1 /*
2  * Heirloom mailx - a mail user agent derived from Berkeley Mail.
3  *
4  * Copyright (c) 2000-2004 Gunnar Ritter, Freiburg i. Br., Germany.
5  */
6 /*-
7  * Copyright (c) 1985, 1986, 1992, 1993
8  *	The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * Diomidis Spinellis and James A. Woods, derived from original
12  * work by Spencer Thomas and Joseph Orost.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  */
42 
43 /*	from zopen.c	8.1 (Berkeley) 6/27/93	*/
44 /*	from FreeBSD: /repoman/r/ncvs/src/usr.bin/compress/zopen.c,v
45  *	1.5.6.1 2002/07/16 00:52:08 tjr Exp */
46 
47 /*-
48  * lzw.c - File compression ala IEEE Computer, June 1984.
49  *
50  * Compress authors:
51  *		Spencer W. Thomas	(decvax!utah-cs!thomas)
52  *		Jim McKie		(decvax!mcvax!jim)
53  *		Steve Davies		(decvax!vax135!petsd!peora!srd)
54  *		Ken Turkowski		(decvax!decwrl!turtlevax!ken)
55  *		James A. Woods		(decvax!ihnp4!ames!jaw)
56  *		Joe Orost		(decvax!vax135!petsd!joe)
57  *
58  * Cleaned up and converted to library returning I/O streams by
59  * Diomidis Spinellis <dds@doc.ic.ac.uk>.
60  *
61  * Adopted for Heirloom mailx by Gunnar Ritter.
62  *
63  * Sccsid @(#)lzw.c	1.11 (gritter) 3/4/06
64  */
65 
66 #include "config.h"
67 
68 #include "rcv.h"
69 #include "extern.h"
70 #include <stdio.h>
71 
72 #define	BITS		16		/* Default bits. */
73 #define	HSIZE		69001		/* 95% occupancy */
74 
75 /* A code_int must be able to hold 2**BITS values of type int, and also -1. */
76 typedef long	code_int;
77 typedef long	count_int;
78 
79 typedef unsigned char	char_type;
80 static char_type	magic_header[] =
81 	{037, 0235};		/* 1F 9D */
82 
83 #define	BIT_MASK	0x1f		/* Defines for third byte of header. */
84 #define	BLOCK_MASK	0x80
85 
86 /*
87  * Masks 0x40 and 0x20 are free.  I think 0x20 should mean that there is
88  * a fourth header byte (for expansion).
89  */
90 #define	INIT_BITS 9			/* Initial number of bits/code. */
91 
92 #define	MAXCODE(n_bits)	((1 << (n_bits)) - 1)
93 
94 struct s_zstate {
95 	FILE *zs_fp;			/* File stream for I/O */
96 	char zs_mode;			/* r or w */
97 	enum {
98 		ST_START, ST_MIDDLE, ST_EOF
99 	} zs_state;			/* State of computation */
100 	unsigned zs_n_bits;		/* Number of bits/code. */
101 	unsigned zs_maxbits;		/* User settable max # bits/code. */
102 	code_int zs_maxcode;		/* Maximum code, given n_bits. */
103 	code_int zs_maxmaxcode;		/* Should NEVER generate this code. */
104 	count_int	zs_htab[HSIZE];
105 	unsigned short	zs_codetab[HSIZE];
106 	code_int zs_hsize;		/* For dynamic table sizing. */
107 	code_int zs_free_ent;		/* First unused entry. */
108 	/*
109 	 * Block compression parameters -- after all codes are used up,
110 	 * and compression rate changes, start over.
