType();
2108   RTLIB::Libcall LC = RTLIB::getFPLibCall(InVT.getSimpleVT(),
2109                                           Call_F32, Call_F64, Call_F80,
2110                                           Call_F128, Call_PPCF128);
2111   ExpandFPLibCall(Node, LC, Results);
2112 }
2113 
2114 /// Issue libcalls to __{u}divmod to compute div / rem pairs.
2115 void
ExpandDivRemLibCall(SDNode * Node,SmallVectorImpl<SDValue> & Results)2116 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2117                                           SmallVectorImpl<SDValue> &Results) {
2118   unsigned Opcode = Node->getOpcode();
2119   bool isSigned = Opcode == ISD::SDIVREM;
2120 
2121   RTLIB::Libcall LC;
2122   switch (Node->getSimpleValueType(0).SimpleTy) {
2123   default: llvm_unreachable("Unexpected request for libcall!");
2124   case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2125   case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2126   case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2127   case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2128   case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2129   }
2130 
2131   // The input chain to this libcall is the entry node of the function.
2132   // Legalizing the call will automatically add the previous call to the
2133   // dependence.
2134   SDValue InChain = DAG.getEntryNode();
2135 
2136   EVT RetVT = Node->getValueType(0);
2137   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2138 
2139   TargetLowering::ArgListTy Args;
2140   TargetLowering::ArgListEntry Entry;
2141   for (const SDValue &Op : Node->op_values()) {
2142     EVT ArgVT = Op.getValueType();
2143     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2144     Entry.Node = Op;
2145     Entry.Ty = ArgTy;
2146     Entry.IsSExt = isSigned;
2147     Entry.IsZExt = !isSigned;
2148     Args.push_back(Entry);
2149   }
2150 
2151   // Also pass the return address of the remainder.
2152   SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2153   Entry.Node = FIPtr;
2154   Entry.Ty = RetTy->getPointerTo();
2155   Entry.IsSExt = isSigned;
2156   Entry.IsZExt = !isSigned;
2157   Args.push_back(Entry);
2158 
2159   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2160                                          TLI.getPointerTy(DAG.getDataLayout()));
2161 
2162   SDLoc dl(Node);
2163   TargetLowering::CallLoweringInfo CLI(DAG);
2164   CLI.setDebugLoc(dl)
2165       .setChain(InChain)
2166       .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2167                     std::move(Args))
2168       .setSExtResult(isSigned)
2169       .setZExtResult(!isSigned);
2170 
2171   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2172 
2173   // Remainder is loaded back from the stack frame.
2174   SDValue Rem =
2175       DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo());
2176   Results.push_back(CallInfo.first);
2177   Results.push_back(Rem);
2178 }
2179 
2180 /// Return true if sincos libcall is available.
isSinCosLibcallAvailable(SDNode * Node,const TargetLowering & TLI)2181 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2182   RTLIB::Libcall LC;
2183   switch (Node->getSimpleValueType(0).SimpleTy) {
2184   default: llvm_unreachable("Unexpected request for libcall!");
2185   case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2186   case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2187   case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2188   case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2189   case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2190   }
2191   return TLI.getLibcallName(LC) != nullptr;
2192 }
2193 
2194 /// Only issue sincos libcall if both sin and cos are needed.
useSinCos(SDNode * Node)2195 static bool useSinCos(SDNode *Node) {
2196   unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2197     ? ISD::FCOS : ISD::FSIN;
2198 
2199   SDValue Op0 = Node->getOperand(0);
2200   for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2201        UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2202     SDNode *User = *UI;
2203     if (User == Node)
2204       continue;
2205     // The other user might have been turned into sincos already.
2206     if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2207       return true;
2208   }
2209   return false;
2210 }
2211 
2212 /// Issue libcalls to sincos to compute sin / cos pairs.
2213 void
ExpandSinCosLibCall(SDNode * Node,SmallVectorImpl<SDValue> & Results)2214 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2215                                           SmallVectorImpl<SDValue> &Results) {
2216   RTLIB::Libcall LC;
2217   switch (Node->getSimpleValueType(0).SimpleTy) {
2218   default: llvm_unreachable("Unexpected request for libcall!");
2219   case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2220   case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2221   case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2222   case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2223   case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2224   }
2225 
2226   // The input chain to this libcall is the entry node of the function.
2227   // Legalizing the call will automatically add the previous call to the
2228   // dependence.
2229   SDValue InChain = DAG.getEntryNode();
2230 
2231   EVT RetVT = Node->getValueType(0);
2232   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2233 
2234   TargetLowering::ArgListTy Args;
2235   TargetLowering::ArgListEntry Entry;
2236 
2237   // Pass the argument.
2238   Entry.Node = Node->getOperand(0);
2239   Entry.Ty = RetTy;
2240   Entry.IsSExt = false;
2241   Entry.IsZExt = false;
2242   Args.push_back(Entry);
2243 
2244   // Pass the return address of sin.
2245   SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2246   Entry.Node = SinPtr;
2247   Entry.Ty = RetTy->getPointerTo();
2248   Entry.IsSExt = false;
2249   Entry.IsZExt = false;
2250   Args.push_back(Entry);
2251 
2252   // Also pass the return address of the cos.
2253   SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2254   Entry.Node = CosPtr;
2255   Entry.Ty = RetTy->getPointerTo();
2256   Entry.IsSExt = false;
2257   Entry.IsZExt = false;
2258   Args.push_back(Entry);
2259 
2260   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2261                                          TLI.getPointerTy(DAG.getDataLayout()));
2262 
2263   SDLoc dl(Node);
2264   TargetLowering::CallLoweringInfo CLI(DAG);
2265   CLI.setDebugLoc(dl).setChain(InChain).setLibCallee(
2266       TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee,
2267       std::move(Args));
2268 
2269   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2270 
2271   Results.push_back(
2272       DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo()));
2273   Results.push_back(
2274       DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo()));
2275 }
2276 
2277 /// This function is responsible for legalizing a
2278 /// INT_TO_FP operation of the specified operand when the target requests that
2279 /// we expand it.  At this point, we know that the result and operand types are
2280 /// legal for the target.
ExpandLegalINT_TO_FP(SDNode * Node,SDValue & Chain)2281 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node,
2282                                                    SDValue &Chain) {
2283   bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP ||
2284                    Node->getOpcode() == ISD::SINT_TO_FP);
2285   EVT DestVT = Node->getValueType(0);
2286   SDLoc dl(Node);
2287   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
2288   SDValue Op0 = Node->getOperand(OpNo);
2289   EVT SrcVT = Op0.getValueType();
2290 
2291   // TODO: Should any fast-math-flags be set for the created nodes?
2292   LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n");
2293   if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64) &&
2294       (DestVT.bitsLE(MVT::f64) ||
2295        TLI.isOperationLegal(Node->isStrictFPOpcode() ? ISD::STRICT_FP_EXTEND
2296                                                      : ISD::FP_EXTEND,
2297                             DestVT))) {
2298     LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double "
2299                          "expansion\n");
2300 
2301     // Get the stack frame index of a 8 byte buffer.
2302     SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2303 
2304     SDValue Lo = Op0;
2305     // if signed map to unsigned space
2306     if (isSigned) {
2307       // Invert sign bit (signed to unsigned mapping).
2308       Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo,
2309                        DAG.getConstant(0x80000000u, dl, MVT::i32));
2310     }
2311     // Initial hi portion of constructed double.
2312     SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32);
2313 
2314     // If this a big endian target, swap the lo and high data.
2315     if (DAG.getDataLayout().isBigEndian())
2316       std::swap(Lo, Hi);
2317 
2318     SDValue MemChain = DAG.getEntryNode();
2319 
2320     // Store the lo of the constructed double.
2321     SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot,
2322                                   MachinePointerInfo());
2323     // Store the hi of the constructed double.
2324     SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), dl);
2325     SDValue Store2 =
2326         DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo());
2327     MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
2328 
2329     // load the constructed double
2330     SDValue Load =
2331         DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo());
2332     // FP constant to bias correct the final result
2333     SDValue Bias = DAG.getConstantFP(isSigned ?
2334                                      BitsToDouble(0x4330000080000000ULL) :
2335                                      BitsToDouble(0x4330000000000000ULL),
2336                                      dl, MVT::f64);
2337     // Subtract the bias and get the final result.
2338     SDValue Sub;
2339     SDValue Result;
2340     if (Node->isStrictFPOpcode()) {
2341       Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other},
2342                         {Node->getOperand(0), Load, Bias});
2343       Chain = Sub.getValue(1);
2344       if (DestVT != Sub.getValueType()) {
2345         std::pair<SDValue, SDValue> ResultPair;
2346         ResultPair =
2347             DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT);
2348         Result = ResultPair.first;
2349         Chain = ResultPair.second;
2350       }
2351       else
2352         Result = Sub;
2353     } else {
2354       Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2355       Result = DAG.getFPExtendOrRound(Sub, dl, DestVT);
2356     }
2357     return Result;
2358   }
2359 
2360   if (isSigned)
2361     return SDValue();
2362 
2363   // TODO: Generalize this for use with other types.
2364   if (((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) ||
2365       (SrcVT == MVT::i64 && DestVT == MVT::f64)) {
2366     LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32/f64\n");
2367     // For unsigned conversions, convert them to signed conversions using the
2368     // algorithm from the x86_64 __floatundisf in compiler_rt. That method
2369     // should be valid for i32->f32 as well.
2370 
2371     // More generally this transform should be valid if there are 3 more bits
2372     // in the integer type than the significand. Rounding uses the first bit
2373     // after the width of the significand and the OR of all bits after that. So
2374     // we need to be able to OR the shifted out bit into one of the bits that
2375     // participate in the OR.
2376 
2377     // TODO: This really should be implemented using a branch rather than a
2378     // select.  We happen to get lucky and machinesink does the right
2379     // thing most of the time.  This would be a good candidate for a
2380     // pseudo-op, or, even better, for whole-function isel.
2381     EVT SetCCVT = getSetCCResultType(SrcVT);
2382 
2383     SDValue SignBitTest = DAG.getSetCC(
2384         dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2385 
2386     EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout());
2387     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
2388     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst);
2389     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
2390     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst);
2391     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
2392 
2393     SDValue Slow, Fast;
2394     if (Node->isStrictFPOpcode()) {
2395       // In strict mode, we must avoid spurious exceptions, and therefore
2396       // must make sure to only emit a single STRICT_SINT_TO_FP.
2397       SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0);
2398       Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
2399                          { Node->getOperand(0), InCvt });
2400       Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
2401                          { Fast.getValue(1), Fast, Fast });
2402       Chain = Slow.getValue(1);
2403       // The STRICT_SINT_TO_FP inherits the exception mode from the
2404       // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can
2405       // never raise any exception.
2406       SDNodeFlags Flags;
2407       Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept());
2408       Fast->setFlags(Flags);
2409       Flags.setNoFPExcept(true);
2410       Slow->setFlags(Flags);
2411     } else {
2412       SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or);
2413       Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt);
2414       Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2415     }
2416 
2417     return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast);
2418   }
2419 
2420   // Don't expand it if there isn't cheap fadd.
2421   if (!TLI.isOperationLegalOrCustom(
2422           Node->isStrictFPOpcode() ? ISD::STRICT_FADD : ISD::FADD, DestVT))
2423     return SDValue();
2424 
2425   // The following optimization is valid only if every value in SrcVT (when
2426   // treated as signed) is representable in DestVT.  Check that the mantissa
2427   // size of DestVT is >= than the number of bits in SrcVT -1.
2428   assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >=
2429              SrcVT.getSizeInBits() - 1 &&
2430          "Cannot perform lossless SINT_TO_FP!");
2431 
2432   SDValue Tmp1;
2433   if (Node->isStrictFPOpcode()) {
2434     Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
2435                        { Node->getOperand(0), Op0 });
2436   } else
2437     Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2438 
2439   SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0,
2440                                  DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2441   SDValue Zero = DAG.getIntPtrConstant(0, dl),
2442           Four = DAG.getIntPtrConstant(4, dl);
2443   SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2444                                     SignSet, Four, Zero);
2445 
2446   // If the sign bit of the integer is set, the large number will be treated
2447   // as a negative number.  To counteract this, the dynamic code adds an
2448   // offset depending on the data type.
2449   uint64_t FF;
2450   switch (SrcVT.getSimpleVT().SimpleTy) {
2451   default:
2452     return SDValue();
2453   case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2454   case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2455   case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2456   case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2457   }
2458   if (DAG.getDataLayout().isLittleEndian())
2459     FF <<= 32;
2460   Constant *FudgeFactor = ConstantInt::get(
2461                                        Type::getInt64Ty(*DAG.getContext()), FF);
2462 
2463   SDValue CPIdx =
2464       DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
2465   Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
2466   CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2467   Alignment = commonAlignment(Alignment, 4);
2468   SDValue FudgeInReg;
2469   if (DestVT == MVT::f32)
2470     FudgeInReg = DAG.getLoad(
2471         MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2472         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2473         Alignment);
2474   else {
2475     SDValue Load = DAG.getExtLoad(
2476         ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
2477         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
2478         Alignment);
2479     HandleSDNode Handle(Load);
2480     LegalizeOp(Load.getNode());
2481     FudgeInReg = Handle.getValue();
2482   }
2483 
2484   if (Node->isStrictFPOpcode()) {
2485     SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
2486                                  { Tmp1.getValue(1), Tmp1, FudgeInReg });
2487     Chain = Result.getValue(1);
2488     return Result;
2489   }
2490 
2491   return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2492 }
2493 
2494 /// This function is responsible for legalizing a
2495 /// *INT_TO_FP operation of the specified operand when the target requests that
2496 /// we promote it.  At this point, we know that the result and operand types are
2497 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2498 /// operation that takes a larger input.
