1 //===- llvm/unittest/Analysis/LoopPassManagerTest.cpp - LPM tests ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar/LoopPassManager.h"
10 #include "llvm/Analysis/AliasAnalysis.h"
11 #include "llvm/Analysis/AssumptionCache.h"
12 #include "llvm/Analysis/BlockFrequencyInfo.h"
13 #include "llvm/Analysis/BranchProbabilityInfo.h"
14 #include "llvm/Analysis/MemorySSA.h"
15 #include "llvm/Analysis/PostDominators.h"
16 #include "llvm/Analysis/ScalarEvolution.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/AsmParser/Parser.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/SourceMgr.h"
26 
27 #include "gmock/gmock.h"
28 #include "gtest/gtest.h"
29 
30 using namespace llvm;
31 
32 namespace {
33 
34 using testing::DoDefault;
35 using testing::Return;
36 using testing::Expectation;
37 using testing::Invoke;
38 using testing::InvokeWithoutArgs;
39 using testing::_;
40 
41 template <typename DerivedT, typename IRUnitT,
42           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
43           typename... ExtraArgTs>
44 class MockAnalysisHandleBase {
45 public:
46   class Analysis : public AnalysisInfoMixin<Analysis> {
47     friend AnalysisInfoMixin<Analysis>;
48     friend MockAnalysisHandleBase;
49     static AnalysisKey Key;
50 
51     DerivedT *Handle;
52 
Analysis(DerivedT & Handle)53     Analysis(DerivedT &Handle) : Handle(&Handle) {
54       static_assert(std::is_base_of<MockAnalysisHandleBase, DerivedT>::value,
55                     "Must pass the derived type to this template!");
56     }
57 
58   public:
59     class Result {
60       friend MockAnalysisHandleBase;
61 
62       DerivedT *Handle;
63 
Result(DerivedT & Handle)64       Result(DerivedT &Handle) : Handle(&Handle) {}
65 
66     public:
67       // Forward invalidation events to the mock handle.
invalidate(IRUnitT & IR,const PreservedAnalyses & PA,typename AnalysisManagerT::Invalidator & Inv)68       bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA,
69                       typename AnalysisManagerT::Invalidator &Inv) {
70         return Handle->invalidate(IR, PA, Inv);
71       }
72     };
73 
run(IRUnitT & IR,AnalysisManagerT & AM,ExtraArgTs...ExtraArgs)74     Result run(IRUnitT &IR, AnalysisManagerT &AM, ExtraArgTs... ExtraArgs) {
75       return Handle->run(IR, AM, ExtraArgs...);
76     }
77   };
78 
getAnalysis()79   Analysis getAnalysis() { return Analysis(static_cast<DerivedT &>(*this)); }
getResult()80   typename Analysis::Result getResult() {
81     return typename Analysis::Result(static_cast<DerivedT &>(*this));
82   }
83 
84 protected:
85   // FIXME: MSVC seems unable to handle a lambda argument to Invoke from within
86   // the template, so we use a boring static function.
invalidateCallback(IRUnitT & IR,const PreservedAnalyses & PA,typename AnalysisManagerT::Invalidator & Inv)87   static bool invalidateCallback(IRUnitT &IR, const PreservedAnalyses &PA,
88                                  typename AnalysisManagerT::Invalidator &Inv) {
89     auto PAC = PA.template getChecker<Analysis>();
90     return !PAC.preserved() &&
91            !PAC.template preservedSet<AllAnalysesOn<IRUnitT>>();
92   }
93 
94   /// Derived classes should call this in their constructor to set up default
95   /// mock actions. (We can't do this in our constructor because this has to
96   /// run after the DerivedT is constructed.)
setDefaults()97   void setDefaults() {
98     ON_CALL(static_cast<DerivedT &>(*this),
99             run(_, _, testing::Matcher<ExtraArgTs>(_)...))
100         .WillByDefault(Return(this->getResult()));
101     ON_CALL(static_cast<DerivedT &>(*this), invalidate(_, _, _))
102         .WillByDefault(Invoke(&invalidateCallback));
103   }
104 };
105 
106 template <typename DerivedT, typename IRUnitT, typename AnalysisManagerT,
107           typename... ExtraArgTs>
108 AnalysisKey MockAnalysisHandleBase<DerivedT, IRUnitT, AnalysisManagerT,
109                                    ExtraArgTs...>::Analysis::Key;
110 
111 /// Mock handle for loop analyses.
112 ///
113 /// This is provided as a template accepting an (optional) integer. Because
114 /// analyses are identified and queried by type, this allows constructing
115 /// multiple handles with distinctly typed nested 'Analysis' types that can be
116 /// registered and queried. If you want to register multiple loop analysis
117 /// passes, you'll need to instantiate this type with different values for I.
118 /// For example:
119 ///
120 ///   MockLoopAnalysisHandleTemplate<0> h0;
121 ///   MockLoopAnalysisHandleTemplate<1> h1;
122 ///   typedef decltype(h0)::Analysis Analysis0;
123 ///   typedef decltype(h1)::Analysis Analysis1;
124 template <size_t I = static_cast<size_t>(-1)>
125 struct MockLoopAnalysisHandleTemplate
126     : MockAnalysisHandleBase<MockLoopAnalysisHandleTemplate<I>, Loop,
127                              LoopAnalysisManager,
128                              LoopStandardAnalysisResults &> {
129   typedef typename MockLoopAnalysisHandleTemplate::Analysis Analysis;
130 
131   MOCK_METHOD3_T(run, typename Analysis::Result(Loop &, LoopAnalysisManager &,
132                                                 LoopStandardAnalysisResults &));
133 
134   MOCK_METHOD3_T(invalidate, bool(Loop &, const PreservedAnalyses &,
135                                   LoopAnalysisManager::Invalidator &));
136 
MockLoopAnalysisHandleTemplate__anonab2108560111::MockLoopAnalysisHandleTemplate137   MockLoopAnalysisHandleTemplate() { this->setDefaults(); }
138 };
139 
140 typedef MockLoopAnalysisHandleTemplate<> MockLoopAnalysisHandle;
141 
142 struct MockFunctionAnalysisHandle
143     : MockAnalysisHandleBase<MockFunctionAnalysisHandle, Function> {
144   MOCK_METHOD2(run, Analysis::Result(Function &, FunctionAnalysisManager &));
145 
146   MOCK_METHOD3(invalidate, bool(Function &, const PreservedAnalyses &,
147                                 FunctionAnalysisManager::Invalidator &));
148 
MockFunctionAnalysisHandle__anonab2108560111::MockFunctionAnalysisHandle149   MockFunctionAnalysisHandle() { setDefaults(); }
150 };
151 
152 template <typename DerivedT, typename IRUnitT,
153           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
154           typename... ExtraArgTs>
155 class MockPassHandleBase {
156 public:
157   class Pass : public PassInfoMixin<Pass> {
158     friend MockPassHandleBase;
159 
160     DerivedT *Handle;
161 
Pass(DerivedT & Handle)162     Pass(DerivedT &Handle) : Handle(&Handle) {
163       static_assert(std::is_base_of<MockPassHandleBase, DerivedT>::value,
164                     "Must pass the derived type to this template!");
165     }
166 
167   public:
run(IRUnitT & IR,AnalysisManagerT & AM,ExtraArgTs...ExtraArgs)168     PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
169                           ExtraArgTs... ExtraArgs) {
170       return Handle->run(IR, AM, ExtraArgs...);
171     }
172   };
173 
getPass()174   Pass getPass() { return Pass(static_cast<DerivedT &>(*this)); }
175 
176 protected:
177   /// Derived classes should call this in their constructor to set up default
178   /// mock actions. (We can't do this in our constructor because this has to
179   /// run after the DerivedT is constructed.)
setDefaults()180   void setDefaults() {
181     ON_CALL(static_cast<DerivedT &>(*this),
182             run(_, _, testing::Matcher<ExtraArgTs>(_)...))
183         .WillByDefault(Return(PreservedAnalyses::all()));
184   }
185 };
186 
187 struct MockLoopPassHandle
188     : MockPassHandleBase<MockLoopPassHandle, Loop, LoopAnalysisManager,
189                          LoopStandardAnalysisResults &, LPMUpdater &> {
190   MOCK_METHOD4(run,
191                PreservedAnalyses(Loop &, LoopAnalysisManager &,
192                                  LoopStandardAnalysisResults &, LPMUpdater &));
MockLoopPassHandle__anonab2108560111::MockLoopPassHandle193   MockLoopPassHandle() { setDefaults(); }
194 };
195 
196 struct MockLoopNestPassHandle
197     : MockPassHandleBase<MockLoopNestPassHandle, LoopNest, LoopAnalysisManager,
198                          LoopStandardAnalysisResults &, LPMUpdater &> {
199   MOCK_METHOD4(run,
200                PreservedAnalyses(LoopNest &, LoopAnalysisManager &,
201                                  LoopStandardAnalysisResults &, LPMUpdater &));
202 
MockLoopNestPassHandle__anonab2108560111::MockLoopNestPassHandle203   MockLoopNestPassHandle() { setDefaults(); }
204 };
205 
206 struct MockFunctionPassHandle
207     : MockPassHandleBase<MockFunctionPassHandle, Function> {
208   MOCK_METHOD2(run, PreservedAnalyses(Function &, FunctionAnalysisManager &));
209 
MockFunctionPassHandle__anonab2108560111::MockFunctionPassHandle210   MockFunctionPassHandle() { setDefaults(); }
211 };
212 
213 struct MockModulePassHandle : MockPassHandleBase<MockModulePassHandle, Module> {
214   MOCK_METHOD2(run, PreservedAnalyses(Module &, ModuleAnalysisManager &));
215 
MockModulePassHandle__anonab2108560111::MockModulePassHandle216   MockModulePassHandle() { setDefaults(); }
217 };
218 
219 /// Define a custom matcher for objects which support a 'getName' method
220 /// returning a StringRef.
