1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 ******************************************************************************
5 *
6 *   Copyright (C) 2000-2016, International Business Machines
7 *   Corporation and others.  All Rights Reserved.
8 *
9 ******************************************************************************
10 *   file name:  ucnvmbcs.cpp
11 *   encoding:   UTF-8
12 *   tab size:   8 (not used)
13 *   indentation:4
14 *
15 *   created on: 2000jul03
16 *   created by: Markus W. Scherer
17 *
18 *   The current code in this file replaces the previous implementation
19 *   of conversion code from multi-byte codepages to Unicode and back.
20 *   This implementation supports the following:
21 *   - legacy variable-length codepages with up to 4 bytes per character
22 *   - all Unicode code points (up to 0x10ffff)
23 *   - efficient distinction of unassigned vs. illegal byte sequences
24 *   - it is possible in fromUnicode() to directly deal with simple
25 *     stateful encodings (used for EBCDIC_STATEFUL)
26 *   - it is possible to convert Unicode code points
27 *     to a single zero byte (but not as a fallback except for SBCS)
28 *
29 *   Remaining limitations in fromUnicode:
30 *   - byte sequences must not have leading zero bytes
31 *   - except for SBCS codepages: no fallback mapping from Unicode to a zero byte
32 *   - limitation to up to 4 bytes per character
33 *
34 *   ICU 2.8 (late 2003) adds a secondary data structure which lifts some of these
35 *   limitations and adds m:n character mappings and other features.
36 *   See ucnv_ext.h for details.
37 *
38 *   Change history:
39 *
40 *    5/6/2001       Ram       Moved  MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM_U,
41 *                             MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE_2
42 *                             macros to ucnvmbcs.h file
43 */
44 
45 #include "unicode/utypes.h"
46 
47 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION
48 
49 #include "unicode/ucnv.h"
50 #include "unicode/ucnv_cb.h"
51 #include "unicode/udata.h"
52 #include "unicode/uset.h"
53 #include "unicode/utf8.h"
54 #include "unicode/utf16.h"
55 #include "ucnv_bld.h"
56 #include "ucnvmbcs.h"
57 #include "ucnv_ext.h"
58 #include "ucnv_cnv.h"
59 #include "cmemory.h"
60 #include "cstring.h"
61 #include "umutex.h"
62 #include "ustr_imp.h"
63 
64 /* control optimizations according to the platform */
65 #define MBCS_UNROLL_SINGLE_TO_BMP 1
66 #define MBCS_UNROLL_SINGLE_FROM_BMP 0
67 
68 /*
69  * _MBCSHeader versions 5.3 & 4.3
70  * (Note that the _MBCSHeader version is in addition to the converter formatVersion.)
71  *
72  * This version is optional. Version 5 is used for incompatible data format changes.
73  * makeconv will continue to generate version 4 files if possible.
74  *
75  * Changes from version 4:
76  *
77  * The main difference is an additional _MBCSHeader field with
78  * - the length (number of uint32_t) of the _MBCSHeader
79  * - flags for further incompatible data format changes
80  * - flags for further, backward compatible data format changes
81  *
82  * The MBCS_OPT_FROM_U flag indicates that most of the fromUnicode data is omitted from
83  * the file and needs to be reconstituted at load time.
84  * This requires a utf8Friendly format with an additional mbcsIndex table for fast
85  * (and UTF-8-friendly) fromUnicode conversion for Unicode code points up to maxFastUChar.
86  * (For details about these structures see below, and see ucnvmbcs.h.)
87  *
88  *   utf8Friendly also implies that the fromUnicode mappings are stored in ascending order
89  *   of the Unicode code points. (This requires that the .ucm file has the |0 etc.
90  *   precision markers for all mappings.)
91  *
92  *   All fallbacks have been moved to the extension table, leaving only roundtrips in the
93  *   omitted data that can be reconstituted from the toUnicode data.
94  *
95  *   Of the stage 2 table, the part corresponding to maxFastUChar and below is omitted.
96  *   With only roundtrip mappings in the base fromUnicode data, this part is fully
97  *   redundant with the mbcsIndex and will be reconstituted from that (also using the
98  *   stage 1 table which contains the information about how stage 2 was compacted).
99  *
100  *   The rest of the stage 2 table, the part for code points above maxFastUChar,
101  *   is stored in the file and will be appended to the reconstituted part.