PromoteLegalINT_TO_FP(SDNode * N,const SDLoc & dl,SmallVectorImpl<SDValue> & Results)2499 void SelectionDAGLegalize::PromoteLegalINT_TO_FP(
2500     SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) {
2501   bool IsStrict = N->isStrictFPOpcode();
2502   bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP ||
2503                   N->getOpcode() == ISD::STRICT_SINT_TO_FP;
2504   EVT DestVT = N->getValueType(0);
2505   SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2506   unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP;
2507   unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP;
2508 
2509   // First step, figure out the appropriate *INT_TO_FP operation to use.
2510   EVT NewInTy = LegalOp.getValueType();
2511 
2512   unsigned OpToUse = 0;
2513 
2514   // Scan for the appropriate larger type to use.
2515   while (true) {
2516     NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2517     assert(NewInTy.isInteger() && "Ran out of possibilities!");
2518 
2519     // If the target supports SINT_TO_FP of this type, use it.
2520     if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) {
2521       OpToUse = SIntOp;
2522       break;
2523     }
2524     if (IsSigned)
2525       continue;
2526 
2527     // If the target supports UINT_TO_FP of this type, use it.
2528     if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) {
2529       OpToUse = UIntOp;
2530       break;
2531     }
2532 
2533     // Otherwise, try a larger type.
2534   }
2535 
2536   // Okay, we found the operation and type to use.  Zero extend our input to the
2537   // desired type then run the operation on it.
2538   if (IsStrict) {
2539     SDValue Res =
2540         DAG.getNode(OpToUse, dl, {DestVT, MVT::Other},
2541                     {N->getOperand(0),
2542                      DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2543                                  dl, NewInTy, LegalOp)});
2544     Results.push_back(Res);
2545     Results.push_back(Res.getValue(1));
2546     return;
2547   }
2548 
2549   Results.push_back(
2550       DAG.getNode(OpToUse, dl, DestVT,
2551                   DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2552                               dl, NewInTy, LegalOp)));
2553 }
2554 
2555 /// This function is responsible for legalizing a
2556 /// FP_TO_*INT operation of the specified operand when the target requests that
2557 /// we promote it.  At this point, we know that the result and operand types are
2558 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2559 /// operation that returns a larger result.
PromoteLegalFP_TO_INT(SDNode * N,const SDLoc & dl,SmallVectorImpl<SDValue> & Results)2560 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
2561                                                  SmallVectorImpl<SDValue> &Results) {
2562   bool IsStrict = N->isStrictFPOpcode();
2563   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
2564                   N->getOpcode() == ISD::STRICT_FP_TO_SINT;
2565   EVT DestVT = N->getValueType(0);
2566   SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2567   // First step, figure out the appropriate FP_TO*INT operation to use.
2568   EVT NewOutTy = DestVT;
2569 
2570   unsigned OpToUse = 0;
2571 
2572   // Scan for the appropriate larger type to use.
2573   while (true) {
2574     NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2575     assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2576 
2577     // A larger signed type can hold all unsigned values of the requested type,
2578     // so using FP_TO_SINT is valid
2579     OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT;
2580     if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2581       break;
2582 
2583     // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2584     OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT;
2585     if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2586       break;
2587 
2588     // Otherwise, try a larger type.
2589   }
2590 
2591   // Okay, we found the operation and type to use.
2592   SDValue Operation;
2593   if (IsStrict) {
2594     SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other);
2595     Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp);
2596   } else
2597     Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2598 
2599   // Truncate the result of the extended FP_TO_*INT operation to the desired
2600   // size.
2601   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2602   Results.push_back(Trunc);
2603   if (IsStrict)
2604     Results.push_back(Operation.getValue(1));
2605 }
2606 
2607 /// Promote FP_TO_*INT_SAT operation to a larger result type. At this point
2608 /// the result and operand types are legal and there must be a legal
2609 /// FP_TO_*INT_SAT operation for a larger result type.
PromoteLegalFP_TO_INT_SAT(SDNode * Node,const SDLoc & dl)2610 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT_SAT(SDNode *Node,
2611                                                         const SDLoc &dl) {
2612   unsigned Opcode = Node->getOpcode();
2613 
2614   // Scan for the appropriate larger type to use.
2615   EVT NewOutTy = Node->getValueType(0);
2616   while (true) {
2617     NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy + 1);
2618     assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2619 
2620     if (TLI.isOperationLegalOrCustom(Opcode, NewOutTy))
2621       break;
2622   }
2623 
2624   // Saturation width is determined by second operand, so we don't have to
2625   // perform any fixup and can directly truncate the result.
2626   SDValue Result = DAG.getNode(Opcode, dl, NewOutTy, Node->getOperand(0),
2627                                Node->getOperand(1));
2628   return DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result);
2629 }
2630 
2631 /// Open code the operations for PARITY of the specified operation.
ExpandPARITY(SDValue Op,const SDLoc & dl)2632 SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) {
2633   EVT VT = Op.getValueType();
2634   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2635   unsigned Sz = VT.getScalarSizeInBits();
2636 
2637   // If CTPOP is legal, use it. Otherwise use shifts and xor.
2638   SDValue Result;
2639   if (TLI.isOperationLegal(ISD::CTPOP, VT)) {
2640     Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
2641   } else {
2642     Result = Op;
2643     for (unsigned i = Log2_32_Ceil(Sz); i != 0;) {
2644       SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result,
2645                                   DAG.getConstant(1ULL << (--i), dl, ShVT));
2646       Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift);
2647     }
2648   }
2649 
2650   return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT));
2651 }
2652 
ExpandNode(SDNode * Node)2653 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2654   LLVM_DEBUG(dbgs() << "Trying to expand node\n");
2655   SmallVector<SDValue, 8> Results;
2656   SDLoc dl(Node);
2657   SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2658   bool NeedInvert;
2659   switch (Node->getOpcode()) {
2660   case ISD::ABS:
2661     if (TLI.expandABS(Node, Tmp1, DAG))
2662       Results.push_back(Tmp1);
2663     break;
2664   case ISD::CTPOP:
2665     if (TLI.expandCTPOP(Node, Tmp1, DAG))
2666       Results.push_back(Tmp1);
2667     break;
2668   case ISD::CTLZ:
2669   case ISD::CTLZ_ZERO_UNDEF:
2670     if (TLI.expandCTLZ(Node, Tmp1, DAG))
2671       Results.push_back(Tmp1);
2672     break;
2673   case ISD::CTTZ:
2674   case ISD::CTTZ_ZERO_UNDEF:
2675     if (TLI.expandCTTZ(Node, Tmp1, DAG))
2676       Results.push_back(Tmp1);
2677     break;
2678   case ISD::BITREVERSE:
2679     if ((Tmp1 = TLI.expandBITREVERSE(Node, DAG)))
2680       Results.push_back(Tmp1);
2681     break;
2682   case ISD::BSWAP:
2683     if ((Tmp1 = TLI.expandBSWAP(Node, DAG)))
2684       Results.push_back(Tmp1);
2685     break;
2686   case ISD::PARITY:
2687     Results.push_back(ExpandPARITY(Node->getOperand(0), dl));
2688     break;
2689   case ISD::FRAMEADDR:
2690   case ISD::RETURNADDR:
2691   case ISD::FRAME_TO_ARGS_OFFSET:
2692     Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
2693     break;
2694   case ISD::EH_DWARF_CFA: {
2695     SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl,
2696                                         TLI.getPointerTy(DAG.getDataLayout()));
2697     SDValue Offset = DAG.getNode(ISD::ADD, dl,
2698                                  CfaArg.getValueType(),
2699                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
2700                                              CfaArg.getValueType()),
2701                                  CfaArg);
2702     SDValue FA = DAG.getNode(
2703         ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()),
2704         DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())));
2705     Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(),
2706                                   FA, Offset));
2707     break;
2708   }
2709   case ISD::FLT_ROUNDS_:
2710     Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
2711     Results.push_back(Node->getOperand(0));
2712     break;
2713   case ISD::EH_RETURN:
2714   case ISD::EH_LABEL:
2715   case ISD::PREFETCH:
2716   case ISD::VAEND:
2717   case ISD::EH_SJLJ_LONGJMP:
2718     // If the target didn't expand these, there's nothing to do, so just
2719     // preserve the chain and be done.
2720     Results.push_back(Node->getOperand(0));
2721     break;
2722   case ISD::READCYCLECOUNTER:
2723     // If the target didn't expand this, just return 'zero' and preserve the
2724     // chain.
2725     Results.append(Node->getNumValues() - 1,
2726                    DAG.getConstant(0, dl, Node->getValueType(0)));
2727     Results.push_back(Node->getOperand(0));
2728     break;
2729   case ISD::EH_SJLJ_SETJMP:
2730     // If the target didn't expand this, just return 'zero' and preserve the
2731     // chain.
2732     Results.push_back(DAG.getConstant(0, dl, MVT::i32));
2733     Results.push_back(Node->getOperand(0));
2734     break;
2735   case ISD::ATOMIC_LOAD: {
2736     // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2737     SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
2738     SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2739     SDValue Swap = DAG.getAtomicCmpSwap(
2740         ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2741         Node->getOperand(0), Node->getOperand(1), Zero, Zero,
2742         cast<AtomicSDNode>(Node)->getMemOperand());
2743     Results.push_back(Swap.getValue(0));
2744     Results.push_back(Swap.getValue(1));
2745     break;
2746   }
2747   case ISD::ATOMIC_STORE: {
2748     // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2749     SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2750                                  cast<AtomicSDNode>(Node)->getMemoryVT(),
2751                                  Node->getOperand(0),
2752                                  Node->getOperand(1), Node->getOperand(2),
2753                                  cast<AtomicSDNode>(Node)->getMemOperand());
2754     Results.push_back(Swap.getValue(1));
2755     break;
2756   }
2757   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
2758     // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
2759     // splits out the success value as a comparison. Expanding the resulting
2760     // ATOMIC_CMP_SWAP will produce a libcall.
2761     SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2762     SDValue Res = DAG.getAtomicCmpSwap(
2763         ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2764         Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
2765         Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand());
2766 
2767     SDValue ExtRes = Res;
2768     SDValue LHS = Res;
2769     SDValue RHS = Node->getOperand(1);
2770 
2771     EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT();
2772     EVT OuterType = Node->getValueType(0);
2773     switch (TLI.getExtendForAtomicOps()) {
2774     case ISD::SIGN_EXTEND:
2775       LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res,
2776                         DAG.getValueType(AtomicType));
2777       RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType,
2778                         Node->getOperand(2), DAG.getValueType(AtomicType));
2779       ExtRes = LHS;
2780       break;
2781     case ISD::ZERO_EXTEND:
2782       LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res,
2783                         DAG.getValueType(AtomicType));
2784       RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2785       ExtRes = LHS;
2786       break;
2787     case ISD::ANY_EXTEND:
2788       LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType);
2789       RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2790       break;
2791     default:
2792       llvm_unreachable("Invalid atomic op extension");
2793     }
2794 
2795     SDValue Success =
2796         DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ);
2797 
2798     Results.push_back(ExtRes.getValue(0));
2799     Results.push_back(Success);
2800     Results.push_back(Res.getValue(1));
2801     break;
2802   }
2803   case ISD::DYNAMIC_STACKALLOC:
2804     ExpandDYNAMIC_STACKALLOC(Node, Results);
2805     break;
2806   case ISD::MERGE_VALUES:
2807     for (unsigned i = 0; i < Node->getNumValues(); i++)
2808       Results.push_back(Node->getOperand(i));
2809     break;
2810   case ISD::UNDEF: {
2811     EVT VT = Node->getValueType(0);
2812     if (VT.isInteger())
2813       Results.push_back(DAG.getConstant(0, dl, VT));
2814     else {
2815       assert(VT.isFloatingPoint() && "Unknown value type!");
2816       Results.push_back(DAG.getConstantFP(0, dl, VT));
2817     }
2818     break;
2819   }
2820   case ISD::STRICT_FP_ROUND:
2821     // When strict mode is enforced we can't do expansion because it
2822     // does not honor the "strict" properties. Only libcall is allowed.
2823     if (TLI.isStrictFPEnabled())
2824       break;
2825     // We might as well mutate to FP_ROUND when FP_ROUND operation is legal
2826     // since this operation is more efficient than stack operation.
2827     if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2828                                        Node->getValueType(0))
2829         == TargetLowering::Legal)
2830       break;
2831     // We fall back to use stack operation when the FP_ROUND operation
2832     // isn't available.