221 ///
222 /// LLVM often has IR objects or analysis objects which expose a StringRef name
223 /// and in tests it is convenient to match these by name for readability. This
224 /// matcher supports any type exposing a getName() method of this form.
225 ///
226 /// It should be used as:
227 ///
228 ///   HasName("my_function")
229 ///
230 /// No namespace or other qualification is required.
231 MATCHER_P(HasName, Name, "") {
232   // The matcher's name and argument are printed in the case of failure, but we
233   // also want to print out the name of the argument. This uses an implicitly
234   // avaiable std::ostream, so we have to construct a std::string.
235   *result_listener << "has name '" << arg.getName().str() << "'";
236   return Name == arg.getName();
237 }
238 
parseIR(LLVMContext & C,const char * IR)239 std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
240   SMDiagnostic Err;
241   return parseAssemblyString(IR, Err, C);
242 }
243 
244 class LoopPassManagerTest : public ::testing::Test {
245 protected:
246   LLVMContext Context;
247   std::unique_ptr<Module> M;
248 
249   LoopAnalysisManager LAM;
250   FunctionAnalysisManager FAM;
251   ModuleAnalysisManager MAM;
252 
253   MockLoopAnalysisHandle MLAHandle;
254   MockLoopPassHandle MLPHandle;
255   MockLoopNestPassHandle MLNPHandle;
256   MockFunctionPassHandle MFPHandle;
257   MockModulePassHandle MMPHandle;
258 
259   static PreservedAnalyses
getLoopAnalysisResult(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater &)260   getLoopAnalysisResult(Loop &L, LoopAnalysisManager &AM,
261                         LoopStandardAnalysisResults &AR, LPMUpdater &) {
262     (void)AM.getResult<MockLoopAnalysisHandle::Analysis>(L, AR);
263     return PreservedAnalyses::all();
264   };
265 
266 public:
LoopPassManagerTest()267   LoopPassManagerTest()
268       : M(parseIR(Context,
269                   "define void @f(i1* %ptr) {\n"
270                   "entry:\n"
271                   "  br label %loop.0\n"
272                   "loop.0:\n"
273                   "  %cond.0 = load volatile i1, i1* %ptr\n"
274                   "  br i1 %cond.0, label %loop.0.0.ph, label %end\n"
275                   "loop.0.0.ph:\n"
276                   "  br label %loop.0.0\n"
277                   "loop.0.0:\n"
278                   "  %cond.0.0 = load volatile i1, i1* %ptr\n"
279                   "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
280                   "loop.0.1.ph:\n"
281                   "  br label %loop.0.1\n"
282                   "loop.0.1:\n"
283                   "  %cond.0.1 = load volatile i1, i1* %ptr\n"
284                   "  br i1 %cond.0.1, label %loop.0.1, label %loop.0.latch\n"
285                   "loop.0.latch:\n"
286                   "  br label %loop.0\n"
287                   "end:\n"
288                   "  ret void\n"
289                   "}\n"
290                   "\n"
291                   "define void @g(i1* %ptr) {\n"
292                   "entry:\n"
293                   "  br label %loop.g.0\n"
294                   "loop.g.0:\n"
295                   "  %cond.0 = load volatile i1, i1* %ptr\n"
296                   "  br i1 %cond.0, label %loop.g.0, label %end\n"
297                   "end:\n"
298                   "  ret void\n"
299                   "}\n")),
300         LAM(), FAM(), MAM() {
301     // Register our mock analysis.
302     LAM.registerPass([&] { return MLAHandle.getAnalysis(); });
303 
304     // We need DominatorTreeAnalysis for LoopAnalysis.
305     FAM.registerPass([&] { return DominatorTreeAnalysis(); });
306     FAM.registerPass([&] { return LoopAnalysis(); });
307     // We also allow loop passes to assume a set of other analyses and so need
308     // those.
309     FAM.registerPass([&] { return AAManager(); });
310     FAM.registerPass([&] { return AssumptionAnalysis(); });
311     FAM.registerPass([&] { return BlockFrequencyAnalysis(); });
312     FAM.registerPass([&] { return BranchProbabilityAnalysis(); });
313     FAM.registerPass([&] { return PostDominatorTreeAnalysis(); });
314     FAM.registerPass([&] { return MemorySSAAnalysis(); });
315     FAM.registerPass([&] { return ScalarEvolutionAnalysis(); });
316     FAM.registerPass([&] { return TargetLibraryAnalysis(); });
317     FAM.registerPass([&] { return TargetIRAnalysis(); });
318 
319     // Register required pass instrumentation analysis.
320     LAM.registerPass([&] { return PassInstrumentationAnalysis(); });
321     FAM.registerPass([&] { return PassInstrumentationAnalysis(); });
322     MAM.registerPass([&] { return PassInstrumentationAnalysis(); });
323 
324     // Cross-register proxies.
325     LAM.registerPass([&] { return FunctionAnalysisManagerLoopProxy(FAM); });
326     FAM.registerPass([&] { return LoopAnalysisManagerFunctionProxy(LAM); });
327     FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });
328     MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
329   }
330 };
331 
TEST_F(LoopPassManagerTest,Basic)332 TEST_F(LoopPassManagerTest, Basic) {
333   ModulePassManager MPM;
334   ::testing::InSequence MakeExpectationsSequenced;
335 
336   // First we just visit all the loops in all the functions and get their
337   // analysis results. This will run the analysis a total of four times,
338   // once for each loop.
339   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
340       .WillOnce(Invoke(getLoopAnalysisResult));
341   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
342   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
343       .WillOnce(Invoke(getLoopAnalysisResult));
344   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
345   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
346       .WillOnce(Invoke(getLoopAnalysisResult));
347   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
348   EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
349       .WillOnce(Invoke(getLoopAnalysisResult));
350   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
351   // Wire the loop pass through pass managers into the module pipeline.
352   {
353     LoopPassManager LPM;
354     LPM.addPass(MLPHandle.getPass());
355     FunctionPassManager FPM;
356     FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
357     MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
358   }
359 
360   // Next we run two passes over the loops. The first one invalidates the
361   // analyses for one loop, the second ones try to get the analysis results.
362   // This should force only one analysis to re-run within the loop PM, but will
363   // also invalidate everything after the loop pass manager finishes.
364   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
365       .WillOnce(DoDefault())
366       .WillOnce(Invoke(getLoopAnalysisResult));
367   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
368       .WillOnce(InvokeWithoutArgs([] { return PreservedAnalyses::none(); }))
369       .WillOnce(Invoke(getLoopAnalysisResult));
370   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
371   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
372       .WillOnce(DoDefault())
373       .WillOnce(Invoke(getLoopAnalysisResult));
374   EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
375       .WillOnce(DoDefault())
376       .WillOnce(Invoke(getLoopAnalysisResult));
377   // Wire two loop pass runs into the module pipeline.
378   {
379     LoopPassManager LPM;
380     LPM.addPass(MLPHandle.getPass());
381     LPM.addPass(MLPHandle.getPass());
382     FunctionPassManager FPM;
383     FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
384     MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
385   }
386 
387   // And now run the pipeline across the module.
388   MPM.run(*M, MAM);
389 }
390 
TEST_F(LoopPassManagerTest,FunctionPassInvalidationOfLoopAnalyses)391 TEST_F(LoopPassManagerTest, FunctionPassInvalidationOfLoopAnalyses) {
392   ModulePassManager MPM;
393   FunctionPassManager FPM;
394   // We process each function completely in sequence.
395   ::testing::Sequence FSequence, GSequence;
396 
397   // First, force the analysis result to be computed for each loop.
398   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
399       .InSequence(FSequence)
400       .WillOnce(DoDefault());
401   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _))
402       .InSequence(FSequence)
403       .WillOnce(DoDefault());
404   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
405       .InSequence(FSequence)
406       .WillOnce(DoDefault());
407   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
408       .InSequence(GSequence)
409       .WillOnce(DoDefault());
410   FPM.addPass(createFunctionToLoopPassAdaptor(
411       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
412 
413   // No need to re-run if we require again from a fresh loop pass manager.
414   FPM.addPass(createFunctionToLoopPassAdaptor(
415       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
416   // For 'f', preserve most things but not the specific loop analyses.
