1 //===-- tsan_rtl.cpp ------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 // Main file (entry points) for the TSan run-time.
12 //===----------------------------------------------------------------------===//
13 
14 #include "tsan_rtl.h"
15 
16 #include "sanitizer_common/sanitizer_atomic.h"
17 #include "sanitizer_common/sanitizer_common.h"
18 #include "sanitizer_common/sanitizer_file.h"
19 #include "sanitizer_common/sanitizer_libc.h"
20 #include "sanitizer_common/sanitizer_placement_new.h"
21 #include "sanitizer_common/sanitizer_stackdepot.h"
22 #include "sanitizer_common/sanitizer_symbolizer.h"
23 #include "tsan_defs.h"
24 #include "tsan_interface.h"
25 #include "tsan_mman.h"
26 #include "tsan_platform.h"
27 #include "tsan_suppressions.h"
28 #include "tsan_symbolize.h"
29 #include "ubsan/ubsan_init.h"
30 
31 #ifdef __SSE3__
32 // <emmintrin.h> transitively includes <stdlib.h>,
33 // and it's prohibited to include std headers into tsan runtime.
34 // So we do this dirty trick.
35 #define _MM_MALLOC_H_INCLUDED
36 #define __MM_MALLOC_H
37 #include <emmintrin.h>
38 typedef __m128i m128;
39 #endif
40 
41 volatile int __tsan_resumed = 0;
42 
__tsan_resume()43 extern "C" void __tsan_resume() {
44   __tsan_resumed = 1;
45 }
46 
47 namespace __tsan {
48 
49 #if !SANITIZER_GO && !SANITIZER_MAC
50 __attribute__((tls_model("initial-exec")))
51 THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64);
52 #endif
53 static char ctx_placeholder[sizeof(Context)] ALIGNED(64);
54 Context *ctx;
55 
56 // Can be overriden by a front-end.
57 #ifdef TSAN_EXTERNAL_HOOKS
58 bool OnFinalize(bool failed);
59 void OnInitialize();
60 #else
61 #include <dlfcn.h>
62 SANITIZER_WEAK_CXX_DEFAULT_IMPL
OnFinalize(bool failed)63 bool OnFinalize(bool failed) {
64 #if !SANITIZER_GO
65   if (auto *ptr = dlsym(RTLD_DEFAULT, "__tsan_on_finalize"))
66     return reinterpret_cast<decltype(&__tsan_on_finalize)>(ptr)(failed);
67 #endif
68   return failed;
69 }
70 SANITIZER_WEAK_CXX_DEFAULT_IMPL
OnInitialize()71 void OnInitialize() {
72 #if !SANITIZER_GO
73   if (auto *ptr = dlsym(RTLD_DEFAULT, "__tsan_on_initialize")) {
74     return reinterpret_cast<decltype(&__tsan_on_initialize)>(ptr)();
75   }
76 #endif
77 }
78 #endif
79 
80 static ALIGNED(64) char thread_registry_placeholder[sizeof(ThreadRegistry)];
81 
CreateThreadContext(u32 tid)82 static ThreadContextBase *CreateThreadContext(u32 tid) {
83   // Map thread trace when context is created.
84   char name[50];
85   internal_snprintf(name, sizeof(name), "trace %u", tid);
86   MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event), name);
87   const uptr hdr = GetThreadTraceHeader(tid);
88   internal_snprintf(name, sizeof(name), "trace header %u", tid);
89   MapThreadTrace(hdr, sizeof(Trace), name);
90   new((void*)hdr) Trace();
91   // We are going to use only a small part of the trace with the default
92   // value of history_size. However, the constructor writes to the whole trace.
93   // Release the unused part.
94   uptr hdr_end = hdr + sizeof(Trace);
95   hdr_end -= sizeof(TraceHeader) * (kTraceParts - TraceParts());
96   hdr_end = RoundUp(hdr_end, GetPageSizeCached());
97   if (hdr_end < hdr + sizeof(Trace)) {
98     ReleaseMemoryPagesToOS(hdr_end, hdr + sizeof(Trace));
99     uptr unused = hdr + sizeof(Trace) - hdr_end;
100     if (hdr_end != (uptr)MmapFixedNoAccess(hdr_end, unused)) {
101       Report("ThreadSanitizer: failed to mprotect(%p, %p)\n",
102           hdr_end, unused);
103       CHECK("unable to mprotect" && 0);
104     }
105   }
106   void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
107   return new(mem) ThreadContext(tid);
108 }
109 
110 #if !SANITIZER_GO
111 static const u32 kThreadQuarantineSize = 16;
112 #else
113 static const u32 kThreadQuarantineSize = 64;
114 #endif
115 
Context()116 Context::Context()
117     : initialized(),
118       report_mtx(MutexTypeReport),
119       nreported(),
120       nmissed_expected(),
121       thread_registry(new (thread_registry_placeholder) ThreadRegistry(
122           CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse)),
123       racy_mtx(MutexTypeRacy),
124       racy_stacks(),
125       racy_addresses(),
126       fired_suppressions_mtx(MutexTypeFired),
127       clock_alloc(LINKER_INITIALIZED, "clock allocator") {
128   fired_suppressions.reserve(8);
129 }
130 
131 // The objects are allocated in TLS, so one may rely on zero-initialization.
ThreadState(Context * ctx,u32 tid,int unique_id,u64 epoch,unsigned reuse_count,uptr stk_addr,uptr stk_size,uptr tls_addr,uptr tls_size)132 ThreadState::ThreadState(Context *ctx, u32 tid, int unique_id, u64 epoch,
133                          unsigned reuse_count, uptr stk_addr, uptr stk_size,
134                          uptr tls_addr, uptr tls_size)
135     : fast_state(tid, epoch)
136       // Do not touch these, rely on zero initialization,
137       // they may be accessed before the ctor.