2833     if ((Tmp1 = EmitStackConvert(Node->getOperand(1), Node->getValueType(0),
2834                                  Node->getValueType(0), dl,
2835                                  Node->getOperand(0)))) {
2836       ReplaceNode(Node, Tmp1.getNode());
2837       LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n");
2838       return true;
2839     }
2840     break;
2841   case ISD::FP_ROUND:
2842   case ISD::BITCAST:
2843     if ((Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2844                                  Node->getValueType(0), dl)))
2845       Results.push_back(Tmp1);
2846     break;
2847   case ISD::STRICT_FP_EXTEND:
2848     // When strict mode is enforced we can't do expansion because it
2849     // does not honor the "strict" properties. Only libcall is allowed.
2850     if (TLI.isStrictFPEnabled())
2851       break;
2852     // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal
2853     // since this operation is more efficient than stack operation.
2854     if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2855                                        Node->getValueType(0))
2856         == TargetLowering::Legal)
2857       break;
2858     // We fall back to use stack operation when the FP_EXTEND operation
2859     // isn't available.
2860     if ((Tmp1 = EmitStackConvert(
2861              Node->getOperand(1), Node->getOperand(1).getValueType(),
2862              Node->getValueType(0), dl, Node->getOperand(0)))) {
2863       ReplaceNode(Node, Tmp1.getNode());
2864       LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n");
2865       return true;
2866     }
2867     break;
2868   case ISD::FP_EXTEND:
2869     if ((Tmp1 = EmitStackConvert(Node->getOperand(0),
2870                                  Node->getOperand(0).getValueType(),
2871                                  Node->getValueType(0), dl)))
2872       Results.push_back(Tmp1);
2873     break;
2874   case ISD::SIGN_EXTEND_INREG: {
2875     EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2876     EVT VT = Node->getValueType(0);
2877 
2878     // An in-register sign-extend of a boolean is a negation:
2879     // 'true' (1) sign-extended is -1.
2880     // 'false' (0) sign-extended is 0.
2881     // However, we must mask the high bits of the source operand because the
2882     // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.
2883 
2884     // TODO: Do this for vectors too?
2885     if (ExtraVT.getSizeInBits() == 1) {
2886       SDValue One = DAG.getConstant(1, dl, VT);
2887       SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One);
2888       SDValue Zero = DAG.getConstant(0, dl, VT);
2889       SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And);
2890       Results.push_back(Neg);
2891       break;
2892     }
2893 
2894     // NOTE: we could fall back on load/store here too for targets without
2895     // SRA.  However, it is doubtful that any exist.
2896     EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2897     unsigned BitsDiff = VT.getScalarSizeInBits() -
2898                         ExtraVT.getScalarSizeInBits();
2899     SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
2900     Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2901                        Node->getOperand(0), ShiftCst);
2902     Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2903     Results.push_back(Tmp1);
2904     break;
2905   }
2906   case ISD::UINT_TO_FP:
2907   case ISD::STRICT_UINT_TO_FP:
2908     if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) {
2909       Results.push_back(Tmp1);
2910       if (Node->isStrictFPOpcode())
2911         Results.push_back(Tmp2);
2912       break;
2913     }
2914     LLVM_FALLTHROUGH;
2915   case ISD::SINT_TO_FP:
2916   case ISD::STRICT_SINT_TO_FP:
2917     if ((Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2))) {
2918       Results.push_back(Tmp1);
2919       if (Node->isStrictFPOpcode())
2920         Results.push_back(Tmp2);
2921     }
2922     break;
2923   case ISD::FP_TO_SINT:
2924     if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
2925       Results.push_back(Tmp1);
2926     break;
2927   case ISD::STRICT_FP_TO_SINT:
2928     if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) {
2929       ReplaceNode(Node, Tmp1.getNode());
2930       LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n");
2931       return true;
2932     }
2933     break;
2934   case ISD::FP_TO_UINT:
2935     if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG))
2936       Results.push_back(Tmp1);
2937     break;
2938   case ISD::STRICT_FP_TO_UINT:
2939     if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) {
2940       // Relink the chain.
2941       DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2);
2942       // Replace the new UINT result.
2943       ReplaceNodeWithValue(SDValue(Node, 0), Tmp1);
2944       LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n");
2945       return true;
2946     }
2947     break;
2948   case ISD::FP_TO_SINT_SAT:
2949   case ISD::FP_TO_UINT_SAT:
2950     Results.push_back(TLI.expandFP_TO_INT_SAT(Node, DAG));
2951     break;
2952   case ISD::VAARG:
2953     Results.push_back(DAG.expandVAArg(Node));
2954     Results.push_back(Results[0].getValue(1));
2955     break;
2956   case ISD::VACOPY:
2957     Results.push_back(DAG.expandVACopy(Node));
2958     break;
2959   case ISD::EXTRACT_VECTOR_ELT:
2960     if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2961       // This must be an access of the only element.  Return it.
2962       Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2963                          Node->getOperand(0));
2964     else
2965       Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2966     Results.push_back(Tmp1);
2967     break;
2968   case ISD::EXTRACT_SUBVECTOR:
2969     Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2970     break;
2971   case ISD::INSERT_SUBVECTOR:
2972     Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
2973     break;
2974   case ISD::CONCAT_VECTORS:
2975     Results.push_back(ExpandVectorBuildThroughStack(Node));
2976     break;
2977   case ISD::SCALAR_TO_VECTOR:
2978     Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2979     break;
2980   case ISD::INSERT_VECTOR_ELT:
2981     Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2982                                               Node->getOperand(1),
2983                                               Node->getOperand(2), dl));
2984     break;
2985   case ISD::VECTOR_SHUFFLE: {
2986     SmallVector<int, 32> NewMask;
2987     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
2988 
2989     EVT VT = Node->getValueType(0);
2990     EVT EltVT = VT.getVectorElementType();
2991     SDValue Op0 = Node->getOperand(0);
2992     SDValue Op1 = Node->getOperand(1);
2993     if (!TLI.isTypeLegal(EltVT)) {
2994       EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2995 
2996       // BUILD_VECTOR operands are allowed to be wider than the element type.
2997       // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
2998       // it.
2999       if (NewEltVT.bitsLT(EltVT)) {
3000         // Convert shuffle node.
3001         // If original node was v4i64 and the new EltVT is i32,
3002         // cast operands to v8i32 and re-build the mask.
3003 
3004         // Calculate new VT, the size of the new VT should be equal to original.
3005         EVT NewVT =
3006             EVT::getVectorVT(*DAG.getContext(), NewEltVT,
3007                              VT.getSizeInBits() / NewEltVT.getSizeInBits());
3008         assert(NewVT.bitsEq(VT));
3009 
3010         // cast operands to new VT
3011         Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
3012         Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
3013 
3014         // Convert the shuffle mask
3015         unsigned int factor =
3016                          NewVT.getVectorNumElements()/VT.getVectorNumElements();
3017 
3018         // EltVT gets smaller
3019         assert(factor > 0);
3020 
3021         for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
3022           if (Mask[i] < 0) {
3023             for (unsigned fi = 0; fi < factor; ++fi)
3024               NewMask.push_back(Mask[i]);
3025           }
3026           else {
3027             for (unsigned fi = 0; fi < factor; ++fi)
3028               NewMask.push_back(Mask[i]*factor+fi);
3029           }
3030         }
3031         Mask = NewMask;
3032         VT = NewVT;
3033       }
3034       EltVT = NewEltVT;
3035     }
3036     unsigned NumElems = VT.getVectorNumElements();
3037     SmallVector<SDValue, 16> Ops;
3038     for (unsigned i = 0; i != NumElems; ++i) {
3039       if (Mask[i] < 0) {
3040         Ops.push_back(DAG.getUNDEF(EltVT));
3041         continue;
3042       }
3043       unsigned Idx = Mask[i];
3044       if (Idx < NumElems)
3045         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
3046                                   DAG.getVectorIdxConstant(Idx, dl)));
3047       else
3048         Ops.push_back(
3049             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
3050                         DAG.getVectorIdxConstant(Idx - NumElems, dl)));
3051     }
3052 
3053     Tmp1 = DAG.getBuildVector(VT, dl, Ops);
3054     // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3055     Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3056     Results.push_back(Tmp1);
3057     break;
3058   }
3059   case ISD::VECTOR_SPLICE: {
3060     Results.push_back(TLI.expandVectorSplice(Node, DAG));
3061     break;
3062   }
3063   case ISD::EXTRACT_ELEMENT: {
3064     EVT OpTy = Node->getOperand(0).getValueType();
3065     if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3066       // 1 -> Hi
3067       Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3068                          DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
3069                                          TLI.getShiftAmountTy(
3070                                              Node->getOperand(0).getValueType(),
3071                                              DAG.getDataLayout())));
3072       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3073     } else {
3074       // 0 -> Lo
3075       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3076                          Node->getOperand(0));
3077     }
3078     Results.push_back(Tmp1);
3079     break;
3080   }
3081   case ISD::STACKSAVE:
3082     // Expand to CopyFromReg if the target set
3083     // StackPointerRegisterToSaveRestore.
3084     if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) {
3085       Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3086                                            Node->getValueType(0)));
3087       Results.push_back(Results[0].getValue(1));
3088     } else {
3089       Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3090       Results.push_back(Node->getOperand(0));
3091     }
3092     break;
3093   case ISD::STACKRESTORE:
3094     // Expand to CopyToReg if the target set
3095     // StackPointerRegisterToSaveRestore.
3096     if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) {
3097       Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3098                                          Node->getOperand(1)));
3099     } else {
3100       Results.push_back(Node->getOperand(0));
3101     }
3102     break;
3103   case ISD::GET_DYNAMIC_AREA_OFFSET:
3104     Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
3105     Results.push_back(Results[0].getValue(0));
3106     break;
3107   case ISD::FCOPYSIGN:
3108     Results.push_back(ExpandFCOPYSIGN(Node));
3109     break;
3110   case ISD::FNEG:
3111     Results.push_back(ExpandFNEG(Node));
3112     break;
3113   case ISD::FABS:
3114     Results.push_back(ExpandFABS(Node));
3115     break;
3116   case ISD::SMIN:
3117   case ISD::SMAX:
3118   case ISD::UMIN:
3119   case ISD::UMAX: {
3120     // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3121     ISD::CondCode Pred;
3122     switch (Node->getOpcode()) {
3123     default: llvm_unreachable("How did we get here?");
3124     case ISD::SMAX: Pred = ISD::SETGT; break;
3125     case ISD::SMIN: Pred = ISD::SETLT; break;
3126     case ISD::UMAX: Pred = ISD::SETUGT; break;
3127     case ISD::UMIN: Pred = ISD::SETULT; break;
3128     }
3129     Tmp1 = Node->getOperand(0);
3130     Tmp2 = Node->getOperand(1);
3131     Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
3132     Results.push_back(Tmp1);
3133     break;
3134   }
3135   case ISD::FMINNUM:
3136   case ISD::FMAXNUM: {
3137     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG))
3138       Results.push_back(Expanded);
3139     break;
3140   }
3141   case ISD::FSIN:
3142   case ISD::FCOS: {
3143     EVT VT = Node->getValueType(0);
3144     // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3145     // fcos which share the same operand and both are used.
3146     if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3147          isSinCosLibcallAvailable(Node, TLI))
3148         && useSinCos(Node)) {
3149       SDVTList VTs = DAG.getVTList(VT, VT);
3150       Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3151       if (Node->getOpcode() == ISD::FCOS)
3152         Tmp1 = Tmp1.getValue(1);
3153       Results.push_back(Tmp1);
3154     }
3155     break;
3156   }
3157   case ISD::FMAD:
3158     llvm_unreachable("Illegal fmad should never be formed");
3159 
3160   case ISD::FP16_TO_FP:
3161     if (Node->getValueType(0) != MVT::f32) {
3162       // We can extend to types bigger than f32 in two steps without changing
3163       // the result. Since "f16 -> f32" is much more commonly available, give
3164       // CodeGen the option of emitting that before resorting to a libcall.
3165       SDValue Res =
3166           DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
3167       Results.push_back(
3168           DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
3169     }
3170     break;
3171   case ISD::STRICT_FP16_TO_FP:
3172     if (Node->getValueType(0) != MVT::f32) {
3173       // We can extend to types bigger than f32 in two steps without changing
3174       // the result. Since "f16 -> f32" is much more commonly available, give
3175       // CodeGen the option of emitting that before resorting to a libcall.
3176       SDValue Res =
3177           DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other},
3178                       {Node->getOperand(0), Node->getOperand(1)});
3179       Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
3180                         {Node->getValueType(0), MVT::Other},
3181                         {Res.getValue(1), Res});
3182       Results.push_back(Res);
3183       Results.push_back(Res.getValue(1));
3184     }
3185     break;
3186   case ISD::FP_TO_FP16:
3187     LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n");
3188     if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
3189       SDValue Op = Node->getOperand(0);
3190       MVT SVT = Op.getSimpleValueType();
3191       if ((SVT == MVT::f64 || SVT == MVT::f80) &&
3192           TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
3193         // Under fastmath, we can expand this node into a fround followed by
3194         // a float-half conversion.
3195         SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
3196                                        DAG.getIntPtrConstant(0, dl));
3197         Results.push_back(
3198             DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal));
3199       }
3200     }
3201     break;
3202   case ISD::ConstantFP: {
3203     ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3204     // Check to see if this FP immediate is already legal.
3205     // If this is a legal constant, turn it into a TargetConstantFP node.
