1 /* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6 /*
7 * ALGORITHM
8 *
9 * The "deflation" process depends on being able to identify portions
10 * of the input text which are identical to earlier input (within a
11 * sliding window trailing behind the input currently being processed).
12 *
13 * The most straightforward technique turns out to be the fastest for
14 * most input files: try all possible matches and select the longest.
15 * The key feature of this algorithm is that insertions into the string
16 * dictionary are very simple and thus fast, and deletions are avoided
17 * completely. Insertions are performed at each input character, whereas
18 * string matches are performed only when the previous match ends. So it
19 * is preferable to spend more time in matches to allow very fast string
20 * insertions and avoid deletions. The matching algorithm for small
21 * strings is inspired from that of Rabin & Karp. A brute force approach
22 * is used to find longer strings when a small match has been found.
23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 * (by Leonid Broukhis).
25 * A previous version of this file used a more sophisticated algorithm
26 * (by Fiala and Greene) which is guaranteed to run in linear amortized
27 * time, but has a larger average cost, uses more memory and is patented.
28 * However the F&G algorithm may be faster for some highly redundant
29 * files if the parameter max_chain_length (described below) is too large.
30 *
31 * ACKNOWLEDGEMENTS
32 *
33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 * I found it in 'freeze' written by Leonid Broukhis.
35 * Thanks to many people for bug reports and testing.
36 *
37 * REFERENCES
38 *
39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 * Available in http://tools.ietf.org/html/rfc1951
41 *
42 * A description of the Rabin and Karp algorithm is given in the book
43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 * Fiala,E.R., and Greene,D.H.
46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50 /* @(#) $Id$ */
51 #include <assert.h>
52 #include "deflate.h"
53 #include "cpu_features.h"
54 #include "contrib/optimizations/insert_string.h"
55
56 #if (defined(__ARM_NEON__) || defined(__ARM_NEON))
57 #include "contrib/optimizations/slide_hash_neon.h"
58 #endif
59 #if defined(CRC32_ARMV8_CRC32)
60 #include "crc32_simd.h"
61 #endif
62
63 #ifdef FASTEST
64 /* See http://crbug.com/1113596 */
65 #error "FASTEST is not supported in Chromium's zlib."
66 #endif
67
68 const char deflate_copyright[] =
69 " deflate 1.2.11 Copyright 1995-2017 Jean-loup Gailly and Mark Adler ";
70 /*
71 If you use the zlib library in a product, an acknowledgment is welcome
72 in the documentation of your product. If for some reason you cannot
73 include such an acknowledgment, I would appreciate that you keep this
74 copyright string in the executable of your product.
75 */
76
77 /* ===========================================================================
78 * Function prototypes.
79 */
80 typedef enum {
81 need_more, /* block not completed, need more input or more output */
82 block_done, /* block flush performed */
83 finish_started, /* finish started, need only more output at next deflate */
84 finish_done /* finish done, accept no more input or output */
85 } block_state;
86
87 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
88 /* Compression function. Returns the block state after the call. */
89
90 local int deflateStateCheck OF((z_streamp strm));
91 local void slide_hash OF((deflate_state *s));
92 local void fill_window OF((deflate_state *s));
93 local block_state deflate_stored OF((deflate_state *s, int flush));
94 local block_state deflate_fast OF((deflate_state *s, int flush));
95 #ifndef FASTEST
96 local block_state deflate_slow OF((deflate_state *s, int flush));
97 #endif
98 local block_state deflate_rle OF((deflate_state *s, int flush));
99 local block_state deflate_huff OF((deflate_state *s, int flush));
100 local void lm_init OF((deflate_state *s));
101 local void putShortMSB OF((deflate_state *s, uInt b));
102 local void flush_pending OF((z_streamp strm));
103 unsigned ZLIB_INTERNAL deflate_read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
104 #ifdef ASMV
105 # pragma message("Assembler code may have bugs -- use at your own risk")
106 void match_init OF((void)); /* asm code initialization */
107 uInt longest_match OF((deflate_state *s, IPos cur_match));
108 #else
109 local uInt longest_match OF((deflate_state *s, IPos cur_match));
110 #endif
111
112 #ifdef ZLIB_DEBUG
113 local void check_match OF((deflate_state *s, IPos start, IPos match,
114 int length));
115 #endif
116
117 /* From crc32.c */
118 extern void ZLIB_INTERNAL crc_reset(deflate_state *const s);
119 extern void ZLIB_INTERNAL crc_finalize(deflate_state *const s);
120 extern void ZLIB_INTERNAL copy_with_crc(z_streamp strm, Bytef *dst, long size);
121
122 /* ===========================================================================
123 * Local data
124 */
125
126 #define NIL 0
127 /* Tail of hash chains */
128
129 #ifndef TOO_FAR
130 # define TOO_FAR 4096
131 #endif
132 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
133
134 /* Values for max_lazy_match, good_match and max_chain_length, depending on
135 * the desired pack level (0..9). The values given below have been tuned to
136 * exclude worst case performance for pathological files. Better values may be
137 * found for specific files.
138 */
139 typedef struct config_s {
140 ush good_length; /* reduce lazy search above this match length */
141 ush max_lazy; /* do not perform lazy search above this match length */
142 ush nice_length; /* quit search above this match length */
143 ush max_chain;
144 compress_func func;
145 } config;
146
147 #ifdef FASTEST
148 local const config configuration_table[2] = {
149 /* good lazy nice chain */
150 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
151 /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
152 #else
153 local const config configuration_table[10] = {
154 /* good lazy nice chain */
155 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
156 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
157 /* 2 */ {4, 5, 16, 8, deflate_fast},
158 /* 3 */ {4, 6, 32, 32, deflate_fast},
159
160 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
161 /* 5 */ {8, 16, 32, 32, deflate_slow},
162 /* 6 */ {8, 16, 128, 128, deflate_slow},
163 /* 7 */ {8, 32, 128, 256, deflate_slow},
164 /* 8 */ {32, 128, 258, 1024, deflate_slow},
165 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
166 #endif
167
168 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
169 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
170 * meaning.
171 */
172
173 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
174 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
175
176 /* ===========================================================================
177 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
178 * prev[] will be initialized on the fly.
179 */
180 #define CLEAR_HASH(s) \
181 s->head[s->hash_size-1] = NIL; \
182 zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
183
184 /* ===========================================================================
185 * Slide the hash table when sliding the window down (could be avoided with 32
186 * bit values at the expense of memory usage). We slide even when level == 0 to
187 * keep the hash table consistent if we switch back to level > 0 later.
188 */
slide_hash(s)189 local void slide_hash(s)
190 deflate_state *s;
191 {
192 #if (defined(__ARM_NEON__) || defined(__ARM_NEON))
193 /* NEON based hash table rebase. */
194 return neon_slide_hash(s->head, s->prev, s->w_size, s->hash_size);
195 #endif
196 unsigned n, m;
197 Posf *p;
198 uInt wsize = s->w_size;
199
200 n = s->hash_size;
201 p = &s->head[n];
202 do {
203 m = *--p;
204 *p = (Pos)(m >= wsize ? m - wsize : NIL);
205 } while (--n);
206 n = wsize;
207 #ifndef FASTEST
208 p = &s->prev[n];
209 do {
210 m = *--p;
211 *p = (Pos)(m >= wsize ? m - wsize : NIL);
212 /* If n is not on any hash chain, prev[n] is garbage but
213 * its value will never be used.
214 */
215 } while (--n);
216 #endif
217 }
218
219 /* ========================================================================= */
deflateInit_(strm,level,version,stream_size)220 int ZEXPORT deflateInit_(strm, level, version, stream_size)
221 z_streamp strm;
222 int level;
223 const char *version;
224 int stream_size;
225 {
226 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
227 Z_DEFAULT_STRATEGY, version, stream_size);
228 /* To do: ignore strm->next_in if we use it as window */
229 }
230
231 /* ========================================================================= */
deflateInit2_(strm,level,method,windowBits,memLevel,strategy,version,stream_size)232 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
233 version, stream_size)
234 z_streamp strm;
235 int level;
236 int method;
237 int windowBits;
238 int memLevel;
239 int strategy;
240 const char *version;
241 int stream_size;
242 {
243 unsigned window_padding = 8;
244 deflate_state *s;
245 int wrap = 1;
246 static const char my_version[] = ZLIB_VERSION;
247
248 // Needed to activate optimized insert_string() that helps compression
249 // for all wrapper formats (e.g. RAW, ZLIB, GZIP).
250 // Feature detection is not triggered while using RAW mode (i.e. we never
251 // call crc32() with a NULL buffer).