138       // , ignore_reads_and_writes()
139       // , ignore_interceptors()
140       ,
141       clock(tid, reuse_count)
142 #if !SANITIZER_GO
143       ,
144       jmp_bufs()
145 #endif
146       ,
147       tid(tid),
148       unique_id(unique_id),
149       stk_addr(stk_addr),
150       stk_size(stk_size),
151       tls_addr(tls_addr),
152       tls_size(tls_size)
153 #if !SANITIZER_GO
154       ,
155       last_sleep_clock(tid)
156 #endif
157 {
158 }
159 
160 #if !SANITIZER_GO
MemoryProfiler(Context * ctx,fd_t fd,int i)161 static void MemoryProfiler(Context *ctx, fd_t fd, int i) {
162   uptr n_threads;
163   uptr n_running_threads;
164   ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads);
165   InternalMmapVector<char> buf(4096);
166   WriteMemoryProfile(buf.data(), buf.size(), n_threads, n_running_threads);
167   WriteToFile(fd, buf.data(), internal_strlen(buf.data()));
168 }
169 
BackgroundThread(void * arg)170 static void *BackgroundThread(void *arg) {
171   // This is a non-initialized non-user thread, nothing to see here.
172   // We don't use ScopedIgnoreInterceptors, because we want ignores to be
173   // enabled even when the thread function exits (e.g. during pthread thread
174   // shutdown code).
175   cur_thread_init();
176   cur_thread()->ignore_interceptors++;
177   const u64 kMs2Ns = 1000 * 1000;
178 
179   fd_t mprof_fd = kInvalidFd;
180   if (flags()->profile_memory && flags()->profile_memory[0]) {
181     if (internal_strcmp(flags()->profile_memory, "stdout") == 0) {
182       mprof_fd = 1;
183     } else if (internal_strcmp(flags()->profile_memory, "stderr") == 0) {
184       mprof_fd = 2;
185     } else {
186       InternalScopedString filename;
187       filename.append("%s.%d", flags()->profile_memory, (int)internal_getpid());
188       fd_t fd = OpenFile(filename.data(), WrOnly);
189       if (fd == kInvalidFd) {
190         Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
191                filename.data());
192       } else {
193         mprof_fd = fd;
194       }
195     }
196   }
197 
198   u64 last_flush = NanoTime();
199   uptr last_rss = 0;
200   for (int i = 0;
201       atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0;
202       i++) {
203     SleepForMillis(100);
204     u64 now = NanoTime();
205 
206     // Flush memory if requested.
207     if (flags()->flush_memory_ms > 0) {
208       if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
209         VPrintf(1, "ThreadSanitizer: periodic memory flush\n");
210         FlushShadowMemory();
211         last_flush = NanoTime();
212       }
213     }
214     // GetRSS can be expensive on huge programs, so don't do it every 100ms.
215     if (flags()->memory_limit_mb > 0) {
216       uptr rss = GetRSS();
217       uptr limit = uptr(flags()->memory_limit_mb) << 20;
218       VPrintf(1, "ThreadSanitizer: memory flush check"
219                  " RSS=%llu LAST=%llu LIMIT=%llu\n",
220               (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20);
221       if (2 * rss > limit + last_rss) {
222         VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n");
223         FlushShadowMemory();
224         rss = GetRSS();
225         VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20);
226       }
227       last_rss = rss;
228     }
229 
230     // Write memory profile if requested.
231     if (mprof_fd != kInvalidFd)
232       MemoryProfiler(ctx, mprof_fd, i);
233 
234     // Flush symbolizer cache if requested.
235     if (flags()->flush_symbolizer_ms > 0) {
236       u64 last = atomic_load(&ctx->last_symbolize_time_ns,
237                              memory_order_relaxed);
238       if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
239         Lock l(&ctx->report_mtx);
240         ScopedErrorReportLock l2;
241         SymbolizeFlush();
242         atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
243       }
244     }
245   }
246   return nullptr;
247 }
248 
StartBackgroundThread()249 static void StartBackgroundThread() {
250   ctx->background_thread = internal_start_thread(&BackgroundThread, 0);
251 }
252 
253 #ifndef __mips__
StopBackgroundThread()254 static void StopBackgroundThread() {
255   atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed);
256   internal_join_thread(ctx->background_thread);
257   ctx->background_thread = 0;
258 }
259 #endif
260 #endif
261 
DontNeedShadowFor(uptr addr,uptr size)262 void DontNeedShadowFor(uptr addr, uptr size) {
263   ReleaseMemoryPagesToOS(MemToShadow(addr), MemToShadow(addr + size));
264 }
265 
266 #if !SANITIZER_GO
UnmapShadow(ThreadState * thr,uptr addr,uptr size)267 void UnmapShadow(ThreadState *thr, uptr addr, uptr size) {
268   if (size == 0) return;
269   DontNeedShadowFor(addr, size);
270   ScopedGlobalProcessor sgp;
271   ctx->metamap.ResetRange(thr->proc(), addr, size);
272 }
273 #endif
274 
MapShadow(uptr addr,uptr size)275 void MapShadow(uptr addr, uptr size) {
276   // Global data is not 64K aligned, but there are no adjacent mappings,
277   // so we can get away with unaligned mapping.
278   // CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
279   const uptr kPageSize = GetPageSizeCached();
280   uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize);
281   uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize);
282   if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin,
283                                "shadow"))
284     Die();
285 
286   // Meta shadow is 2:1, so tread carefully.
287   static bool data_mapped = false;
288   static uptr mapped_meta_end = 0;
289   uptr meta_begin = (uptr)MemToMeta(addr);
290   uptr meta_end = (uptr)MemToMeta(addr + size);
291   meta_begin = RoundDownTo(meta_begin, 64 << 10);
292   meta_end = RoundUpTo(meta_end, 64 << 10);
293   if (!data_mapped) {
294     // First call maps data+bss.