3206     if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0),
3207                           DAG.shouldOptForSize()))
3208       Results.push_back(ExpandConstantFP(CFP, true));
3209     break;
3210   }
3211   case ISD::Constant: {
3212     ConstantSDNode *CP = cast<ConstantSDNode>(Node);
3213     Results.push_back(ExpandConstant(CP));
3214     break;
3215   }
3216   case ISD::FSUB: {
3217     EVT VT = Node->getValueType(0);
3218     if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3219         TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
3220       const SDNodeFlags Flags = Node->getFlags();
3221       Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3222       Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
3223       Results.push_back(Tmp1);
3224     }
3225     break;
3226   }
3227   case ISD::SUB: {
3228     EVT VT = Node->getValueType(0);
3229     assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3230            TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3231            "Don't know how to expand this subtraction!");
3232     Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3233                DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
3234                                VT));
3235     Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
3236     Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3237     break;
3238   }
3239   case ISD::UREM:
3240   case ISD::SREM:
3241     if (TLI.expandREM(Node, Tmp1, DAG))
3242       Results.push_back(Tmp1);
3243     break;
3244   case ISD::UDIV:
3245   case ISD::SDIV: {
3246     bool isSigned = Node->getOpcode() == ISD::SDIV;
3247     unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3248     EVT VT = Node->getValueType(0);
3249     if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3250       SDVTList VTs = DAG.getVTList(VT, VT);
3251       Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3252                          Node->getOperand(1));
3253       Results.push_back(Tmp1);
3254     }
3255     break;
3256   }
3257   case ISD::MULHU:
3258   case ISD::MULHS: {
3259     unsigned ExpandOpcode =
3260         Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI;
3261     EVT VT = Node->getValueType(0);
3262     SDVTList VTs = DAG.getVTList(VT, VT);
3263 
3264     Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3265                        Node->getOperand(1));
3266     Results.push_back(Tmp1.getValue(1));
3267     break;
3268   }
3269   case ISD::UMUL_LOHI:
3270   case ISD::SMUL_LOHI: {
3271     SDValue LHS = Node->getOperand(0);
3272     SDValue RHS = Node->getOperand(1);
3273     MVT VT = LHS.getSimpleValueType();
3274     unsigned MULHOpcode =
3275         Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS;
3276 
3277     if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) {
3278       Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS));
3279       Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS));
3280       break;
3281     }
3282 
3283     SmallVector<SDValue, 4> Halves;
3284     EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext());
3285     assert(TLI.isTypeLegal(HalfType));
3286     if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves,
3287                            HalfType, DAG,
3288                            TargetLowering::MulExpansionKind::Always)) {
3289       for (unsigned i = 0; i < 2; ++i) {
3290         SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]);
3291         SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]);
3292         SDValue Shift = DAG.getConstant(
3293             HalfType.getScalarSizeInBits(), dl,
3294             TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3295         Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3296         Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3297       }
3298       break;
3299     }
3300     break;
3301   }
3302   case ISD::MUL: {
3303     EVT VT = Node->getValueType(0);
3304     SDVTList VTs = DAG.getVTList(VT, VT);
3305     // See if multiply or divide can be lowered using two-result operations.
3306     // We just need the low half of the multiply; try both the signed
3307     // and unsigned forms. If the target supports both SMUL_LOHI and
3308     // UMUL_LOHI, form a preference by checking which forms of plain
3309     // MULH it supports.
3310     bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3311     bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3312     bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3313     bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3314     unsigned OpToUse = 0;
3315     if (HasSMUL_LOHI && !HasMULHS) {
3316       OpToUse = ISD::SMUL_LOHI;
3317     } else if (HasUMUL_LOHI && !HasMULHU) {
3318       OpToUse = ISD::UMUL_LOHI;
3319     } else if (HasSMUL_LOHI) {
3320       OpToUse = ISD::SMUL_LOHI;
3321     } else if (HasUMUL_LOHI) {
3322       OpToUse = ISD::UMUL_LOHI;
3323     }
3324     if (OpToUse) {
3325       Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3326                                     Node->getOperand(1)));
3327       break;
3328     }
3329 
3330     SDValue Lo, Hi;
3331     EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
3332     if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
3333         TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
3334         TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
3335         TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
3336         TLI.expandMUL(Node, Lo, Hi, HalfType, DAG,
3337                       TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) {
3338       Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3339       Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
3340       SDValue Shift =
3341           DAG.getConstant(HalfType.getSizeInBits(), dl,
3342                           TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3343       Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3344       Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3345     }
3346     break;
3347   }
3348   case ISD::FSHL:
3349   case ISD::FSHR:
3350     if (TLI.expandFunnelShift(Node, Tmp1, DAG))
3351       Results.push_back(Tmp1);
3352     break;
3353   case ISD::ROTL:
3354   case ISD::ROTR:
3355     if (TLI.expandROT(Node, true /*AllowVectorOps*/, Tmp1, DAG))
3356       Results.push_back(Tmp1);
3357     break;
3358   case ISD::SADDSAT:
3359   case ISD::UADDSAT:
3360   case ISD::SSUBSAT:
3361   case ISD::USUBSAT:
3362     Results.push_back(TLI.expandAddSubSat(Node, DAG));
3363     break;
3364   case ISD::SSHLSAT:
3365   case ISD::USHLSAT:
3366     Results.push_back(TLI.expandShlSat(Node, DAG));
3367     break;
3368   case ISD::SMULFIX:
3369   case ISD::SMULFIXSAT:
3370   case ISD::UMULFIX:
3371   case ISD::UMULFIXSAT:
3372     Results.push_back(TLI.expandFixedPointMul(Node, DAG));
3373     break;
3374   case ISD::SDIVFIX:
3375   case ISD::SDIVFIXSAT:
3376   case ISD::UDIVFIX:
3377   case ISD::UDIVFIXSAT:
3378     if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node),
3379                                             Node->getOperand(0),
3380                                             Node->getOperand(1),
3381                                             Node->getConstantOperandVal(2),
3382                                             DAG)) {
3383       Results.push_back(V);
3384       break;
3385     }
3386     // FIXME: We might want to retry here with a wider type if we fail, if that
3387     // type is legal.
3388     // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is
3389     // <= 128 (which is the case for all of the default Embedded-C types),
3390     // we will only get here with types and scales that we could always expand
3391     // if we were allowed to generate libcalls to division functions of illegal
3392     // type. But we cannot do that.
3393     llvm_unreachable("Cannot expand DIVFIX!");
3394   case ISD::ADDCARRY:
3395   case ISD::SUBCARRY: {
3396     SDValue LHS = Node->getOperand(0);
3397     SDValue RHS = Node->getOperand(1);
3398     SDValue Carry = Node->getOperand(2);
3399 
3400     bool IsAdd = Node->getOpcode() == ISD::ADDCARRY;
3401 
3402     // Initial add of the 2 operands.
3403     unsigned Op = IsAdd ? ISD::ADD : ISD::SUB;
3404     EVT VT = LHS.getValueType();
3405     SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS);
3406 
3407     // Initial check for overflow.
3408     EVT CarryType = Node->getValueType(1);
3409     EVT SetCCType = getSetCCResultType(Node->getValueType(0));
3410     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
3411     SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
3412 
3413     // Add of the sum and the carry.
3414     SDValue One = DAG.getConstant(1, dl, VT);
3415     SDValue CarryExt =
3416         DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One);
3417     SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt);
3418 
3419     // Second check for overflow. If we are adding, we can only overflow if the
3420     // initial sum is all 1s ang the carry is set, resulting in a new sum of 0.
3421     // If we are subtracting, we can only overflow if the initial sum is 0 and
3422     // the carry is set, resulting in a new sum of all 1s.
3423     SDValue Zero = DAG.getConstant(0, dl, VT);
3424     SDValue Overflow2 =
3425         IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ)
3426               : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ);
3427     Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2,
3428                             DAG.getZExtOrTrunc(Carry, dl, SetCCType));
3429 
3430     SDValue ResultCarry =
3431         DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2);
3432 
3433     Results.push_back(Sum2);
3434     Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT));
3435     break;
3436   }
3437   case ISD::SADDO:
3438   case ISD::SSUBO: {
3439     SDValue Result, Overflow;
3440     TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
3441     Results.push_back(Result);
3442     Results.push_back(Overflow);
3443     break;
3444   }
3445   case ISD::UADDO:
3446   case ISD::USUBO: {
3447     SDValue Result, Overflow;
3448     TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
3449     Results.push_back(Result);
3450     Results.push_back(Overflow);
3451     break;
3452   }
3453   case ISD::UMULO:
3454   case ISD::SMULO: {
3455     SDValue Result, Overflow;
3456     if (TLI.expandMULO(Node, Result, Overflow, DAG)) {
3457       Results.push_back(Result);
3458       Results.push_back(Overflow);
3459     }
3460     break;
3461   }
3462   case ISD::BUILD_PAIR: {
3463     EVT PairTy = Node->getValueType(0);
3464     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3465     Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3466     Tmp2 = DAG.getNode(
3467         ISD::SHL, dl, PairTy, Tmp2,
3468         DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
3469                         TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
3470     Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3471     break;
3472   }
3473   case ISD::SELECT:
3474     Tmp1 = Node->getOperand(0);
3475     Tmp2 = Node->getOperand(1);
3476     Tmp3 = Node->getOperand(2);
3477     if (Tmp1.getOpcode() == ISD::SETCC) {
3478       Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3479                              Tmp2, Tmp3,
3480                              cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3481     } else {
3482       Tmp1 = DAG.getSelectCC(dl, Tmp1,
3483                              DAG.getConstant(0, dl, Tmp1.getValueType()),
3484                              Tmp2, Tmp3, ISD::SETNE);
3485     }
3486     Tmp1->setFlags(Node->getFlags());
3487     Results.push_back(Tmp1);
3488     break;
3489   case ISD::BR_JT: {
3490     SDValue Chain = Node->getOperand(0);
3491     SDValue Table = Node->getOperand(1);
3492     SDValue Index = Node->getOperand(2);
3493 
3494     const DataLayout &TD = DAG.getDataLayout();
3495     EVT PTy = TLI.getPointerTy(TD);
3496 
3497     unsigned EntrySize =
3498       DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3499 
3500     // For power-of-two jumptable entry sizes convert multiplication to a shift.
3501     // This transformation needs to be done here since otherwise the MIPS
3502     // backend will end up emitting a three instruction multiply sequence
3503     // instead of a single shift and MSP430 will call a runtime function.
3504     if (llvm::isPowerOf2_32(EntrySize))
3505       Index = DAG.getNode(
3506           ISD::SHL, dl, Index.getValueType(), Index,
3507           DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType()));
3508     else
3509       Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
3510                           DAG.getConstant(EntrySize, dl, Index.getValueType()));
3511     SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3512                                Index, Table);
3513 
3514     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3515     SDValue LD = DAG.getExtLoad(
3516         ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3517         MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT);
3518     Addr = LD;
3519     if (TLI.isJumpTableRelative()) {
3520       // For PIC, the sequence is:
3521       // BRIND(load(Jumptable + index) + RelocBase)
3522       // RelocBase can be JumpTable, GOT or some sort of global base.
3523       Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3524                           TLI.getPICJumpTableRelocBase(Table, DAG));
3525     }
3526 
3527     Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG);
3528     Results.push_back(Tmp1);
3529     break;
3530   }
3531   case ISD::BRCOND:
3532     // Expand brcond's setcc into its constituent parts and create a BR_CC
3533     // Node.
3534     Tmp1 = Node->getOperand(0);
3535     Tmp2 = Node->getOperand(1);
3536     if (Tmp2.getOpcode() == ISD::SETCC) {
3537       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3538                          Tmp1, Tmp2.getOperand(2),
3539                          Tmp2.getOperand(0), Tmp2.getOperand(1),
3540                          Node->getOperand(2));
3541     } else {
3542       // We test only the i1 bit.  Skip the AND if UNDEF or another AND.
3543       if (Tmp2.isUndef() ||
3544           (Tmp2.getOpcode() == ISD::AND &&
3545            isa<ConstantSDNode>(Tmp2.getOperand(1)) &&
3546            cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1))
3547         Tmp3 = Tmp2;
3548       else
3549         Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3550                            DAG.getConstant(1, dl, Tmp2.getValueType()));
3551       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3552                          DAG.getCondCode(ISD::SETNE), Tmp3,
3553                          DAG.getConstant(0, dl, Tmp3.getValueType()),
3554                          Node->getOperand(2));
3555     }
3556     Results.push_back(Tmp1);
3557     break;
3558   case ISD::SETCC:
3559   case ISD::STRICT_FSETCC:
3560   case ISD::STRICT_FSETCCS: {
3561     bool IsStrict = Node->getOpcode() != ISD::SETCC;
3562     bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS;
3563     SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
3564     unsigned Offset = IsStrict ? 1 : 0;
3565     Tmp1 = Node->getOperand(0 + Offset);
3566     Tmp2 = Node->getOperand(1 + Offset);
3567     Tmp3 = Node->getOperand(2 + Offset);
3568     bool Legalized =
3569         TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), Tmp1, Tmp2, Tmp3,
3570                                   NeedInvert, dl, Chain, IsSignaling);
3571 
3572     if (Legalized) {
3573       // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3574       // condition code, create a new SETCC node.
3575       if (Tmp3.getNode())
3576         Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3577                            Tmp1, Tmp2, Tmp3, Node->getFlags());
3578 
3579       // If we expanded the SETCC by inverting the condition code, then wrap
3580       // the existing SETCC in a NOT to restore the intended condition.