252 #if defined(CRC32_ARMV8_CRC32) || defined(CRC32_SIMD_SSE42_PCLMUL)
253 cpu_check_features();
254 #endif
255
256 if (version == Z_NULL || version[0] != my_version[0] ||
257 stream_size != sizeof(z_stream)) {
258 return Z_VERSION_ERROR;
259 }
260 if (strm == Z_NULL) return Z_STREAM_ERROR;
261
262 strm->msg = Z_NULL;
263 if (strm->zalloc == (alloc_func)0) {
264 #ifdef Z_SOLO
265 return Z_STREAM_ERROR;
266 #else
267 strm->zalloc = zcalloc;
268 strm->opaque = (voidpf)0;
269 #endif
270 }
271 if (strm->zfree == (free_func)0)
272 #ifdef Z_SOLO
273 return Z_STREAM_ERROR;
274 #else
275 strm->zfree = zcfree;
276 #endif
277
278 #ifdef FASTEST
279 if (level != 0) level = 1;
280 #else
281 if (level == Z_DEFAULT_COMPRESSION) level = 6;
282 #endif
283
284 if (windowBits < 0) { /* suppress zlib wrapper */
285 wrap = 0;
286 windowBits = -windowBits;
287 }
288 #ifdef GZIP
289 else if (windowBits > 15) {
290 wrap = 2; /* write gzip wrapper instead */
291 windowBits -= 16;
292 }
293 #endif
294 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
295 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
296 strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
297 return Z_STREAM_ERROR;
298 }
299 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
300 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
301 if (s == Z_NULL) return Z_MEM_ERROR;
302 strm->state = (struct internal_state FAR *)s;
303 s->strm = strm;
304 s->status = INIT_STATE; /* to pass state test in deflateReset() */
305
306 s->wrap = wrap;
307 s->gzhead = Z_NULL;
308 s->w_bits = (uInt)windowBits;
309 s->w_size = 1 << s->w_bits;
310 s->w_mask = s->w_size - 1;
311
312 s->hash_bits = memLevel + 7;
313 if ((x86_cpu_enable_simd || arm_cpu_enable_crc32) && s->hash_bits < 15) {
314 s->hash_bits = 15;
315 }
316
317 s->hash_size = 1 << s->hash_bits;
318 s->hash_mask = s->hash_size - 1;
319 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
320
321 s->window = (Bytef *) ZALLOC(strm,
322 s->w_size + window_padding,
323 2*sizeof(Byte));
324 /* Avoid use of unitialized values in the window, see crbug.com/1137613 and
325 * crbug.com/1144420 */
326 zmemzero(s->window, (s->w_size + window_padding) * (2 * sizeof(Byte)));
327 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
328 /* Avoid use of uninitialized value, see:
329 * https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=11360
330 */
331 zmemzero(s->prev, s->w_size * sizeof(Pos));
332 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
333
334 s->high_water = 0; /* nothing written to s->window yet */
335
336 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
337
338 /* We overlay pending_buf and sym_buf. This works since the average size
339 * for length/distance pairs over any compressed block is assured to be 31
340 * bits or less.
341 *
342 * Analysis: The longest fixed codes are a length code of 8 bits plus 5
343 * extra bits, for lengths 131 to 257. The longest fixed distance codes are
344 * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
345 * possible fixed-codes length/distance pair is then 31 bits total.
346 *
347 * sym_buf starts one-fourth of the way into pending_buf. So there are
348 * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
349 * in sym_buf is three bytes -- two for the distance and one for the
350 * literal/length. As each symbol is consumed, the pointer to the next
351 * sym_buf value to read moves forward three bytes. From that symbol, up to
352 * 31 bits are written to pending_buf. The closest the written pending_buf
353 * bits gets to the next sym_buf symbol to read is just before the last
354 * code is written. At that time, 31*(n-2) bits have been written, just
355 * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at
356 * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1
357 * symbols are written.) The closest the writing gets to what is unread is
358 * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and
359 * can range from 128 to 32768.
360 *
361 * Therefore, at a minimum, there are 142 bits of space between what is
362 * written and what is read in the overlain buffers, so the symbols cannot
363 * be overwritten by the compressed data. That space is actually 139 bits,
364 * due to the three-bit fixed-code block header.
365 *
366 * That covers the case where either Z_FIXED is specified, forcing fixed
367 * codes, or when the use of fixed codes is chosen, because that choice
368 * results in a smaller compressed block than dynamic codes. That latter
369 * condition then assures that the above analysis also covers all dynamic
370 * blocks. A dynamic-code block will only be chosen to be emitted if it has
371 * fewer bits than a fixed-code block would for the same set of symbols.
372 * Therefore its average symbol length is assured to be less than 31. So
373 * the compressed data for a dynamic block also cannot overwrite the
374 * symbols from which it is being constructed.
375 */
376 s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
377 s->pending_buf_size = (ulg)s->lit_bufsize * 4;
378
379 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
380 s->pending_buf == Z_NULL) {
381 s->status = FINISH_STATE;
382 strm->msg = ERR_MSG(Z_MEM_ERROR);
383 deflateEnd (strm);
384 return Z_MEM_ERROR;
385 }
386 s->sym_buf = s->pending_buf + s->lit_bufsize;
387 s->sym_end = (s->lit_bufsize - 1) * 3;
388 /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
389 * on 16 bit machines and because stored blocks are restricted to
390 * 64K-1 bytes.
391 */
392
393 s->level = level;
394 s->strategy = strategy;
395 s->method = (Byte)method;
396
397 return deflateReset(strm);
398 }
399
400 /* =========================================================================
401 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
402 */
deflateStateCheck(strm)403 local int deflateStateCheck (strm)
404 z_streamp strm;
405 {
406 deflate_state *s;
407 if (strm == Z_NULL ||
408 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
409 return 1;
410 s = strm->state;
411 if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
412 #ifdef GZIP
413 s->status != GZIP_STATE &&
414 #endif
415 s->status != EXTRA_STATE &&
416 s->status != NAME_STATE &&
417 s->status != COMMENT_STATE &&
418 s->status != HCRC_STATE &&
419 s->status != BUSY_STATE &&
420 s->status != FINISH_STATE))
421 return 1;
422 return 0;
423 }
424
425 /* ========================================================================= */
deflateSetDictionary(strm,dictionary,dictLength)426 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
427 z_streamp strm;
428 const Bytef *dictionary;
429 uInt dictLength;
430 {
431 deflate_state *s;
432 uInt str, n;
433 int wrap;
434 unsigned avail;
435 z_const unsigned char *next;
436
437 if (deflateStateCheck(strm) || dictionary == Z_NULL)
438 return Z_STREAM_ERROR;
439 s = strm->state;
440 wrap = s->wrap;
441 if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
442 return Z_STREAM_ERROR;
443
444 /* when using zlib wrappers, compute Adler-32 for provided dictionary */
445 if (wrap == 1)
446 strm->adler = adler32(strm->adler, dictionary, dictLength);
447 s->wrap = 0; /* avoid computing Adler-32 in deflate_read_buf */
448
449 /* if dictionary would fill window, just replace the history */
450 if (dictLength >= s->w_size) {
451 if (wrap == 0) { /* already empty otherwise */
452 CLEAR_HASH(s);
453 s->strstart = 0;
454 s->block_start = 0L;
455 s->insert = 0;
456 }
457 dictionary += dictLength - s->w_size; /* use the tail */
458 dictLength = s->w_size;
459 }
460
461 /* insert dictionary into window and hash */
462 avail = strm->avail_in;
463 next = strm->next_in;
464 strm->avail_in = dictLength;
465 strm->next_in = (z_const Bytef *)dictionary;
466 fill_window(s);
467 while (s->lookahead >= MIN_MATCH) {
468 str = s->strstart;
469 n = s->lookahead - (MIN_MATCH-1);
470 do {
471 insert_string(s, str);
472 str++;
473 } while (--n);
474 s->strstart = str;
475 s->lookahead = MIN_MATCH-1;
476 fill_window(s);
477 }
478 s->strstart += s->lookahead;
479 s->block_start = (long)s->strstart;
480 s->insert = s->lookahead;
481 s->lookahead = 0;
482 s->match_length = s->prev_length = MIN_MATCH-1;
483 s->match_available = 0;
484 strm->next_in = next;
485 strm->avail_in = avail;
486 s->wrap = wrap;
487 return Z_OK;
488 }
489
490 /* ========================================================================= */
deflateGetDictionary(strm,dictionary,dictLength)491 int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
492 z_streamp strm;
493 Bytef *dictionary;
494 uInt *dictLength;
495 {
496 deflate_state *s;
497 uInt len;
498
499 if (deflateStateCheck(strm))
500 return Z_STREAM_ERROR;
501 s = strm->state;
502 len = s->strstart + s->lookahead;
503 if (len > s->w_size)
504 len = s->w_size;
505 if (dictionary != Z_NULL && len)
506 zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
507 if (dictLength != Z_NULL)
508 *dictLength = len;
509 return Z_OK;
510 }
511
512 /* ========================================================================= */
deflateResetKeep(strm)513 int ZEXPORT deflateResetKeep (strm)
514 z_streamp strm;
515 {
516 deflate_state *s;
517
518 if (deflateStateCheck(strm)) {
519 return Z_STREAM_ERROR;
520 }
521
522 strm->total_in = strm->total_out = 0;
523 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
524 strm->data_type = Z_UNKNOWN;
525
526 s = (deflate_state *)strm->state;
527 s->pending = 0;
528 s->pending_out = s->pending_buf;
529
530 if (s->wrap < 0) {
531 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
532 }
533 s->status =
534 #ifdef GZIP
535 s->wrap == 2 ? GZIP_STATE :
536 #endif
537 s->wrap ? INIT_STATE : BUSY_STATE;
538 strm->adler =
