1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef BASE_SYNCHRONIZATION_WAITABLE_EVENT_H_
6 #define BASE_SYNCHRONIZATION_WAITABLE_EVENT_H_
7 
8 #include <stddef.h>
9 
10 #include "base/base_export.h"
11 #include "base/macros.h"
12 #include "build/build_config.h"
13 
14 #if defined(OS_WIN)
15 #include "base/win/scoped_handle.h"
16 #elif defined(OS_MACOSX)
17 #include <mach/mach.h>
18 
19 #include <list>
20 #include <memory>
21 
22 #include "base/callback_forward.h"
23 #include "base/mac/scoped_mach_port.h"
24 #include "base/memory/ref_counted.h"
25 #include "base/synchronization/lock.h"
26 #elif defined(OS_POSIX) || defined(OS_FUCHSIA)
27 #include <list>
28 #include <utility>
29 
30 #include "base/memory/ref_counted.h"
31 #include "base/synchronization/lock.h"
32 #endif
33 
34 namespace base {
35 
36 class TimeDelta;
37 class TimeTicks;
38 
39 // A WaitableEvent can be a useful thread synchronization tool when you want to
40 // allow one thread to wait for another thread to finish some work. For
41 // non-Windows systems, this can only be used from within a single address
42 // space.
43 //
44 // Use a WaitableEvent when you would otherwise use a Lock+ConditionVariable to
45 // protect a simple boolean value.  However, if you find yourself using a
46 // WaitableEvent in conjunction with a Lock to wait for a more complex state
47 // change (e.g., for an item to be added to a queue), then you should probably
48 // be using a ConditionVariable instead of a WaitableEvent.
49 //
50 // NOTE: On Windows, this class provides a subset of the functionality afforded
51 // by a Windows event object.  This is intentional.  If you are writing Windows
52 // specific code and you need other features of a Windows event, then you might
53 // be better off just using an Windows event directly.
54 class BASE_EXPORT WaitableEvent {
55  public:
56   // Indicates whether a WaitableEvent should automatically reset the event
57   // state after a single waiting thread has been released or remain signaled
58   // until Reset() is manually invoked.
59   enum class ResetPolicy { MANUAL, AUTOMATIC };
60 
61   // Indicates whether a new WaitableEvent should start in a signaled state or
62   // not.
63   enum class InitialState { SIGNALED, NOT_SIGNALED };
64 
65   // Constructs a WaitableEvent with policy and initial state as detailed in
66   // the above enums.
67   WaitableEvent(ResetPolicy reset_policy = ResetPolicy::MANUAL,
68                 InitialState initial_state = InitialState::NOT_SIGNALED);
69 
70 #if defined(OS_WIN)
71   // Create a WaitableEvent from an Event HANDLE which has already been
72   // created. This objects takes ownership of the HANDLE and will close it when
73   // deleted.
74   explicit WaitableEvent(win::ScopedHandle event_handle);
75 #endif
76 
77   ~WaitableEvent();
78 
79   // Put the event in the un-signaled state.
80   void Reset();
81 
82   // Put the event in the signaled state.  Causing any thread blocked on Wait
83   // to be woken up.
84   void Signal();
85 
86   // Returns true if the event is in the signaled state, else false.  If this
87   // is not a manual reset event, then this test will cause a reset.
88   bool IsSignaled();
89 
90   // Wait indefinitely for the event to be signaled. Wait's return "happens
91   // after" |Signal| has completed. This means that it's safe for a
92   // WaitableEvent to synchronise its own destruction, like this:
93   //
94   //   WaitableEvent *e = new WaitableEvent;
95   //   SendToOtherThread(e);
96   //   e->Wait();
97   //   delete e;
98   void Wait();
99 
100   // Wait up until wait_delta has passed for the event to be signaled.  Returns
101   // true if the event was signaled.
102   //
103   // TimedWait can synchronise its own destruction like |Wait|.
104   bool TimedWait(const TimeDelta& wait_delta);
105 
106   // Wait up until end_time deadline has passed for the event to be signaled.
107   // Return true if the event was signaled.
108   //
109   // TimedWaitUntil can synchronise its own destruction like |Wait|.