417   auto PA = getLoopPassPreservedAnalyses();
418   if (EnableMSSALoopDependency)
419     PA.preserve<MemorySSAAnalysis>();
420   EXPECT_CALL(MFPHandle, run(HasName("f"), _))
421       .InSequence(FSequence)
422       .WillOnce(Return(PA));
423   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _))
424       .InSequence(FSequence)
425       .WillOnce(DoDefault());
426   // On one loop, skip the invalidation (as though we did an internal update).
427   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
428       .InSequence(FSequence)
429       .WillOnce(Return(false));
430   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _))
431       .InSequence(FSequence)
432       .WillOnce(DoDefault());
433   // Now two loops still have to be recomputed.
434   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
435       .InSequence(FSequence)
436       .WillOnce(DoDefault());
437   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
438       .InSequence(FSequence)
439       .WillOnce(DoDefault());
440   // Preserve things in the second function to ensure invalidation remains
441   // isolated to one function.
442   EXPECT_CALL(MFPHandle, run(HasName("g"), _))
443       .InSequence(GSequence)
444       .WillOnce(DoDefault());
445   FPM.addPass(MFPHandle.getPass());
446   FPM.addPass(createFunctionToLoopPassAdaptor(
447       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
448 
449   EXPECT_CALL(MFPHandle, run(HasName("f"), _))
450       .InSequence(FSequence)
451       .WillOnce(DoDefault());
452   // For 'g', fail to preserve anything, causing the loops themselves to be
453   // cleared. We don't get an invalidation event here as the loop is gone, but
454   // we should still have to recompute the analysis.
455   EXPECT_CALL(MFPHandle, run(HasName("g"), _))
456       .InSequence(GSequence)
457       .WillOnce(Return(PreservedAnalyses::none()));
458   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
459       .InSequence(GSequence)
460       .WillOnce(DoDefault());
461   FPM.addPass(MFPHandle.getPass());
462   FPM.addPass(createFunctionToLoopPassAdaptor(
463       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
464 
465   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
466 
467   // Verify with a separate function pass run that we didn't mess up 'f's
468   // cache. No analysis runs should be necessary here.
469   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
470       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
471 
472   MPM.run(*M, MAM);
473 }
474 
TEST_F(LoopPassManagerTest,ModulePassInvalidationOfLoopAnalyses)475 TEST_F(LoopPassManagerTest, ModulePassInvalidationOfLoopAnalyses) {
476   ModulePassManager MPM;
477   ::testing::InSequence MakeExpectationsSequenced;
478 
479   // First, force the analysis result to be computed for each loop.
480   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
481   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
482   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
483   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
484   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
485       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
486 
487   // Walking all the way out and all the way back in doesn't re-run the
488   // analysis.
489   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
490       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
491 
492   // But a module pass that doesn't preserve the actual mock loop analysis
493   // invalidates all the way down and forces recomputing.
494   EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
495     auto PA = getLoopPassPreservedAnalyses();
496     PA.preserve<FunctionAnalysisManagerModuleProxy>();
497     if (EnableMSSALoopDependency)
498       PA.preserve<MemorySSAAnalysis>();
499     return PA;
500   }));
501   // All the loop analyses from both functions get invalidated before we
502   // recompute anything.
503   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
504   // On one loop, again skip the invalidation (as though we did an internal
505   // update).
506   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
507       .WillOnce(Return(false));
508   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
509   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.g.0"), _, _));
510   // Now all but one of the loops gets re-analyzed.
511   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
512   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
513   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
514   MPM.addPass(MMPHandle.getPass());
515   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
516       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
517 
518   // Verify that the cached values persist.
519   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
520       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
521 
522   // Now we fail to preserve the loop analysis and observe that the loop
523   // analyses are cleared (so no invalidation event) as the loops themselves
524   // are no longer valid.
525   EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
526     auto PA = PreservedAnalyses::none();
527     PA.preserve<FunctionAnalysisManagerModuleProxy>();
528     return PA;
529   }));
530   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
531   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
532   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
533   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
534   MPM.addPass(MMPHandle.getPass());
535   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
536       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
537 
538   // Verify that the cached values persist.
539   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
540       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
541 
542   // Next, check that even if we preserve everything within the function itelf,
543   // if the function's module pass proxy isn't preserved and the potential set
544   // of functions changes, the clear reaches the loop analyses as well. This
545   // will again trigger re-runs but not invalidation events.
546   EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
547     auto PA = PreservedAnalyses::none();
548     PA.preserveSet<AllAnalysesOn<Function>>();
549     PA.preserveSet<AllAnalysesOn<Loop>>();
550     return PA;
551   }));
552   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
553   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
554   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
555   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
556   MPM.addPass(MMPHandle.getPass());
557   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
558       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
559 
560   MPM.run(*M, MAM);
561 }
562 
563 // Test that if any of the bundled analyses provided in the LPM's signature
564 // become invalid, the analysis proxy itself becomes invalid and we clear all
565 // loop analysis results.
TEST_F(LoopPassManagerTest,InvalidationOfBundledAnalyses)566 TEST_F(LoopPassManagerTest, InvalidationOfBundledAnalyses) {
567   ModulePassManager MPM;
568   FunctionPassManager FPM;
569   ::testing::InSequence MakeExpectationsSequenced;
570 
571   // First, force the analysis result to be computed for each loop.
572   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
573   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
574   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
575   FPM.addPass(createFunctionToLoopPassAdaptor(
576       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
577 
578   // No need to re-run if we require again from a fresh loop pass manager.
579   FPM.addPass(createFunctionToLoopPassAdaptor(
580       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
581 
582   // Preserving everything but the loop analyses themselves results in
583   // invalidation and running.
584   EXPECT_CALL(MFPHandle, run(HasName("f"), _))
585       .WillOnce(Return(getLoopPassPreservedAnalyses()));
586   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
587   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
588   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
589   FPM.addPass(MFPHandle.getPass());
590   FPM.addPass(createFunctionToLoopPassAdaptor(
591       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
592 
593   // The rest don't invalidate analyses, they only trigger re-runs because we
594   // clear the cache completely.
595   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
596     auto PA = PreservedAnalyses::none();
597     // Not preserving `AAManager`.
598     PA.preserve<DominatorTreeAnalysis>();
599     PA.preserve<LoopAnalysis>();
600     PA.preserve<LoopAnalysisManagerFunctionProxy>();
601     PA.preserve<ScalarEvolutionAnalysis>();
602     return PA;
603   }));
604   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
605   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
606   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
607   FPM.addPass(MFPHandle.getPass());
608   FPM.addPass(createFunctionToLoopPassAdaptor(
609       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
610 
611   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
612     auto PA = PreservedAnalyses::none();
613     // Not preserving `DominatorTreeAnalysis`.
614     PA.preserve<LoopAnalysis>();
615     PA.preserve<LoopAnalysisManagerFunctionProxy>();
616     PA.preserve<ScalarEvolutionAnalysis>();
617     return PA;
618   }));
619   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
620   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
621   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
622   FPM.addPass(MFPHandle.getPass());
623   FPM.addPass(createFunctionToLoopPassAdaptor(
624       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
625 
626   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
627     auto PA = PreservedAnalyses::none();
628     PA.preserve<DominatorTreeAnalysis>();
629     // Not preserving the `LoopAnalysis`.
630     PA.preserve<LoopAnalysisManagerFunctionProxy>();
631     PA.preserve<ScalarEvolutionAnalysis>();
632     return PA;
633   }));
634   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
635   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
636   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
637   FPM.addPass(MFPHandle.getPass());
638   FPM.addPass(createFunctionToLoopPassAdaptor(
639       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
640 
641   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
642     auto PA = PreservedAnalyses::none();
643     PA.preserve<DominatorTreeAnalysis>();
644     PA.preserve<LoopAnalysis>();
645     // Not preserving the `LoopAnalysisManagerFunctionProxy`.
646     PA.preserve<ScalarEvolutionAnalysis>();
647     return PA;
648   }));
649   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
650   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
651   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
652   FPM.addPass(MFPHandle.getPass());
653   FPM.addPass(createFunctionToLoopPassAdaptor(
654       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
655 
656   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
657     auto PA = PreservedAnalyses::none();
658     PA.preserve<DominatorTreeAnalysis>();
659     PA.preserve<LoopAnalysis>();
660     PA.preserve<LoopAnalysisManagerFunctionProxy>();
661     // Not preserving `ScalarEvolutionAnalysis`.
662     return PA;
663   }));
664   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
665   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
666   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
667   FPM.addPass(MFPHandle.getPass());
668   FPM.addPass(createFunctionToLoopPassAdaptor(
669       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
670 
671   // After all the churn on 'f', we'll compute the loop analysis results for
672   // 'g' once with a requires pass and then run our mock pass over g a bunch
673   // but just get cached results each time.