539 #ifdef GZIP
540 s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
541 #endif
542 adler32(0L, Z_NULL, 0);
543 s->last_flush = Z_NO_FLUSH;
544
545 _tr_init(s);
546
547 return Z_OK;
548 }
549
550 /* ========================================================================= */
deflateReset(strm)551 int ZEXPORT deflateReset (strm)
552 z_streamp strm;
553 {
554 int ret;
555
556 ret = deflateResetKeep(strm);
557 if (ret == Z_OK)
558 lm_init(strm->state);
559 return ret;
560 }
561
562 /* ========================================================================= */
deflateSetHeader(strm,head)563 int ZEXPORT deflateSetHeader (strm, head)
564 z_streamp strm;
565 gz_headerp head;
566 {
567 if (deflateStateCheck(strm) || strm->state->wrap != 2)
568 return Z_STREAM_ERROR;
569 strm->state->gzhead = head;
570 return Z_OK;
571 }
572
573 /* ========================================================================= */
deflatePending(strm,pending,bits)574 int ZEXPORT deflatePending (strm, pending, bits)
575 unsigned *pending;
576 int *bits;
577 z_streamp strm;
578 {
579 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
580 if (pending != Z_NULL)
581 *pending = strm->state->pending;
582 if (bits != Z_NULL)
583 *bits = strm->state->bi_valid;
584 return Z_OK;
585 }
586
587 /* ========================================================================= */
deflatePrime(strm,bits,value)588 int ZEXPORT deflatePrime (strm, bits, value)
589 z_streamp strm;
590 int bits;
591 int value;
592 {
593 deflate_state *s;
594 int put;
595
596 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
597 s = strm->state;
598 if (s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
599 return Z_BUF_ERROR;
600 do {
601 put = Buf_size - s->bi_valid;
602 if (put > bits)
603 put = bits;
604 s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
605 s->bi_valid += put;
606 _tr_flush_bits(s);
607 value >>= put;
608 bits -= put;
609 } while (bits);
610 return Z_OK;
611 }
612
613 /* ========================================================================= */
deflateParams(strm,level,strategy)614 int ZEXPORT deflateParams(strm, level, strategy)
615 z_streamp strm;
616 int level;
617 int strategy;
618 {
619 deflate_state *s;
620 compress_func func;
621
622 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
623 s = strm->state;
624
625 #ifdef FASTEST
626 if (level != 0) level = 1;
627 #else
628 if (level == Z_DEFAULT_COMPRESSION) level = 6;
629 #endif
630 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
631 return Z_STREAM_ERROR;
632 }
633 func = configuration_table[s->level].func;
634
635 if ((strategy != s->strategy || func != configuration_table[level].func) &&
636 s->high_water) {
637 /* Flush the last buffer: */
638 int err = deflate(strm, Z_BLOCK);
639 if (err == Z_STREAM_ERROR)
640 return err;
641 if (strm->avail_out == 0)
642 return Z_BUF_ERROR;
643 }
644 if (s->level != level) {
645 if (s->level == 0 && s->matches != 0) {
646 if (s->matches == 1)
647 slide_hash(s);
648 else
649 CLEAR_HASH(s);
650 s->matches = 0;
651 }
652 s->level = level;
653 s->max_lazy_match = configuration_table[level].max_lazy;
654 s->good_match = configuration_table[level].good_length;
655 s->nice_match = configuration_table[level].nice_length;
656 s->max_chain_length = configuration_table[level].max_chain;
657 }
658 s->strategy = strategy;
659 return Z_OK;
660 }
661
662 /* ========================================================================= */
deflateTune(strm,good_length,max_lazy,nice_length,max_chain)663 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
664 z_streamp strm;
665 int good_length;
666 int max_lazy;
667 int nice_length;
668 int max_chain;
669 {
670 deflate_state *s;
671
672 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
673 s = strm->state;
674 s->good_match = (uInt)good_length;
675 s->max_lazy_match = (uInt)max_lazy;
676 s->nice_match = nice_length;
677 s->max_chain_length = (uInt)max_chain;
678 return Z_OK;
679 }
680
681 /* =========================================================================
682 * For the default windowBits of 15 and memLevel of 8, this function returns
683 * a close to exact, as well as small, upper bound on the compressed size.
684 * They are coded as constants here for a reason--if the #define's are
685 * changed, then this function needs to be changed as well. The return
686 * value for 15 and 8 only works for those exact settings.
687 *
688 * For any setting other than those defaults for windowBits and memLevel,
689 * the value returned is a conservative worst case for the maximum expansion
690 * resulting from using fixed blocks instead of stored blocks, which deflate
691 * can emit on compressed data for some combinations of the parameters.
692 *
693 * This function could be more sophisticated to provide closer upper bounds for
694 * every combination of windowBits and memLevel. But even the conservative
695 * upper bound of about 14% expansion does not seem onerous for output buffer
696 * allocation.
697 */
deflateBound(strm,sourceLen)698 uLong ZEXPORT deflateBound(strm, sourceLen)
699 z_streamp strm;
700 uLong sourceLen;
701 {
702 deflate_state *s;
703 uLong complen, wraplen;
704
705 /* conservative upper bound for compressed data */
706 complen = sourceLen +
707 ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
708
709 /* if can't get parameters, return conservative bound plus zlib wrapper */
710 if (deflateStateCheck(strm))
711 return complen + 6;
712
713 /* compute wrapper length */
714 s = strm->state;
715 switch (s->wrap) {
716 case 0: /* raw deflate */
717 wraplen = 0;
718 break;
719 case 1: /* zlib wrapper */
720 wraplen = 6 + (s->strstart ? 4 : 0);
721 break;
722 #ifdef GZIP
723 case 2: /* gzip wrapper */
724 wraplen = 18;
725 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */
726 Bytef *str;
727 if (s->gzhead->extra != Z_NULL)
728 wraplen += 2 + s->gzhead->extra_len;
729 str = s->gzhead->name;
730 if (str != Z_NULL)
731 do {
732 wraplen++;
733 } while (*str++);
734 str = s->gzhead->comment;
735 if (str != Z_NULL)
736 do {
737 wraplen++;
738 } while (*str++);
739 if (s->gzhead->hcrc)
740 wraplen += 2;
741 }
742 break;
743 #endif
744 default: /* for compiler happiness */
745 wraplen = 6;
746 }
747
748 /* if not default parameters, return conservative bound */
749 if (s->w_bits != 15 || s->hash_bits != 8 + 7)
750 return complen + wraplen;
751
752 /* default settings: return tight bound for that case */
753 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
754 (sourceLen >> 25) + 13 - 6 + wraplen;
755 }
756
757 /* =========================================================================
758 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
759 * IN assertion: the stream state is correct and there is enough room in
760 * pending_buf.
761 */
putShortMSB(s,b)762 local void putShortMSB (s, b)
763 deflate_state *s;
764 uInt b;
765 {
766 put_byte(s, (Byte)(b >> 8));
767 put_byte(s, (Byte)(b & 0xff));
768 }
769
770 /* =========================================================================
771 * Flush as much pending output as possible. All deflate() output, except for
772 * some deflate_stored() output, goes through this function so some
773 * applications may wish to modify it to avoid allocating a large
774 * strm->next_out buffer and copying into it. (See also deflate_read_buf()).
775 */
flush_pending(strm)776 local void flush_pending(strm)
777 z_streamp strm;
778 {
779 unsigned len;
780 deflate_state *s = strm->state;
781
782 _tr_flush_bits(s);
783 len = s->pending;
784 if (len > strm->avail_out) len = strm->avail_out;
785 if (len == 0) return;
786
787 zmemcpy(strm->next_out, s->pending_out, len);
788 strm->next_out += len;
789 s->pending_out += len;
790 strm->total_out += len;
791 strm->avail_out -= len;
792 s->pending -= len;
793 if (s->pending == 0) {
794 s->pending_out = s->pending_buf;
795 }
796 }
797
798 /* ===========================================================================
799 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
800 */
801 #define HCRC_UPDATE(beg) \
802 do { \
803 if (s->gzhead->hcrc && s->pending > (beg)) \
804 strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
805 s->pending - (beg)); \
806 } while (0)
807
808 /* ========================================================================= */
deflate(strm,flush)809 int ZEXPORT deflate (strm, flush)
810 z_streamp strm;
811 int flush;
812 {
813 int old_flush; /* value of flush param for previous deflate call */
814 deflate_state *s;
815
816 if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
817 return Z_STREAM_ERROR;
818 }
819 s = strm->state;
820
821 if (strm->next_out == Z_NULL ||
822 (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
823 (s->status == FINISH_STATE && flush != Z_FINISH)) {
824 ERR_RETURN(strm, Z_STREAM_ERROR);
825 }
826 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
827
828 old_flush = s->last_flush;
829 s->last_flush = flush;
830
831 /* Flush as much pending output as possible */
832 if (s->pending != 0) {
833 flush_pending(strm);
834 if (strm->avail_out == 0) {
835 /* Since avail_out is 0, deflate will be called again with
836 * more output space, but possibly with both pending and
837 * avail_in equal to zero. There won't be anything to do,
838 * but this is not an error situation so make sure we
839 * return OK instead of BUF_ERROR at next call of deflate:
840 */
841 s->last_flush = -1;
842 return Z_OK;
843 }
844
845 /* Make sure there is something to do and avoid duplicate consecutive
846 * flushes. For repeated and useless calls with Z_FINISH, we keep
847 * returning Z_STREAM_END instead of Z_BUF_ERROR.