102  *
103  *   The entire fromUBytes array is omitted from the file and will be reconstitued.
104  *   This is done by enumerating all toUnicode roundtrip mappings, performing
105  *   each mapping (using the stage 1 and reconstituted stage 2 tables) and
106  *   writing instead of reading the byte values.
107  *
108  * _MBCSHeader version 4.3
109  *
110  * Change from version 4.2:
111  * - Optional utf8Friendly data structures, with 64-entry stage 3 block
112  *   allocation for parts of the BMP, and an additional mbcsIndex in non-SBCS
113  *   files which can be used instead of stages 1 & 2.
114  *   Faster lookups for roundtrips from most commonly used characters,
115  *   and lookups from UTF-8 byte sequences with a natural bit distribution.
116  *   See ucnvmbcs.h for more details.
117  *
118  * Change from version 4.1:
119  * - Added an optional extension table structure at the end of the .cnv file.
120  *   It is present if the upper bits of the header flags field contains a non-zero
121  *   byte offset to it.
122  *   Files that contain only a conversion table and no base table
123  *   use the special outputType MBCS_OUTPUT_EXT_ONLY.
124  *   These contain the base table name between the MBCS header and the extension
125  *   data.
126  *
127  * Change from version 4.0:
128  * - Replace header.reserved with header.fromUBytesLength so that all
129  *   fields in the data have length.
130  *
131  * Changes from version 3 (for performance improvements):
132  * - new bit distribution for state table entries
133  * - reordered action codes
134  * - new data structure for single-byte fromUnicode
135  *   + stage 2 only contains indexes
136  *   + stage 3 stores 16 bits per character with classification bits 15..8
137  * - no multiplier for stage 1 entries
138  * - stage 2 for non-single-byte codepages contains the index and the flags in
139  *   one 32-bit value
140  * - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit integers
141  *
142  * For more details about old versions of the MBCS data structure, see
143  * the corresponding versions of this file.
144  *
145  * Converting stateless codepage data ---------------------------------------***
146  * (or codepage data with simple states) to Unicode.
147  *
148  * Data structure and algorithm for converting from complex legacy codepages
149  * to Unicode. (Designed before 2000-may-22.)
150  *
151  * The basic idea is that the structure of legacy codepages can be described
152  * with state tables.
153  * When reading a byte stream, each input byte causes a state transition.
154  * Some transitions result in the output of a code point, some result in
155  * "unassigned" or "illegal" output.
156  * This is used here for character conversion.
157  *
158  * The data structure begins with a state table consisting of a row
159  * per state, with 256 entries (columns) per row for each possible input
160  * byte value.
161  * Each entry is 32 bits wide, with two formats distinguished by
162  * the sign bit (bit 31):
163  *
164  * One format for transitional entries (bit 31 not set) for non-final bytes, and
165  * one format for final entries (bit 31 set).
166  * Both formats contain the number of the next state in the same bit
167  * positions.
168  * State 0 is the initial state.
169  *
170  * Most of the time, the offset values of subsequent states are added
171  * up to a scalar value. This value will eventually be the index of
172  * the Unicode code point in a table that follows the state table.
173  * The effect is that the code points for final state table rows
174  * are contiguous. The code points of final state rows follow each other
175  * in the order of the references to those final states by previous
176  * states, etc.
177  *
178  * For some terminal states, the offset is itself the output Unicode
179  * code point (16 bits for a BMP code point or 20 bits for a supplementary
180  * code point (stored as code point minus 0x10000 so that 20 bits are enough).
181  * For others, the code point in the Unicode table is stored with either
182  * one or two code units: one for BMP code points, two for a pair of
183  * surrogates.
184  * All code points for a final state entry take up the same number of code
185  * units, regardless of whether they all actually _use_ the same number
186  * of code units. This is necessary for simple array access.
187  *
188  * An additional feature comes in with what in ICU is called "fallback"
189  * mappings:
190  *
191  * In addition to round-trippable, precise, 1:1 mappings, there are often
192  * mappings defined between similar, though not the same, characters.
193  * Typically, such mappings occur only in fromUnicode mapping tables because
194  * Unicode has a superset repertoire of most other codepages. However, it
195  * is possible to provide such mappings in the toUnicode tables, too.
196  * In this case, the fallback mappings are partly integrated into the
197  * general state tables because the structure of the encoding includes their
198  * byte sequences.