674   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
675   EXPECT_CALL(MFPHandle, run(HasName("g"), _)).Times(6);
676 
677   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
678   MPM.run(*M, MAM);
679 }
680 
TEST_F(LoopPassManagerTest,IndirectInvalidation)681 TEST_F(LoopPassManagerTest, IndirectInvalidation) {
682   // We need two distinct analysis types and handles.
683   enum { A, B };
684   MockLoopAnalysisHandleTemplate<A> MLAHandleA;
685   MockLoopAnalysisHandleTemplate<B> MLAHandleB;
686   LAM.registerPass([&] { return MLAHandleA.getAnalysis(); });
687   LAM.registerPass([&] { return MLAHandleB.getAnalysis(); });
688   typedef decltype(MLAHandleA)::Analysis AnalysisA;
689   typedef decltype(MLAHandleB)::Analysis AnalysisB;
690 
691   // Set up AnalysisA to depend on our AnalysisB. For testing purposes we just
692   // need to get the AnalysisB results in AnalysisA's run method and check if
693   // AnalysisB gets invalidated in AnalysisA's invalidate method.
694   ON_CALL(MLAHandleA, run(_, _, _))
695       .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
696                                 LoopStandardAnalysisResults &AR) {
697         (void)AM.getResult<AnalysisB>(L, AR);
698         return MLAHandleA.getResult();
699       }));
700   ON_CALL(MLAHandleA, invalidate(_, _, _))
701       .WillByDefault(Invoke([](Loop &L, const PreservedAnalyses &PA,
702                                LoopAnalysisManager::Invalidator &Inv) {
703         auto PAC = PA.getChecker<AnalysisA>();
704         return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Loop>>()) ||
705                Inv.invalidate<AnalysisB>(L, PA);
706       }));
707 
708   ::testing::InSequence MakeExpectationsSequenced;
709 
710   // Compute the analyses across all of 'f' first.
711   EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
712   EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
713   EXPECT_CALL(MLAHandleA, run(HasName("loop.0.1"), _, _));
714   EXPECT_CALL(MLAHandleB, run(HasName("loop.0.1"), _, _));
715   EXPECT_CALL(MLAHandleA, run(HasName("loop.0"), _, _));
716   EXPECT_CALL(MLAHandleB, run(HasName("loop.0"), _, _));
717 
718   // Now we invalidate AnalysisB (but not AnalysisA) for one of the loops and
719   // preserve everything for the rest. This in turn triggers that one loop to
720   // recompute both AnalysisB *and* AnalysisA if indirect invalidation is
721   // working.
722   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
723       .WillOnce(InvokeWithoutArgs([] {
724         auto PA = getLoopPassPreservedAnalyses();
725         // Specifically preserve AnalysisA so that it would survive if it
726         // didn't depend on AnalysisB.
727         PA.preserve<AnalysisA>();
728         return PA;
729       }));
730   // It happens that AnalysisB is invalidated first. That shouldn't matter
731   // though, and we should still call AnalysisA's invalidation.
732   EXPECT_CALL(MLAHandleB, invalidate(HasName("loop.0.0"), _, _));
733   EXPECT_CALL(MLAHandleA, invalidate(HasName("loop.0.0"), _, _));
734   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
735       .WillOnce(Invoke([](Loop &L, LoopAnalysisManager &AM,
736                           LoopStandardAnalysisResults &AR, LPMUpdater &) {
737         (void)AM.getResult<AnalysisA>(L, AR);
738         return PreservedAnalyses::all();
739       }));
740   EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
741   EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
742   // The rest of the loops should run and get cached results.
743   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
744       .Times(2)
745       .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
746                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
747         (void)AM.getResult<AnalysisA>(L, AR);
748         return PreservedAnalyses::all();
749       }));
750   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
751       .Times(2)
752       .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
753                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
754         (void)AM.getResult<AnalysisA>(L, AR);
755         return PreservedAnalyses::all();
756       }));
757 
758   // The run over 'g' should be boring, with us just computing the analyses once
759   // up front and then running loop passes and getting cached results.
760   EXPECT_CALL(MLAHandleA, run(HasName("loop.g.0"), _, _));
761   EXPECT_CALL(MLAHandleB, run(HasName("loop.g.0"), _, _));
762   EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
763       .Times(2)
764       .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
765                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
766         (void)AM.getResult<AnalysisA>(L, AR);
767         return PreservedAnalyses::all();
768       }));
769 
770   // Build the pipeline and run it.
771   ModulePassManager MPM;
772   FunctionPassManager FPM;
773   FPM.addPass(
774       createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<AnalysisA>()));
775   LoopPassManager LPM;
776   LPM.addPass(MLPHandle.getPass());
777   LPM.addPass(MLPHandle.getPass());
778   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
779   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
780   MPM.run(*M, MAM);
781 }
782 
TEST_F(LoopPassManagerTest,IndirectOuterPassInvalidation)783 TEST_F(LoopPassManagerTest, IndirectOuterPassInvalidation) {
784   typedef decltype(MLAHandle)::Analysis LoopAnalysis;
785 
786   MockFunctionAnalysisHandle MFAHandle;
787   FAM.registerPass([&] { return MFAHandle.getAnalysis(); });
788   typedef decltype(MFAHandle)::Analysis FunctionAnalysis;
789 
790   // Set up the loop analysis to depend on both the function and module
791   // analysis.
792   ON_CALL(MLAHandle, run(_, _, _))
793       .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
794                                 LoopStandardAnalysisResults &AR) {
795         auto &FAMP = AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR);
796         Function &F = *L.getHeader()->getParent();
797         // This call will assert when trying to get the actual analysis if the
798         // FunctionAnalysis can be invalidated. Only check its existence.
799         // Alternatively, use FAM above, for the purposes of this unittest.
800         if (FAMP.cachedResultExists<FunctionAnalysis>(F))
801           FAMP.registerOuterAnalysisInvalidation<FunctionAnalysis,
802                                                  LoopAnalysis>();
803         return MLAHandle.getResult();
804       }));
805 
806   ::testing::InSequence MakeExpectationsSequenced;
807 
808   // Compute the analyses across all of 'f' first.
809   EXPECT_CALL(MFPHandle, run(HasName("f"), _))
810       .WillOnce(Invoke([](Function &F, FunctionAnalysisManager &AM) {
811         // Force the computing of the function analysis so it is available in
812         // this function.
813         (void)AM.getResult<FunctionAnalysis>(F);
814         return PreservedAnalyses::all();
815       }));
816   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
817   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
818   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
819 
820   // Now invalidate the function analysis but preserve the loop analyses.
821   // This should trigger immediate invalidation of the loop analyses, despite
822   // the fact that they were preserved.
823   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
824     auto PA = getLoopPassPreservedAnalyses();
825     if (EnableMSSALoopDependency)
826       PA.preserve<MemorySSAAnalysis>();
827     PA.preserveSet<AllAnalysesOn<Loop>>();
828     return PA;
829   }));
830   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
831   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _));
832   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
833 
834   // And re-running a requires pass recomputes them.
835   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
836   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
837   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
838 
839   // When we run over 'g' we don't populate the cache with the function
840   // analysis.
841   EXPECT_CALL(MFPHandle, run(HasName("g"), _))
842       .WillOnce(Return(PreservedAnalyses::all()));
843   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
844 
845   // Which means that no extra invalidation occurs and cached values are used.
846   EXPECT_CALL(MFPHandle, run(HasName("g"), _)).WillOnce(InvokeWithoutArgs([] {
847     auto PA = getLoopPassPreservedAnalyses();
848     if (EnableMSSALoopDependency)
849       PA.preserve<MemorySSAAnalysis>();
850     PA.preserveSet<AllAnalysesOn<Loop>>();
851     return PA;
852   }));
853 
854   // Build the pipeline and run it.
855   ModulePassManager MPM;
856   FunctionPassManager FPM;
857   FPM.addPass(MFPHandle.getPass());
858   FPM.addPass(
859       createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
860   FPM.addPass(MFPHandle.getPass());
861   FPM.addPass(
862       createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
863   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
864   MPM.run(*M, MAM);
865 }
866 
TEST_F(LoopPassManagerTest,LoopChildInsertion)867 TEST_F(LoopPassManagerTest, LoopChildInsertion) {
868   // Super boring module with three loops in a single loop nest.
869   M = parseIR(Context, "define void @f(i1* %ptr) {\n"
870                        "entry:\n"
871                        "  br label %loop.0\n"
872                        "loop.0:\n"
873                        "  %cond.0 = load volatile i1, i1* %ptr\n"
874                        "  br i1 %cond.0, label %loop.0.0.ph, label %end\n"
875                        "loop.0.0.ph:\n"
876                        "  br label %loop.0.0\n"
877                        "loop.0.0:\n"
878                        "  %cond.0.0 = load volatile i1, i1* %ptr\n"
879                        "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
880                        "loop.0.1.ph:\n"
881                        "  br label %loop.0.1\n"
882                        "loop.0.1:\n"
883                        "  %cond.0.1 = load volatile i1, i1* %ptr\n"
884                        "  br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
885                        "loop.0.2.ph:\n"
886                        "  br label %loop.0.2\n"
887                        "loop.0.2:\n"
888                        "  %cond.0.2 = load volatile i1, i1* %ptr\n"
889                        "  br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
890                        "loop.0.latch:\n"
891                        "  br label %loop.0\n"
892                        "end:\n"
893                        "  ret void\n"
894                        "}\n");
895 
896   // Build up variables referring into the IR so we can rewrite it below
897   // easily.