3581       if (NeedInvert)
3582         Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
3583 
3584       Results.push_back(Tmp1);
3585       if (IsStrict)
3586         Results.push_back(Chain);
3587 
3588       break;
3589     }
3590 
3591     // FIXME: It seems Legalized is false iff CCCode is Legal. I don't
3592     // understand if this code is useful for strict nodes.
3593     assert(!IsStrict && "Don't know how to expand for strict nodes.");
3594 
3595     // Otherwise, SETCC for the given comparison type must be completely
3596     // illegal; expand it into a SELECT_CC.
3597     EVT VT = Node->getValueType(0);
3598     int TrueValue;
3599     switch (TLI.getBooleanContents(Tmp1.getValueType())) {
3600     case TargetLowering::ZeroOrOneBooleanContent:
3601     case TargetLowering::UndefinedBooleanContent:
3602       TrueValue = 1;
3603       break;
3604     case TargetLowering::ZeroOrNegativeOneBooleanContent:
3605       TrueValue = -1;
3606       break;
3607     }
3608     Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3609                        DAG.getConstant(TrueValue, dl, VT),
3610                        DAG.getConstant(0, dl, VT),
3611                        Tmp3);
3612     Tmp1->setFlags(Node->getFlags());
3613     Results.push_back(Tmp1);
3614     break;
3615   }
3616   case ISD::SELECT_CC: {
3617     // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS
3618     Tmp1 = Node->getOperand(0);   // LHS
3619     Tmp2 = Node->getOperand(1);   // RHS
3620     Tmp3 = Node->getOperand(2);   // True
3621     Tmp4 = Node->getOperand(3);   // False
3622     EVT VT = Node->getValueType(0);
3623     SDValue Chain;
3624     SDValue CC = Node->getOperand(4);
3625     ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
3626 
3627     if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) {
3628       // If the condition code is legal, then we need to expand this
3629       // node using SETCC and SELECT.
3630       EVT CmpVT = Tmp1.getValueType();
3631       assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
3632              "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3633              "expanded.");
3634       EVT CCVT = getSetCCResultType(CmpVT);
3635       SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags());
3636       Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
3637       break;
3638     }
3639 
3640     // SELECT_CC is legal, so the condition code must not be.
3641     bool Legalized = false;
3642     // Try to legalize by inverting the condition.  This is for targets that
3643     // might support an ordered version of a condition, but not the unordered
3644     // version (or vice versa).
3645     ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType());
3646     if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) {
3647       // Use the new condition code and swap true and false
3648       Legalized = true;
3649       Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3650       Tmp1->setFlags(Node->getFlags());
3651     } else {
3652       // If The inverse is not legal, then try to swap the arguments using
3653       // the inverse condition code.
3654       ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3655       if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) {
3656         // The swapped inverse condition is legal, so swap true and false,
3657         // lhs and rhs.
3658         Legalized = true;
3659         Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3660         Tmp1->setFlags(Node->getFlags());
3661       }
3662     }
3663 
3664     if (!Legalized) {
3665       Legalized = TLI.LegalizeSetCCCondCode(
3666           DAG, getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC,
3667           NeedInvert, dl, Chain);
3668 
3669       assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
3670 
3671       // If we expanded the SETCC by inverting the condition code, then swap
3672       // the True/False operands to match.
3673       if (NeedInvert)
3674         std::swap(Tmp3, Tmp4);
3675 
3676       // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3677       // condition code, create a new SELECT_CC node.
3678       if (CC.getNode()) {
3679         Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
3680                            Tmp1, Tmp2, Tmp3, Tmp4, CC);
3681       } else {
3682         Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
3683         CC = DAG.getCondCode(ISD::SETNE);
3684         Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
3685                            Tmp2, Tmp3, Tmp4, CC);
3686       }
3687       Tmp1->setFlags(Node->getFlags());
3688     }
3689     Results.push_back(Tmp1);
3690     break;
3691   }
3692   case ISD::BR_CC: {
3693     // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS
3694     SDValue Chain;
3695     Tmp1 = Node->getOperand(0);              // Chain
3696     Tmp2 = Node->getOperand(2);              // LHS
3697     Tmp3 = Node->getOperand(3);              // RHS
3698     Tmp4 = Node->getOperand(1);              // CC
3699 
3700     bool Legalized =
3701         TLI.LegalizeSetCCCondCode(DAG, getSetCCResultType(Tmp2.getValueType()),
3702                                   Tmp2, Tmp3, Tmp4, NeedInvert, dl, Chain);
3703     (void)Legalized;
3704     assert(Legalized && "Can't legalize BR_CC with legal condition!");
3705 
3706     // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3707     // node.
3708     if (Tmp4.getNode()) {
3709       assert(!NeedInvert && "Don't know how to invert BR_CC!");
3710 
3711       Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
3712                          Tmp4, Tmp2, Tmp3, Node->getOperand(4));
3713     } else {
3714       Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
3715       Tmp4 = DAG.getCondCode(NeedInvert ? ISD::SETEQ : ISD::SETNE);
3716       Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
3717                          Tmp2, Tmp3, Node->getOperand(4));
3718     }
3719     Results.push_back(Tmp1);
3720     break;
3721   }
3722   case ISD::BUILD_VECTOR:
3723     Results.push_back(ExpandBUILD_VECTOR(Node));
3724     break;
3725   case ISD::SPLAT_VECTOR:
3726     Results.push_back(ExpandSPLAT_VECTOR(Node));
3727     break;
3728   case ISD::SRA:
3729   case ISD::SRL:
3730   case ISD::SHL: {
3731     // Scalarize vector SRA/SRL/SHL.
3732     EVT VT = Node->getValueType(0);
3733     assert(VT.isVector() && "Unable to legalize non-vector shift");
3734     assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3735     unsigned NumElem = VT.getVectorNumElements();
3736 
3737     SmallVector<SDValue, 8> Scalars;
3738     for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3739       SDValue Ex =
3740           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
3741                       Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl));
3742       SDValue Sh =
3743           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
3744                       Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl));
3745       Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3746                                     VT.getScalarType(), Ex, Sh));
3747     }
3748 
3749     SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars);
3750     Results.push_back(Result);
3751     break;
3752   }
3753   case ISD::VECREDUCE_FADD:
3754   case ISD::VECREDUCE_FMUL:
3755   case ISD::VECREDUCE_ADD:
3756   case ISD::VECREDUCE_MUL:
3757   case ISD::VECREDUCE_AND:
3758   case ISD::VECREDUCE_OR:
3759   case ISD::VECREDUCE_XOR:
3760   case ISD::VECREDUCE_SMAX:
3761   case ISD::VECREDUCE_SMIN:
3762   case ISD::VECREDUCE_UMAX:
3763   case ISD::VECREDUCE_UMIN:
3764   case ISD::VECREDUCE_FMAX:
3765   case ISD::VECREDUCE_FMIN:
3766     Results.push_back(TLI.expandVecReduce(Node, DAG));
3767     break;
3768   case ISD::GLOBAL_OFFSET_TABLE:
3769   case ISD::GlobalAddress:
3770   case ISD::GlobalTLSAddress:
3771   case ISD::ExternalSymbol:
3772   case ISD::ConstantPool:
3773   case ISD::JumpTable:
3774   case ISD::INTRINSIC_W_CHAIN:
3775   case ISD::INTRINSIC_WO_CHAIN:
3776   case ISD::INTRINSIC_VOID:
3777     // FIXME: Custom lowering for these operations shouldn't return null!
3778     // Return true so that we don't call ConvertNodeToLibcall which also won't
3779     // do anything.
3780     return true;
3781   }
3782 
3783   if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) {
3784     // FIXME: We were asked to expand a strict floating-point operation,
3785     // but there is currently no expansion implemented that would preserve
3786     // the "strict" properties.  For now, we just fall back to the non-strict
3787     // version if that is legal on the target.  The actual mutation of the
3788     // operation will happen in SelectionDAGISel::DoInstructionSelection.
3789     switch (Node->getOpcode()) {
3790     default:
3791       if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3792                                          Node->getValueType(0))
3793           == TargetLowering::Legal)
3794         return true;
3795       break;
3796     case ISD::STRICT_FSUB: {
3797       if (TLI.getStrictFPOperationAction(
3798               ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal)
3799         return true;
3800       if (TLI.getStrictFPOperationAction(
3801               ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal)
3802         break;
3803 
3804       EVT VT = Node->getValueType(0);
3805       const SDNodeFlags Flags = Node->getFlags();
3806       SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags);
3807       SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(),
3808                                  {Node->getOperand(0), Node->getOperand(1), Neg},
3809                          Flags);
3810 
3811       Results.push_back(Fadd);
3812       Results.push_back(Fadd.getValue(1));
3813       break;
3814     }
3815     case ISD::STRICT_SINT_TO_FP:
3816     case ISD::STRICT_UINT_TO_FP:
3817     case ISD::STRICT_LRINT:
3818     case ISD::STRICT_LLRINT:
3819     case ISD::STRICT_LROUND:
3820     case ISD::STRICT_LLROUND:
3821       // These are registered by the operand type instead of the value
3822       // type. Reflect that here.
3823       if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3824                                          Node->getOperand(1).getValueType())
3825           == TargetLowering::Legal)
3826         return true;
3827       break;
3828     }
3829   }
3830 
3831   // Replace the original node with the legalized result.
3832   if (Results.empty()) {
3833     LLVM_DEBUG(dbgs() << "Cannot expand node\n");
3834     return false;
3835   }
3836 
3837   LLVM_DEBUG(dbgs() << "Successfully expanded node\n");
3838   ReplaceNode(Node, Results.data());
3839   return true;
3840 }
3841 
ConvertNodeToLibcall(SDNode * Node)3842 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
3843   LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n");
3844   SmallVector<SDValue, 8> Results;
3845   SDLoc dl(Node);
3846   // FIXME: Check flags on the node to see if we can use a finite call.
3847   unsigned Opc = Node->getOpcode();
3848   switch (Opc) {
3849   case ISD::ATOMIC_FENCE: {
3850     // If the target didn't lower this, lower it to '__sync_synchronize()' call
3851     // FIXME: handle "fence singlethread" more efficiently.
3852     TargetLowering::ArgListTy Args;
3853 
3854     TargetLowering::CallLoweringInfo CLI(DAG);
3855     CLI.setDebugLoc(dl)
3856         .setChain(Node->getOperand(0))
3857         .setLibCallee(
3858             CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3859             DAG.getExternalSymbol("__sync_synchronize",
3860                                   TLI.getPointerTy(DAG.getDataLayout())),
3861             std::move(Args));
3862 
3863     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3864 
3865     Results.push_back(CallResult.second);
3866     break;
3867   }
3868   // By default, atomic intrinsics are marked Legal and lowered. Targets
3869   // which don't support them directly, however, may want libcalls, in which
3870   // case they mark them Expand, and we get here.
3871   case ISD::ATOMIC_SWAP:
3872   case ISD::ATOMIC_LOAD_ADD:
3873   case ISD::ATOMIC_LOAD_SUB:
3874   case ISD::ATOMIC_LOAD_AND:
3875   case ISD::ATOMIC_LOAD_CLR:
3876   case ISD::ATOMIC_LOAD_OR:
3877   case ISD::ATOMIC_LOAD_XOR:
3878   case ISD::ATOMIC_LOAD_NAND:
3879   case ISD::ATOMIC_LOAD_MIN:
3880   case ISD::ATOMIC_LOAD_MAX:
3881   case ISD::ATOMIC_LOAD_UMIN:
3882   case ISD::ATOMIC_LOAD_UMAX:
3883   case ISD::ATOMIC_CMP_SWAP: {
3884     MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
3885     AtomicOrdering Order = cast<AtomicSDNode>(Node)->getMergedOrdering();
3886     RTLIB::Libcall LC = RTLIB::getOUTLINE_ATOMIC(Opc, Order, VT);
3887     EVT RetVT = Node->getValueType(0);
3888     TargetLowering::MakeLibCallOptions CallOptions;
3889     SmallVector<SDValue, 4> Ops;
3890     if (TLI.getLibcallName(LC)) {
3891       // If outline atomic available, prepare its arguments and expand.