199  * For final entries in an initial state, fallback mappings are stored in
200  * the entry itself like with roundtrip mappings.
201  * For other final entries, they are stored in the code units table if
202  * the entry is for a pair of code units.
203  * For single-unit results in the code units table, there is no space to
204  * alternatively hold a fallback mapping; in this case, the code unit
205  * is stored as U+fffe (unassigned), and the fallback mapping needs to
206  * be looked up by the scalar offset value in a separate table.
207  *
208  * "Unassigned" state entries really mean "structurally unassigned",
209  * i.e., such a byte sequence will never have a mapping result.
210  *
211  * The interpretation of the bits in each entry is as follows:
212  *
213  * Bit 31 not set, not a terminal entry ("transitional"):
214  * 30..24 next state
215  * 23..0  offset delta, to be added up
216  *
217  * Bit 31 set, terminal ("final") entry:
218  * 30..24 next state (regardless of action code)
219  * 23..20 action code:
220  *        action codes 0 and 1 result in precise-mapping Unicode code points
221  *        0  valid byte sequence
222  *           19..16 not used, 0
223  *           15..0  16-bit Unicode BMP code point
224  *                  never U+fffe or U+ffff
225  *        1  valid byte sequence
226  *           19..0  20-bit Unicode supplementary code point
227  *                  never U+fffe or U+ffff
228  *
229  *        action codes 2 and 3 result in fallback (unidirectional-mapping) Unicode code points
230  *        2  valid byte sequence (fallback)
231  *           19..16 not used, 0
232  *           15..0  16-bit Unicode BMP code point as fallback result
233  *        3  valid byte sequence (fallback)
234  *           19..0  20-bit Unicode supplementary code point as fallback result
235  *
236  *        action codes 4 and 5 may result in roundtrip/fallback/unassigned/illegal results
237  *        depending on the code units they result in
238  *        4  valid byte sequence
239  *           19..9  not used, 0
240  *            8..0  final offset delta
241  *                  pointing to one 16-bit code unit which may be
242  *                  fffe  unassigned -- look for a fallback for this offset
243  *                  ffff  illegal
244  *        5  valid byte sequence
245  *           19..9  not used, 0
246  *            8..0  final offset delta
247  *                  pointing to two 16-bit code units
248  *                  (typically UTF-16 surrogates)
249  *                  the result depends on the first code unit as follows:
250  *                  0000..d7ff  roundtrip BMP code point (1st alone)
251  *                  d800..dbff  roundtrip surrogate pair (1st, 2nd)
252  *                  dc00..dfff  fallback surrogate pair (1st-400, 2nd)
253  *                  e000        roundtrip BMP code point (2nd alone)
254  *                  e001        fallback BMP code point (2nd alone)
255  *                  fffe        unassigned
256  *                  ffff        illegal
257  *           (the final offset deltas are at most 255 * 2,
258  *            times 2 because of storing code unit pairs)
259  *
260  *        6  unassigned byte sequence
261  *           19..16 not used, 0
262  *           15..0  16-bit Unicode BMP code point U+fffe (new with version 2)
263  *                  this does not contain a final offset delta because the main
264  *                  purpose of this action code is to save scalar offset values;
265  *                  therefore, fallback values cannot be assigned to byte
266  *                  sequences that result in this action code
267  *        7  illegal byte sequence
268  *           19..16 not used, 0
269  *           15..0  16-bit Unicode BMP code point U+ffff (new with version 2)
270  *        8  state change only
271  *           19..0  not used, 0
272  *           useful for state changes in simple stateful encodings,
273  *           at Shift-In/Shift-Out codes
274  *
275  *
276  *        9..15 reserved for future use
277  *           current implementations will only perform a state change
278  *           and ignore bits 19..0
279  *
280  * An encoding with contiguous ranges of unassigned byte sequences, like
281  * Shift-JIS and especially EUC-TW, can be stored efficiently by having
282  * at least two states for the trail bytes:
283  * One trail byte state that results in code points, and one that only
284  * has "unassigned" and "illegal" terminal states.
285  *
286  * Note: partly by accident, this data structure supports simple stateful
287  * encodings without any additional logic.
288  * Currently, only simple Shift-In/Shift-Out schemes are handled with
289  * appropriate state tables (especially EBCDIC_STATEFUL!).