295     data_mapped = true;
296     if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin,
297                                  "meta shadow"))
298       Die();
299   } else {
300     // Mapping continous heap.
301     // Windows wants 64K alignment.
302     meta_begin = RoundDownTo(meta_begin, 64 << 10);
303     meta_end = RoundUpTo(meta_end, 64 << 10);
304     if (meta_end <= mapped_meta_end)
305       return;
306     if (meta_begin < mapped_meta_end)
307       meta_begin = mapped_meta_end;
308     if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin,
309                                  "meta shadow"))
310       Die();
311     mapped_meta_end = meta_end;
312   }
313   VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n",
314       addr, addr+size, meta_begin, meta_end);
315 }
316 
MapThreadTrace(uptr addr,uptr size,const char * name)317 void MapThreadTrace(uptr addr, uptr size, const char *name) {
318   DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size);
319   CHECK_GE(addr, TraceMemBeg());
320   CHECK_LE(addr + size, TraceMemEnd());
321   CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
322   if (!MmapFixedSuperNoReserve(addr, size, name)) {
323     Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p)\n",
324         addr, size);
325     Die();
326   }
327 }
328 
CheckShadowMapping()329 static void CheckShadowMapping() {
330   uptr beg, end;
331   for (int i = 0; GetUserRegion(i, &beg, &end); i++) {
332     // Skip cases for empty regions (heap definition for architectures that
333     // do not use 64-bit allocator).
334     if (beg == end)
335       continue;
336     VPrintf(3, "checking shadow region %p-%p\n", beg, end);
337     uptr prev = 0;
338     for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 4) {
339       for (int x = -(int)kShadowCell; x <= (int)kShadowCell; x += kShadowCell) {
340         const uptr p = RoundDown(p0 + x, kShadowCell);
341         if (p < beg || p >= end)
342           continue;
343         const uptr s = MemToShadow(p);
344         const uptr m = (uptr)MemToMeta(p);
345         VPrintf(3, "  checking pointer %p: shadow=%p meta=%p\n", p, s, m);
346         CHECK(IsAppMem(p));
347         CHECK(IsShadowMem(s));
348         CHECK_EQ(p, ShadowToMem(s));
349         CHECK(IsMetaMem(m));
350         if (prev) {
351           // Ensure that shadow and meta mappings are linear within a single
352           // user range. Lots of code that processes memory ranges assumes it.
353           const uptr prev_s = MemToShadow(prev);
354           const uptr prev_m = (uptr)MemToMeta(prev);
355           CHECK_EQ(s - prev_s, (p - prev) * kShadowMultiplier);
356           CHECK_EQ((m - prev_m) / kMetaShadowSize,
357                    (p - prev) / kMetaShadowCell);
358         }
359         prev = p;
360       }
361     }
362   }
363 }
364 
365 #if !SANITIZER_GO
OnStackUnwind(const SignalContext & sig,const void *,BufferedStackTrace * stack)366 static void OnStackUnwind(const SignalContext &sig, const void *,
367                           BufferedStackTrace *stack) {
368   stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
369                 common_flags()->fast_unwind_on_fatal);
370 }
371 
TsanOnDeadlySignal(int signo,void * siginfo,void * context)372 static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) {
373   HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr);
374 }
375 #endif
376 
CheckUnwind()377 void CheckUnwind() {
378   // There is high probability that interceptors will check-fail as well,
379   // on the other hand there is no sense in processing interceptors
380   // since we are going to die soon.
381   ScopedIgnoreInterceptors ignore;
382 #if !SANITIZER_GO
383   cur_thread()->ignore_sync++;
384   cur_thread()->ignore_reads_and_writes++;
385 #endif
386   PrintCurrentStackSlow(StackTrace::GetCurrentPc());
387 }
388 
Initialize(ThreadState * thr)389 void Initialize(ThreadState *thr) {
390   // Thread safe because done before all threads exist.
391   static bool is_initialized = false;
392   if (is_initialized)
393     return;
394   is_initialized = true;
395   // We are not ready to handle interceptors yet.
396   ScopedIgnoreInterceptors ignore;
397   SanitizerToolName = "ThreadSanitizer";
398   // Install tool-specific callbacks in sanitizer_common.
399   SetCheckUnwindCallback(CheckUnwind);
400 
401   ctx = new(ctx_placeholder) Context;
402   const char *env_name = SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS";
403   const char *options = GetEnv(env_name);
404   CacheBinaryName();
405   CheckASLR();
406   InitializeFlags(&ctx->flags, options, env_name);
407   AvoidCVE_2016_2143();
408   __sanitizer::InitializePlatformEarly();
409   __tsan::InitializePlatformEarly();
410 
411 #if !SANITIZER_GO
412   // Re-exec ourselves if we need to set additional env or command line args.
413   MaybeReexec();
414 
415   InitializeAllocator();
416   ReplaceSystemMalloc();
417 #endif
418   if (common_flags()->detect_deadlocks)
419     ctx->dd = DDetector::Create(flags());
420   Processor *proc = ProcCreate();
421   ProcWire(proc, thr);
422   InitializeInterceptors();
423   CheckShadowMapping();
424   InitializePlatform();
425   InitializeDynamicAnnotations();
426 #if !SANITIZER_GO
427   InitializeShadowMemory();
428   InitializeAllocatorLate();
429   InstallDeadlySignalHandlers(TsanOnDeadlySignal);
430 #endif
431   // Setup correct file descriptor for error reports.
432   __sanitizer_set_report_path(common_flags()->log_path);
433   InitializeSuppressions();
434 #if !SANITIZER_GO
435   InitializeLibIgnore();
436   Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer);
437 #endif
438 
439   VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n",
440           (int)internal_getpid());
441 
442   // Initialize thread 0.