111 	 */
112 	int zs_block_compress;
113 	int zs_clear_flg;
114 	long zs_ratio;
115 	count_int zs_checkpoint;
116 	unsigned zs_offset;
117 	long zs_in_count;		/* Length of input. */
118 	long zs_bytes_out;		/* Length of compressed output. */
119 	long zs_out_count;		/* # of codes output (for debugging). */
120 	char_type zs_buf[BITS+1];
121 	union {
122 		struct {
123 			long zs_fcode;
124 			code_int zs_ent;
125 			code_int zs_hsize_reg;
126 			int zs_hshift;
127 		} w;			/* Write paramenters */
128 		struct {
129 			char_type *zs_stackp;
130 			int zs_finchar;
131 			code_int zs_code, zs_oldcode, zs_incode;
132 			int zs_roffset, zs_size;
133 			char_type zs_gbuf[BITS+1];
134 		} r;			/* Read parameters */
135 	} u;
136 };
137 
138 /* Definitions to retain old variable names */
139 #define	fp		zs->zs_fp
140 #define	zmode		zs->zs_mode
141 #define	state		zs->zs_state
142 #define	n_bits		zs->zs_n_bits
143 #define	maxbits		zs->zs_maxbits
144 #define	maxcode		zs->zs_maxcode
145 #define	maxmaxcode	zs->zs_maxmaxcode
146 #define	htab		zs->zs_htab
147 #define	codetab		zs->zs_codetab
148 #define	hsize		zs->zs_hsize
149 #define	free_ent	zs->zs_free_ent
150 #define	block_compress	zs->zs_block_compress
151 #define	clear_flg	zs->zs_clear_flg
152 #define	ratio		zs->zs_ratio
153 #define	checkpoint	zs->zs_checkpoint
154 #define	offset		zs->zs_offset
155 #define	in_count	zs->zs_in_count
156 #define	bytes_out	zs->zs_bytes_out
157 #define	out_count	zs->zs_out_count
158 #define	buf		zs->zs_buf
159 #define	fcode		zs->u.w.zs_fcode
160 #define	hsize_reg	zs->u.w.zs_hsize_reg
161 #define	ent		zs->u.w.zs_ent
162 #define	hshift		zs->u.w.zs_hshift
163 #define	stackp		zs->u.r.zs_stackp
164 #define	finchar		zs->u.r.zs_finchar
165 #define	code		zs->u.r.zs_code
166 #define	oldcode		zs->u.r.zs_oldcode
167 #define	incode		zs->u.r.zs_incode
168 #define	roffset		zs->u.r.zs_roffset
169 #define	size		zs->u.r.zs_size
170 #define	gbuf		zs->u.r.zs_gbuf
171 
172 /*
173  * To save much memory, we overlay the table used by compress() with those
174  * used by decompress().  The tab_prefix table is the same size and type as
175  * the codetab.  The tab_suffix table needs 2**BITS characters.  We get this
176  * from the beginning of htab.  The output stack uses the rest of htab, and
177  * contains characters.  There is plenty of room for any possible stack
178  * (stack used to be 8000 characters).
179  */
180 
181 #define	htabof(i)	htab[i]
182 #define	codetabof(i)	codetab[i]
183 
184 #define	tab_prefixof(i)	codetabof(i)
185 #define	tab_suffixof(i)	((char_type *)(htab))[i]
186 #define	de_stack	((char_type *)&tab_suffixof(1 << BITS))
187 
188 #define	CHECK_GAP 10000		/* Ratio check interval. */
189 
190 /*
191  * the next two codes should not be changed lightly, as they must not
192  * lie within the contiguous general code space.
193  */
194 #define	FIRST	257		/* First free entry. */
195 #define	CLEAR	256		/* Table clear output code. */
196 
197 static int output(struct s_zstate *zs, code_int ocode);
198 static code_int getcode(struct s_zstate *zs);
199 static int cl_block(struct s_zstate *zs);
200 static void cl_hash(struct s_zstate *zs, count_int cl_hsize);
201 
202 /*-
203  * Algorithm from "A Technique for High Performance Data Compression",
204  * Terry A. Welch, IEEE Computer Vol 17, No 6 (June 1984), pp 8-19.
205  *
206  * Algorithm:
207  * 	Modified Lempel-Ziv method (LZW).  Basically finds common
208  * substrings and replaces them with a variable size code.  This is
209  * deterministic, and can be done on the fly.  Thus, the decompression
210  * procedure needs no input table, but tracks the way the table was built.