898   Function &F = *M->begin();
899   ASSERT_THAT(F, HasName("f"));
900   Argument &Ptr = *F.arg_begin();
901   auto BBI = F.begin();
902   BasicBlock &EntryBB = *BBI++;
903   ASSERT_THAT(EntryBB, HasName("entry"));
904   BasicBlock &Loop0BB = *BBI++;
905   ASSERT_THAT(Loop0BB, HasName("loop.0"));
906   BasicBlock &Loop00PHBB = *BBI++;
907   ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
908   BasicBlock &Loop00BB = *BBI++;
909   ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
910   BasicBlock &Loop01PHBB = *BBI++;
911   ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
912   BasicBlock &Loop01BB = *BBI++;
913   ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
914   BasicBlock &Loop02PHBB = *BBI++;
915   ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
916   BasicBlock &Loop02BB = *BBI++;
917   ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
918   BasicBlock &Loop0LatchBB = *BBI++;
919   ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
920   BasicBlock &EndBB = *BBI++;
921   ASSERT_THAT(EndBB, HasName("end"));
922   ASSERT_THAT(BBI, F.end());
923   auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
924                           const char *Name, BasicBlock *BB) {
925     auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name,
926                               /*isVolatile*/ true, BB);
927     BranchInst::Create(TrueBB, FalseBB, Cond, BB);
928   };
929 
930   // Build the pass managers and register our pipeline. We build a single loop
931   // pass pipeline consisting of three mock pass runs over each loop. After
932   // this we run both domtree and loop verification passes to make sure that
933   // the IR remained valid during our mutations.
934   ModulePassManager MPM;
935   FunctionPassManager FPM;
936   LoopPassManager LPM;
937   LPM.addPass(MLPHandle.getPass());
938   LPM.addPass(MLPHandle.getPass());
939   LPM.addPass(MLPHandle.getPass());
940   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
941   FPM.addPass(DominatorTreeVerifierPass());
942   FPM.addPass(LoopVerifierPass());
943   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
944 
945   // All the visit orders are deterministic, so we use simple fully order
946   // expectations.
947   ::testing::InSequence MakeExpectationsSequenced;
948 
949   // We run loop passes three times over each of the loops.
950   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
951       .WillOnce(Invoke(getLoopAnalysisResult));
952   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
953   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
954       .Times(2)
955       .WillRepeatedly(Invoke(getLoopAnalysisResult));
956 
957   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
958       .WillOnce(Invoke(getLoopAnalysisResult));
959   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
960 
961   // When running over the middle loop, the second run inserts two new child
962   // loops, inserting them and itself into the worklist.
963   BasicBlock *NewLoop010BB, *NewLoop01LatchBB;
964   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
965       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
966                            LoopStandardAnalysisResults &AR,
967                            LPMUpdater &Updater) {
968         auto *NewLoop = AR.LI.AllocateLoop();
969         L.addChildLoop(NewLoop);
970         auto *NewLoop010PHBB =
971             BasicBlock::Create(Context, "loop.0.1.0.ph", &F, &Loop02PHBB);
972         NewLoop010BB =
973             BasicBlock::Create(Context, "loop.0.1.0", &F, &Loop02PHBB);
974         NewLoop01LatchBB =
975             BasicBlock::Create(Context, "loop.0.1.latch", &F, &Loop02PHBB);
976         Loop01BB.getTerminator()->replaceUsesOfWith(&Loop01BB, NewLoop010PHBB);
977         BranchInst::Create(NewLoop010BB, NewLoop010PHBB);
978         CreateCondBr(NewLoop01LatchBB, NewLoop010BB, "cond.0.1.0",
979                      NewLoop010BB);
980         BranchInst::Create(&Loop01BB, NewLoop01LatchBB);
981         AR.DT.addNewBlock(NewLoop010PHBB, &Loop01BB);
982         AR.DT.addNewBlock(NewLoop010BB, NewLoop010PHBB);
983         AR.DT.addNewBlock(NewLoop01LatchBB, NewLoop010BB);
984         EXPECT_TRUE(AR.DT.verify());
985         L.addBasicBlockToLoop(NewLoop010PHBB, AR.LI);
986         NewLoop->addBasicBlockToLoop(NewLoop010BB, AR.LI);
987         L.addBasicBlockToLoop(NewLoop01LatchBB, AR.LI);
988         NewLoop->verifyLoop();
989         L.verifyLoop();
990         Updater.addChildLoops({NewLoop});
991         return PreservedAnalyses::all();
992       }));
993 
994   // We should immediately drop down to fully visit the new inner loop.
995   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
996       .WillOnce(Invoke(getLoopAnalysisResult));
997   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.0"), _, _));
998   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
999       .Times(2)
1000       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1001 
1002   // After visiting the inner loop, we should re-visit the second loop
1003   // reflecting its new loop nest structure.
1004   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1005       .WillOnce(Invoke(getLoopAnalysisResult));
1006 
1007   // In the second run over the middle loop after we've visited the new child,
1008   // we add another child to check that we can repeatedly add children, and add
1009   // children to a loop that already has children.
1010   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1011       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1012                            LoopStandardAnalysisResults &AR,
1013                            LPMUpdater &Updater) {
1014         auto *NewLoop = AR.LI.AllocateLoop();
1015         L.addChildLoop(NewLoop);
1016         auto *NewLoop011PHBB = BasicBlock::Create(Context, "loop.0.1.1.ph", &F, NewLoop01LatchBB);
1017         auto *NewLoop011BB = BasicBlock::Create(Context, "loop.0.1.1", &F, NewLoop01LatchBB);
1018         NewLoop010BB->getTerminator()->replaceUsesOfWith(NewLoop01LatchBB,
1019                                                          NewLoop011PHBB);
1020         BranchInst::Create(NewLoop011BB, NewLoop011PHBB);
1021         CreateCondBr(NewLoop01LatchBB, NewLoop011BB, "cond.0.1.1",
1022                      NewLoop011BB);
1023         AR.DT.addNewBlock(NewLoop011PHBB, NewLoop010BB);
1024         auto *NewDTNode = AR.DT.addNewBlock(NewLoop011BB, NewLoop011PHBB);
1025         AR.DT.changeImmediateDominator(AR.DT[NewLoop01LatchBB], NewDTNode);
1026         EXPECT_TRUE(AR.DT.verify());
1027         L.addBasicBlockToLoop(NewLoop011PHBB, AR.LI);
1028         NewLoop->addBasicBlockToLoop(NewLoop011BB, AR.LI);
1029         NewLoop->verifyLoop();
1030         L.verifyLoop();
1031         Updater.addChildLoops({NewLoop});
1032         return PreservedAnalyses::all();
1033       }));
1034 
1035   // Again, we should immediately drop down to visit the new, unvisited child
1036   // loop. We don't need to revisit the other child though.
1037   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
1038       .WillOnce(Invoke(getLoopAnalysisResult));
1039   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.1"), _, _));
1040   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
1041       .Times(2)
1042       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1043 
1044   // And now we should pop back up to the second loop and do a full pipeline of
1045   // three passes on its current form.
1046   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1047       .Times(3)
1048       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1049 
1050   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1051       .WillOnce(Invoke(getLoopAnalysisResult));
1052   EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
1053   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1054       .Times(2)
1055       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1056 
1057   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1058       .WillOnce(Invoke(getLoopAnalysisResult));
1059   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
1060   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1061       .Times(2)
1062       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1063 
1064   // Now that all the expected actions are registered, run the pipeline over
1065   // our module. All of our expectations are verified when the test finishes.
1066   MPM.run(*M, MAM);
1067 }
1068 
TEST_F(LoopPassManagerTest,LoopPeerInsertion)1069 TEST_F(LoopPassManagerTest, LoopPeerInsertion) {
1070   // Super boring module with two loop nests and loop nest with two child
1071   // loops.
1072   M = parseIR(Context, "define void @f(i1* %ptr) {\n"
1073                        "entry:\n"
1074                        "  br label %loop.0\n"
1075                        "loop.0:\n"
1076                        "  %cond.0 = load volatile i1, i1* %ptr\n"
1077                        "  br i1 %cond.0, label %loop.0.0.ph, label %loop.2.ph\n"
1078                        "loop.0.0.ph:\n"
1079                        "  br label %loop.0.0\n"
1080                        "loop.0.0:\n"
1081                        "  %cond.0.0 = load volatile i1, i1* %ptr\n"
1082                        "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.2.ph\n"
1083                        "loop.0.2.ph:\n"
1084                        "  br label %loop.0.2\n"
1085                        "loop.0.2:\n"
1086                        "  %cond.0.2 = load volatile i1, i1* %ptr\n"
1087                        "  br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
1088                        "loop.0.latch:\n"
1089                        "  br label %loop.0\n"
1090                        "loop.2.ph:\n"
1091                        "  br label %loop.2\n"
1092                        "loop.2:\n"
1093                        "  %cond.2 = load volatile i1, i1* %ptr\n"
1094                        "  br i1 %cond.2, label %loop.2, label %end\n"
1095                        "end:\n"
1096                        "  ret void\n"
1097                        "}\n");
1098 
1099   // Build up variables referring into the IR so we can rewrite it below
1100   // easily.