443   int tid = ThreadCreate(thr, 0, 0, true);
444   CHECK_EQ(tid, 0);
445   ThreadStart(thr, tid, GetTid(), ThreadType::Regular);
446 #if TSAN_CONTAINS_UBSAN
447   __ubsan::InitAsPlugin();
448 #endif
449   ctx->initialized = true;
450 
451 #if !SANITIZER_GO
452   Symbolizer::LateInitialize();
453 #endif
454 
455   if (flags()->stop_on_start) {
456     Printf("ThreadSanitizer is suspended at startup (pid %d)."
457            " Call __tsan_resume().\n",
458            (int)internal_getpid());
459     while (__tsan_resumed == 0) {}
460   }
461 
462   OnInitialize();
463 }
464 
MaybeSpawnBackgroundThread()465 void MaybeSpawnBackgroundThread() {
466   // On MIPS, TSan initialization is run before
467   // __pthread_initialize_minimal_internal() is finished, so we can not spawn
468   // new threads.
469 #if !SANITIZER_GO && !defined(__mips__)
470   static atomic_uint32_t bg_thread = {};
471   if (atomic_load(&bg_thread, memory_order_relaxed) == 0 &&
472       atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) {
473     StartBackgroundThread();
474     SetSandboxingCallback(StopBackgroundThread);
475   }
476 #endif
477 }
478 
479 
Finalize(ThreadState * thr)480 int Finalize(ThreadState *thr) {
481   bool failed = false;
482 
483   if (common_flags()->print_module_map == 1)
484     DumpProcessMap();
485 
486   if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
487     SleepForMillis(flags()->atexit_sleep_ms);
488 
489   // Wait for pending reports.
490   ctx->report_mtx.Lock();
491   { ScopedErrorReportLock l; }
492   ctx->report_mtx.Unlock();
493 
494 #if !SANITIZER_GO
495   if (Verbosity()) AllocatorPrintStats();
496 #endif
497 
498   ThreadFinalize(thr);
499 
500   if (ctx->nreported) {
501     failed = true;
502 #if !SANITIZER_GO
503     Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
504 #else
505     Printf("Found %d data race(s)\n", ctx->nreported);
506 #endif
507   }
508 
509   if (ctx->nmissed_expected) {
510     failed = true;
511     Printf("ThreadSanitizer: missed %d expected races\n",
512         ctx->nmissed_expected);
513   }
514 
515   if (common_flags()->print_suppressions)
516     PrintMatchedSuppressions();
517 #if !SANITIZER_GO
518   if (flags()->print_benign)
519     PrintMatchedBenignRaces();
520 #endif
521 
522   failed = OnFinalize(failed);
523 
524   return failed ? common_flags()->exitcode : 0;
525 }
526 
527 #if !SANITIZER_GO
ForkBefore(ThreadState * thr,uptr pc)528 void ForkBefore(ThreadState *thr, uptr pc) NO_THREAD_SAFETY_ANALYSIS {
529   ctx->thread_registry->Lock();
530   ctx->report_mtx.Lock();
531   ScopedErrorReportLock::Lock();
532   // Suppress all reports in the pthread_atfork callbacks.
533   // Reports will deadlock on the report_mtx.
534   // We could ignore sync operations as well,
535   // but so far it's unclear if it will do more good or harm.
536   // Unnecessarily ignoring things can lead to false positives later.
537   thr->suppress_reports++;
538   // On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and
539   // we'll assert in CheckNoLocks() unless we ignore interceptors.
540   thr->ignore_interceptors++;
541 }
542 
ForkParentAfter(ThreadState * thr,uptr pc)543 void ForkParentAfter(ThreadState *thr, uptr pc) NO_THREAD_SAFETY_ANALYSIS {
544   thr->suppress_reports--;  // Enabled in ForkBefore.
545   thr->ignore_interceptors--;
546   ScopedErrorReportLock::Unlock();
547   ctx->report_mtx.Unlock();
548   ctx->thread_registry->Unlock();
549 }
550 
ForkChildAfter(ThreadState * thr,uptr pc)551 void ForkChildAfter(ThreadState *thr, uptr pc) NO_THREAD_SAFETY_ANALYSIS {
552   thr->suppress_reports--;  // Enabled in ForkBefore.
553   thr->ignore_interceptors--;
554   ScopedErrorReportLock::Unlock();
555   ctx->report_mtx.Unlock();
556   ctx->thread_registry->Unlock();
557 
558   uptr nthread = 0;
559   ctx->thread_registry->GetNumberOfThreads(0, 0, &nthread /* alive threads */);
560   VPrintf(1, "ThreadSanitizer: forked new process with pid %d,"
561       " parent had %d threads\n", (int)internal_getpid(), (int)nthread);
562   if (nthread == 1) {
563     StartBackgroundThread();
564   } else {
565     // We've just forked a multi-threaded process. We cannot reasonably function
566     // after that (some mutexes may be locked before fork). So just enable
567     // ignores for everything in the hope that we will exec soon.
568     ctx->after_multithreaded_fork = true;
569     thr->ignore_interceptors++;
570     ThreadIgnoreBegin(thr, pc);
571     ThreadIgnoreSyncBegin(thr, pc);
572   }
573 }
574 #endif
575 
576 #if SANITIZER_GO
577 NOINLINE
GrowShadowStack(ThreadState * thr)578 void GrowShadowStack(ThreadState *thr) {
579   const int sz = thr->shadow_stack_end - thr->shadow_stack;
580   const int newsz = 2 * sz;
581   uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack,
582       newsz * sizeof(uptr));
583   internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
584   internal_free(thr->shadow_stack);
585   thr->shadow_stack = newstack;
586   thr->shadow_stack_pos = newstack + sz;
587   thr->shadow_stack_end = newstack + newsz;
588 }
589 #endif
590 
CurrentStackId(ThreadState * thr,uptr pc)591 u32 CurrentStackId(ThreadState *thr, uptr pc) {
592   if (!thr->is_inited)  // May happen during bootstrap.