848 */
849 } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
850 flush != Z_FINISH) {
851 ERR_RETURN(strm, Z_BUF_ERROR);
852 }
853
854 /* User must not provide more input after the first FINISH: */
855 if (s->status == FINISH_STATE && strm->avail_in != 0) {
856 ERR_RETURN(strm, Z_BUF_ERROR);
857 }
858
859 /* Write the header */
860 if (s->status == INIT_STATE) {
861 /* zlib header */
862 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
863 uInt level_flags;
864
865 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
866 level_flags = 0;
867 else if (s->level < 6)
868 level_flags = 1;
869 else if (s->level == 6)
870 level_flags = 2;
871 else
872 level_flags = 3;
873 header |= (level_flags << 6);
874 if (s->strstart != 0) header |= PRESET_DICT;
875 header += 31 - (header % 31);
876
877 putShortMSB(s, header);
878
879 /* Save the adler32 of the preset dictionary: */
880 if (s->strstart != 0) {
881 putShortMSB(s, (uInt)(strm->adler >> 16));
882 putShortMSB(s, (uInt)(strm->adler & 0xffff));
883 }
884 strm->adler = adler32(0L, Z_NULL, 0);
885 s->status = BUSY_STATE;
886
887 /* Compression must start with an empty pending buffer */
888 flush_pending(strm);
889 if (s->pending != 0) {
890 s->last_flush = -1;
891 return Z_OK;
892 }
893 }
894 #ifdef GZIP
895 if (s->status == GZIP_STATE) {
896 /* gzip header */
897 crc_reset(s);
898 put_byte(s, 31);
899 put_byte(s, 139);
900 put_byte(s, 8);
901 if (s->gzhead == Z_NULL) {
902 put_byte(s, 0);
903 put_byte(s, 0);
904 put_byte(s, 0);
905 put_byte(s, 0);
906 put_byte(s, 0);
907 put_byte(s, s->level == 9 ? 2 :
908 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
909 4 : 0));
910 put_byte(s, OS_CODE);
911 s->status = BUSY_STATE;
912
913 /* Compression must start with an empty pending buffer */
914 flush_pending(strm);
915 if (s->pending != 0) {
916 s->last_flush = -1;
917 return Z_OK;
918 }
919 }
920 else {
921 put_byte(s, (s->gzhead->text ? 1 : 0) +
922 (s->gzhead->hcrc ? 2 : 0) +
923 (s->gzhead->extra == Z_NULL ? 0 : 4) +
924 (s->gzhead->name == Z_NULL ? 0 : 8) +
925 (s->gzhead->comment == Z_NULL ? 0 : 16)
926 );
927 put_byte(s, (Byte)(s->gzhead->time & 0xff));
928 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
929 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
930 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
931 put_byte(s, s->level == 9 ? 2 :
932 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
933 4 : 0));
934 put_byte(s, s->gzhead->os & 0xff);
935 if (s->gzhead->extra != Z_NULL) {
936 put_byte(s, s->gzhead->extra_len & 0xff);
937 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
938 }
939 if (s->gzhead->hcrc)
940 strm->adler = crc32(strm->adler, s->pending_buf,
941 s->pending);
942 s->gzindex = 0;
943 s->status = EXTRA_STATE;
944 }
945 }
946 if (s->status == EXTRA_STATE) {
947 if (s->gzhead->extra != Z_NULL) {
948 ulg beg = s->pending; /* start of bytes to update crc */
949 uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
950 while (s->pending + left > s->pending_buf_size) {
951 uInt copy = s->pending_buf_size - s->pending;
952 zmemcpy(s->pending_buf + s->pending,
953 s->gzhead->extra + s->gzindex, copy);
954 s->pending = s->pending_buf_size;
955 HCRC_UPDATE(beg);
956 s->gzindex += copy;
957 flush_pending(strm);
958 if (s->pending != 0) {
959 s->last_flush = -1;
960 return Z_OK;
961 }
962 beg = 0;
963 left -= copy;
964 }
965 zmemcpy(s->pending_buf + s->pending,
966 s->gzhead->extra + s->gzindex, left);
967 s->pending += left;
968 HCRC_UPDATE(beg);
969 s->gzindex = 0;
970 }
971 s->status = NAME_STATE;
972 }
973 if (s->status == NAME_STATE) {
974 if (s->gzhead->name != Z_NULL) {
975 ulg beg = s->pending; /* start of bytes to update crc */
976 int val;
977 do {
978 if (s->pending == s->pending_buf_size) {
979 HCRC_UPDATE(beg);
980 flush_pending(strm);
981 if (s->pending != 0) {
982 s->last_flush = -1;
983 return Z_OK;
984 }
985 beg = 0;
986 }
987 val = s->gzhead->name[s->gzindex++];
988 put_byte(s, val);
989 } while (val != 0);
990 HCRC_UPDATE(beg);
991 s->gzindex = 0;
992 }
993 s->status = COMMENT_STATE;
994 }
995 if (s->status == COMMENT_STATE) {
996 if (s->gzhead->comment != Z_NULL) {
997 ulg beg = s->pending; /* start of bytes to update crc */
998 int val;
999 do {
1000 if (s->pending == s->pending_buf_size) {
1001 HCRC_UPDATE(beg);
1002 flush_pending(strm);
1003 if (s->pending != 0) {
1004 s->last_flush = -1;
1005 return Z_OK;
1006 }
1007 beg = 0;
1008 }
1009 val = s->gzhead->comment[s->gzindex++];
1010 put_byte(s, val);
1011 } while (val != 0);
1012 HCRC_UPDATE(beg);
1013 }
1014 s->status = HCRC_STATE;
1015 }
1016 if (s->status == HCRC_STATE) {
1017 if (s->gzhead->hcrc) {
1018 if (s->pending + 2 > s->pending_buf_size) {
1019 flush_pending(strm);
1020 if (s->pending != 0) {
1021 s->last_flush = -1;
1022 return Z_OK;
1023 }
1024 }
1025 put_byte(s, (Byte)(strm->adler & 0xff));
1026 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1027 strm->adler = crc32(0L, Z_NULL, 0);
1028 }
1029 s->status = BUSY_STATE;
1030
1031 /* Compression must start with an empty pending buffer */
1032 flush_pending(strm);
1033 if (s->pending != 0) {
1034 s->last_flush = -1;
1035 return Z_OK;
1036 }
1037 }
1038 #endif
1039
1040 /* Start a new block or continue the current one.
1041 */
1042 if (strm->avail_in != 0 || s->lookahead != 0 ||
1043 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1044 block_state bstate;
1045
1046 bstate = s->level == 0 ? deflate_stored(s, flush) :
1047 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1048 s->strategy == Z_RLE ? deflate_rle(s, flush) :
1049 (*(configuration_table[s->level].func))(s, flush);
1050
1051 if (bstate == finish_started || bstate == finish_done) {
1052 s->status = FINISH_STATE;
1053 }
1054 if (bstate == need_more || bstate == finish_started) {
1055 if (strm->avail_out == 0) {
1056 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1057 }
1058 return Z_OK;
1059 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1060 * of deflate should use the same flush parameter to make sure
1061 * that the flush is complete. So we don't have to output an
1062 * empty block here, this will be done at next call. This also
1063 * ensures that for a very small output buffer, we emit at most
1064 * one empty block.
1065 */
1066 }
1067 if (bstate == block_done) {
1068 if (flush == Z_PARTIAL_FLUSH) {
1069 _tr_align(s);
1070 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1071 _tr_stored_block(s, (char*)0, 0L, 0);
1072 /* For a full flush, this empty block will be recognized
1073 * as a special marker by inflate_sync().
1074 */
1075 if (flush == Z_FULL_FLUSH) {
1076 CLEAR_HASH(s); /* forget history */
1077 if (s->lookahead == 0) {
1078 s->strstart = 0;
1079 s->block_start = 0L;
1080 s->insert = 0;
1081 }
1082 }
1083 }
1084 flush_pending(strm);
1085 if (strm->avail_out == 0) {
1086 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1087 return Z_OK;
1088 }
1089 }
1090 }
1091
1092 if (flush != Z_FINISH) return Z_OK;
1093 if (s->wrap <= 0) return Z_STREAM_END;
1094
1095 /* Write the trailer */
1096 #ifdef GZIP
1097 if (s->wrap == 2) {
1098 crc_finalize(s);
1099 put_byte(s, (Byte)(strm->adler & 0xff));
1100 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1101 put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1102 put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1103 put_byte(s, (Byte)(strm->total_in & 0xff));
1104 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1105 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1106 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1107 }
1108 else
1109 #endif
1110 {
1111 putShortMSB(s, (uInt)(strm->adler >> 16));
1112 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1113 }
1114 flush_pending(strm);
1115 /* If avail_out is zero, the application will call deflate again
1116 * to flush the rest.
1117 */
1118 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1119 return s->pending != 0 ? Z_OK : Z_STREAM_END;
1120 }
1121
1122 /* ========================================================================= */
deflateEnd(strm)1123 int ZEXPORT deflateEnd (strm)
1124 z_streamp strm;
1125 {
1126 int status;
1127
1128 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1129
1130 status = strm->state->status;
1131
1132 /* Deallocate in reverse order of allocations: */
1133 TRY_FREE(strm, strm->state->pending_buf);
1134 TRY_FREE(strm, strm->state->head);
1135 TRY_FREE(strm, strm->state->prev);
1136 TRY_FREE(strm, strm->state->window);
1137
1138 ZFREE(strm, strm->state);
1139 strm->state = Z_NULL;
1140
1141 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1142 }
1143
1144 /* =========================================================================
1145 * Copy the source state to the destination state.
1146 * To simplify the source, this is not supported for 16-bit MSDOS (which
1147 * doesn't have enough memory anyway to duplicate compression states).