110   bool TimedWaitUntil(const TimeTicks& end_time);
111 
112 #if defined(OS_WIN)
handle()113   HANDLE handle() const { return handle_.Get(); }
114 #endif
115 
116   // Declares that this WaitableEvent will only ever be used by a thread that is
117   // idle at the bottom of its stack and waiting for work (in particular, it is
118   // not synchronously waiting on this event before resuming ongoing work). This
119   // is useful to avoid telling base-internals that this thread is "blocked"
120   // when it's merely idle and ready to do work. As such, this is only expected
121   // to be used by thread and thread pool impls.
declare_only_used_while_idle()122   void declare_only_used_while_idle() { waiting_is_blocking_ = false; }
123 
124   // Wait, synchronously, on multiple events.
125   //   waitables: an array of WaitableEvent pointers
126   //   count: the number of elements in @waitables
127   //
128   // returns: the index of a WaitableEvent which has been signaled.
129   //
130   // You MUST NOT delete any of the WaitableEvent objects while this wait is
131   // happening, however WaitMany's return "happens after" the |Signal| call
132   // that caused it has completed, like |Wait|.
133   //
134   // If more than one WaitableEvent is signaled to unblock WaitMany, the lowest
135   // index among them is returned.
136   static size_t WaitMany(WaitableEvent** waitables, size_t count);
137 
138   // For asynchronous waiting, see WaitableEventWatcher
139 
140   // This is a private helper class. It's here because it's used by friends of
141   // this class (such as WaitableEventWatcher) to be able to enqueue elements
142   // of the wait-list
143   class Waiter {
144    public:
145     // Signal the waiter to wake up.
146     //
147     // Consider the case of a Waiter which is in multiple WaitableEvent's
148     // wait-lists. Each WaitableEvent is automatic-reset and two of them are
149     // signaled at the same time. Now, each will wake only the first waiter in
150     // the wake-list before resetting. However, if those two waiters happen to
151     // be the same object (as can happen if another thread didn't have a chance
152     // to dequeue the waiter from the other wait-list in time), two auto-resets
153     // will have happened, but only one waiter has been signaled!
154     //
155     // Because of this, a Waiter may "reject" a wake by returning false. In
156     // this case, the auto-reset WaitableEvent shouldn't act as if anything has
157     // been notified.
158     virtual bool Fire(WaitableEvent* signaling_event) = 0;
159 
160     // Waiters may implement this in order to provide an extra condition for
161     // two Waiters to be considered equal. In WaitableEvent::Dequeue, if the
162     // pointers match then this function is called as a final check. See the
163     // comments in ~Handle for why.
164     virtual bool Compare(void* tag) = 0;
165 
166    protected:
167     virtual ~Waiter() = default;
168   };
169 
170  private:
171   friend class WaitableEventWatcher;
172 
173 #if defined(OS_WIN)
174   win::ScopedHandle handle_;
175 #elif defined(OS_MACOSX)
176   // Prior to macOS 10.12, a TYPE_MACH_RECV dispatch source may not be invoked
177   // immediately. If a WaitableEventWatcher is used on a manual-reset event,
178   // and another thread that is Wait()ing on the event calls Reset()
179   // immediately after waking up, the watcher may not receive the callback.
180   // On macOS 10.12 and higher, dispatch delivery is reliable. But for OSes
181   // prior, a lock-protected list of callbacks is used for manual-reset event
182   // watchers. Automatic-reset events are not prone to this issue, since the
183   // first thread to wake will claim the event.
184   static bool UseSlowWatchList(ResetPolicy policy);
185 
186   // Peeks the message queue named by |port| and returns true if a message
187   // is present and false if not. If |dequeue| is true, the messsage will be
188   // drained from the queue. If |dequeue| is false, the queue will only be
189   // peeked. |port| must be a receive right.
190   static bool PeekPort(mach_port_t port, bool dequeue);
191 
192   // The Mach receive right is waited on by both WaitableEvent and
193   // WaitableEventWatcher. It is valid to signal and then delete an event, and
194   // a watcher should still be notified. If the right were to be destroyed
195   // immediately, the watcher would not receive the signal. Because Mach
196   // receive rights cannot have a user refcount greater than one, the right
197   // must be reference-counted manually.