211  */
212 
213 /*-
214  * compress write
215  *
216  * Algorithm:  use open addressing double hashing (no chaining) on the
217  * prefix code / next character combination.  We do a variant of Knuth's
218  * algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
219  * secondary probe.  Here, the modular division first probe is gives way
220  * to a faster exclusive-or manipulation.  Also do block compression with
221  * an adaptive reset, whereby the code table is cleared when the compression
222  * ratio decreases, but after the table fills.  The variable-length output
223  * codes are re-sized at this point, and a special CLEAR code is generated
224  * for the decompressor.  Late addition:  construct the table according to
225  * file size for noticeable speed improvement on small files.  Please direct
226  * questions about this implementation to ames!jaw.
227  */
228 int
zwrite(void * cookie,const char * wbp,int num)229 zwrite(void *cookie, const char *wbp, int num)
230 {
231 	code_int i;
232 	int c, disp;
233 	struct s_zstate *zs;
234 	const unsigned char *bp;
235 	unsigned char tmp;
236 	int count;
237 
238 	if (num == 0)
239 		return (0);
240 
241 	zs = cookie;
242 	zmode = 'w';
243 	count = num;
244 	bp = (const unsigned char *)wbp;
245 	if (state == ST_MIDDLE)
246 		goto middle;
247 	state = ST_MIDDLE;
248 
249 	maxmaxcode = 1L << maxbits;
250 	if (fwrite(magic_header,
251 	    sizeof(char), sizeof(magic_header), fp) != sizeof(magic_header))
252 		return (-1);
253 	tmp = (unsigned char)((maxbits) | block_compress);
254 	if (fwrite(&tmp, sizeof(char), sizeof(tmp), fp) != sizeof(tmp))
255 		return (-1);
256 
257 	offset = 0;
258 	bytes_out = 3;		/* Includes 3-byte header mojo. */
259 	out_count = 0;
260 	clear_flg = 0;
261 	ratio = 0;
262 	in_count = 1;
263 	checkpoint = CHECK_GAP;
264 	maxcode = MAXCODE(n_bits = INIT_BITS);
265 	free_ent = ((block_compress) ? FIRST : 256);
266 
267 	ent = *bp++;
268 	--count;
269 
270 	hshift = 0;
271 	for (fcode = (long)hsize; fcode < 65536L; fcode *= 2L)
272 		hshift++;
273 	hshift = 8 - hshift;	/* Set hash code range bound. */
274 
275 	hsize_reg = hsize;
276 	cl_hash(zs, (count_int)hsize_reg);	/* Clear hash table. */
277 
278 middle:	for (i = 0; count--;) {
279 		c = *bp++;
280 		in_count++;
281 		fcode = (long)(((long)c << maxbits) + ent);
282 		i = ((c << hshift) ^ ent);	/* Xor hashing. */
283 
284 		if (htabof(i) == fcode) {
285 			ent = codetabof(i);
286 			continue;
287 		} else if ((long)htabof(i) < 0)	/* Empty slot. */
288 			goto nomatch;
289 		disp = hsize_reg - i;	/* Secondary hash (after G. Knott). */
290 		if (i == 0)
291 			disp = 1;
292 probe:		if ((i -= disp) < 0)
293 			i += hsize_reg;
294 
295 		if (htabof(i) == fcode) {
296 			ent = codetabof(i);
297 			continue;
298 		}
299 		if ((long)htabof(i) >= 0)
300 			goto probe;
301 nomatch:	if (output(zs, (code_int) ent) == -1)
302 			return (-1);
303 		out_count++;
304 		ent = c;
305 		if (free_ent < maxmaxcode) {
306 			codetabof(i) = free_ent++;	/* code -> hashtable */
307 			htabof(i) = fcode;
308 		} else if ((count_int)in_count >=
309 		    checkpoint && block_compress) {
310 			if (cl_block(zs) == -1)
311 				return (-1);
312 		}
313 	}
314 	return (num);
315 }
316 
317 int
zfree(void * cookie)318 zfree(void *cookie)
319 {
320 	struct s_zstate *zs;
321 
322 	zs = cookie;
323 	if (zmode == 'w') {		/* Put out the final code. */
324 		if (output(zs, (code_int) ent) == -1) {
325 			free(zs);
326 			return (-1);
327 		}
328 		out_count++;
329 		if (output(zs, (code_int) - 1) == -1) {
330 			free(zs);
331 			return (-1);
332 		}
333 	}
334 	free(zs);
335 	return (0);
336 }
337 
338 /*-
339  * Output the given code.