1148 */
deflateCopy(dest,source)1149 int ZEXPORT deflateCopy (dest, source)
1150 z_streamp dest;
1151 z_streamp source;
1152 {
1153 #ifdef MAXSEG_64K
1154 return Z_STREAM_ERROR;
1155 #else
1156 deflate_state *ds;
1157 deflate_state *ss;
1158
1159
1160 if (deflateStateCheck(source) || dest == Z_NULL) {
1161 return Z_STREAM_ERROR;
1162 }
1163
1164 ss = source->state;
1165
1166 zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1167
1168 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1169 if (ds == Z_NULL) return Z_MEM_ERROR;
1170 dest->state = (struct internal_state FAR *) ds;
1171 zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1172 ds->strm = dest;
1173
1174 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1175 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1176 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1177 ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
1178
1179 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1180 ds->pending_buf == Z_NULL) {
1181 deflateEnd (dest);
1182 return Z_MEM_ERROR;
1183 }
1184 /* following zmemcpy do not work for 16-bit MSDOS */
1185 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1186 zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1187 zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1188 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1189
1190 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1191 ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1192
1193 ds->l_desc.dyn_tree = ds->dyn_ltree;
1194 ds->d_desc.dyn_tree = ds->dyn_dtree;
1195 ds->bl_desc.dyn_tree = ds->bl_tree;
1196
1197 return Z_OK;
1198 #endif /* MAXSEG_64K */
1199 }
1200
1201 /* ===========================================================================
1202 * Read a new buffer from the current input stream, update the adler32
1203 * and total number of bytes read. All deflate() input goes through
1204 * this function so some applications may wish to modify it to avoid
1205 * allocating a large strm->next_in buffer and copying from it.
1206 * (See also flush_pending()).
1207 */
deflate_read_buf(strm,buf,size)1208 ZLIB_INTERNAL unsigned deflate_read_buf(strm, buf, size)
1209 z_streamp strm;
1210 Bytef *buf;
1211 unsigned size;
1212 {
1213 unsigned len = strm->avail_in;
1214
1215 if (len > size) len = size;
1216 if (len == 0) return 0;
1217
1218 strm->avail_in -= len;
1219
1220 #ifdef GZIP
1221 if (strm->state->wrap == 2)
1222 copy_with_crc(strm, buf, len);
1223 else
1224 #endif
1225 {
1226 zmemcpy(buf, strm->next_in, len);
1227 if (strm->state->wrap == 1)
1228 strm->adler = adler32(strm->adler, buf, len);
1229 }
1230 strm->next_in += len;
1231 strm->total_in += len;
1232
1233 return len;
1234 }
1235
1236 /* ===========================================================================
1237 * Initialize the "longest match" routines for a new zlib stream
1238 */
lm_init(s)1239 local void lm_init (s)
1240 deflate_state *s;
1241 {
1242 s->window_size = (ulg)2L*s->w_size;
1243
1244 CLEAR_HASH(s);
1245
1246 /* Set the default configuration parameters:
1247 */
1248 s->max_lazy_match = configuration_table[s->level].max_lazy;
1249 s->good_match = configuration_table[s->level].good_length;
1250 s->nice_match = configuration_table[s->level].nice_length;
1251 s->max_chain_length = configuration_table[s->level].max_chain;
1252
1253 s->strstart = 0;
1254 s->block_start = 0L;
1255 s->lookahead = 0;
1256 s->insert = 0;
1257 s->match_length = s->prev_length = MIN_MATCH-1;
1258 s->match_available = 0;
1259 s->ins_h = 0;
1260 #ifndef FASTEST
1261 #ifdef ASMV
1262 match_init(); /* initialize the asm code */
1263 #endif
1264 #endif
1265 }
1266
1267 #ifndef FASTEST
1268 /* ===========================================================================
1269 * Set match_start to the longest match starting at the given string and
1270 * return its length. Matches shorter or equal to prev_length are discarded,
1271 * in which case the result is equal to prev_length and match_start is
1272 * garbage.
1273 * IN assertions: cur_match is the head of the hash chain for the current
1274 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1275 * OUT assertion: the match length is not greater than s->lookahead.
1276 */
1277 #ifndef ASMV
1278 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1279 * match.S. The code will be functionally equivalent.
1280 */
longest_match(s,cur_match)1281 local uInt longest_match(s, cur_match)
1282 deflate_state *s;
1283 IPos cur_match; /* current match */
1284 {
1285 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1286 register Bytef *scan = s->window + s->strstart; /* current string */
1287 register Bytef *match; /* matched string */
1288 register int len; /* length of current match */
1289 int best_len = (int)s->prev_length; /* best match length so far */
1290 int nice_match = s->nice_match; /* stop if match long enough */
1291 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1292 s->strstart - (IPos)MAX_DIST(s) : NIL;
1293 /* Stop when cur_match becomes <= limit. To simplify the code,
1294 * we prevent matches with the string of window index 0.
1295 */
1296 Posf *prev = s->prev;
1297 uInt wmask = s->w_mask;
1298
1299 #ifdef UNALIGNED_OK
1300 /* Compare two bytes at a time. Note: this is not always beneficial.
1301 * Try with and without -DUNALIGNED_OK to check.
1302 */
1303 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1304 register ush scan_start = *(ushf*)scan;
1305 register ush scan_end = *(ushf*)(scan+best_len-1);
1306 #else
1307 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1308 register Byte scan_end1 = scan[best_len-1];
1309 register Byte scan_end = scan[best_len];
1310 #endif
1311
1312 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1313 * It is easy to get rid of this optimization if necessary.
1314 */
1315 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1316
1317 /* Do not waste too much time if we already have a good match: */
1318 if (s->prev_length >= s->good_match) {
1319 chain_length >>= 2;
1320 }
1321 /* Do not look for matches beyond the end of the input. This is necessary
1322 * to make deflate deterministic.
1323 */
1324 if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1325
1326 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1327
1328 do {
1329 Assert(cur_match < s->strstart, "no future");
1330 match = s->window + cur_match;
1331
1332 /* Skip to next match if the match length cannot increase
1333 * or if the match length is less than 2. Note that the checks below
1334 * for insufficient lookahead only occur occasionally for performance
1335 * reasons. Therefore uninitialized memory will be accessed, and
1336 * conditional jumps will be made that depend on those values.
1337 * However the length of the match is limited to the lookahead, so
1338 * the output of deflate is not affected by the uninitialized values.
1339 */
1340 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1341 /* This code assumes sizeof(unsigned short) == 2. Do not use
1342 * UNALIGNED_OK if your compiler uses a different size.
1343 */
1344 if (*(ushf*)(match+best_len-1) != scan_end ||
1345 *(ushf*)match != scan_start) continue;
1346
1347 /* It is not necessary to compare scan[2] and match[2] since they are
1348 * always equal when the other bytes match, given that the hash keys
1349 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1350 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1351 * lookahead only every 4th comparison; the 128th check will be made
1352 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1353 * necessary to put more guard bytes at the end of the window, or
1354 * to check more often for insufficient lookahead.
1355 */
1356 if (!x86_cpu_enable_simd && !arm_cpu_enable_crc32) {
1357 Assert(scan[2] == match[2], "scan[2]?");
1358 } else {
1359 /* When using CRC hashing, scan[2] and match[2] may mismatch, but in
1360 * that case at least one of the other hashed bytes will mismatch
1361 * also. Bytes 0 and 1 were already checked above, and we know there
1362 * are at least four bytes to check otherwise the mismatch would have
1363 * been found by the scan_end comparison above, so: */
1364 Assert(scan[2] == match[2] || scan[3] != match[3], "scan[2]??");
1365 }
1366 scan++, match++;
1367 do {
1368 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1369 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1370 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1371 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1372 scan < strend);
1373 /* The funny "do {}" generates better code on most compilers */
1374
1375 /* Here, scan <= window+strstart+257 */
1376 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1377 if (*scan == *match) scan++;
1378
1379 len = (MAX_MATCH - 1) - (int)(strend-scan);
1380 scan = strend - (MAX_MATCH-1);
1381
1382 #else /* UNALIGNED_OK */
1383
1384 if (match[best_len] != scan_end ||
1385 match[best_len-1] != scan_end1 ||
1386 *match != *scan ||
1387 *++match != scan[1]) continue;
1388
1389 /* The check at best_len-1 can be removed because it will be made
1390 * again later. (This heuristic is not always a win.)
1391 * It is not necessary to compare scan[2] and match[2] since they
1392 * are always equal when the other bytes match, given that
1393 * the hash keys are equal and that HASH_BITS >= 8.
1394 */
1395 scan += 2, match++;
1396 if (!x86_cpu_enable_simd && !arm_cpu_enable_crc32) {
1397 Assert(*scan == *match, "match[2]?");
1398 } else {
1399 /* When using CRC hashing, scan[2] and match[2] may mismatch, but in
1400 * that case at least one of the other hashed bytes will mismatch
1401 * also. Bytes 0 and 1 were already checked above, and we know there
1402 * are at least four bytes to check otherwise the mismatch would have
1403 * been found by the scan_end comparison above, so: */
1404 Assert(*scan == *match || scan[1] != match[1], "match[2]??");
1405 }
1406
1407 /* We check for insufficient lookahead only every 8th comparison;
1408 * the 256th check will be made at strstart+258.