290  *
291  * MBCS version 2 added:
292  * unassigned and illegal action codes have U+fffe and U+ffff
293  * instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP()
294  *
295  * Converting from Unicode to codepage bytes --------------------------------***
296  *
297  * The conversion data structure for fromUnicode is designed for the known
298  * structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to
299  * a sequence of 1..4 bytes, in addition to a flag that indicates if there is
300  * a roundtrip mapping.
301  *
302  * The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3
303  * like in the character properties table.
304  * The beginning of the trie is at offsetFromUTable, the beginning of stage 3
305  * with the resulting bytes is at offsetFromUBytes.
306  *
307  * Beginning with version 4, single-byte codepages have a significantly different
308  * trie compared to other codepages.
309  * In all cases, the entry in stage 1 is directly the index of the block of
310  * 64 entries in stage 2.
311  *
312  * Single-byte lookup:
313  *
314  * Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3.
315  * Stage 3 contains one 16-bit word per result:
316  * Bits 15..8 indicate the kind of result:
317  *    f  roundtrip result
318  *    c  fallback result from private-use code point
319  *    8  fallback result from other code points
320  *    0  unassigned
321  * Bits 7..0 contain the codepage byte. A zero byte is always possible.
322  *
323  * In version 4.3, the runtime code can build an sbcsIndex for a utf8Friendly
324  * file. For 2-byte UTF-8 byte sequences and some 3-byte sequences the lookup
325  * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
326  * ASCII code points can be looked up with a linear array access into stage 3.
327  * See maxFastUChar and other details in ucnvmbcs.h.
328  *
329  * Multi-byte lookup:
330  *
331  * Stage 2 contains a 32-bit word for each 16-block in stage 3:
332  * Bits 31..16 contain flags for which stage 3 entries contain roundtrip results
333  *             test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)
334  *             If this test is false, then a non-zero result will be interpreted as
335  *             a fallback mapping.
336  * Bits 15..0  contain the index to stage 3, which must be multiplied by 16*(bytes per char)
337  *
338  * Stage 3 contains 2, 3, or 4 bytes per result.
339  * 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness,
340  * while 3 bytes are stored as bytes in big-endian order.
341  * Leading zero bytes are ignored, and the number of bytes is counted.
342  * A zero byte mapping result is possible as a roundtrip result.
343  * For some output types, the actual result is processed from this;
344  * see ucnv_MBCSFromUnicodeWithOffsets().
345  *
346  * Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10),
347  * or (version 3 and up) for BMP-only codepages, it contains 64 entries.
348  *
349  * In version 4.3, a utf8Friendly file contains an mbcsIndex table.
350  * For 2-byte UTF-8 byte sequences and most 3-byte sequences the lookup
351  * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
352  * ASCII code points can be looked up with a linear array access into stage 3.
353  * See maxFastUChar, mbcsIndex and other details in ucnvmbcs.h.
354  *
355  * In version 3, stage 2 blocks may overlap by multiples of the multiplier
356  * for compaction.
357  * In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks)
358  * may overlap by any number of entries.
359  *
360  * MBCS version 2 added:
361  * the converter checks for known output types, which allows
362  * adding new ones without crashing an unaware converter
363  */
364 
365 /**
366  * Callback from ucnv_MBCSEnumToUnicode(), takes 32 mappings from
367  * consecutive sequences of bytes, starting from the one encoded in value,
368  * to Unicode code points. (Multiple mappings to reduce per-function call overhead.)
369  * Does not currently support m:n mappings or reverse fallbacks.
370  * This function will not be called for sequences of bytes with leading zeros.