1101   Function &F = *M->begin();
1102   ASSERT_THAT(F, HasName("f"));
1103   Argument &Ptr = *F.arg_begin();
1104   auto BBI = F.begin();
1105   BasicBlock &EntryBB = *BBI++;
1106   ASSERT_THAT(EntryBB, HasName("entry"));
1107   BasicBlock &Loop0BB = *BBI++;
1108   ASSERT_THAT(Loop0BB, HasName("loop.0"));
1109   BasicBlock &Loop00PHBB = *BBI++;
1110   ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
1111   BasicBlock &Loop00BB = *BBI++;
1112   ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
1113   BasicBlock &Loop02PHBB = *BBI++;
1114   ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
1115   BasicBlock &Loop02BB = *BBI++;
1116   ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
1117   BasicBlock &Loop0LatchBB = *BBI++;
1118   ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
1119   BasicBlock &Loop2PHBB = *BBI++;
1120   ASSERT_THAT(Loop2PHBB, HasName("loop.2.ph"));
1121   BasicBlock &Loop2BB = *BBI++;
1122   ASSERT_THAT(Loop2BB, HasName("loop.2"));
1123   BasicBlock &EndBB = *BBI++;
1124   ASSERT_THAT(EndBB, HasName("end"));
1125   ASSERT_THAT(BBI, F.end());
1126   auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
1127                           const char *Name, BasicBlock *BB) {
1128     auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name,
1129                               /*isVolatile*/ true, BB);
1130     BranchInst::Create(TrueBB, FalseBB, Cond, BB);
1131   };
1132 
1133   // Build the pass managers and register our pipeline. We build a single loop
1134   // pass pipeline consisting of three mock pass runs over each loop. After
1135   // this we run both domtree and loop verification passes to make sure that
1136   // the IR remained valid during our mutations.
1137   ModulePassManager MPM;
1138   FunctionPassManager FPM;
1139   LoopPassManager LPM;
1140   LPM.addPass(MLPHandle.getPass());
1141   LPM.addPass(MLPHandle.getPass());
1142   LPM.addPass(MLPHandle.getPass());
1143   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
1144   FPM.addPass(DominatorTreeVerifierPass());
1145   FPM.addPass(LoopVerifierPass());
1146   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1147 
1148   // All the visit orders are deterministic, so we use simple fully order
1149   // expectations.
1150   ::testing::InSequence MakeExpectationsSequenced;
1151 
1152   // We run loop passes three times over each of the loops.
1153   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1154       .WillOnce(Invoke(getLoopAnalysisResult));
1155   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
1156 
1157   // On the second run, we insert a sibling loop.
1158   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1159       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1160                            LoopStandardAnalysisResults &AR,
1161                            LPMUpdater &Updater) {
1162         auto *NewLoop = AR.LI.AllocateLoop();
1163         L.getParentLoop()->addChildLoop(NewLoop);
1164         auto *NewLoop01PHBB = BasicBlock::Create(Context, "loop.0.1.ph", &F, &Loop02PHBB);
1165         auto *NewLoop01BB = BasicBlock::Create(Context, "loop.0.1", &F, &Loop02PHBB);
1166         BranchInst::Create(NewLoop01BB, NewLoop01PHBB);
1167         CreateCondBr(&Loop02PHBB, NewLoop01BB, "cond.0.1", NewLoop01BB);
1168         Loop00BB.getTerminator()->replaceUsesOfWith(&Loop02PHBB, NewLoop01PHBB);
1169         AR.DT.addNewBlock(NewLoop01PHBB, &Loop00BB);
1170         auto *NewDTNode = AR.DT.addNewBlock(NewLoop01BB, NewLoop01PHBB);
1171         AR.DT.changeImmediateDominator(AR.DT[&Loop02PHBB], NewDTNode);
1172         EXPECT_TRUE(AR.DT.verify());
1173         L.getParentLoop()->addBasicBlockToLoop(NewLoop01PHBB, AR.LI);
1174         NewLoop->addBasicBlockToLoop(NewLoop01BB, AR.LI);
1175         L.getParentLoop()->verifyLoop();
1176         Updater.addSiblingLoops({NewLoop});
1177         return PreservedAnalyses::all();
1178       }));
1179   // We finish processing this loop as sibling loops don't perturb the
1180   // postorder walk.
1181   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1182       .WillOnce(Invoke(getLoopAnalysisResult));
1183 
1184   // We visit the inserted sibling next.
1185   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1186       .WillOnce(Invoke(getLoopAnalysisResult));
1187   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
1188   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1189       .Times(2)
1190       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1191 
1192   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1193       .WillOnce(Invoke(getLoopAnalysisResult));
1194   EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
1195   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1196       .WillOnce(Invoke(getLoopAnalysisResult));
1197   // Next, on the third pass run on the last inner loop we add more new
1198   // siblings, more than one, and one with nested child loops. By doing this at
1199   // the end we make sure that edge case works well.
1200   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1201       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1202                            LoopStandardAnalysisResults &AR,
1203                            LPMUpdater &Updater) {
1204         Loop *NewLoops[] = {AR.LI.AllocateLoop(), AR.LI.AllocateLoop(),
1205                             AR.LI.AllocateLoop()};
1206         L.getParentLoop()->addChildLoop(NewLoops[0]);
1207         L.getParentLoop()->addChildLoop(NewLoops[1]);
1208         NewLoops[1]->addChildLoop(NewLoops[2]);
1209         auto *NewLoop03PHBB =
1210             BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
1211         auto *NewLoop03BB =
1212             BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
1213         auto *NewLoop04PHBB =
1214             BasicBlock::Create(Context, "loop.0.4.ph", &F, &Loop0LatchBB);
1215         auto *NewLoop04BB =
1216             BasicBlock::Create(Context, "loop.0.4", &F, &Loop0LatchBB);
1217         auto *NewLoop040PHBB =
1218             BasicBlock::Create(Context, "loop.0.4.0.ph", &F, &Loop0LatchBB);
1219         auto *NewLoop040BB =
1220             BasicBlock::Create(Context, "loop.0.4.0", &F, &Loop0LatchBB);
1221         auto *NewLoop04LatchBB =
1222             BasicBlock::Create(Context, "loop.0.4.latch", &F, &Loop0LatchBB);
1223         Loop02BB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB, NewLoop03PHBB);
1224         BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
1225         CreateCondBr(NewLoop04PHBB, NewLoop03BB, "cond.0.3", NewLoop03BB);
1226         BranchInst::Create(NewLoop04BB, NewLoop04PHBB);
1227         CreateCondBr(&Loop0LatchBB, NewLoop040PHBB, "cond.0.4", NewLoop04BB);
1228         BranchInst::Create(NewLoop040BB, NewLoop040PHBB);
1229         CreateCondBr(NewLoop04LatchBB, NewLoop040BB, "cond.0.4.0", NewLoop040BB);
1230         BranchInst::Create(NewLoop04BB, NewLoop04LatchBB);
1231         AR.DT.addNewBlock(NewLoop03PHBB, &Loop02BB);
1232         AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
1233         AR.DT.addNewBlock(NewLoop04PHBB, NewLoop03BB);
1234         auto *NewDTNode = AR.DT.addNewBlock(NewLoop04BB, NewLoop04PHBB);
1235         AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB], NewDTNode);
1236         AR.DT.addNewBlock(NewLoop040PHBB, NewLoop04BB);
1237         AR.DT.addNewBlock(NewLoop040BB, NewLoop040PHBB);
1238         AR.DT.addNewBlock(NewLoop04LatchBB, NewLoop040BB);
1239         EXPECT_TRUE(AR.DT.verify());
1240         L.getParentLoop()->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
1241         NewLoops[0]->addBasicBlockToLoop(NewLoop03BB, AR.LI);
1242         L.getParentLoop()->addBasicBlockToLoop(NewLoop04PHBB, AR.LI);
1243         NewLoops[1]->addBasicBlockToLoop(NewLoop04BB, AR.LI);
1244         NewLoops[1]->addBasicBlockToLoop(NewLoop040PHBB, AR.LI);
1245         NewLoops[2]->addBasicBlockToLoop(NewLoop040BB, AR.LI);
1246         NewLoops[1]->addBasicBlockToLoop(NewLoop04LatchBB, AR.LI);
1247         L.getParentLoop()->verifyLoop();
1248         Updater.addSiblingLoops({NewLoops[0], NewLoops[1]});
1249         return PreservedAnalyses::all();
1250       }));
1251 
1252   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1253       .WillOnce(Invoke(getLoopAnalysisResult));
1254   EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
1255   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1256       .Times(2)
1257       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1258 
1259   // Note that we need to visit the inner loop of this added sibling before the
1260   // sibling itself!