1409 */
1410 do {
1411 } while (*++scan == *++match && *++scan == *++match &&
1412 *++scan == *++match && *++scan == *++match &&
1413 *++scan == *++match && *++scan == *++match &&
1414 *++scan == *++match && *++scan == *++match &&
1415 scan < strend);
1416
1417 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1418
1419 len = MAX_MATCH - (int)(strend - scan);
1420 scan = strend - MAX_MATCH;
1421
1422 #endif /* UNALIGNED_OK */
1423
1424 if (len > best_len) {
1425 s->match_start = cur_match;
1426 best_len = len;
1427 if (len >= nice_match) break;
1428 #ifdef UNALIGNED_OK
1429 scan_end = *(ushf*)(scan+best_len-1);
1430 #else
1431 scan_end1 = scan[best_len-1];
1432 scan_end = scan[best_len];
1433 #endif
1434 }
1435 } while ((cur_match = prev[cur_match & wmask]) > limit
1436 && --chain_length != 0);
1437
1438 if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1439 return s->lookahead;
1440 }
1441 #endif /* ASMV */
1442
1443 #else /* FASTEST */
1444
1445 /* ---------------------------------------------------------------------------
1446 * Optimized version for FASTEST only
1447 */
longest_match(s,cur_match)1448 local uInt longest_match(s, cur_match)
1449 deflate_state *s;
1450 IPos cur_match; /* current match */
1451 {
1452 register Bytef *scan = s->window + s->strstart; /* current string */
1453 register Bytef *match; /* matched string */
1454 register int len; /* length of current match */
1455 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1456
1457 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1458 * It is easy to get rid of this optimization if necessary.
1459 */
1460 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1461
1462 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1463
1464 Assert(cur_match < s->strstart, "no future");
1465
1466 match = s->window + cur_match;
1467
1468 /* Return failure if the match length is less than 2:
1469 */
1470 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1471
1472 /* The check at best_len-1 can be removed because it will be made
1473 * again later. (This heuristic is not always a win.)
1474 * It is not necessary to compare scan[2] and match[2] since they
1475 * are always equal when the other bytes match, given that
1476 * the hash keys are equal and that HASH_BITS >= 8.
1477 */
1478 scan += 2, match += 2;
1479 Assert(*scan == *match, "match[2]?");
1480
1481 /* We check for insufficient lookahead only every 8th comparison;
1482 * the 256th check will be made at strstart+258.
1483 */
1484 do {
1485 } while (*++scan == *++match && *++scan == *++match &&
1486 *++scan == *++match && *++scan == *++match &&
1487 *++scan == *++match && *++scan == *++match &&
1488 *++scan == *++match && *++scan == *++match &&
1489 scan < strend);
1490
1491 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1492
1493 len = MAX_MATCH - (int)(strend - scan);
1494
1495 if (len < MIN_MATCH) return MIN_MATCH - 1;
1496
1497 s->match_start = cur_match;
1498 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1499 }
1500
1501 #endif /* FASTEST */
1502
1503 #ifdef ZLIB_DEBUG
1504
1505 #define EQUAL 0
1506 /* result of memcmp for equal strings */
1507
1508 /* ===========================================================================
1509 * Check that the match at match_start is indeed a match.
1510 */
check_match(s,start,match,length)1511 local void check_match(s, start, match, length)
1512 deflate_state *s;
1513 IPos start, match;
1514 int length;
1515 {
1516 /* check that the match is indeed a match */
1517 if (zmemcmp(s->window + match,
1518 s->window + start, length) != EQUAL) {
1519 fprintf(stderr, " start %u, match %u, length %d\n",
1520 start, match, length);
1521 do {
1522 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1523 } while (--length != 0);
1524 z_error("invalid match");
1525 }
1526 if (z_verbose > 1) {
1527 fprintf(stderr,"\\[%d,%d]", start-match, length);
1528 do { putc(s->window[start++], stderr); } while (--length != 0);
1529 }
1530 }
1531 #else
1532 # define check_match(s, start, match, length)
1533 #endif /* ZLIB_DEBUG */
1534
1535 /* ===========================================================================
1536 * Fill the window when the lookahead becomes insufficient.
1537 * Updates strstart and lookahead.
1538 *
1539 * IN assertion: lookahead < MIN_LOOKAHEAD
1540 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1541 * At least one byte has been read, or avail_in == 0; reads are
1542 * performed for at least two bytes (required for the zip translate_eol
1543 * option -- not supported here).
1544 */
1545 local void fill_window_c(deflate_state *s);
1546
fill_window(deflate_state * s)1547 local void fill_window(deflate_state *s)
1548 {
1549 #ifdef DEFLATE_FILL_WINDOW_SSE2
1550 if (x86_cpu_enable_simd) {
1551 fill_window_sse(s);
1552 return;
1553 }
1554 #endif
1555 fill_window_c(s);
1556 }
1557
fill_window_c(s)1558 local void fill_window_c(s)
1559 deflate_state *s;
1560 {
1561 unsigned n;
1562 unsigned more; /* Amount of free space at the end of the window. */
1563 uInt wsize = s->w_size;
1564
1565 Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1566
1567 do {
1568 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1569
1570 /* Deal with !@#$% 64K limit: */
1571 if (sizeof(int) <= 2) {
1572 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1573 more = wsize;
1574
1575 } else if (more == (unsigned)(-1)) {
1576 /* Very unlikely, but possible on 16 bit machine if
1577 * strstart == 0 && lookahead == 1 (input done a byte at time)
1578 */
1579 more--;
1580 }
1581 }
1582
1583 /* If the window is almost full and there is insufficient lookahead,
1584 * move the upper half to the lower one to make room in the upper half.
1585 */
1586 if (s->strstart >= wsize+MAX_DIST(s)) {
1587
1588 zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
1589 s->match_start -= wsize;
1590 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1591 s->block_start -= (long) wsize;
1592 slide_hash(s);
1593 more += wsize;
1594 }
1595 if (s->strm->avail_in == 0) break;
1596
1597 /* If there was no sliding:
1598 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1599 * more == window_size - lookahead - strstart
1600 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1601 * => more >= window_size - 2*WSIZE + 2
1602 * In the BIG_MEM or MMAP case (not yet supported),
1603 * window_size == input_size + MIN_LOOKAHEAD &&
1604 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1605 * Otherwise, window_size == 2*WSIZE so more >= 2.
1606 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1607 */
1608 Assert(more >= 2, "more < 2");
1609
1610 n = deflate_read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1611 s->lookahead += n;
1612
1613 /* Initialize the hash value now that we have some input: */
1614 if (s->lookahead + s->insert >= MIN_MATCH) {
1615 uInt str = s->strstart - s->insert;
1616 s->ins_h = s->window[str];
1617 UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1618 #if MIN_MATCH != 3
1619 Call UPDATE_HASH() MIN_MATCH-3 more times
1620 #endif
1621 while (s->insert) {
1622 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1623 #ifndef FASTEST
1624 s->prev[str & s->w_mask] = s->head[s->ins_h];
1625 #endif
1626 s->head[s->ins_h] = (Pos)str;
1627 str++;
1628 s->insert--;
1629 if (s->lookahead + s->insert < MIN_MATCH)
1630 break;
1631 }
1632 }
1633 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1634 * but this is not important since only literal bytes will be emitted.
1635 */
1636
1637 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1638
1639 /* If the WIN_INIT bytes after the end of the current data have never been
1640 * written, then zero those bytes in order to avoid memory check reports of
1641 * the use of uninitialized (or uninitialised as Julian writes) bytes by
1642 * the longest match routines. Update the high water mark for the next
1643 * time through here. WIN_INIT is set to MAX_MATCH since the longest match
1644 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1645 */
1646 if (s->high_water < s->window_size) {
1647 ulg curr = s->strstart + (ulg)(s->lookahead);
1648 ulg init;
1649
1650 if (s->high_water < curr) {
1651 /* Previous high water mark below current data -- zero WIN_INIT
1652 * bytes or up to end of window, whichever is less.
1653 */
1654 init = s->window_size - curr;
1655 if (init > WIN_INIT)
1656 init = WIN_INIT;
1657 zmemzero(s->window + curr, (unsigned)init);
1658 s->high_water = curr + init;
1659 }
1660 else if (s->high_water < (ulg)curr + WIN_INIT) {
1661 /* High water mark at or above current data, but below current data
1662 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1663 * to end of window, whichever is less.
1664 */
1665 init = (ulg)curr + WIN_INIT - s->high_water;
1666 if (init > s->window_size - s->high_water)
1667 init = s->window_size - s->high_water;
1668 zmemzero(s->window + s->high_water, (unsigned)init);
1669 s->high_water += init;
1670 }
1671 }
1672
1673 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1674 "not enough room for search");
1675 }
1676
1677 /* ===========================================================================
1678 * Flush the current block, with given end-of-file flag.
1679 * IN assertion: strstart is set to the end of the current match.
1680 */
1681 #define FLUSH_BLOCK_ONLY(s, last) { \
1682 _tr_flush_block(s, (s->block_start >= 0L ? \
1683 (charf *)&s->window[(unsigned)s->block_start] : \
1684 (charf *)Z_NULL), \
1685 (ulg)((long)s->strstart - s->block_start), \
1686 (last)); \
1687 s->block_start = s->strstart; \
1688 flush_pending(s->strm); \
1689 Tracev((stderr,"[FLUSH]")); \
1690 }
1691
1692 /* Same but force premature exit if necessary. */
1693 #define FLUSH_BLOCK(s, last) { \
1694 FLUSH_BLOCK_ONLY(s, last); \
1695 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1696 }
1697
1698 /* Maximum stored block length in deflate format (not including header). */
1699 #define MAX_STORED 65535
1700
1701 /* Minimum of a and b. */
1702 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1703
1704 /* ===========================================================================
1705 * Copy without compression as much as possible from the input stream, return
1706 * the current block state.
1707 *
1708 * In case deflateParams() is used to later switch to a non-zero compression
1709 * level, s->matches (otherwise unused when storing) keeps track of the number
1710 * of hash table slides to perform. If s->matches is 1, then one hash table
1711 * slide will be done when switching. If s->matches is 2, the maximum value
1712 * allowed here, then the hash table will be cleared, since two or more slides
1713 * is the same as a clear.