371  *
372  * @param context an opaque pointer, as passed into ucnv_MBCSEnumToUnicode()
373  * @param value contains 1..4 bytes of the first byte sequence, right-aligned
374  * @param codePoints resulting Unicode code points, or negative if a byte sequence does
375  *        not map to anything
376  * @return TRUE to continue enumeration, FALSE to stop
377  */
378 typedef UBool U_CALLCONV
379 UConverterEnumToUCallback(const void *context, uint32_t value, UChar32 codePoints[32]);
380 
381 static void U_CALLCONV
382 ucnv_MBCSLoad(UConverterSharedData *sharedData,
383           UConverterLoadArgs *pArgs,
384           const uint8_t *raw,
385           UErrorCode *pErrorCode);
386 
387 static void U_CALLCONV
388 ucnv_MBCSUnload(UConverterSharedData *sharedData);
389 
390 static void U_CALLCONV
391 ucnv_MBCSOpen(UConverter *cnv,
392               UConverterLoadArgs *pArgs,
393               UErrorCode *pErrorCode);
394 
395 static UChar32 U_CALLCONV
396 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
397                   UErrorCode *pErrorCode);
398 
399 static void U_CALLCONV
400 ucnv_MBCSGetStarters(const UConverter* cnv,
401                  UBool starters[256],
402                  UErrorCode *pErrorCode);
403 
404 U_CDECL_BEGIN
405 static const char* U_CALLCONV
406 ucnv_MBCSGetName(const UConverter *cnv);
407 U_CDECL_END
408 
409 static void U_CALLCONV
410 ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
411               int32_t offsetIndex,
412               UErrorCode *pErrorCode);
413 
414 static UChar32 U_CALLCONV
415 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
416                   UErrorCode *pErrorCode);
417 
418 static void U_CALLCONV
419 ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
420                   UConverterToUnicodeArgs *pToUArgs,
421                   UErrorCode *pErrorCode);
422 
423 static void U_CALLCONV
424 ucnv_MBCSGetUnicodeSet(const UConverter *cnv,
425                    const USetAdder *sa,
426                    UConverterUnicodeSet which,
427                    UErrorCode *pErrorCode);
428 
429 static void U_CALLCONV
430 ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
431                   UConverterToUnicodeArgs *pToUArgs,
432                   UErrorCode *pErrorCode);
433 
434 static const UConverterImpl _SBCSUTF8Impl={
435     UCNV_MBCS,
436 
437     ucnv_MBCSLoad,
438     ucnv_MBCSUnload,
439 
440     ucnv_MBCSOpen,
441     NULL,
442     NULL,
443 
444     ucnv_MBCSToUnicodeWithOffsets,
445     ucnv_MBCSToUnicodeWithOffsets,
446     ucnv_MBCSFromUnicodeWithOffsets,
447     ucnv_MBCSFromUnicodeWithOffsets,
448     ucnv_MBCSGetNextUChar,
449 
450     ucnv_MBCSGetStarters,
451     ucnv_MBCSGetName,
452     ucnv_MBCSWriteSub,
453     NULL,
454     ucnv_MBCSGetUnicodeSet,
455 
456     NULL,
457     ucnv_SBCSFromUTF8
458 };
459 
460 static const UConverterImpl _DBCSUTF8Impl={
461     UCNV_MBCS,
462 
463     ucnv_MBCSLoad,
464     ucnv_MBCSUnload,
465 
466     ucnv_MBCSOpen,
467     NULL,
468     NULL,
469 
470     ucnv_MBCSToUnicodeWithOffsets,
471     ucnv_MBCSToUnicodeWithOffsets,
472     ucnv_MBCSFromUnicodeWithOffsets,
473     ucnv_MBCSFromUnicodeWithOffsets,
474     ucnv_MBCSGetNextUChar,
475 
476     ucnv_MBCSGetStarters,
477     ucnv_MBCSGetName,
478     ucnv_MBCSWriteSub,
479     NULL,
480     ucnv_MBCSGetUnicodeSet,
481 
482     NULL,
483     ucnv_DBCSFromUTF8
484 };
485 
486 static const UConverterImpl _MBCSImpl={
487     UCNV_MBCS,
488 
489     ucnv_MBCSLoad,
490     ucnv_MBCSUnload,
491 
492     ucnv_MBCSOpen,
493     NULL,
494     NULL,
495 
496     ucnv_MBCSToUnicodeWithOffsets,
497     ucnv_MBCSToUnicodeWithOffsets,
498     ucnv_MBCSFromUnicodeWithOffsets,
499     ucnv_MBCSFromUnicodeWithOffsets,
500     ucnv_MBCSGetNextUChar,
501 
502     ucnv_MBCSGetStarters,
503     ucnv_MBCSGetName,
504     ucnv_MBCSWriteSub,
505     NULL,
506     ucnv_MBCSGetUnicodeSet,
507     NULL,
508     NULL
509 };
510 
511 /* Static data is in tools/makeconv/ucnvstat.c for data-based
512  * converters. Be sure to update it as well.