1261   EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
1262       .WillOnce(Invoke(getLoopAnalysisResult));
1263   EXPECT_CALL(MLAHandle, run(HasName("loop.0.4.0"), _, _));
1264   EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
1265       .Times(2)
1266       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1267 
1268   EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
1269       .WillOnce(Invoke(getLoopAnalysisResult));
1270   EXPECT_CALL(MLAHandle, run(HasName("loop.0.4"), _, _));
1271   EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
1272       .Times(2)
1273       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1274 
1275   // And only now do we visit the outermost loop of the nest.
1276   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1277       .WillOnce(Invoke(getLoopAnalysisResult));
1278   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
1279   // On the second pass, we add sibling loops which become new top-level loops.
1280   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1281       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1282                            LoopStandardAnalysisResults &AR,
1283                            LPMUpdater &Updater) {
1284         auto *NewLoop = AR.LI.AllocateLoop();
1285         AR.LI.addTopLevelLoop(NewLoop);
1286         auto *NewLoop1PHBB = BasicBlock::Create(Context, "loop.1.ph", &F, &Loop2BB);
1287         auto *NewLoop1BB = BasicBlock::Create(Context, "loop.1", &F, &Loop2BB);
1288         BranchInst::Create(NewLoop1BB, NewLoop1PHBB);
1289         CreateCondBr(&Loop2PHBB, NewLoop1BB, "cond.1", NewLoop1BB);
1290         Loop0BB.getTerminator()->replaceUsesOfWith(&Loop2PHBB, NewLoop1PHBB);
1291         AR.DT.addNewBlock(NewLoop1PHBB, &Loop0BB);
1292         auto *NewDTNode = AR.DT.addNewBlock(NewLoop1BB, NewLoop1PHBB);
1293         AR.DT.changeImmediateDominator(AR.DT[&Loop2PHBB], NewDTNode);
1294         EXPECT_TRUE(AR.DT.verify());
1295         NewLoop->addBasicBlockToLoop(NewLoop1BB, AR.LI);
1296         NewLoop->verifyLoop();
1297         Updater.addSiblingLoops({NewLoop});
1298         return PreservedAnalyses::all();
1299       }));
1300   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1301       .WillOnce(Invoke(getLoopAnalysisResult));
1302 
1303   EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
1304       .WillOnce(Invoke(getLoopAnalysisResult));
1305   EXPECT_CALL(MLAHandle, run(HasName("loop.1"), _, _));
1306   EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
1307       .Times(2)
1308       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1309 
1310   EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
1311       .WillOnce(Invoke(getLoopAnalysisResult));
1312   EXPECT_CALL(MLAHandle, run(HasName("loop.2"), _, _));
1313   EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
1314       .Times(2)
1315       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1316 
1317   // Now that all the expected actions are registered, run the pipeline over
1318   // our module. All of our expectations are verified when the test finishes.
1319   MPM.run(*M, MAM);
1320 }
1321 
TEST_F(LoopPassManagerTest,LoopDeletion)1322 TEST_F(LoopPassManagerTest, LoopDeletion) {
1323   // Build a module with a single loop nest that contains one outer loop with
1324   // three subloops, and one of those with its own subloop. We will
1325   // incrementally delete all of these to test different deletion scenarios.
1326   M = parseIR(Context, "define void @f(i1* %ptr) {\n"
1327                        "entry:\n"
1328                        "  br label %loop.0\n"
1329                        "loop.0:\n"
1330                        "  %cond.0 = load volatile i1, i1* %ptr\n"
1331                        "  br i1 %cond.0, label %loop.0.0.ph, label %end\n"
1332                        "loop.0.0.ph:\n"
1333                        "  br label %loop.0.0\n"
1334                        "loop.0.0:\n"
1335                        "  %cond.0.0 = load volatile i1, i1* %ptr\n"
1336                        "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
1337                        "loop.0.1.ph:\n"
1338                        "  br label %loop.0.1\n"
1339                        "loop.0.1:\n"
1340                        "  %cond.0.1 = load volatile i1, i1* %ptr\n"
1341                        "  br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
1342                        "loop.0.2.ph:\n"
1343                        "  br label %loop.0.2\n"
1344                        "loop.0.2:\n"
1345                        "  %cond.0.2 = load volatile i1, i1* %ptr\n"
1346                        "  br i1 %cond.0.2, label %loop.0.2.0.ph, label %loop.0.latch\n"
1347                        "loop.0.2.0.ph:\n"
1348                        "  br label %loop.0.2.0\n"
1349                        "loop.0.2.0:\n"
1350                        "  %cond.0.2.0 = load volatile i1, i1* %ptr\n"
1351                        "  br i1 %cond.0.2.0, label %loop.0.2.0, label %loop.0.2.latch\n"
1352                        "loop.0.2.latch:\n"
1353                        "  br label %loop.0.2\n"
1354                        "loop.0.latch:\n"
1355                        "  br label %loop.0\n"
1356                        "end:\n"
1357                        "  ret void\n"
1358                        "}\n");
1359 
1360   // Build up variables referring into the IR so we can rewrite it below
1361   // easily.
1362   Function &F = *M->begin();
1363   ASSERT_THAT(F, HasName("f"));
1364   Argument &Ptr = *F.arg_begin();
1365   auto BBI = F.begin();
1366   BasicBlock &EntryBB = *BBI++;
1367   ASSERT_THAT(EntryBB, HasName("entry"));
1368   BasicBlock &Loop0BB = *BBI++;
1369   ASSERT_THAT(Loop0BB, HasName("loop.0"));
1370   BasicBlock &Loop00PHBB = *BBI++;
1371   ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
1372   BasicBlock &Loop00BB = *BBI++;
1373   ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
1374   BasicBlock &Loop01PHBB = *BBI++;
1375   ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
1376   BasicBlock &Loop01BB = *BBI++;
1377   ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
1378   BasicBlock &Loop02PHBB = *BBI++;
1379   ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
1380   BasicBlock &Loop02BB = *BBI++;
1381   ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
1382   BasicBlock &Loop020PHBB = *BBI++;
1383   ASSERT_THAT(Loop020PHBB, HasName("loop.0.2.0.ph"));
1384   BasicBlock &Loop020BB = *BBI++;
1385   ASSERT_THAT(Loop020BB, HasName("loop.0.2.0"));
1386   BasicBlock &Loop02LatchBB = *BBI++;
1387   ASSERT_THAT(Loop02LatchBB, HasName("loop.0.2.latch"));
1388   BasicBlock &Loop0LatchBB = *BBI++;
1389   ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
1390   BasicBlock &EndBB = *BBI++;
1391   ASSERT_THAT(EndBB, HasName("end"));
1392   ASSERT_THAT(BBI, F.end());
1393 
1394   // Helper to do the actual deletion of a loop. We directly encode this here
1395   // to isolate ourselves from the rest of LLVM and for simplicity. Here we can
1396   // egregiously cheat based on knowledge of the test case. For example, we
1397   // have no PHI nodes and there is always a single i-dom.
1398   auto EraseLoop = [](Loop &L, BasicBlock &IDomBB,
1399                       LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1400     assert(L.isInnermost() && "Can only delete leaf loops with this routine!");
1401     SmallVector<BasicBlock *, 4> LoopBBs(L.block_begin(), L.block_end());
1402     Updater.markLoopAsDeleted(L, L.getName());
1403     IDomBB.getTerminator()->replaceUsesOfWith(L.getHeader(),
1404                                               L.getUniqueExitBlock());
1405     for (BasicBlock *LoopBB : LoopBBs) {
1406       SmallVector<DomTreeNode *, 4> ChildNodes(AR.DT[LoopBB]->begin(),
1407                                                AR.DT[LoopBB]->end());
1408       for (DomTreeNode *ChildNode : ChildNodes)
1409         AR.DT.changeImmediateDominator(ChildNode, AR.DT[&IDomBB]);
1410       AR.DT.eraseNode(LoopBB);
1411       AR.LI.removeBlock(LoopBB);
1412       LoopBB->dropAllReferences();
1413     }
1414     for (BasicBlock *LoopBB : LoopBBs)
1415       LoopBB->eraseFromParent();
1416 
1417     AR.LI.erase(&L);
1418   };
1419 
1420   // Build up the pass managers.
1421   ModulePassManager MPM;
1422   FunctionPassManager FPM;
1423   // We run several loop pass pipelines across the loop nest, but they all take
1424   // the same form of three mock pass runs in a loop pipeline followed by
1425   // domtree and loop verification. We use a lambda to stamp this out each
1426   // time.
1427   auto AddLoopPipelineAndVerificationPasses = [&] {
1428     LoopPassManager LPM;
1429     LPM.addPass(MLPHandle.getPass());
1430     LPM.addPass(MLPHandle.getPass());
1431     LPM.addPass(MLPHandle.getPass());
1432     FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
1433     FPM.addPass(DominatorTreeVerifierPass());
1434     FPM.addPass(LoopVerifierPass());
1435   };
1436 
1437   // All the visit orders are deterministic so we use simple fully order
1438   // expectations.
