1 /*
2    Common functions of New Generation Entropy library
3    Copyright (C) 2016, Yann Collet.
4 
5    BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
6 
7    Redistribution and use in source and binary forms, with or without
8    modification, are permitted provided that the following conditions are
9    met:
10 
11        * Redistributions of source code must retain the above copyright
12    notice, this list of conditions and the following disclaimer.
13        * Redistributions in binary form must reproduce the above
14    copyright notice, this list of conditions and the following disclaimer
15    in the documentation and/or other materials provided with the
16    distribution.
17 
18    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30     You can contact the author at :
31     - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
32     - Public forum : https://groups.google.com/forum/#!forum/lz4c
33 *************************************************************************** */
34 
35 /* *************************************
36 *  Dependencies
37 ***************************************/
38 #include "mem.h"
39 #include "error_private.h"       /* ERR_*, ERROR */
40 #define FSE_STATIC_LINKING_ONLY  /* FSE_MIN_TABLELOG */
41 #include "fse.h"
42 #define HUF_STATIC_LINKING_ONLY  /* HUF_TABLELOG_ABSOLUTEMAX */
43 #include "huf.h"
44 
45 
46 /*-****************************************
47 *  FSE Error Management
48 ******************************************/
FSE_isError(size_t code)49 unsigned FSE_isError(size_t code) { return ERR_isError(code); }
50 
FSE_getErrorName(size_t code)51 const char* FSE_getErrorName(size_t code) { return ERR_getErrorName(code); }
52 
53 
54 /* **************************************************************
55 *  HUF Error Management
56 ****************************************************************/
HUF_isError(size_t code)57 unsigned HUF_isError(size_t code) { return ERR_isError(code); }
58 
HUF_getErrorName(size_t code)59 const char* HUF_getErrorName(size_t code) { return ERR_getErrorName(code); }
60 
61 
62 /*-**************************************************************
63 *  FSE NCount encoding-decoding
64 ****************************************************************/
FSE_abs(short a)65 static short FSE_abs(short a) { return (short)(a<0 ? -a : a); }
66 
FSE_readNCount(short * normalizedCounter,unsigned * maxSVPtr,unsigned * tableLogPtr,const void * headerBuffer,size_t hbSize)67 size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
68                  const void* headerBuffer, size_t hbSize)
69 {
70     const BYTE* const istart = (const BYTE*) headerBuffer;
71     const BYTE* const iend = istart + hbSize;
72     const BYTE* ip = istart;
73     int nbBits;
74     int remaining;
75     int threshold;
76     U32 bitStream;
77     int bitCount;
78     unsigned charnum = 0;
79     int previous0 = 0;
80 
81     if (hbSize < 4) return ERROR(srcSize_wrong);
82     bitStream = MEM_readLE32(ip);
83     nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG;   /* extract tableLog */
84     if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
85     bitStream >>= 4;
86     bitCount = 4;
87     *tableLogPtr = nbBits;
88     remaining = (1<<nbBits)+1;
89     threshold = 1<<nbBits;
90     nbBits++;
91 
92     while ((remaining>1) & (charnum<=*maxSVPtr)) {
93         if (previous0) {
94             unsigned n0 = charnum;
95             while ((bitStream & 0xFFFF) == 0xFFFF) {
96                 n0 += 24;
97                 if (ip < iend-5) {
98                     ip += 2;
99                     bitStream = MEM_readLE32(ip) >> bitCount;
100                 } else {
101                     bitStream >>= 16;
102                     bitCount   += 16;
103             }   }
104             while ((bitStream & 3) == 3) {
105                 n0 += 3;
106                 bitStream >>= 2;
107                 bitCount += 2;
108             }
109             n0 += bitStream & 3;
110             bitCount += 2;
111             if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
112             while (charnum < n0) normalizedCounter[charnum++] = 0;
113             if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
114                 ip += bitCount>>3;
115                 bitCount &= 7;
116                 bitStream = MEM_readLE32(ip) >> bitCount;
117             } else {
118                 bitStream >>= 2;
119         }   }
120         {   short const max = (short)((2*threshold-1)-remaining);
121             short count;
122 
123             if ((bitStream & (threshold-1)) < (U32)max) {
124                 count = (short)(bitStream & (threshold-1));
125                 bitCount   += nbBits-1;
126             } else {
127                 count = (short)(bitStream & (2*threshold-1));
128                 if (count >= threshold) count -= max;
129                 bitCount   += nbBits;
130             }
131 
132             count--;   /* extra accuracy */
133             remaining -= FSE_abs(count);
134             normalizedCounter[charnum++] = count;
135             previous0 = !count;
136             while (remaining < threshold) {
137                 nbBits--;
138                 threshold >>= 1;
139             }
140 
141             if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
142                 ip += bitCount>>3;
143                 bitCount &= 7;
144             } else {
145                 bitCount -= (int)(8 * (iend - 4 - ip));
146                 ip = iend - 4;
147             }
148             bitStream = MEM_readLE32(ip) >> (bitCount & 31);
149     }   }   /* while ((remaining>1) & (charnum<=*maxSVPtr)) */
150     if (remaining != 1) return ERROR(corruption_detected);
151     if (bitCount > 32) return ERROR(corruption_detected);
152     *maxSVPtr = charnum-1;
153 
154     ip += (bitCount+7)>>3;
155     return ip-istart;
156 }
157 
158 
159 /*! HUF_readStats() :