513  */
514 
515 const UConverterSharedData _MBCSData={
516     sizeof(UConverterSharedData), 1,
517     NULL, NULL, FALSE, TRUE, &_MBCSImpl,
518     0, UCNV_MBCS_TABLE_INITIALIZER
519 };
520 
521 
522 /* GB 18030 data ------------------------------------------------------------ */
523 
524 /* helper macros for linear values for GB 18030 four-byte sequences */
525 #define LINEAR_18030(a, b, c, d) ((((a)*10+(b))*126L+(c))*10L+(d))
526 
527 #define LINEAR_18030_BASE LINEAR_18030(0x81, 0x30, 0x81, 0x30)
528 
529 #define LINEAR(x) LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff)
530 
531 /*
532  * Some ranges of GB 18030 where both the Unicode code points and the
533  * GB four-byte sequences are contiguous and are handled algorithmically by
534  * the special callback functions below.
535  * The values are start & end of Unicode & GB codes.
536  *
537  * Note that single surrogates are not mapped by GB 18030
538  * as of the re-released mapping tables from 2000-nov-30.
539  */
540 static const uint32_t
541 gb18030Ranges[14][4]={
542     {0x10000, 0x10FFFF, LINEAR(0x90308130), LINEAR(0xE3329A35)},
543     {0x9FA6, 0xD7FF, LINEAR(0x82358F33), LINEAR(0x8336C738)},
544     {0x0452, 0x1E3E, LINEAR(0x8130D330), LINEAR(0x8135F436)},
545     {0x1E40, 0x200F, LINEAR(0x8135F438), LINEAR(0x8136A531)},
546     {0xE865, 0xF92B, LINEAR(0x8336D030), LINEAR(0x84308534)},
547     {0x2643, 0x2E80, LINEAR(0x8137A839), LINEAR(0x8138FD38)},
548     {0xFA2A, 0xFE2F, LINEAR(0x84309C38), LINEAR(0x84318537)},
549     {0x3CE1, 0x4055, LINEAR(0x8231D438), LINEAR(0x8232AF32)},
550     {0x361B, 0x3917, LINEAR(0x8230A633), LINEAR(0x8230F237)},
551     {0x49B8, 0x4C76, LINEAR(0x8234A131), LINEAR(0x8234E733)},
552     {0x4160, 0x4336, LINEAR(0x8232C937), LINEAR(0x8232F837)},
553     {0x478E, 0x4946, LINEAR(0x8233E838), LINEAR(0x82349638)},
554     {0x44D7, 0x464B, LINEAR(0x8233A339), LINEAR(0x8233C931)},
555     {0xFFE6, 0xFFFF, LINEAR(0x8431A234), LINEAR(0x8431A439)}
556 };
557 
558 /* bit flag for UConverter.options indicating GB 18030 special handling */
559 #define _MBCS_OPTION_GB18030 0x8000
560 
561 /* bit flag for UConverter.options indicating KEIS,JEF,JIF special handling */
562 #define _MBCS_OPTION_KEIS 0x01000
563 #define _MBCS_OPTION_JEF  0x02000
564 #define _MBCS_OPTION_JIPS 0x04000
565 
566 #define KEIS_SO_CHAR_1 0x0A
567 #define KEIS_SO_CHAR_2 0x42
568 #define KEIS_SI_CHAR_1 0x0A
569 #define KEIS_SI_CHAR_2 0x41
570 
571 #define JEF_SO_CHAR 0x28
572 #define JEF_SI_CHAR 0x29
573 
574 #define JIPS_SO_CHAR_1 0x1A
575 #define JIPS_SO_CHAR_2 0x70
576 #define JIPS_SI_CHAR_1 0x1A
577 #define JIPS_SI_CHAR_2 0x71
578 
579 enum SISO_Option {
580     SI,
581     SO
582 };
583 typedef enum SISO_Option SISO_Option;
584 
getSISOBytes(SISO_Option option,uint32_t cnvOption,uint8_t * value)585 static int32_t getSISOBytes(SISO_Option option, uint32_t cnvOption, uint8_t *value) {
586     int32_t SISOLength = 0;
587 
588     switch (option) {
589         case SI:
590             if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
591                 value[0] = KEIS_SI_CHAR_1;
592                 value[1] = KEIS_SI_CHAR_2;
593                 SISOLength = 2;
594             } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
595                 value[0] = JEF_SI_CHAR;
596                 SISOLength = 1;
597             } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
598                 value[0] = JIPS_SI_CHAR_1;
599                 value[1] = JIPS_SI_CHAR_2;
600                 SISOLength = 2;
601             } else {
602                 value[0] = UCNV_SI;
603                 SISOLength = 1;
604             }
605             break;
606         case SO:
607             if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
608                 value[0] = KEIS_SO_CHAR_1;
609                 value[1] = KEIS_SO_CHAR_2;
610                 SISOLength = 2;
611             } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
612                 value[0] = JEF_SO_CHAR;
613                 SISOLength = 1;
614             } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
615                 value[0] = JIPS_SO_CHAR_1;
616                 value[1] = JIPS_SO_CHAR_2;
617                 SISOLength = 2;
618             } else {
619                 value[0] = UCNV_SO;
620                 SISOLength = 1;
621             }
622             break;
623         default:
624             /* Should never happen. */