593     return 0;
594   if (pc != 0) {
595 #if !SANITIZER_GO
596     DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
597 #else
598     if (thr->shadow_stack_pos == thr->shadow_stack_end)
599       GrowShadowStack(thr);
600 #endif
601     thr->shadow_stack_pos[0] = pc;
602     thr->shadow_stack_pos++;
603   }
604   u32 id = StackDepotPut(
605       StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack));
606   if (pc != 0)
607     thr->shadow_stack_pos--;
608   return id;
609 }
610 
TraceSwitch(ThreadState * thr)611 void TraceSwitch(ThreadState *thr) {
612 #if !SANITIZER_GO
613   if (ctx->after_multithreaded_fork)
614     return;
615 #endif
616   thr->nomalloc++;
617   Trace *thr_trace = ThreadTrace(thr->tid);
618   Lock l(&thr_trace->mtx);
619   unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts();
620   TraceHeader *hdr = &thr_trace->headers[trace];
621   hdr->epoch0 = thr->fast_state.epoch();
622   ObtainCurrentStack(thr, 0, &hdr->stack0);
623   hdr->mset0 = thr->mset;
624   thr->nomalloc--;
625 }
626 
ThreadTrace(int tid)627 Trace *ThreadTrace(int tid) {
628   return (Trace*)GetThreadTraceHeader(tid);
629 }
630 
TraceTopPC(ThreadState * thr)631 uptr TraceTopPC(ThreadState *thr) {
632   Event *events = (Event*)GetThreadTrace(thr->tid);
633   uptr pc = events[thr->fast_state.GetTracePos()];
634   return pc;
635 }
636 
TraceSize()637 uptr TraceSize() {
638   return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1));
639 }
640 
TraceParts()641 uptr TraceParts() {
642   return TraceSize() / kTracePartSize;
643 }
644 
645 #if !SANITIZER_GO
__tsan_trace_switch()646 extern "C" void __tsan_trace_switch() {
647   TraceSwitch(cur_thread());
648 }
649 
__tsan_report_race()650 extern "C" void __tsan_report_race() {
651   ReportRace(cur_thread());
652 }
653 #endif
654 
655 ALWAYS_INLINE
LoadShadow(u64 * p)656 Shadow LoadShadow(u64 *p) {
657   u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed);
658   return Shadow(raw);
659 }
660 
661 ALWAYS_INLINE
StoreShadow(u64 * sp,u64 s)662 void StoreShadow(u64 *sp, u64 s) {
663   atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed);
664 }
665 
666 ALWAYS_INLINE
StoreIfNotYetStored(u64 * sp,u64 * s)667 void StoreIfNotYetStored(u64 *sp, u64 *s) {
668   StoreShadow(sp, *s);
669   *s = 0;
670 }
671 
672 ALWAYS_INLINE
HandleRace(ThreadState * thr,u64 * shadow_mem,Shadow cur,Shadow old)673 void HandleRace(ThreadState *thr, u64 *shadow_mem,
674                               Shadow cur, Shadow old) {
675   thr->racy_state[0] = cur.raw();
676   thr->racy_state[1] = old.raw();
677   thr->racy_shadow_addr = shadow_mem;
678 #if !SANITIZER_GO
679   HACKY_CALL(__tsan_report_race);
680 #else
681   ReportRace(thr);
682 #endif
683 }
684 
HappensBefore(Shadow old,ThreadState * thr)685 static inline bool HappensBefore(Shadow old, ThreadState *thr) {
686   return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
687 }
688 
689 ALWAYS_INLINE
MemoryAccessImpl1(ThreadState * thr,uptr addr,int kAccessSizeLog,bool kAccessIsWrite,bool kIsAtomic,u64 * shadow_mem,Shadow cur)690 void MemoryAccessImpl1(ThreadState *thr, uptr addr,
691     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
692     u64 *shadow_mem, Shadow cur) {
693 
694   // This potentially can live in an MMX/SSE scratch register.
695   // The required intrinsics are:
696   // __m128i _mm_move_epi64(__m128i*);
697   // _mm_storel_epi64(u64*, __m128i);
698   u64 store_word = cur.raw();
699   bool stored = false;
700 
701   // scan all the shadow values and dispatch to 4 categories:
702   // same, replace, candidate and race (see comments below).
703   // we consider only 3 cases regarding access sizes:
704   // equal, intersect and not intersect. initially I considered
705   // larger and smaller as well, it allowed to replace some
706   // 'candidates' with 'same' or 'replace', but I think
707   // it's just not worth it (performance- and complexity-wise).
708 
709   Shadow old(0);
710 
711   // It release mode we manually unroll the loop,
712   // because empirically gcc generates better code this way.
713   // However, we can't afford unrolling in debug mode, because the function
714   // consumes almost 4K of stack. Gtest gives only 4K of stack to death test
715   // threads, which is not enough for the unrolled loop.