198   class ReceiveRight : public RefCountedThreadSafe<ReceiveRight> {
199    public:
200     ReceiveRight(mach_port_t name, bool create_slow_watch_list);
201 
Name()202     mach_port_t Name() const { return right_.get(); }
203 
204     // This structure is used iff UseSlowWatchList() is true. See the comment
205     // in Signal() for details.
206     struct WatchList {
207       WatchList();
208       ~WatchList();
209 
210       // The lock protects a list of closures to be run when the event is
211       // Signal()ed. The closures are invoked on the signaling thread, so they
212       // must be safe to be called from any thread.
213       Lock lock;
214       std::list<OnceClosure> list;
215     };
216 
SlowWatchList()217     WatchList* SlowWatchList() const { return slow_watch_list_.get(); }
218 
219    private:
220     friend class RefCountedThreadSafe<ReceiveRight>;
221     ~ReceiveRight();
222 
223     mac::ScopedMachReceiveRight right_;
224 
225     // This is allocated iff UseSlowWatchList() is true. It is created on the
226     // heap to avoid performing initialization when not using the slow path.
227     std::unique_ptr<WatchList> slow_watch_list_;
228 
229     DISALLOW_COPY_AND_ASSIGN(ReceiveRight);
230   };
231 
232   const ResetPolicy policy_;
233 
234   // The receive right for the event.
235   scoped_refptr<ReceiveRight> receive_right_;
236 
237   // The send right used to signal the event. This can be disposed of with
238   // the event, unlike the receive right, since a deleted event cannot be
239   // signaled.
240   mac::ScopedMachSendRight send_right_;
241 #elif defined(OS_POSIX) || defined(OS_FUCHSIA)
242   // On Windows, you must not close a HANDLE which is currently being waited on.
243   // The MSDN documentation says that the resulting behaviour is 'undefined'.
244   // To solve that issue each WaitableEventWatcher duplicates the given event
245   // handle.
246 
247   // However, if we were to include the following members
248   // directly then, on POSIX, one couldn't use WaitableEventWatcher to watch an
249   // event which gets deleted. This mismatch has bitten us several times now,
250   // so we have a kernel of the WaitableEvent, which is reference counted.
251   // WaitableEventWatchers may then take a reference and thus match the Windows
252   // behaviour.
253   struct WaitableEventKernel :
254       public RefCountedThreadSafe<WaitableEventKernel> {
255    public:
256     WaitableEventKernel(ResetPolicy reset_policy, InitialState initial_state);
257 
258     bool Dequeue(Waiter* waiter, void* tag);
259 
260     base::Lock lock_;
261     const bool manual_reset_;
262     bool signaled_;
263     std::list<Waiter*> waiters_;
264 
265    private:
266     friend class RefCountedThreadSafe<WaitableEventKernel>;
267     ~WaitableEventKernel();
268   };
269 
270   typedef std::pair<WaitableEvent*, size_t> WaiterAndIndex;
271 
272   // When dealing with arrays of WaitableEvent*, we want to sort by the address
273   // of the WaitableEvent in order to have a globally consistent locking order.
274   // In that case we keep them, in sorted order, in an array of pairs where the
275   // second element is the index of the WaitableEvent in the original,
276   // unsorted, array.
277   static size_t EnqueueMany(WaiterAndIndex* waitables,
278                             size_t count, Waiter* waiter);
279 
280   bool SignalAll();
281   bool SignalOne();
282   void Enqueue(Waiter* waiter);
283 
284   scoped_refptr<WaitableEventKernel> kernel_;
285 #endif
286 
287   // Whether a thread invoking Wait() on this WaitableEvent should be considered
288   // blocked as opposed to idle (and potentially replaced if part of a pool).
289   bool waiting_is_blocking_ = true;
290 
291   DISALLOW_COPY_AND_ASSIGN(WaitableEvent);
292 };
293 
294 }  // namespace base
295 
296 #endif  // BASE_SYNCHRONIZATION_WAITABLE_EVENT_H_
297