625             break;
626     }
627 
628     return SISOLength;
629 }
630 
631 /* Miscellaneous ------------------------------------------------------------ */
632 
633 /* similar to ucnv_MBCSGetNextUChar() but recursive */
634 static UBool
enumToU(UConverterMBCSTable * mbcsTable,int8_t stateProps[],int32_t state,uint32_t offset,uint32_t value,UConverterEnumToUCallback * callback,const void * context,UErrorCode * pErrorCode)635 enumToU(UConverterMBCSTable *mbcsTable, int8_t stateProps[],
636         int32_t state, uint32_t offset,
637         uint32_t value,
638         UConverterEnumToUCallback *callback, const void *context,
639         UErrorCode *pErrorCode) {
640     UChar32 codePoints[32];
641     const int32_t *row;
642     const uint16_t *unicodeCodeUnits;
643     UChar32 anyCodePoints;
644     int32_t b, limit;
645 
646     row=mbcsTable->stateTable[state];
647     unicodeCodeUnits=mbcsTable->unicodeCodeUnits;
648 
649     value<<=8;
650     anyCodePoints=-1;  /* becomes non-negative if there is a mapping */
651 
652     b=(stateProps[state]&0x38)<<2;
653     if(b==0 && stateProps[state]>=0x40) {
654         /* skip byte sequences with leading zeros because they are not stored in the fromUnicode table */
655         codePoints[0]=U_SENTINEL;
656         b=1;
657     }
658     limit=((stateProps[state]&7)+1)<<5;
659     while(b<limit) {
660         int32_t entry=row[b];
661         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
662             int32_t nextState=MBCS_ENTRY_TRANSITION_STATE(entry);
663             if(stateProps[nextState]>=0) {
664                 /* recurse to a state with non-ignorable actions */
665                 if(!enumToU(
666                         mbcsTable, stateProps, nextState,
667                         offset+MBCS_ENTRY_TRANSITION_OFFSET(entry),
668                         value|(uint32_t)b,
669                         callback, context,
670                         pErrorCode)) {
671                     return FALSE;
672                 }
673             }
674             codePoints[b&0x1f]=U_SENTINEL;
675         } else {
676             UChar32 c;
677             int32_t action;
678 
679             /*
680              * An if-else-if chain provides more reliable performance for
681              * the most common cases compared to a switch.
682              */
683             action=MBCS_ENTRY_FINAL_ACTION(entry);
684             if(action==MBCS_STATE_VALID_DIRECT_16) {
685                 /* output BMP code point */
686                 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
687             } else if(action==MBCS_STATE_VALID_16) {
688                 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
689                 c=unicodeCodeUnits[finalOffset];
690                 if(c<0xfffe) {
691                     /* output BMP code point */
692                 } else {
693                     c=U_SENTINEL;
694                 }
695             } else if(action==MBCS_STATE_VALID_16_PAIR) {
696                 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
697                 c=unicodeCodeUnits[finalOffset++];
698                 if(c<0xd800) {
699                     /* output BMP code point below 0xd800 */
700                 } else if(c<=0xdbff) {
701                     /* output roundtrip or fallback supplementary code point */
702                     c=((c&0x3ff)<<10)+unicodeCodeUnits[finalOffset]+(0x10000-0xdc00);
703                 } else if(c==0xe000) {
704                     /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
705                     c=unicodeCodeUnits[finalOffset];
706                 } else {
707                     c=U_SENTINEL;
708                 }
709             } else if(action==MBCS_STATE_VALID_DIRECT_20) {
710                 /* output supplementary code point */
711                 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
712             } else {
713                 c=U_SENTINEL;
714             }
715 
716             codePoints[b&0x1f]=c;
717             anyCodePoints&=c;
718         }
719         if(((++b)&0x1f)==0) {
720             if(anyCodePoints>=0) {
721                 if(!callback(context, value|(uint32_t)(b-0x20), codePoints)) {
722                     return FALSE;
723                 }
724                 anyCodePoints=-1;
725             }
726         }
727     }
728     return TRUE;
729 }
730 
731 /*
732  * Only called if stateProps[state]==-1.