3892       Ops.append(Node->op_begin() + 2, Node->op_end());
3893       Ops.push_back(Node->getOperand(1));
3894 
3895     } else {
3896       LC = RTLIB::getSYNC(Opc, VT);
3897       assert(LC != RTLIB::UNKNOWN_LIBCALL &&
3898              "Unexpected atomic op or value type!");
3899       // Arguments for expansion to sync libcall
3900       Ops.append(Node->op_begin() + 1, Node->op_end());
3901     }
3902     std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
3903                                                       Ops, CallOptions,
3904                                                       SDLoc(Node),
3905                                                       Node->getOperand(0));
3906     Results.push_back(Tmp.first);
3907     Results.push_back(Tmp.second);
3908     break;
3909   }
3910   case ISD::TRAP: {
3911     // If this operation is not supported, lower it to 'abort()' call
3912     TargetLowering::ArgListTy Args;
3913     TargetLowering::CallLoweringInfo CLI(DAG);
3914     CLI.setDebugLoc(dl)
3915         .setChain(Node->getOperand(0))
3916         .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3917                       DAG.getExternalSymbol(
3918                           "abort", TLI.getPointerTy(DAG.getDataLayout())),
3919                       std::move(Args));
3920     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3921 
3922     Results.push_back(CallResult.second);
3923     break;
3924   }
3925   case ISD::FMINNUM:
3926   case ISD::STRICT_FMINNUM:
3927     ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
3928                     RTLIB::FMIN_F80, RTLIB::FMIN_F128,
3929                     RTLIB::FMIN_PPCF128, Results);
3930     break;
3931   case ISD::FMAXNUM:
3932   case ISD::STRICT_FMAXNUM:
3933     ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
3934                     RTLIB::FMAX_F80, RTLIB::FMAX_F128,
3935                     RTLIB::FMAX_PPCF128, Results);
3936     break;
3937   case ISD::FSQRT:
3938   case ISD::STRICT_FSQRT:
3939     ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3940                     RTLIB::SQRT_F80, RTLIB::SQRT_F128,
3941                     RTLIB::SQRT_PPCF128, Results);
3942     break;
3943   case ISD::FCBRT:
3944     ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64,
3945                     RTLIB::CBRT_F80, RTLIB::CBRT_F128,
3946                     RTLIB::CBRT_PPCF128, Results);
3947     break;
3948   case ISD::FSIN:
3949   case ISD::STRICT_FSIN:
3950     ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3951                     RTLIB::SIN_F80, RTLIB::SIN_F128,
3952                     RTLIB::SIN_PPCF128, Results);
3953     break;
3954   case ISD::FCOS:
3955   case ISD::STRICT_FCOS:
3956     ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3957                     RTLIB::COS_F80, RTLIB::COS_F128,
3958                     RTLIB::COS_PPCF128, Results);
3959     break;
3960   case ISD::FSINCOS:
3961     // Expand into sincos libcall.
3962     ExpandSinCosLibCall(Node, Results);
3963     break;
3964   case ISD::FLOG:
3965   case ISD::STRICT_FLOG:
3966     ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80,
3967                     RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results);
3968     break;
3969   case ISD::FLOG2:
3970   case ISD::STRICT_FLOG2:
3971     ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80,
3972                     RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results);
3973     break;
3974   case ISD::FLOG10:
3975   case ISD::STRICT_FLOG10:
3976     ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80,
3977                     RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results);
3978     break;
3979   case ISD::FEXP:
3980   case ISD::STRICT_FEXP:
3981     ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80,
3982                     RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results);
3983     break;
3984   case ISD::FEXP2:
3985   case ISD::STRICT_FEXP2:
3986     ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80,
3987                     RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results);
3988     break;
3989   case ISD::FTRUNC:
3990   case ISD::STRICT_FTRUNC:
3991     ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3992                     RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
3993                     RTLIB::TRUNC_PPCF128, Results);
3994     break;
3995   case ISD::FFLOOR:
3996   case ISD::STRICT_FFLOOR:
3997     ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3998                     RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
3999                     RTLIB::FLOOR_PPCF128, Results);
4000     break;
4001   case ISD::FCEIL:
4002   case ISD::STRICT_FCEIL:
4003     ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
4004                     RTLIB::CEIL_F80, RTLIB::CEIL_F128,
4005                     RTLIB::CEIL_PPCF128, Results);
4006     break;
4007   case ISD::FRINT:
4008   case ISD::STRICT_FRINT:
4009     ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
4010                     RTLIB::RINT_F80, RTLIB::RINT_F128,
4011                     RTLIB::RINT_PPCF128, Results);
4012     break;
4013   case ISD::FNEARBYINT:
4014   case ISD::STRICT_FNEARBYINT:
4015     ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
4016                     RTLIB::NEARBYINT_F64,
4017                     RTLIB::NEARBYINT_F80,
4018                     RTLIB::NEARBYINT_F128,
4019                     RTLIB::NEARBYINT_PPCF128, Results);
4020     break;
4021   case ISD::FROUND:
4022   case ISD::STRICT_FROUND:
4023     ExpandFPLibCall(Node, RTLIB::ROUND_F32,
4024                     RTLIB::ROUND_F64,
4025                     RTLIB::ROUND_F80,
4026                     RTLIB::ROUND_F128,
4027                     RTLIB::ROUND_PPCF128, Results);
4028     break;
4029   case ISD::FROUNDEVEN:
4030   case ISD::STRICT_FROUNDEVEN:
4031     ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32,
4032                     RTLIB::ROUNDEVEN_F64,
4033                     RTLIB::ROUNDEVEN_F80,
4034                     RTLIB::ROUNDEVEN_F128,
4035                     RTLIB::ROUNDEVEN_PPCF128, Results);
4036     break;
4037   case ISD::FPOWI:
4038   case ISD::STRICT_FPOWI: {
4039     RTLIB::Libcall LC = RTLIB::getPOWI(Node->getSimpleValueType(0));
4040     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fpowi.");
4041     if (!TLI.getLibcallName(LC)) {
4042       // Some targets don't have a powi libcall; use pow instead.
4043       SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node),
4044                                      Node->getValueType(0),
4045                                      Node->getOperand(1));
4046       Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node),
4047                                     Node->getValueType(0), Node->getOperand(0),
4048                                     Exponent));
4049       break;
4050     }
4051     unsigned Offset = Node->isStrictFPOpcode() ? 1 : 0;
4052     bool ExponentHasSizeOfInt =
4053         DAG.getLibInfo().getIntSize() ==
4054         Node->getOperand(1 + Offset).getValueType().getSizeInBits();
4055     if (!ExponentHasSizeOfInt) {
4056       // If the exponent does not match with sizeof(int) a libcall to
4057       // RTLIB::POWI would use the wrong type for the argument.
4058       DAG.getContext()->emitError("POWI exponent does not match sizeof(int)");
4059       Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
4060       break;
4061     }
4062     ExpandFPLibCall(Node, LC, Results);
4063     break;
4064   }
4065   case ISD::FPOW:
4066   case ISD::STRICT_FPOW:
4067     ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80,
4068                     RTLIB::POW_F128, RTLIB::POW_PPCF128, Results);
4069     break;
4070   case ISD::LROUND:
4071   case ISD::STRICT_LROUND:
4072     ExpandArgFPLibCall(Node, RTLIB::LROUND_F32,
4073                        RTLIB::LROUND_F64, RTLIB::LROUND_F80,
4074                        RTLIB::LROUND_F128,
4075                        RTLIB::LROUND_PPCF128, Results);
4076     break;
4077   case ISD::LLROUND:
4078   case ISD::STRICT_LLROUND:
4079     ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32,
4080                        RTLIB::LLROUND_F64, RTLIB::LLROUND_F80,
4081                        RTLIB::LLROUND_F128,
4082                        RTLIB::LLROUND_PPCF128, Results);
4083     break;
4084   case ISD::LRINT:
4085   case ISD::STRICT_LRINT:
4086     ExpandArgFPLibCall(Node, RTLIB::LRINT_F32,
4087                        RTLIB::LRINT_F64, RTLIB::LRINT_F80,
4088                        RTLIB::LRINT_F128,
4089                        RTLIB::LRINT_PPCF128, Results);
4090     break;
4091   case ISD::LLRINT:
4092   case ISD::STRICT_LLRINT:
4093     ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32,
4094                        RTLIB::LLRINT_F64, RTLIB::LLRINT_F80,
4095                        RTLIB::LLRINT_F128,
4096                        RTLIB::LLRINT_PPCF128, Results);
4097     break;
4098   case ISD::FDIV:
4099   case ISD::STRICT_FDIV:
4100     ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
4101                     RTLIB::DIV_F80, RTLIB::DIV_F128,
4102                     RTLIB::DIV_PPCF128, Results);
4103     break;
4104   case ISD::FREM:
4105   case ISD::STRICT_FREM:
4106     ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
4107                     RTLIB::REM_F80, RTLIB::REM_F128,
4108                     RTLIB::REM_PPCF128, Results);
4109     break;
4110   case ISD::FMA:
4111   case ISD::STRICT_FMA:
4112     ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
4113                     RTLIB::FMA_F80, RTLIB::FMA_F128,
4114                     RTLIB::FMA_PPCF128, Results);
4115     break;
4116   case ISD::FADD:
4117   case ISD::STRICT_FADD:
4118     ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
4119                     RTLIB::ADD_F80, RTLIB::ADD_F128,
4120                     RTLIB::ADD_PPCF128, Results);
4121     break;
4122   case ISD::FMUL:
4123   case ISD::STRICT_FMUL:
4124     ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
4125                     RTLIB::MUL_F80, RTLIB::MUL_F128,
4126                     RTLIB::MUL_PPCF128, Results);
4127     break;
4128   case ISD::FP16_TO_FP:
4129     if (Node->getValueType(0) == MVT::f32) {
4130       Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
4131     }
4132     break;
4133   case ISD::STRICT_FP16_TO_FP: {
4134     if (Node->getValueType(0) == MVT::f32) {
4135       TargetLowering::MakeLibCallOptions CallOptions;
4136       std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(
4137           DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions,
4138           SDLoc(Node), Node->getOperand(0));
4139       Results.push_back(Tmp.first);
4140       Results.push_back(Tmp.second);
4141     }
4142     break;
4143   }
4144   case ISD::FP_TO_FP16: {
4145     RTLIB::Libcall LC =
4146         RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
4147     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
4148     Results.push_back(ExpandLibCall(LC, Node, false));
4149     break;
4150   }
4151   case ISD::STRICT_SINT_TO_FP:
4152   case ISD::STRICT_UINT_TO_FP:
4153   case ISD::SINT_TO_FP:
4154   case ISD::UINT_TO_FP: {
4155     // TODO - Common the code with DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP
4156     bool IsStrict = Node->isStrictFPOpcode();
4157     bool Signed = Node->getOpcode() == ISD::SINT_TO_FP ||
4158                   Node->getOpcode() == ISD::STRICT_SINT_TO_FP;
4159     EVT SVT = Node->getOperand(IsStrict ? 1 : 0).getValueType();
4160     EVT RVT = Node->getValueType(0);
4161     EVT NVT = EVT();
4162     SDLoc dl(Node);
4163 
4164     // Even if the input is legal, no libcall may exactly match, eg. we don't
4165     // have i1 -> fp conversions. So, it needs to be promoted to a larger type,
4166     // eg: i13 -> fp. Then, look for an appropriate libcall.
4167     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
4168     for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE;
4169          t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL;
4170          ++t) {
4171       NVT = (MVT::SimpleValueType)t;
4172       // The source needs to big enough to hold the operand.
4173       if (NVT.bitsGE(SVT))
4174         LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT)
4175                     : RTLIB::getUINTTOFP(NVT, RVT);
4176     }
4177     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall");
4178 
4179     SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
4180     // Sign/zero extend the argument if the libcall takes a larger type.
4181     SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl,
4182                              NVT, Node->getOperand(IsStrict ? 1 : 0));
4183     TargetLowering::MakeLibCallOptions CallOptions;
4184     CallOptions.setSExt(Signed);
4185     std::pair<SDValue, SDValue> Tmp =
4186         TLI.makeLibCall(DAG, LC, RVT, Op, CallOptions, dl, Chain);
4187     Results.push_back(Tmp.first);
4188     if (IsStrict)
4189       Results.push_back(Tmp.second);
4190     break;
4191   }
4192   case ISD::FP_TO_SINT:
4193   case ISD::FP_TO_UINT:
4194   case ISD::STRICT_FP_TO_SINT:
4195   case ISD::STRICT_FP_TO_UINT: {
4196     // TODO - Common the code with DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT.
4197     bool IsStrict = Node->isStrictFPOpcode();
4198     bool Signed = Node->getOpcode() == ISD::FP_TO_SINT ||
4199                   Node->getOpcode() == ISD::STRICT_FP_TO_SINT;
4200 
4201     SDValue Op = Node->getOperand(IsStrict ? 1 : 0);
4202     EVT SVT = Op.getValueType();
4203     EVT RVT = Node->getValueType(0);
4204     EVT NVT = EVT();
4205     SDLoc dl(Node);
4206 
4207     // Even if the result is legal, no libcall may exactly match, eg. we don't
4208     // have fp -> i1 conversions. So, it needs to be promoted to a larger type,
4209     // eg: fp -> i32. Then, look for an appropriate libcall.
4210     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
4211     for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE;
4212          IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL;
4213          ++IntVT) {
4214       NVT = (MVT::SimpleValueType)IntVT;
4215       // The type needs to big enough to hold the result.
4216       if (NVT.bitsGE(RVT))
4217         LC = Signed ? RTLIB::getFPTOSINT(SVT, NVT)
4218                     : RTLIB::getFPTOUINT(SVT, NVT);
4219     }
4220     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall");
4221 
4222     SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
4223     TargetLowering::MakeLibCallOptions CallOptions;
4224     std::pair<SDValue, SDValue> Tmp =
4225         TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain);
4226 
4227     // Truncate the result if the libcall returns a larger type.
4228     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, RVT, Tmp.first));
4229     if (IsStrict)
4230       Results.push_back(Tmp.second);
4231     break;
4232   }
4233 
4234   case ISD::FP_ROUND:
4235   case ISD::STRICT_FP_ROUND: {
4236     // X = FP_ROUND(Y, TRUNC)
4237     // TRUNC is a flag, which is always an integer that is zero or one.
4238     // If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND
4239     // is known to not change the value of Y.
4240     // We can only expand it into libcall if the TRUNC is 0.