716 #if SANITIZER_DEBUG
717   for (int idx = 0; idx < 4; idx++) {
718 #include "tsan_update_shadow_word_inl.h"
719   }
720 #else
721   int idx = 0;
722 #include "tsan_update_shadow_word_inl.h"
723   idx = 1;
724   if (stored) {
725 #include "tsan_update_shadow_word_inl.h"
726   } else {
727 #include "tsan_update_shadow_word_inl.h"
728   }
729   idx = 2;
730   if (stored) {
731 #include "tsan_update_shadow_word_inl.h"
732   } else {
733 #include "tsan_update_shadow_word_inl.h"
734   }
735   idx = 3;
736   if (stored) {
737 #include "tsan_update_shadow_word_inl.h"
738   } else {
739 #include "tsan_update_shadow_word_inl.h"
740   }
741 #endif
742 
743   // we did not find any races and had already stored
744   // the current access info, so we are done
745   if (LIKELY(stored))
746     return;
747   // choose a random candidate slot and replace it
748   StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
749   return;
750  RACE:
751   HandleRace(thr, shadow_mem, cur, old);
752   return;
753 }
754 
UnalignedMemoryAccess(ThreadState * thr,uptr pc,uptr addr,int size,bool kAccessIsWrite,bool kIsAtomic)755 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
756     int size, bool kAccessIsWrite, bool kIsAtomic) {
757   while (size) {
758     int size1 = 1;
759     int kAccessSizeLog = kSizeLog1;
760     if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) {
761       size1 = 8;
762       kAccessSizeLog = kSizeLog8;
763     } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) {
764       size1 = 4;
765       kAccessSizeLog = kSizeLog4;
766     } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) {
767       size1 = 2;
768       kAccessSizeLog = kSizeLog2;
769     }
770     MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic);
771     addr += size1;
772     size -= size1;
773   }
774 }
775 
776 ALWAYS_INLINE
ContainsSameAccessSlow(u64 * s,u64 a,u64 sync_epoch,bool is_write)777 bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
778   Shadow cur(a);
779   for (uptr i = 0; i < kShadowCnt; i++) {
780     Shadow old(LoadShadow(&s[i]));
781     if (Shadow::Addr0AndSizeAreEqual(cur, old) &&
782         old.TidWithIgnore() == cur.TidWithIgnore() &&
783         old.epoch() > sync_epoch &&
784         old.IsAtomic() == cur.IsAtomic() &&
785         old.IsRead() <= cur.IsRead())
786       return true;
787   }
788   return false;
789 }
790 
791 #if defined(__SSE3__)
792 #define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \
793     _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \
794     (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64))
795 ALWAYS_INLINE
ContainsSameAccessFast(u64 * s,u64 a,u64 sync_epoch,bool is_write)796 bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
797   // This is an optimized version of ContainsSameAccessSlow.
798   // load current access into access[0:63]
799   const m128 access     = _mm_cvtsi64_si128(a);
800   // duplicate high part of access in addr0:
801   // addr0[0:31]        = access[32:63]
802   // addr0[32:63]       = access[32:63]
803   // addr0[64:95]       = access[32:63]
804   // addr0[96:127]      = access[32:63]
805   const m128 addr0      = SHUF(access, access, 1, 1, 1, 1);
806   // load 4 shadow slots
807   const m128 shadow0    = _mm_load_si128((__m128i*)s);
808   const m128 shadow1    = _mm_load_si128((__m128i*)s + 1);
809   // load high parts of 4 shadow slots into addr_vect:
810   // addr_vect[0:31]    = shadow0[32:63]
811   // addr_vect[32:63]   = shadow0[96:127]
812   // addr_vect[64:95]   = shadow1[32:63]
813   // addr_vect[96:127]  = shadow1[96:127]
814   m128 addr_vect        = SHUF(shadow0, shadow1, 1, 3, 1, 3);
815   if (!is_write) {
816     // set IsRead bit in addr_vect
817     const m128 rw_mask1 = _mm_cvtsi64_si128(1<<15);
818     const m128 rw_mask  = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0);
819     addr_vect           = _mm_or_si128(addr_vect, rw_mask);
820   }
821   // addr0 == addr_vect?
822   const m128 addr_res   = _mm_cmpeq_epi32(addr0, addr_vect);
823   // epoch1[0:63]       = sync_epoch
824   const m128 epoch1     = _mm_cvtsi64_si128(sync_epoch);
825   // epoch[0:31]        = sync_epoch[0:31]
826   // epoch[32:63]       = sync_epoch[0:31]
827   // epoch[64:95]       = sync_epoch[0:31]
828   // epoch[96:127]      = sync_epoch[0:31]
829   const m128 epoch      = SHUF(epoch1, epoch1, 0, 0, 0, 0);
830   // load low parts of shadow cell epochs into epoch_vect:
831   // epoch_vect[0:31]   = shadow0[0:31]
832   // epoch_vect[32:63]  = shadow0[64:95]
833   // epoch_vect[64:95]  = shadow1[0:31]
834   // epoch_vect[96:127] = shadow1[64:95]
835   const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2);
836   // epoch_vect >= sync_epoch?
837   const m128 epoch_res  = _mm_cmpgt_epi32(epoch_vect, epoch);
838   // addr_res & epoch_res
839   const m128 res        = _mm_and_si128(addr_res, epoch_res);
840   // mask[0] = res[7]
841   // mask[1] = res[15]
842   // ...
843   // mask[15] = res[127]
844   const int mask        = _mm_movemask_epi8(res);
845   return mask != 0;
846 }
847 #endif
848 
849 ALWAYS_INLINE
ContainsSameAccess(u64 * s,u64 a,u64 sync_epoch,bool is_write)850 bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
851 #if defined(__SSE3__)
852   bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write);
853   // NOTE: this check can fail if the shadow is concurrently mutated
854   // by other threads. But it still can be useful if you modify
855   // ContainsSameAccessFast and want to ensure that it's not completely broken.
856   // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write));
857   return res;
858 #else
859   return ContainsSameAccessSlow(s, a, sync_epoch, is_write);
860 #endif
861 }
862 
863 ALWAYS_INLINE USED
MemoryAccess(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog,bool kAccessIsWrite,bool kIsAtomic)864 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
865     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) {
866   u64 *shadow_mem = (u64*)MemToShadow(addr);
867   DPrintf2("#%d: MemoryAccess: @%p %p size=%d"
868       " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
869       (int)thr->fast_state.tid(), (void*)pc, (void*)addr,
870       (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
871       (uptr)shadow_mem[0], (uptr)shadow_mem[1],
872       (uptr)shadow_mem[2], (uptr)shadow_mem[3]);
873 #if SANITIZER_DEBUG
874   if (!IsAppMem(addr)) {
875     Printf("Access to non app mem %zx\n", addr);
876     DCHECK(IsAppMem(addr));
877   }
878   if (!IsShadowMem((uptr)shadow_mem)) {
879     Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
880     DCHECK(IsShadowMem((uptr)shadow_mem));
881   }
882 #endif
883 
884   if (!SANITIZER_GO && !kAccessIsWrite && *shadow_mem == kShadowRodata) {
885     // Access to .rodata section, no races here.