340  * Inputs:
341  * 	code:	A n_bits-bit integer.  If == -1, then EOF.  This assumes
342  *		that n_bits =< (long)wordsize - 1.
343  * Outputs:
344  * 	Outputs code to the file.
345  * Assumptions:
346  *	Chars are 8 bits long.
347  * Algorithm:
348  * 	Maintain a BITS character long buffer (so that 8 codes will
349  * fit in it exactly).  Use the VAX insv instruction to insert each
350  * code in turn.  When the buffer fills up empty it and start over.
351  */
352 
353 static char_type lmask[9] =
354 	{0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00};
355 static char_type rmask[9] =
356 	{0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff};
357 
358 static int
output(struct s_zstate * zs,code_int ocode)359 output(struct s_zstate *zs, code_int ocode)
360 {
361 	int r_off;
362 	unsigned bits;
363 	char_type *bp;
364 
365 	r_off = offset;
366 	bits = n_bits;
367 	bp = buf;
368 	if (ocode >= 0) {
369 		/* Get to the first byte. */
370 		bp += (r_off >> 3);
371 		r_off &= 7;
372 		/*
373 		 * Since ocode is always >= 8 bits, only need to mask the first
374 		 * hunk on the left.
375 		 */
376 		*bp = (*bp & rmask[r_off]) | ((ocode << r_off) & lmask[r_off]);
377 		bp++;
378 		bits -= (8 - r_off);
379 		ocode >>= 8 - r_off;
380 		/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
381 		if (bits >= 8) {
382 			*bp++ = ocode;
383 			ocode >>= 8;
384 			bits -= 8;
385 		}
386 		/* Last bits. */
387 		if (bits)
388 			*bp = ocode;
389 		offset += n_bits;
390 		if (offset == (n_bits << 3)) {
391 			bp = buf;
392 			bits = n_bits;
393 			bytes_out += bits;
394 			if (fwrite(bp, sizeof(char), bits, fp) != bits)
395 				return (-1);
396 			bp += bits;
397 			bits = 0;
398 			offset = 0;
399 		}
400 		/*
401 		 * If the next entry is going to be too big for the ocode size,
402 		 * then increase it, if possible.
403 		 */
404 		if (free_ent > maxcode || (clear_flg > 0)) {
405 		       /*
406 			* Write the whole buffer, because the input side won't
407 			* discover the size increase until after it has read it.
408 			*/
409 			if (offset > 0) {
410 				if (fwrite(buf, 1, n_bits, fp) != n_bits)
411 					return (-1);
412 				bytes_out += n_bits;
413 			}
414 			offset = 0;
415 
416 			if (clear_flg) {
417 				maxcode = MAXCODE(n_bits = INIT_BITS);
418 				clear_flg = 0;
419 			} else {
420 				n_bits++;
421 				if (n_bits == maxbits)
422 					maxcode = maxmaxcode;
423 				else
424 					maxcode = MAXCODE(n_bits);
425 			}
426 		}
427 	} else {
428 		/* At EOF, write the rest of the buffer. */
429 		if (offset > 0) {
430 			offset = (offset + 7) / 8;
431 			if (fwrite(buf, 1, offset, fp) != offset)
432 				return (-1);
433 			bytes_out += offset;
434 		}
435 		offset = 0;
436 	}
437 	return (0);
438 }
439 
440 /*
441  * Decompress read.  This routine adapts to the codes in the file building
442  * the "string" table on-the-fly; requiring no table to be stored in the
443  * compressed file.  The tables used herein are shared with those of the
444  * compress() routine.  See the definitions above.