4241     bool IsStrict = Node->isStrictFPOpcode();
4242     SDValue Op = Node->getOperand(IsStrict ? 1 : 0);
4243     SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
4244     EVT VT = Node->getValueType(0);
4245     assert(cast<ConstantSDNode>(Node->getOperand(IsStrict ? 2 : 1))
4246                ->isNullValue() &&
4247            "Unable to expand as libcall if it is not normal rounding");
4248 
4249     RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), VT);
4250     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall");
4251 
4252     TargetLowering::MakeLibCallOptions CallOptions;
4253     std::pair<SDValue, SDValue> Tmp =
4254         TLI.makeLibCall(DAG, LC, VT, Op, CallOptions, SDLoc(Node), Chain);
4255     Results.push_back(Tmp.first);
4256     if (IsStrict)
4257       Results.push_back(Tmp.second);
4258     break;
4259   }
4260   case ISD::FP_EXTEND: {
4261     Results.push_back(
4262         ExpandLibCall(RTLIB::getFPEXT(Node->getOperand(0).getValueType(),
4263                                       Node->getValueType(0)),
4264                       Node, false));
4265     break;
4266   }
4267   case ISD::STRICT_FP_EXTEND:
4268   case ISD::STRICT_FP_TO_FP16: {
4269     RTLIB::Libcall LC =
4270         Node->getOpcode() == ISD::STRICT_FP_TO_FP16
4271             ? RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16)
4272             : RTLIB::getFPEXT(Node->getOperand(1).getValueType(),
4273                               Node->getValueType(0));
4274     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall");
4275 
4276     TargetLowering::MakeLibCallOptions CallOptions;
4277     std::pair<SDValue, SDValue> Tmp =
4278         TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1),
4279                         CallOptions, SDLoc(Node), Node->getOperand(0));
4280     Results.push_back(Tmp.first);
4281     Results.push_back(Tmp.second);
4282     break;
4283   }
4284   case ISD::FSUB:
4285   case ISD::STRICT_FSUB:
4286     ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
4287                     RTLIB::SUB_F80, RTLIB::SUB_F128,
4288                     RTLIB::SUB_PPCF128, Results);
4289     break;
4290   case ISD::SREM:
4291     Results.push_back(ExpandIntLibCall(Node, true,
4292                                        RTLIB::SREM_I8,
4293                                        RTLIB::SREM_I16, RTLIB::SREM_I32,
4294                                        RTLIB::SREM_I64, RTLIB::SREM_I128));
4295     break;
4296   case ISD::UREM:
4297     Results.push_back(ExpandIntLibCall(Node, false,
4298                                        RTLIB::UREM_I8,
4299                                        RTLIB::UREM_I16, RTLIB::UREM_I32,
4300                                        RTLIB::UREM_I64, RTLIB::UREM_I128));
4301     break;
4302   case ISD::SDIV:
4303     Results.push_back(ExpandIntLibCall(Node, true,
4304                                        RTLIB::SDIV_I8,
4305                                        RTLIB::SDIV_I16, RTLIB::SDIV_I32,
4306                                        RTLIB::SDIV_I64, RTLIB::SDIV_I128));
4307     break;
4308   case ISD::UDIV:
4309     Results.push_back(ExpandIntLibCall(Node, false,
4310                                        RTLIB::UDIV_I8,
4311                                        RTLIB::UDIV_I16, RTLIB::UDIV_I32,
4312                                        RTLIB::UDIV_I64, RTLIB::UDIV_I128));
4313     break;
4314   case ISD::SDIVREM:
4315   case ISD::UDIVREM:
4316     // Expand into divrem libcall
4317     ExpandDivRemLibCall(Node, Results);
4318     break;
4319   case ISD::MUL:
4320     Results.push_back(ExpandIntLibCall(Node, false,
4321                                        RTLIB::MUL_I8,
4322                                        RTLIB::MUL_I16, RTLIB::MUL_I32,
4323                                        RTLIB::MUL_I64, RTLIB::MUL_I128));
4324     break;
4325   case ISD::CTLZ_ZERO_UNDEF:
4326     switch (Node->getSimpleValueType(0).SimpleTy) {
4327     default:
4328       llvm_unreachable("LibCall explicitly requested, but not available");
4329     case MVT::i32:
4330       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false));
4331       break;
4332     case MVT::i64:
4333       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false));
4334       break;
4335     case MVT::i128:
4336       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false));
4337       break;
4338     }
4339     break;
4340   }
4341 
4342   // Replace the original node with the legalized result.
4343   if (!Results.empty()) {
4344     LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n");
4345     ReplaceNode(Node, Results.data());
4346   } else
4347     LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n");
4348 }
4349 
4350 // Determine the vector type to use in place of an original scalar element when
4351 // promoting equally sized vectors.
getPromotedVectorElementType(const TargetLowering & TLI,MVT EltVT,MVT NewEltVT)4352 static MVT getPromotedVectorElementType(const TargetLowering &TLI,
4353                                         MVT EltVT, MVT NewEltVT) {
4354   unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
4355   MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
4356   assert(TLI.isTypeLegal(MidVT) && "unexpected");
4357   return MidVT;
4358 }
4359 
PromoteNode(SDNode * Node)4360 void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
4361   LLVM_DEBUG(dbgs() << "Trying to promote node\n");
4362   SmallVector<SDValue, 8> Results;
4363   MVT OVT = Node->getSimpleValueType(0);
4364   if (Node->getOpcode() == ISD::UINT_TO_FP ||
4365       Node->getOpcode() == ISD::SINT_TO_FP ||
4366       Node->getOpcode() == ISD::SETCC ||
4367       Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
4368       Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
4369     OVT = Node->getOperand(0).getSimpleValueType();
4370   }
4371   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP ||
4372       Node->getOpcode() == ISD::STRICT_SINT_TO_FP ||
4373       Node->getOpcode() == ISD::STRICT_FSETCC ||
4374       Node->getOpcode() == ISD::STRICT_FSETCCS)
4375     OVT = Node->getOperand(1).getSimpleValueType();
4376   if (Node->getOpcode() == ISD::BR_CC ||
4377       Node->getOpcode() == ISD::SELECT_CC)
4378     OVT = Node->getOperand(2).getSimpleValueType();
4379   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
4380   SDLoc dl(Node);
4381   SDValue Tmp1, Tmp2, Tmp3, Tmp4;
4382   switch (Node->getOpcode()) {
4383   case ISD::CTTZ:
4384   case ISD::CTTZ_ZERO_UNDEF:
4385   case ISD::CTLZ:
4386   case ISD::CTLZ_ZERO_UNDEF:
4387   case ISD::CTPOP:
4388     // Zero extend the argument unless its cttz, then use any_extend.
4389     if (Node->getOpcode() == ISD::CTTZ ||
4390         Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
4391       Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0));
4392     else
4393       Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4394 
4395     if (Node->getOpcode() == ISD::CTTZ) {
4396       // The count is the same in the promoted type except if the original
4397       // value was zero.  This can be handled by setting the bit just off
4398       // the top of the original type.
4399       auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(),
4400                                         OVT.getSizeInBits());
4401       Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1,
4402                          DAG.getConstant(TopBit, dl, NVT));
4403     }
4404     // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4405     // already the correct result.
4406     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4407     if (Node->getOpcode() == ISD::CTLZ ||
4408         Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
4409       // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4410       Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4411                           DAG.getConstant(NVT.getSizeInBits() -
4412                                           OVT.getSizeInBits(), dl, NVT));
4413     }
4414     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4415     break;
4416   case ISD::BITREVERSE:
4417   case ISD::BSWAP: {
4418     unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
4419     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4420     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4421     Tmp1 = DAG.getNode(
4422         ISD::SRL, dl, NVT, Tmp1,
4423         DAG.getConstant(DiffBits, dl,
4424                         TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
4425 
4426     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4427     break;
4428   }
4429   case ISD::FP_TO_UINT:
4430   case ISD::STRICT_FP_TO_UINT:
4431   case ISD::FP_TO_SINT:
4432   case ISD::STRICT_FP_TO_SINT:
4433     PromoteLegalFP_TO_INT(Node, dl, Results);
4434     break;
4435   case ISD::FP_TO_UINT_SAT:
4436   case ISD::FP_TO_SINT_SAT:
4437     Results.push_back(PromoteLegalFP_TO_INT_SAT(Node, dl));
4438     break;
4439   case ISD::UINT_TO_FP:
4440   case ISD::STRICT_UINT_TO_FP:
4441   case ISD::SINT_TO_FP:
4442   case ISD::STRICT_SINT_TO_FP:
4443     PromoteLegalINT_TO_FP(Node, dl, Results);
4444     break;
4445   case ISD::VAARG: {
4446     SDValue Chain = Node->getOperand(0); // Get the chain.
4447     SDValue Ptr = Node->getOperand(1); // Get the pointer.
4448 
4449     unsigned TruncOp;
4450     if (OVT.isVector()) {
4451       TruncOp = ISD::BITCAST;
4452     } else {
4453       assert(OVT.isInteger()
4454         && "VAARG promotion is supported only for vectors or integer types");
4455       TruncOp = ISD::TRUNCATE;
4456     }
4457 
4458     // Perform the larger operation, then convert back
4459     Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
4460              Node->getConstantOperandVal(3));
4461     Chain = Tmp1.getValue(1);
4462 
4463     Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
4464 
4465     // Modified the chain result - switch anything that used the old chain to
4466     // use the new one.
4467     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
4468     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
4469     if (UpdatedNodes) {
4470       UpdatedNodes->insert(Tmp2.getNode());
4471       UpdatedNodes->insert(Chain.getNode());
4472     }
4473     ReplacedNode(Node);
4474     break;
4475   }
4476   case ISD::MUL:
4477   case ISD::SDIV:
4478   case ISD::SREM:
4479   case ISD::UDIV:
4480   case ISD::UREM:
4481   case ISD::AND:
4482   case ISD::OR:
4483   case ISD::XOR: {
4484     unsigned ExtOp, TruncOp;
4485     if (OVT.isVector()) {
4486       ExtOp   = ISD::BITCAST;
4487       TruncOp = ISD::BITCAST;
4488     } else {
4489       assert(OVT.isInteger() && "Cannot promote logic operation");
4490 
4491       switch (Node->getOpcode()) {
4492       default:
4493         ExtOp = ISD::ANY_EXTEND;
4494         break;
4495       case ISD::SDIV:
4496       case ISD::SREM:
4497         ExtOp = ISD::SIGN_EXTEND;
4498         break;
4499       case ISD::UDIV:
4500       case ISD::UREM:
4501         ExtOp = ISD::ZERO_EXTEND;
4502         break;
4503       }
4504       TruncOp = ISD::TRUNCATE;
4505     }
4506     // Promote each of the values to the new type.
4507     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4508     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4509     // Perform the larger operation, then convert back
4510     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4511     Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
4512     break;
4513   }
4514   case ISD::UMUL_LOHI:
4515   case ISD::SMUL_LOHI: {
4516     // Promote to a multiply in a wider integer type.
4517     unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND
4518                                                          : ISD::SIGN_EXTEND;
4519     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4520     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4521     Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2);
4522 
4523     auto &DL = DAG.getDataLayout();
4524     unsigned OriginalSize = OVT.getScalarSizeInBits();
4525     Tmp2 = DAG.getNode(
4526         ISD::SRL, dl, NVT, Tmp1,
4527         DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT)));
4528     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4529     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2));
4530     break;
4531   }
4532   case ISD::SELECT: {
4533     unsigned ExtOp, TruncOp;
4534     if (Node->getValueType(0).isVector() ||
4535         Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
4536       ExtOp   = ISD::BITCAST;
4537       TruncOp = ISD::BITCAST;
4538     } else if (Node->getValueType(0).isInteger()) {
4539       ExtOp   = ISD::ANY_EXTEND;
4540       TruncOp = ISD::TRUNCATE;
4541     } else {
4542       ExtOp   = ISD::FP_EXTEND;
4543       TruncOp = ISD::FP_ROUND;
4544     }
4545     Tmp1 = Node->getOperand(0);
4546     // Promote each of the values to the new type.
4547     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4548     Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4549     // Perform the larger operation, then round down.
4550     Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
4551     Tmp1->setFlags(Node->getFlags());
4552     if (TruncOp != ISD::FP_ROUND)
4553       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
4554     else
4555       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
4556                          DAG.getIntPtrConstant(0, dl));
4557     Results.push_back(Tmp1);
4558     break;
4559   }
4560   case ISD::VECTOR_SHUFFLE: {
4561     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4562 
4563     // Cast the two input vectors.
4564     Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4565     Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4566 
4567     // Convert the shuffle mask to the right # elements.
4568     Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4569     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4570     Results.push_back(Tmp1);
4571     break;
4572   }
4573   case ISD::VECTOR_SPLICE: {
4574     Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0));
4575     Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(1));
4576     Tmp3 = DAG.getNode(ISD::VECTOR_SPLICE, dl, NVT, Tmp1, Tmp2,
4577                        Node->getOperand(2));
4578     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp3));
4579     break;
4580   }
4581   case ISD::SELECT_CC: {
4582     SDValue Cond = Node->getOperand(4);
4583     ISD::CondCode CCCode = cast<CondCodeSDNode>(Cond)->get();
4584     // Type of the comparison operands.