1439   ::testing::InSequence MakeExpectationsSequenced;
1440 
1441   // We run the loop pipeline with three passes over each of the loops. When
1442   // running over the middle loop, the second pass in the pipeline deletes it.
1443   // This should prevent the third pass from visiting it but otherwise leave
1444   // the process unimpacted.
1445   AddLoopPipelineAndVerificationPasses();
1446   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1447       .WillOnce(Invoke(getLoopAnalysisResult));
1448   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
1449   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1450       .Times(2)
1451       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1452 
1453   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1454       .WillOnce(Invoke(getLoopAnalysisResult));
1455   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
1456   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1457       .WillOnce(
1458           Invoke([&](Loop &L, LoopAnalysisManager &AM,
1459                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1460             Loop *ParentL = L.getParentLoop();
1461             AR.SE.forgetLoop(&L);
1462             EraseLoop(L, Loop01PHBB, AR, Updater);
1463             ParentL->verifyLoop();
1464             return PreservedAnalyses::all();
1465           }));
1466 
1467   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
1468       .WillOnce(Invoke(getLoopAnalysisResult));
1469   EXPECT_CALL(MLAHandle, run(HasName("loop.0.2.0"), _, _));
1470   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
1471       .Times(2)
1472       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1473 
1474   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1475       .WillOnce(Invoke(getLoopAnalysisResult));
1476   EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
1477   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1478       .Times(2)
1479       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1480 
1481   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1482       .WillOnce(Invoke(getLoopAnalysisResult));
1483   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
1484   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1485       .Times(2)
1486       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1487 
1488   // Run the loop pipeline again. This time we delete the last loop, which
1489   // contains a nested loop within it and insert a new loop into the nest. This
1490   // makes sure we can handle nested loop deletion.
1491   AddLoopPipelineAndVerificationPasses();
1492   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1493       .Times(3)
1494       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1495 
1496   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
1497       .Times(3)
1498       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1499 
1500   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1501       .WillOnce(Invoke(getLoopAnalysisResult));
1502   BasicBlock *NewLoop03PHBB;
1503   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1504       .WillOnce(
1505           Invoke([&](Loop &L, LoopAnalysisManager &AM,
1506                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1507             AR.SE.forgetLoop(*L.begin());
1508             EraseLoop(**L.begin(), Loop020PHBB, AR, Updater);
1509 
1510             auto *ParentL = L.getParentLoop();
1511             AR.SE.forgetLoop(&L);
1512             EraseLoop(L, Loop02PHBB, AR, Updater);
1513 
1514             // Now insert a new sibling loop.
1515             auto *NewSibling = AR.LI.AllocateLoop();
1516             ParentL->addChildLoop(NewSibling);
1517             NewLoop03PHBB =
1518                 BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
1519             auto *NewLoop03BB =
1520                 BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
1521             BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
1522             auto *Cond =
1523                 new LoadInst(Type::getInt1Ty(Context), &Ptr, "cond.0.3",
1524                              /*isVolatile*/ true, NewLoop03BB);
1525             BranchInst::Create(&Loop0LatchBB, NewLoop03BB, Cond, NewLoop03BB);
1526             Loop02PHBB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB,
1527                                                           NewLoop03PHBB);
1528             AR.DT.addNewBlock(NewLoop03PHBB, &Loop02PHBB);
1529             AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
1530             AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB],
1531                                            AR.DT[NewLoop03BB]);
1532             EXPECT_TRUE(AR.DT.verify());
1533             ParentL->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
1534             NewSibling->addBasicBlockToLoop(NewLoop03BB, AR.LI);
1535             NewSibling->verifyLoop();
1536             ParentL->verifyLoop();
1537             Updater.addSiblingLoops({NewSibling});
1538             return PreservedAnalyses::all();
1539           }));
1540 
1541   // To respect our inner-to-outer traversal order, we must visit the
1542   // newly-inserted sibling of the loop we just deleted before we visit the
1543   // outer loop. When we do so, this must compute a fresh analysis result, even
1544   // though our new loop has the same pointer value as the loop we deleted.
1545   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1546       .WillOnce(Invoke(getLoopAnalysisResult));
1547   EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
1548   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1549       .Times(2)
1550       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1551 
1552   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1553       .Times(3)
1554       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1555 
1556   // In the final loop pipeline run we delete every loop, including the last
1557   // loop of the nest. We do this again in the second pass in the pipeline, and
1558   // as a consequence we never make it to three runs on any loop. We also cover
1559   // deleting multiple loops in a single pipeline, deleting the first loop and
1560   // deleting the (last) top level loop.
1561   AddLoopPipelineAndVerificationPasses();
1562   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1563       .WillOnce(Invoke(getLoopAnalysisResult));
1564   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1565       .WillOnce(
1566           Invoke([&](Loop &L, LoopAnalysisManager &AM,
1567                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1568             AR.SE.forgetLoop(&L);
1569             EraseLoop(L, Loop00PHBB, AR, Updater);
1570             return PreservedAnalyses::all();
1571           }));
1572 
1573   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1574       .WillOnce(Invoke(getLoopAnalysisResult));
1575   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1576       .WillOnce(
1577           Invoke([&](Loop &L, LoopAnalysisManager &AM,
1578                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1579             AR.SE.forgetLoop(&L);
1580             EraseLoop(L, *NewLoop03PHBB, AR, Updater);
1581             return PreservedAnalyses::all();
1582           }));
1583 
1584   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1585       .WillOnce(Invoke(getLoopAnalysisResult));
1586   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1587       .WillOnce(
1588           Invoke([&](Loop &L, LoopAnalysisManager &AM,
1589                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1590             AR.SE.forgetLoop(&L);
1591             EraseLoop(L, EntryBB, AR, Updater);
1592             return PreservedAnalyses::all();
1593           }));
1594 
1595   // Add the function pass pipeline now that it is fully built up and run it
1596   // over the module's one function.
1597   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1598   MPM.run(*M, MAM);
1599 }
1600 
TEST_F(LoopPassManagerTest,HandleLoopNestPass)1601 TEST_F(LoopPassManagerTest, HandleLoopNestPass) {
1602   ::testing::Sequence FSequence, GSequence;
1603 
1604   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1605       .Times(2)
1606       .InSequence(FSequence);
1607   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1608       .Times(2)
1609       .InSequence(FSequence);
1610   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)).InSequence(FSequence);
1611   EXPECT_CALL(MLNPHandle, run(HasName("loop.0"), _, _, _))
1612       .InSequence(FSequence);
1613   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)).InSequence(FSequence);
1614   EXPECT_CALL(MLNPHandle, run(HasName("loop.0"), _, _, _))
1615       .InSequence(FSequence);
1616   EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
1617       .InSequence(GSequence);
1618   EXPECT_CALL(MLNPHandle, run(HasName("loop.g.0"), _, _, _))
1619       .InSequence(GSequence);
1620   EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
1621       .InSequence(GSequence);
1622   EXPECT_CALL(MLNPHandle, run(HasName("loop.g.0"), _, _, _))
1623       .InSequence(GSequence);
1624 
1625   EXPECT_CALL(MLNPHandle, run(HasName("loop.0"), _, _, _))
1626       .InSequence(FSequence);
1627   EXPECT_CALL(MLNPHandle, run(HasName("loop.g.0"), _, _, _))
1628       .InSequence(GSequence);
1629 
1630   EXPECT_CALL(MLNPHandle, run(HasName("loop.0"), _, _, _))
1631       .InSequence(FSequence);
1632   EXPECT_CALL(MLNPHandle, run(HasName("loop.g.0"), _, _, _))
1633       .InSequence(GSequence);
1634 
1635   ModulePassManager MPM;
1636   FunctionPassManager FPM;
1637 
1638   {
1639     LoopPassManager LPM;
1640     LPM.addPass(MLPHandle.getPass());
1641     LPM.addPass(MLNPHandle.getPass());
1642     LPM.addPass(MLPHandle.getPass());
1643     LPM.addPass(MLNPHandle.getPass());
1644 
1645     auto Adaptor = createFunctionToLoopPassAdaptor(std::move(LPM));
1646     ASSERT_FALSE(Adaptor.isLoopNestMode());
1647     FPM.addPass(std::move(Adaptor));
1648   }
1649 
1650   {
1651     auto Adaptor = createFunctionToLoopPassAdaptor(MLNPHandle.getPass());
1652     ASSERT_TRUE(Adaptor.isLoopNestMode());
1653     FPM.addPass(std::move(Adaptor));
1654   }
1655 
1656   {
1657     LoopPassManager LPM;
1658     LPM.addPass(MLNPHandle.getPass());
1659     auto Adaptor = createFunctionToLoopPassAdaptor(MLNPHandle.getPass());
1660     ASSERT_TRUE(Adaptor.isLoopNestMode());
1661     FPM.addPass(std::move(Adaptor));
1662   }
1663 
1664   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1665   MPM.run(*M, MAM);
1666 }
1667 
1668 } // namespace
1669