445  */
446 int
zread(void * cookie,char * rbp,int num)447 zread(void *cookie, char *rbp, int num)
448 {
449 	unsigned count;
450 	struct s_zstate *zs;
451 	unsigned char *bp, header[3];
452 
453 	if (num == 0)
454 		return (0);
455 
456 	zs = cookie;
457 	count = num;
458 	bp = (unsigned char *)rbp;
459 	switch (state) {
460 	case ST_START:
461 		state = ST_MIDDLE;
462 		break;
463 	case ST_MIDDLE:
464 		goto middle;
465 	case ST_EOF:
466 		goto eof;
467 	}
468 
469 	/* Check the magic number */
470 	if (fread(header,
471 	    sizeof(char), sizeof(header), fp) != sizeof(header) ||
472 	    memcmp(header, magic_header, sizeof(magic_header)) != 0) {
473 		return (-1);
474 	}
475 	maxbits = header[2];	/* Set -b from file. */
476 	block_compress = maxbits & BLOCK_MASK;
477 	maxbits &= BIT_MASK;
478 	maxmaxcode = 1L << maxbits;
479 	if (maxbits > BITS) {
480 		return (-1);
481 	}
482 	/* As above, initialize the first 256 entries in the table. */
483 	maxcode = MAXCODE(n_bits = INIT_BITS);
484 	for (code = 255; code >= 0; code--) {
485 		tab_prefixof(code) = 0;
486 		tab_suffixof(code) = (char_type) code;
487 	}
488 	free_ent = block_compress ? FIRST : 256;
489 
490 	finchar = oldcode = getcode(zs);
491 	if (oldcode == -1)	/* EOF already? */
492 		return (0);	/* Get out of here */
493 
494 	/* First code must be 8 bits = char. */
495 	*bp++ = (unsigned char)finchar;
496 	count--;
497 	stackp = de_stack;
498 
499 	while ((code = getcode(zs)) > -1) {
500 
501 		if ((code == CLEAR) && block_compress) {
502 			for (code = 255; code >= 0; code--)
503 				tab_prefixof(code) = 0;
504 			clear_flg = 1;
505 			free_ent = FIRST - 1;
506 			if ((code = getcode(zs)) == -1)	/* O, untimely death! */
507 				break;
508 		}
509 		incode = code;
510 
511 		/* Special case for KwKwK string. */
512 		if (code >= free_ent) {
513 			*stackp++ = finchar;
514 			code = oldcode;
515 		}
516 
517 		/* Generate output characters in reverse order. */
518 		while (code >= 256) {
519 			*stackp++ = tab_suffixof(code);
520 			code = tab_prefixof(code);
521 		}
522 		*stackp++ = finchar = tab_suffixof(code);
523 
524 		/* And put them out in forward order.  */
525 middle:		do {
526 			if (count-- == 0)
527 				return (num);
528 			*bp++ = *--stackp;
529 		} while (stackp > de_stack);
530 
531 		/* Generate the new entry. */
532 		if ((code = free_ent) < maxmaxcode) {
533 			tab_prefixof(code) = (unsigned short) oldcode;
534 			tab_suffixof(code) = finchar;
535 			free_ent = code + 1;
536 		}
537 
538 		/* Remember previous code. */
539 		oldcode = incode;
540 	}
541 	state = ST_EOF;
542 eof:	return (num - count);
543 }
544 
545 /*-
546  * Read one code from the standard input.  If EOF, return -1.
547  * Inputs:
548  * 	stdin
549  * Outputs:
550  * 	code or -1 is returned.
551  */
552 static code_int
getcode(struct s_zstate * zs)553 getcode(struct s_zstate *zs)
554 {
555 	code_int gcode;
556 	int r_off, bits;
557 	char_type *bp;
558 
559 	bp = gbuf;
560 	if (clear_flg > 0 || roffset >= size || free_ent > maxcode) {
561 		/*
562 		 * If the next entry will be too big for the current gcode
563 		 * size, then we must increase the size.  This implies reading
564 		 * a new buffer full, too.