4585     MVT CVT = Node->getSimpleValueType(0);
4586     assert(CVT == OVT && "not handled");
4587 
4588     unsigned ExtOp = ISD::FP_EXTEND;
4589     if (NVT.isInteger()) {
4590       ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4591     }
4592 
4593     // Promote the comparison operands, if needed.
4594     if (TLI.isCondCodeLegal(CCCode, CVT)) {
4595       Tmp1 = Node->getOperand(0);
4596       Tmp2 = Node->getOperand(1);
4597     } else {
4598       Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4599       Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4600     }
4601     // Cast the true/false operands.
4602     Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4603     Tmp4 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4604 
4605     Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, NVT, {Tmp1, Tmp2, Tmp3, Tmp4, Cond},
4606                        Node->getFlags());
4607 
4608     // Cast the result back to the original type.
4609     if (ExtOp != ISD::FP_EXTEND)
4610       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1);
4611     else
4612       Tmp1 = DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp1,
4613                          DAG.getIntPtrConstant(0, dl));
4614 
4615     Results.push_back(Tmp1);
4616     break;
4617   }
4618   case ISD::SETCC:
4619   case ISD::STRICT_FSETCC:
4620   case ISD::STRICT_FSETCCS: {
4621     unsigned ExtOp = ISD::FP_EXTEND;
4622     if (NVT.isInteger()) {
4623       ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
4624       ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4625     }
4626     if (Node->isStrictFPOpcode()) {
4627       SDValue InChain = Node->getOperand(0);
4628       std::tie(Tmp1, std::ignore) =
4629           DAG.getStrictFPExtendOrRound(Node->getOperand(1), InChain, dl, NVT);
4630       std::tie(Tmp2, std::ignore) =
4631           DAG.getStrictFPExtendOrRound(Node->getOperand(2), InChain, dl, NVT);
4632       SmallVector<SDValue, 2> TmpChains = {Tmp1.getValue(1), Tmp2.getValue(1)};
4633       SDValue OutChain = DAG.getTokenFactor(dl, TmpChains);
4634       SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
4635       Results.push_back(DAG.getNode(Node->getOpcode(), dl, VTs,
4636                                     {OutChain, Tmp1, Tmp2, Node->getOperand(3)},
4637                                     Node->getFlags()));
4638       Results.push_back(Results.back().getValue(1));
4639       break;
4640     }
4641     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4642     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4643     Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1,
4644                                   Tmp2, Node->getOperand(2), Node->getFlags()));
4645     break;
4646   }
4647   case ISD::BR_CC: {
4648     unsigned ExtOp = ISD::FP_EXTEND;
4649     if (NVT.isInteger()) {
4650       ISD::CondCode CCCode =
4651         cast<CondCodeSDNode>(Node->getOperand(1))->get();
4652       ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4653     }
4654     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4655     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4656     Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
4657                                   Node->getOperand(0), Node->getOperand(1),
4658                                   Tmp1, Tmp2, Node->getOperand(4)));
4659     break;
4660   }
4661   case ISD::FADD:
4662   case ISD::FSUB:
4663   case ISD::FMUL:
4664   case ISD::FDIV:
4665   case ISD::FREM:
4666   case ISD::FMINNUM:
4667   case ISD::FMAXNUM:
4668   case ISD::FPOW:
4669     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4670     Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4671     Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
4672                        Node->getFlags());
4673     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4674                                   Tmp3, DAG.getIntPtrConstant(0, dl)));
4675     break;
4676   case ISD::STRICT_FREM:
4677   case ISD::STRICT_FPOW:
4678     Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4679                        {Node->getOperand(0), Node->getOperand(1)});
4680     Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4681                        {Node->getOperand(0), Node->getOperand(2)});
4682     Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1),
4683                        Tmp2.getValue(1));
4684     Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4685                        {Tmp3, Tmp1, Tmp2});
4686     Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4687                        {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)});
4688     Results.push_back(Tmp1);
4689     Results.push_back(Tmp1.getValue(1));
4690     break;
4691   case ISD::FMA:
4692     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4693     Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4694     Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
4695     Results.push_back(
4696         DAG.getNode(ISD::FP_ROUND, dl, OVT,
4697                     DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
4698                     DAG.getIntPtrConstant(0, dl)));
4699     break;
4700   case ISD::FCOPYSIGN:
4701   case ISD::FPOWI: {
4702     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4703     Tmp2 = Node->getOperand(1);
4704     Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4705 
4706     // fcopysign doesn't change anything but the sign bit, so
4707     //   (fp_round (fcopysign (fpext a), b))
4708     // is as precise as
4709     //   (fp_round (fpext a))
4710     // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4711     const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
4712     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4713                                   Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
4714     break;
4715   }
4716   case ISD::FFLOOR:
4717   case ISD::FCEIL:
4718   case ISD::FRINT:
4719   case ISD::FNEARBYINT:
4720   case ISD::FROUND:
4721   case ISD::FROUNDEVEN:
4722   case ISD::FTRUNC:
4723   case ISD::FNEG:
4724   case ISD::FSQRT:
4725   case ISD::FSIN:
4726   case ISD::FCOS:
4727   case ISD::FLOG:
4728   case ISD::FLOG2:
4729   case ISD::FLOG10:
4730   case ISD::FABS:
4731   case ISD::FEXP:
4732   case ISD::FEXP2:
4733     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4734     Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4735     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4736                                   Tmp2, DAG.getIntPtrConstant(0, dl)));
4737     break;
4738   case ISD::STRICT_FFLOOR:
4739   case ISD::STRICT_FCEIL:
4740   case ISD::STRICT_FSIN:
4741   case ISD::STRICT_FCOS:
4742   case ISD::STRICT_FLOG:
4743   case ISD::STRICT_FLOG10:
4744   case ISD::STRICT_FEXP:
4745     Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4746                        {Node->getOperand(0), Node->getOperand(1)});
4747     Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4748                        {Tmp1.getValue(1), Tmp1});
4749     Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4750                        {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)});
4751     Results.push_back(Tmp3);
4752     Results.push_back(Tmp3.getValue(1));
4753     break;
4754   case ISD::BUILD_VECTOR: {
4755     MVT EltVT = OVT.getVectorElementType();
4756     MVT NewEltVT = NVT.getVectorElementType();
4757 
4758     // Handle bitcasts to a different vector type with the same total bit size
4759     //
4760     // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4761     //  =>
4762     //  v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4763 
4764     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4765            "Invalid promote type for build_vector");
4766     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4767 
4768     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4769 
4770     SmallVector<SDValue, 8> NewOps;
4771     for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
4772       SDValue Op = Node->getOperand(I);
4773       NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
4774     }
4775 
4776     SDLoc SL(Node);
4777     SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
4778     SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4779     Results.push_back(CvtVec);
4780     break;
4781   }
4782   case ISD::EXTRACT_VECTOR_ELT: {
4783     MVT EltVT = OVT.getVectorElementType();
4784     MVT NewEltVT = NVT.getVectorElementType();
4785 
4786     // Handle bitcasts to a different vector type with the same total bit size.
4787     //
4788     // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
4789     //  =>
4790     //  v4i32:castx = bitcast x:v2i64
4791     //
4792     // i64 = bitcast
4793     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
4794     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
4795     //
4796 
4797     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4798            "Invalid promote type for extract_vector_elt");
4799     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4800 
4801     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4802     unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4803 
4804     SDValue Idx = Node->getOperand(1);
4805     EVT IdxVT = Idx.getValueType();
4806     SDLoc SL(Node);
4807     SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
4808     SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4809 
4810     SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4811 
4812     SmallVector<SDValue, 8> NewOps;
4813     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4814       SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4815       SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4816 
4817       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4818                                 CastVec, TmpIdx);
4819       NewOps.push_back(Elt);
4820     }
4821 
4822     SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps);
4823     Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
4824     break;
4825   }
4826   case ISD::INSERT_VECTOR_ELT: {
4827     MVT EltVT = OVT.getVectorElementType();
4828     MVT NewEltVT = NVT.getVectorElementType();
4829 
4830     // Handle bitcasts to a different vector type with the same total bit size
4831     //
4832     // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
4833     //  =>
4834     //  v4i32:castx = bitcast x:v2i64
4835     //  v2i32:casty = bitcast y:i64
4836     //
4837     // v2i64 = bitcast
4838     //   (v4i32 insert_vector_elt
4839     //       (v4i32 insert_vector_elt v4i32:castx,
4840     //                                (extract_vector_elt casty, 0), 2 * z),
4841     //        (extract_vector_elt casty, 1), (2 * z + 1))
4842 
4843     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4844            "Invalid promote type for insert_vector_elt");
4845     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4846 
4847     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4848     unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4849 
4850     SDValue Val = Node->getOperand(1);
4851     SDValue Idx = Node->getOperand(2);
4852     EVT IdxVT = Idx.getValueType();
4853     SDLoc SL(Node);
4854 
4855     SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
4856     SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4857 
4858     SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4859     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4860 
4861     SDValue NewVec = CastVec;
4862     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4863       SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4864       SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4865 
4866       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4867                                 CastVal, IdxOffset);
4868 
4869       NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
4870                            NewVec, Elt, InEltIdx);
4871     }
4872 
4873     Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
4874     break;
4875   }
4876   case ISD::SCALAR_TO_VECTOR: {
4877     MVT EltVT = OVT.getVectorElementType();
4878     MVT NewEltVT = NVT.getVectorElementType();
4879 
4880     // Handle bitcasts to different vector type with the same total bit size.
4881     //
4882     // e.g. v2i64 = scalar_to_vector x:i64
4883     //   =>
4884     //  concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
4885     //
4886 
4887     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4888     SDValue Val = Node->getOperand(0);
4889     SDLoc SL(Node);
4890 
4891     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4892     SDValue Undef = DAG.getUNDEF(MidVT);
4893 
4894     SmallVector<SDValue, 8> NewElts;
4895     NewElts.push_back(CastVal);
4896     for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
4897       NewElts.push_back(Undef);
4898 
4899     SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
4900     SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4901     Results.push_back(CvtVec);
4902     break;
4903   }
4904   case ISD::ATOMIC_SWAP: {
4905     AtomicSDNode *AM = cast<AtomicSDNode>(Node);
4906     SDLoc SL(Node);
4907     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal());
4908     assert(NVT.getSizeInBits() == OVT.getSizeInBits() &&
4909            "unexpected promotion type");
4910     assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() &&
4911            "unexpected atomic_swap with illegal type");
4912 
4913     SDValue NewAtomic
4914       = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT,
4915                       DAG.getVTList(NVT, MVT::Other),
4916                       { AM->getChain(), AM->getBasePtr(), CastVal },
4917                       AM->getMemOperand());
4918     Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic));
4919     Results.push_back(NewAtomic.getValue(1));
4920     break;
4921   }
4922   }
4923 
4924   // Replace the original node with the legalized result.
4925   if (!Results.empty()) {
4926     LLVM_DEBUG(dbgs() << "Successfully promoted node\n");
4927     ReplaceNode(Node, Results.data());
4928   } else
4929     LLVM_DEBUG(dbgs() << "Could not promote node\n");
4930 }
4931 
4932 /// This is the entry point for the file.
Legalize()4933 void SelectionDAG::Legalize() {
4934   AssignTopologicalOrder();
4935 
4936   SmallPtrSet<SDNode *, 16> LegalizedNodes;
4937   // Use a delete listener to remove nodes which were deleted during
4938   // legalization from LegalizeNodes. This is needed to handle the situation
4939   // where a new node is allocated by the object pool to the same address of a
4940   // previously deleted node.
4941   DAGNodeDeletedListener DeleteListener(
4942       *this,
4943       [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); });
4944 
4945   SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
4946 
4947   // Visit all the nodes. We start in topological order, so that we see
4948   // nodes with their original operands intact. Legalization can produce
4949   // new nodes which may themselves need to be legalized. Iterate until all
4950   // nodes have been legalized.
4951   while (true) {
4952     bool AnyLegalized = false;
4953     for (auto NI = allnodes_end(); NI != allnodes_begin();) {
4954       --NI;
4955 
4956       SDNode *N = &*NI;
4957       if (N->use_empty() && N != getRoot().getNode()) {
4958         ++NI;
4959         DeleteNode(N);
4960         continue;
4961       }
4962 
4963       if (LegalizedNodes.insert(N).second) {
4964         AnyLegalized = true;
4965         Legalizer.LegalizeOp(N);
4966 
4967         if (N->use_empty() && N != getRoot().getNode()) {
4968           ++NI;
4969           DeleteNode(N);
4970         }
4971       }
4972     }
4973     if (!AnyLegalized)
4974       break;
4975 
4976   }
4977 
4978   // Remove dead nodes now.
4979   RemoveDeadNodes();
4980 }
4981 
LegalizeOp(SDNode * N,SmallSetVector<SDNode *,16> & UpdatedNodes)4982 bool SelectionDAG::LegalizeOp(SDNode *N,
4983                               SmallSetVector<SDNode *, 16> &UpdatedNodes) {
4984   SmallPtrSet<SDNode *, 16> LegalizedNodes;
4985   SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
4986 
4987   // Directly insert the node in question, and legalize it. This will recurse
4988   // as needed through operands.
4989   LegalizedNodes.insert(N);
4990   Legalizer.LegalizeOp(N);
4991 
4992   return LegalizedNodes.count(N);
4993 }
4994