886     // Measurements show that it can be 10-20% of all memory accesses.
887     return;
888   }
889 
890   FastState fast_state = thr->fast_state;
891   if (UNLIKELY(fast_state.GetIgnoreBit())) {
892     return;
893   }
894 
895   Shadow cur(fast_state);
896   cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
897   cur.SetWrite(kAccessIsWrite);
898   cur.SetAtomic(kIsAtomic);
899 
900   if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
901       thr->fast_synch_epoch, kAccessIsWrite))) {
902     return;
903   }
904 
905   if (kCollectHistory) {
906     fast_state.IncrementEpoch();
907     thr->fast_state = fast_state;
908     TraceAddEvent(thr, fast_state, EventTypeMop, pc);
909     cur.IncrementEpoch();
910   }
911 
912   MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
913       shadow_mem, cur);
914 }
915 
916 // Called by MemoryAccessRange in tsan_rtl_thread.cpp
917 ALWAYS_INLINE USED
MemoryAccessImpl(ThreadState * thr,uptr addr,int kAccessSizeLog,bool kAccessIsWrite,bool kIsAtomic,u64 * shadow_mem,Shadow cur)918 void MemoryAccessImpl(ThreadState *thr, uptr addr,
919     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
920     u64 *shadow_mem, Shadow cur) {
921   if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
922       thr->fast_synch_epoch, kAccessIsWrite))) {
923     return;
924   }
925 
926   MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
927       shadow_mem, cur);
928 }
929 
MemoryRangeSet(ThreadState * thr,uptr pc,uptr addr,uptr size,u64 val)930 static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
931                            u64 val) {
932   (void)thr;
933   (void)pc;
934   if (size == 0)
935     return;
936   // FIXME: fix me.
937   uptr offset = addr % kShadowCell;
938   if (offset) {
939     offset = kShadowCell - offset;
940     if (size <= offset)
941       return;
942     addr += offset;
943     size -= offset;
944   }
945   DCHECK_EQ(addr % 8, 0);
946   // If a user passes some insane arguments (memset(0)),
947   // let it just crash as usual.
948   if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
949     return;
950   // Don't want to touch lots of shadow memory.
951   // If a program maps 10MB stack, there is no need reset the whole range.
952   size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
953   // UnmapOrDie/MmapFixedNoReserve does not work on Windows.
954   if (SANITIZER_WINDOWS || size < common_flags()->clear_shadow_mmap_threshold) {
955     u64 *p = (u64*)MemToShadow(addr);
956     CHECK(IsShadowMem((uptr)p));
957     CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1)));
958     // FIXME: may overwrite a part outside the region
959     for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
960       p[i++] = val;
961       for (uptr j = 1; j < kShadowCnt; j++)
962         p[i++] = 0;
963     }
964   } else {
965     // The region is big, reset only beginning and end.
966     const uptr kPageSize = GetPageSizeCached();
967     u64 *begin = (u64*)MemToShadow(addr);
968     u64 *end = begin + size / kShadowCell * kShadowCnt;
969     u64 *p = begin;
970     // Set at least first kPageSize/2 to page boundary.
971     while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
972       *p++ = val;
973       for (uptr j = 1; j < kShadowCnt; j++)
974         *p++ = 0;
975     }
976     // Reset middle part.
977     u64 *p1 = p;
978     p = RoundDown(end, kPageSize);
979     if (!MmapFixedSuperNoReserve((uptr)p1, (uptr)p - (uptr)p1))
980       Die();
981     // Set the ending.
982     while (p < end) {
983       *p++ = val;
984       for (uptr j = 1; j < kShadowCnt; j++)
985         *p++ = 0;
986     }
987   }
988 }
989 
MemoryResetRange(ThreadState * thr,uptr pc,uptr addr,uptr size)990 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
991   MemoryRangeSet(thr, pc, addr, size, 0);
992 }
993 
MemoryRangeFreed(ThreadState * thr,uptr pc,uptr addr,uptr size)994 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
995   // Processing more than 1k (4k of shadow) is expensive,
996   // can cause excessive memory consumption (user does not necessary touch
997   // the whole range) and most likely unnecessary.
998   if (size > 1024)
999     size = 1024;
1000   CHECK_EQ(thr->is_freeing, false);
1001   thr->is_freeing = true;
1002   MemoryAccessRange(thr, pc, addr, size, true);
1003   thr->is_freeing = false;
1004   if (kCollectHistory) {
1005     thr->fast_state.IncrementEpoch();
1006     TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
1007   }
1008   Shadow s(thr->fast_state);
1009   s.ClearIgnoreBit();
1010   s.MarkAsFreed();
1011   s.SetWrite(true);
1012   s.SetAddr0AndSizeLog(0, 3);
1013   MemoryRangeSet(thr, pc, addr, size, s.raw());
1014 }
1015 
MemoryRangeImitateWrite(ThreadState * thr,uptr pc,uptr addr,uptr size)1016 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
1017   if (kCollectHistory) {
1018     thr->fast_state.IncrementEpoch();
1019     TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
1020   }
1021   Shadow s(thr->fast_state);
1022   s.ClearIgnoreBit();
1023   s.SetWrite(true);
1024   s.SetAddr0AndSizeLog(0, 3);
1025   MemoryRangeSet(thr, pc, addr, size, s.raw());
1026 }
1027 
MemoryRangeImitateWriteOrResetRange(ThreadState * thr,uptr pc,uptr addr,uptr size)1028 void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
1029                                          uptr size) {
1030   if (thr->ignore_reads_and_writes == 0)
1031     MemoryRangeImitateWrite(thr, pc, addr, size);
1032   else
1033     MemoryResetRange(thr, pc, addr, size);
1034 }
1035 
1036 ALWAYS_INLINE USED
FuncEntry(ThreadState * thr,uptr pc)1037 void FuncEntry(ThreadState *thr, uptr pc) {
1038   DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc);
1039   if (kCollectHistory) {
1040     thr->fast_state.IncrementEpoch();
1041     TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc);
1042   }
1043 
1044   // Shadow stack maintenance can be replaced with
1045   // stack unwinding during trace switch (which presumably must be faster).