565 		 */
566 		if (free_ent > maxcode) {
567 			n_bits++;
568 			if (n_bits == maxbits)	/* Won't get any bigger now. */
569 				maxcode = maxmaxcode;
570 			else
571 				maxcode = MAXCODE(n_bits);
572 		}
573 		if (clear_flg > 0) {
574 			maxcode = MAXCODE(n_bits = INIT_BITS);
575 			clear_flg = 0;
576 		}
577 		size = fread(gbuf, 1, n_bits, fp);
578 		if (size <= 0)			/* End of file. */
579 			return (-1);
580 		roffset = 0;
581 		/* Round size down to integral number of codes. */
582 		size = (size << 3) - (n_bits - 1);
583 	}
584 	r_off = roffset;
585 	bits = n_bits;
586 
587 	/* Get to the first byte. */
588 	bp += (r_off >> 3);
589 	r_off &= 7;
590 
591 	/* Get first part (low order bits). */
592 	gcode = (*bp++ >> r_off);
593 	bits -= (8 - r_off);
594 	r_off = 8 - r_off;	/* Now, roffset into gcode word. */
595 
596 	/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
597 	if (bits >= 8) {
598 		gcode |= *bp++ << r_off;
599 		r_off += 8;
600 		bits -= 8;
601 	}
602 
603 	/* High order bits. */
604 	gcode |= (*bp & rmask[bits]) << r_off;
605 	roffset += n_bits;
606 
607 	return (gcode);
608 }
609 
610 static int
cl_block(struct s_zstate * zs)611 cl_block (			/* Table clear for block compress. */
612     struct s_zstate *zs
613 )
614 {
615 	long rat;
616 
617 	checkpoint = in_count + CHECK_GAP;
618 
619 	if (in_count > 0x007fffff) {	/* Shift will overflow. */
620 		rat = bytes_out >> 8;
621 		if (rat == 0)		/* Don't divide by zero. */
622 			rat = 0x7fffffff;
623 		else
624 			rat = in_count / rat;
625 	} else
626 		rat = (in_count << 8) / bytes_out;	/* 8 fractional bits. */
627 	if (rat > ratio)
628 		ratio = rat;
629 	else {
630 		ratio = 0;
631 		cl_hash(zs, (count_int) hsize);
632 		free_ent = FIRST;
633 		clear_flg = 1;
634 		if (output(zs, (code_int) CLEAR) == -1)
635 			return (-1);
636 	}
637 	return (0);
638 }
639 
640 static void
cl_hash(struct s_zstate * zs,count_int cl_hsize)641 cl_hash (			/* Reset code table. */
642     struct s_zstate *zs,
643     count_int cl_hsize
644 )
645 {
646 	count_int *htab_p;
647 	long i, m1;
648 
649 	m1 = -1;
650 	htab_p = htab + cl_hsize;
651 	i = cl_hsize - 16;
652 	do {			/* Might use Sys V memset(3) here. */
653 		*(htab_p - 16) = m1;
654 		*(htab_p - 15) = m1;
655 		*(htab_p - 14) = m1;
656 		*(htab_p - 13) = m1;
657 		*(htab_p - 12) = m1;
658 		*(htab_p - 11) = m1;
659 		*(htab_p - 10) = m1;
660 		*(htab_p - 9) = m1;
661 		*(htab_p - 8) = m1;
662 		*(htab_p - 7) = m1;
663 		*(htab_p - 6) = m1;
664 		*(htab_p - 5) = m1;
665 		*(htab_p - 4) = m1;
666 		*(htab_p - 3) = m1;
667 		*(htab_p - 2) = m1;
668 		*(htab_p - 1) = m1;
669 		htab_p -= 16;
670 	} while ((i -= 16) >= 0);
671 	for (i += 16; i > 0; i--)
672 		*--htab_p = m1;
673 }
674 
675 #undef	fp
676 void *
zalloc(FILE * fp)677 zalloc(FILE *fp)
678 {
679 #define	bits	BITS
680 	struct s_zstate *zs;
681 
682 	zs = scalloc(1, sizeof *zs);
683 	maxbits = bits ? bits : BITS;	/* User settable max # bits/code. */
684 	maxmaxcode = 1L << maxbits;	/* Should NEVER generate this code. */
685 	hsize = HSIZE;			/* For dynamic table sizing. */
686 	free_ent = 0;			/* First unused entry. */
687 	block_compress = BLOCK_MASK;
688 	clear_flg = 0;
689 	ratio = 0;
690 	checkpoint = CHECK_GAP;
691 	in_count = 1;			/* Length of input. */
692 	out_count = 0;			/* # of codes output (for debugging). */
693 	state = ST_START;
694 	roffset = 0;
695 	size = 0;
696 	zs->zs_fp = fp;
697 	return zs;
698 }
699