1714 *
1715 * deflate_stored() is written to minimize the number of times an input byte is
1716 * copied. It is most efficient with large input and output buffers, which
1717 * maximizes the opportunites to have a single copy from next_in to next_out.
1718 */
deflate_stored(s,flush)1719 local block_state deflate_stored(s, flush)
1720 deflate_state *s;
1721 int flush;
1722 {
1723 /* Smallest worthy block size when not flushing or finishing. By default
1724 * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1725 * large input and output buffers, the stored block size will be larger.
1726 */
1727 unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1728
1729 /* Copy as many min_block or larger stored blocks directly to next_out as
1730 * possible. If flushing, copy the remaining available input to next_out as
1731 * stored blocks, if there is enough space.
1732 */
1733 unsigned len, left, have, last = 0;
1734 unsigned used = s->strm->avail_in;
1735 do {
1736 /* Set len to the maximum size block that we can copy directly with the
1737 * available input data and output space. Set left to how much of that
1738 * would be copied from what's left in the window.
1739 */
1740 len = MAX_STORED; /* maximum deflate stored block length */
1741 have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1742 if (s->strm->avail_out < have) /* need room for header */
1743 break;
1744 /* maximum stored block length that will fit in avail_out: */
1745 have = s->strm->avail_out - have;
1746 left = s->strstart - s->block_start; /* bytes left in window */
1747 if (len > (ulg)left + s->strm->avail_in)
1748 len = left + s->strm->avail_in; /* limit len to the input */
1749 if (len > have)
1750 len = have; /* limit len to the output */
1751
1752 /* If the stored block would be less than min_block in length, or if
1753 * unable to copy all of the available input when flushing, then try
1754 * copying to the window and the pending buffer instead. Also don't
1755 * write an empty block when flushing -- deflate() does that.
1756 */
1757 if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1758 flush == Z_NO_FLUSH ||
1759 len != left + s->strm->avail_in))
1760 break;
1761
1762 /* Make a dummy stored block in pending to get the header bytes,
1763 * including any pending bits. This also updates the debugging counts.
1764 */
1765 last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1766 _tr_stored_block(s, (char *)0, 0L, last);
1767
1768 /* Replace the lengths in the dummy stored block with len. */
1769 s->pending_buf[s->pending - 4] = len;
1770 s->pending_buf[s->pending - 3] = len >> 8;
1771 s->pending_buf[s->pending - 2] = ~len;
1772 s->pending_buf[s->pending - 1] = ~len >> 8;
1773
1774 /* Write the stored block header bytes. */
1775 flush_pending(s->strm);
1776
1777 #ifdef ZLIB_DEBUG
1778 /* Update debugging counts for the data about to be copied. */
1779 s->compressed_len += len << 3;
1780 s->bits_sent += len << 3;
1781 #endif
1782
1783 /* Copy uncompressed bytes from the window to next_out. */
1784 if (left) {
1785 if (left > len)
1786 left = len;
1787 zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1788 s->strm->next_out += left;
1789 s->strm->avail_out -= left;
1790 s->strm->total_out += left;
1791 s->block_start += left;
1792 len -= left;
1793 }
1794
1795 /* Copy uncompressed bytes directly from next_in to next_out, updating
1796 * the check value.
1797 */
1798 if (len) {
1799 deflate_read_buf(s->strm, s->strm->next_out, len);
1800 s->strm->next_out += len;
1801 s->strm->avail_out -= len;
1802 s->strm->total_out += len;
1803 }
1804 } while (last == 0);
1805
1806 /* Update the sliding window with the last s->w_size bytes of the copied
1807 * data, or append all of the copied data to the existing window if less
1808 * than s->w_size bytes were copied. Also update the number of bytes to
1809 * insert in the hash tables, in the event that deflateParams() switches to
1810 * a non-zero compression level.
1811 */
1812 used -= s->strm->avail_in; /* number of input bytes directly copied */
1813 if (used) {
1814 /* If any input was used, then no unused input remains in the window,
1815 * therefore s->block_start == s->strstart.
1816 */
1817 if (used >= s->w_size) { /* supplant the previous history */
1818 s->matches = 2; /* clear hash */
1819 zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1820 s->strstart = s->w_size;
1821 }
1822 else {
1823 if (s->window_size - s->strstart <= used) {
1824 /* Slide the window down. */
1825 s->strstart -= s->w_size;
1826 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1827 if (s->matches < 2)
1828 s->matches++; /* add a pending slide_hash() */
1829 }
1830 zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1831 s->strstart += used;
1832 }
1833 s->block_start = s->strstart;
1834 s->insert += MIN(used, s->w_size - s->insert);
1835 }
1836 if (s->high_water < s->strstart)
1837 s->high_water = s->strstart;
1838
1839 /* If the last block was written to next_out, then done. */
1840 if (last)
1841 return finish_done;
1842
1843 /* If flushing and all input has been consumed, then done. */
1844 if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1845 s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1846 return block_done;
1847
1848 /* Fill the window with any remaining input. */
1849 have = s->window_size - s->strstart - 1;
1850 if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1851 /* Slide the window down. */
1852 s->block_start -= s->w_size;
1853 s->strstart -= s->w_size;
1854 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1855 if (s->matches < 2)
1856 s->matches++; /* add a pending slide_hash() */
1857 have += s->w_size; /* more space now */
1858 }
1859 if (have > s->strm->avail_in)
1860 have = s->strm->avail_in;
1861 if (have) {
1862 deflate_read_buf(s->strm, s->window + s->strstart, have);
1863 s->strstart += have;
1864 }
1865 if (s->high_water < s->strstart)
1866 s->high_water = s->strstart;
1867
1868 /* There was not enough avail_out to write a complete worthy or flushed
1869 * stored block to next_out. Write a stored block to pending instead, if we
1870 * have enough input for a worthy block, or if flushing and there is enough
1871 * room for the remaining input as a stored block in the pending buffer.
1872 */
1873 have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1874 /* maximum stored block length that will fit in pending: */
1875 have = MIN(s->pending_buf_size - have, MAX_STORED);
1876 min_block = MIN(have, s->w_size);
1877 left = s->strstart - s->block_start;
1878 if (left >= min_block ||
1879 ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1880 s->strm->avail_in == 0 && left <= have)) {
1881 len = MIN(left, have);
1882 last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1883 len == left ? 1 : 0;
1884 _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1885 s->block_start += len;
1886 flush_pending(s->strm);
1887 }
1888
1889 /* We've done all we can with the available input and output. */
1890 return last ? finish_started : need_more;
1891 }
1892
1893 /* ===========================================================================
1894 * Compress as much as possible from the input stream, return the current
1895 * block state.
1896 * This function does not perform lazy evaluation of matches and inserts
1897 * new strings in the dictionary only for unmatched strings or for short
1898 * matches. It is used only for the fast compression options.
1899 */
deflate_fast(s,flush)1900 local block_state deflate_fast(s, flush)
1901 deflate_state *s;
1902 int flush;
1903 {
1904 IPos hash_head; /* head of the hash chain */
1905 int bflush; /* set if current block must be flushed */
1906
1907 for (;;) {
1908 /* Make sure that we always have enough lookahead, except
1909 * at the end of the input file. We need MAX_MATCH bytes
1910 * for the next match, plus MIN_MATCH bytes to insert the
1911 * string following the next match.
1912 */
1913 if (s->lookahead < MIN_LOOKAHEAD) {
1914 fill_window(s);
1915 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1916 return need_more;
1917 }
1918 if (s->lookahead == 0) break; /* flush the current block */
1919 }
1920
1921 /* Insert the string window[strstart .. strstart+2] in the
1922 * dictionary, and set hash_head to the head of the hash chain:
1923 */
1924 hash_head = NIL;
1925 if (s->lookahead >= MIN_MATCH) {
1926 hash_head = insert_string(s, s->strstart);
1927 }
1928
1929 /* Find the longest match, discarding those <= prev_length.
1930 * At this point we have always match_length < MIN_MATCH
1931 */
1932 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1933 /* To simplify the code, we prevent matches with the string
1934 * of window index 0 (in particular we have to avoid a match
1935 * of the string with itself at the start of the input file).
1936 */
1937 s->match_length = longest_match (s, hash_head);
1938 /* longest_match() sets match_start */
1939 }
1940 if (s->match_length >= MIN_MATCH) {
1941 check_match(s, s->strstart, s->match_start, s->match_length);
1942
1943 _tr_tally_dist(s, s->strstart - s->match_start,
1944 s->match_length - MIN_MATCH, bflush);
1945
1946 s->lookahead -= s->match_length;
1947
1948 /* Insert new strings in the hash table only if the match length
1949 * is not too large. This saves time but degrades compression.
1950 */
1951 #ifndef FASTEST
1952 if (s->match_length <= s->max_insert_length &&
1953 s->lookahead >= MIN_MATCH) {
1954 s->match_length--; /* string at strstart already in table */
1955 do {
1956 s->strstart++;
1957 hash_head = insert_string(s, s->strstart);
1958 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1959 * always MIN_MATCH bytes ahead.
1960 */
1961 } while (--s->match_length != 0);
1962 s->strstart++;
1963 } else
1964 #endif
1965 {
1966 s->strstart += s->match_length;
1967 s->match_length = 0;
1968 s->ins_h = s->window[s->strstart];
1969 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1970 #if MIN_MATCH != 3
1971 Call UPDATE_HASH() MIN_MATCH-3 more times
1972 #endif
1973 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1974 * matter since it will be recomputed at next deflate call.