1046   DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
1047 #if !SANITIZER_GO
1048   DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
1049 #else
1050   if (thr->shadow_stack_pos == thr->shadow_stack_end)
1051     GrowShadowStack(thr);
1052 #endif
1053   thr->shadow_stack_pos[0] = pc;
1054   thr->shadow_stack_pos++;
1055 }
1056 
1057 ALWAYS_INLINE USED
FuncExit(ThreadState * thr)1058 void FuncExit(ThreadState *thr) {
1059   DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid());
1060   if (kCollectHistory) {
1061     thr->fast_state.IncrementEpoch();
1062     TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0);
1063   }
1064 
1065   DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
1066 #if !SANITIZER_GO
1067   DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
1068 #endif
1069   thr->shadow_stack_pos--;
1070 }
1071 
ThreadIgnoreBegin(ThreadState * thr,uptr pc,bool save_stack)1072 void ThreadIgnoreBegin(ThreadState *thr, uptr pc, bool save_stack) {
1073   DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid);
1074   thr->ignore_reads_and_writes++;
1075   CHECK_GT(thr->ignore_reads_and_writes, 0);
1076   thr->fast_state.SetIgnoreBit();
1077 #if !SANITIZER_GO
1078   if (save_stack && !ctx->after_multithreaded_fork)
1079     thr->mop_ignore_set.Add(CurrentStackId(thr, pc));
1080 #endif
1081 }
1082 
ThreadIgnoreEnd(ThreadState * thr,uptr pc)1083 void ThreadIgnoreEnd(ThreadState *thr, uptr pc) {
1084   DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid);
1085   CHECK_GT(thr->ignore_reads_and_writes, 0);
1086   thr->ignore_reads_and_writes--;
1087   if (thr->ignore_reads_and_writes == 0) {
1088     thr->fast_state.ClearIgnoreBit();
1089 #if !SANITIZER_GO
1090     thr->mop_ignore_set.Reset();
1091 #endif
1092   }
1093 }
1094 
1095 #if !SANITIZER_GO
1096 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
__tsan_testonly_shadow_stack_current_size()1097 uptr __tsan_testonly_shadow_stack_current_size() {
1098   ThreadState *thr = cur_thread();
1099   return thr->shadow_stack_pos - thr->shadow_stack;
1100 }
1101 #endif
1102 
ThreadIgnoreSyncBegin(ThreadState * thr,uptr pc,bool save_stack)1103 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc, bool save_stack) {
1104   DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid);
1105   thr->ignore_sync++;
1106   CHECK_GT(thr->ignore_sync, 0);
1107 #if !SANITIZER_GO
1108   if (save_stack && !ctx->after_multithreaded_fork)
1109     thr->sync_ignore_set.Add(CurrentStackId(thr, pc));
1110 #endif
1111 }
1112 
ThreadIgnoreSyncEnd(ThreadState * thr,uptr pc)1113 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc) {
1114   DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid);
1115   CHECK_GT(thr->ignore_sync, 0);
1116   thr->ignore_sync--;
1117 #if !SANITIZER_GO
1118   if (thr->ignore_sync == 0)
1119     thr->sync_ignore_set.Reset();
1120 #endif
1121 }
1122 
operator ==(const MD5Hash & other) const1123 bool MD5Hash::operator==(const MD5Hash &other) const {
1124   return hash[0] == other.hash[0] && hash[1] == other.hash[1];
1125 }
1126 
1127 #if SANITIZER_DEBUG
build_consistency_debug()1128 void build_consistency_debug() {}
1129 #else
build_consistency_release()1130 void build_consistency_release() {}
1131 #endif
1132 
1133 }  // namespace __tsan
1134 
1135 #if SANITIZER_CHECK_DEADLOCKS
1136 namespace __sanitizer {
1137 using namespace __tsan;
1138 MutexMeta mutex_meta[] = {
1139     {MutexInvalid, "Invalid", {}},
1140     {MutexThreadRegistry, "ThreadRegistry", {}},
1141     {MutexTypeTrace, "Trace", {MutexLeaf}},
1142     {MutexTypeReport, "Report", {MutexTypeSyncVar}},
1143     {MutexTypeSyncVar, "SyncVar", {}},
1144     {MutexTypeAnnotations, "Annotations", {}},
1145     {MutexTypeAtExit, "AtExit", {MutexTypeSyncVar}},
1146     {MutexTypeFired, "Fired", {MutexLeaf}},
1147     {MutexTypeRacy, "Racy", {MutexLeaf}},
1148     {MutexTypeGlobalProc, "GlobalProc", {}},
1149     {},
1150 };
1151 
PrintMutexPC(uptr pc)1152 void PrintMutexPC(uptr pc) { StackTrace(&pc, 1).Print(); }
1153 }  // namespace __sanitizer
1154 #endif
1155 
1156 #if !SANITIZER_GO
1157 // Must be included in this file to make sure everything is inlined.
1158 #  include "tsan_interface_inl.h"
1159 #endif
1160