160     Read compact Huffman tree, saved by HUF_writeCTable().
161     `huffWeight` is destination buffer.
162     @return : size read from `src` , or an error Code .
163     Note : Needed by HUF_readCTable() and HUF_readDTableX?() .
164 */
HUF_readStats(BYTE * huffWeight,size_t hwSize,U32 * rankStats,U32 * nbSymbolsPtr,U32 * tableLogPtr,const void * src,size_t srcSize)165 size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
166                      U32* nbSymbolsPtr, U32* tableLogPtr,
167                      const void* src, size_t srcSize)
168 {
169     U32 weightTotal;
170     const BYTE* ip = (const BYTE*) src;
171     size_t iSize = ip[0];
172     size_t oSize;
173 
174     /* memset(huffWeight, 0, hwSize);   *//* is not necessary, even though some analyzer complain ... */
175 
176     if (iSize >= 128) {  /* special header */
177         oSize = iSize - 127;
178         iSize = ((oSize+1)/2);
179         if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
180         if (oSize >= hwSize) return ERROR(corruption_detected);
181         ip += 1;
182         {   U32 n;
183             for (n=0; n<oSize; n+=2) {
184                 huffWeight[n]   = ip[n/2] >> 4;
185                 huffWeight[n+1] = ip[n/2] & 15;
186     }   }   }
187     else  {   /* header compressed with FSE (normal case) */
188         if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
189         oSize = FSE_decompress(huffWeight, hwSize-1, ip+1, iSize);   /* max (hwSize-1) values decoded, as last one is implied */
190         if (FSE_isError(oSize)) return oSize;
191     }
192 
193     /* collect weight stats */
194     memset(rankStats, 0, (HUF_TABLELOG_ABSOLUTEMAX + 1) * sizeof(U32));
195     weightTotal = 0;
196     {   U32 n; for (n=0; n<oSize; n++) {
197             if (huffWeight[n] >= HUF_TABLELOG_ABSOLUTEMAX) return ERROR(corruption_detected);
198             rankStats[huffWeight[n]]++;
199             weightTotal += (1 << huffWeight[n]) >> 1;
200     }   }
201 
202     /* get last non-null symbol weight (implied, total must be 2^n) */
203     {   U32 const tableLog = BIT_highbit32(weightTotal) + 1;
204         if (tableLog > HUF_TABLELOG_ABSOLUTEMAX) return ERROR(corruption_detected);
205         *tableLogPtr = tableLog;
206         /* determine last weight */
207         {   U32 const total = 1 << tableLog;
208             U32 const rest = total - weightTotal;
209             U32 const verif = 1 << BIT_highbit32(rest);
210             U32 const lastWeight = BIT_highbit32(rest) + 1;
211             if (verif != rest) return ERROR(corruption_detected);    /* last value must be a clean power of 2 */
212             huffWeight[oSize] = (BYTE)lastWeight;
213             rankStats[lastWeight]++;
214     }   }
215 
216     /* check tree construction validity */
217     if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected);   /* by construction : at least 2 elts of rank 1, must be even */
218 
219     /* results */
220     *nbSymbolsPtr = (U32)(oSize+1);
221     return iSize+1;
222 }
223