1975 */
1976 }
1977 } else {
1978 /* No match, output a literal byte */
1979 Tracevv((stderr,"%c", s->window[s->strstart]));
1980 _tr_tally_lit (s, s->window[s->strstart], bflush);
1981 s->lookahead--;
1982 s->strstart++;
1983 }
1984 if (bflush) FLUSH_BLOCK(s, 0);
1985 }
1986 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1987 if (flush == Z_FINISH) {
1988 FLUSH_BLOCK(s, 1);
1989 return finish_done;
1990 }
1991 if (s->sym_next)
1992 FLUSH_BLOCK(s, 0);
1993 return block_done;
1994 }
1995
1996 #ifndef FASTEST
1997 /* ===========================================================================
1998 * Same as above, but achieves better compression. We use a lazy
1999 * evaluation for matches: a match is finally adopted only if there is
2000 * no better match at the next window position.
2001 */
deflate_slow(s,flush)2002 local block_state deflate_slow(s, flush)
2003 deflate_state *s;
2004 int flush;
2005 {
2006 IPos hash_head; /* head of hash chain */
2007 int bflush; /* set if current block must be flushed */
2008
2009 /* Process the input block. */
2010 for (;;) {
2011 /* Make sure that we always have enough lookahead, except
2012 * at the end of the input file. We need MAX_MATCH bytes
2013 * for the next match, plus MIN_MATCH bytes to insert the
2014 * string following the next match.
2015 */
2016 if (s->lookahead < MIN_LOOKAHEAD) {
2017 fill_window(s);
2018 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
2019 return need_more;
2020 }
2021 if (s->lookahead == 0) break; /* flush the current block */
2022 }
2023
2024 /* Insert the string window[strstart .. strstart+2] in the
2025 * dictionary, and set hash_head to the head of the hash chain:
2026 */
2027 hash_head = NIL;
2028 if (s->lookahead >= MIN_MATCH) {
2029 hash_head = insert_string(s, s->strstart);
2030 }
2031
2032 /* Find the longest match, discarding those <= prev_length.
2033 */
2034 s->prev_length = s->match_length, s->prev_match = s->match_start;
2035 s->match_length = MIN_MATCH-1;
2036
2037 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
2038 s->strstart - hash_head <= MAX_DIST(s)) {
2039 /* To simplify the code, we prevent matches with the string
2040 * of window index 0 (in particular we have to avoid a match
2041 * of the string with itself at the start of the input file).
2042 */
2043 s->match_length = longest_match (s, hash_head);
2044 /* longest_match() sets match_start */
2045
2046 if (s->match_length <= 5 && (s->strategy == Z_FILTERED
2047 #if TOO_FAR <= 32767
2048 || (s->match_length == MIN_MATCH &&
2049 s->strstart - s->match_start > TOO_FAR)
2050 #endif
2051 )) {
2052
2053 /* If prev_match is also MIN_MATCH, match_start is garbage
2054 * but we will ignore the current match anyway.
2055 */
2056 s->match_length = MIN_MATCH-1;
2057 }
2058 }
2059 /* If there was a match at the previous step and the current
2060 * match is not better, output the previous match:
2061 */
2062 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
2063 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
2064 /* Do not insert strings in hash table beyond this. */
2065
2066 if (s->prev_match == -1) {
2067 /* The window has slid one byte past the previous match,
2068 * so the first byte cannot be compared. */
2069 check_match(s, s->strstart, s->prev_match+1, s->prev_length-1);
2070 } else {
2071 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
2072 }
2073
2074 _tr_tally_dist(s, s->strstart -1 - s->prev_match,
2075 s->prev_length - MIN_MATCH, bflush);
2076
2077 /* Insert in hash table all strings up to the end of the match.
2078 * strstart-1 and strstart are already inserted. If there is not
2079 * enough lookahead, the last two strings are not inserted in
2080 * the hash table.
2081 */
2082 s->lookahead -= s->prev_length-1;
2083 s->prev_length -= 2;
2084 do {
2085 if (++s->strstart <= max_insert) {
2086 hash_head = insert_string(s, s->strstart);
2087 }
2088 } while (--s->prev_length != 0);
2089 s->match_available = 0;
2090 s->match_length = MIN_MATCH-1;
2091 s->strstart++;
2092
2093 if (bflush) FLUSH_BLOCK(s, 0);
2094
2095 } else if (s->match_available) {
2096 /* If there was no match at the previous position, output a
2097 * single literal. If there was a match but the current match
2098 * is longer, truncate the previous match to a single literal.
2099 */
2100 Tracevv((stderr,"%c", s->window[s->strstart-1]));
2101 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2102 if (bflush) {
2103 FLUSH_BLOCK_ONLY(s, 0);
2104 }
2105 s->strstart++;
2106 s->lookahead--;
2107 if (s->strm->avail_out == 0) return need_more;
2108 } else {
2109 /* There is no previous match to compare with, wait for
2110 * the next step to decide.
2111 */
2112 s->match_available = 1;
2113 s->strstart++;
2114 s->lookahead--;
2115 }
2116 }
2117 Assert (flush != Z_NO_FLUSH, "no flush?");
2118 if (s->match_available) {
2119 Tracevv((stderr,"%c", s->window[s->strstart-1]));
2120 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2121 s->match_available = 0;
2122 }
2123 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2124 if (flush == Z_FINISH) {
2125 FLUSH_BLOCK(s, 1);
2126 return finish_done;
2127 }
2128 if (s->sym_next)
2129 FLUSH_BLOCK(s, 0);
2130 return block_done;
2131 }
2132 #endif /* FASTEST */
2133
2134 /* ===========================================================================
2135 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2136 * one. Do not maintain a hash table. (It will be regenerated if this run of
2137 * deflate switches away from Z_RLE.)
2138 */
deflate_rle(s,flush)2139 local block_state deflate_rle(s, flush)
2140 deflate_state *s;
2141 int flush;
2142 {
2143 int bflush; /* set if current block must be flushed */
2144 uInt prev; /* byte at distance one to match */
2145 Bytef *scan, *strend; /* scan goes up to strend for length of run */
2146
2147 for (;;) {
2148 /* Make sure that we always have enough lookahead, except
2149 * at the end of the input file. We need MAX_MATCH bytes
2150 * for the longest run, plus one for the unrolled loop.
2151 */
2152 if (s->lookahead <= MAX_MATCH) {
2153 fill_window(s);
2154 if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2155 return need_more;
2156 }
2157 if (s->lookahead == 0) break; /* flush the current block */
2158 }
2159
2160 /* See how many times the previous byte repeats */
2161 s->match_length = 0;
2162 if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2163 scan = s->window + s->strstart - 1;
2164 prev = *scan;
2165 if (prev == *++scan && prev == *++scan && prev == *++scan) {
2166 strend = s->window + s->strstart + MAX_MATCH;
2167 do {
2168 } while (prev == *++scan && prev == *++scan &&
2169 prev == *++scan && prev == *++scan &&
2170 prev == *++scan && prev == *++scan &&
2171 prev == *++scan && prev == *++scan &&
2172 scan < strend);
2173 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2174 if (s->match_length > s->lookahead)
2175 s->match_length = s->lookahead;
2176 }
2177 Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
2178 }
2179
2180 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2181 if (s->match_length >= MIN_MATCH) {
2182 check_match(s, s->strstart, s->strstart - 1, s->match_length);
2183
2184 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2185
2186 s->lookahead -= s->match_length;
2187 s->strstart += s->match_length;
2188 s->match_length = 0;
2189 } else {
2190 /* No match, output a literal byte */
2191 Tracevv((stderr,"%c", s->window[s->strstart]));
2192 _tr_tally_lit (s, s->window[s->strstart], bflush);
2193 s->lookahead--;
2194 s->strstart++;
2195 }
2196 if (bflush) FLUSH_BLOCK(s, 0);
2197 }
2198 s->insert = 0;
2199 if (flush == Z_FINISH) {
2200 FLUSH_BLOCK(s, 1);
2201 return finish_done;
2202 }
2203 if (s->sym_next)
2204 FLUSH_BLOCK(s, 0);
2205 return block_done;
2206 }
2207
2208 /* ===========================================================================
2209 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
2210 * (It will be regenerated if this run of deflate switches away from Huffman.)
2211 */
deflate_huff(s,flush)2212 local block_state deflate_huff(s, flush)
2213 deflate_state *s;
2214 int flush;
2215 {
2216 int bflush; /* set if current block must be flushed */
2217
2218 for (;;) {
2219 /* Make sure that we have a literal to write. */
2220 if (s->lookahead == 0) {
2221 fill_window(s);
2222 if (s->lookahead == 0) {
2223 if (flush == Z_NO_FLUSH)
2224 return need_more;
2225 break; /* flush the current block */
2226 }
2227 }
2228
2229 /* Output a literal byte */
2230 s->match_length = 0;
2231 Tracevv((stderr,"%c", s->window[s->strstart]));
2232 _tr_tally_lit (s, s->window[s->strstart], bflush);
2233 s->lookahead--;
2234 s->strstart++;
2235 if (bflush) FLUSH_BLOCK(s, 0);
2236 }
2237 s->insert = 0;
2238 if (flush == Z_FINISH) {
2239 FLUSH_BLOCK(s, 1);
2240 return finish_done;
2241 }
2242 if (s->sym_next)
2243 FLUSH_BLOCK(s, 0);
2244 return block_done;
2245 }
2246