733  * A recursive call may do stateProps[state]|=0x40 if this state is the target of an
734  * MBCS_STATE_CHANGE_ONLY.
735  */
736 static int8_t
getStateProp(const int32_t (* stateTable)[256],int8_t stateProps[],int state)737 getStateProp(const int32_t (*stateTable)[256], int8_t stateProps[], int state) {
738     const int32_t *row;
739     int32_t min, max, entry, nextState;
740 
741     row=stateTable[state];
742     stateProps[state]=0;
743 
744     /* find first non-ignorable state */
745     for(min=0;; ++min) {
746         entry=row[min];
747         nextState=MBCS_ENTRY_STATE(entry);
748         if(stateProps[nextState]==-1) {
749             getStateProp(stateTable, stateProps, nextState);
750         }
751         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
752             if(stateProps[nextState]>=0) {
753                 break;
754             }
755         } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
756             break;
757         }
758         if(min==0xff) {
759             stateProps[state]=-0x40;  /* (int8_t)0xc0 */
760             return stateProps[state];
761         }
762     }
763     stateProps[state]|=(int8_t)((min>>5)<<3);
764 
765     /* find last non-ignorable state */
766     for(max=0xff; min<max; --max) {
767         entry=row[max];
768         nextState=MBCS_ENTRY_STATE(entry);
769         if(stateProps[nextState]==-1) {
770             getStateProp(stateTable, stateProps, nextState);
771         }
772         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
773             if(stateProps[nextState]>=0) {
774                 break;
775             }
776         } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
777             break;
778         }
779     }
780     stateProps[state]|=(int8_t)(max>>5);
781 
782     /* recurse further and collect direct-state information */
783     while(min<=max) {
784         entry=row[min];
785         nextState=MBCS_ENTRY_STATE(entry);
786         if(stateProps[nextState]==-1) {
787             getStateProp(stateTable, stateProps, nextState);
788         }
789         if(MBCS_ENTRY_IS_FINAL(entry)) {
790             stateProps[nextState]|=0x40;
791             if(MBCS_ENTRY_FINAL_ACTION(entry)<=MBCS_STATE_FALLBACK_DIRECT_20) {
792                 stateProps[state]|=0x40;
793             }
794         }
795         ++min;
796     }
797     return stateProps[state];
798 }
799 
800 /*
801  * Internal function enumerating the toUnicode data of an MBCS converter.
802  * Currently only used for reconstituting data for a MBCS_OPT_NO_FROM_U
803  * table, but could also be used for a future ucnv_getUnicodeSet() option
804  * that includes reverse fallbacks (after updating this function's implementation).
805  * Currently only handles roundtrip mappings.
806  * Does not currently handle extensions.
807  */
808 static void
ucnv_MBCSEnumToUnicode(UConverterMBCSTable * mbcsTable,UConverterEnumToUCallback * callback,const void * context,UErrorCode * pErrorCode)809 ucnv_MBCSEnumToUnicode(UConverterMBCSTable *mbcsTable,
810                        UConverterEnumToUCallback *callback, const void *context,
811                        UErrorCode *pErrorCode) {
812     /*
813      * Properties for each state, to speed up the enumeration.
814      * Ignorable actions are unassigned/illegal/state-change-only:
815      * They do not lead to mappings.
816      *
817      * Bits 7..6:
818      * 1 direct/initial state (stateful converters have multiple)
819      * 0 non-initial state with transitions or with non-ignorable result actions
820      * -1 final state with only ignorable actions
821      *
822      * Bits 5..3:
823      * The lowest byte value with non-ignorable actions is
824      * value<<5 (rounded down).
825      *
826      * Bits 2..0:
827      * The highest byte value with non-ignorable actions is
828      * (value<<5)&0x1f (rounded up).
829      */
830     int8_t stateProps[MBCS_MAX_STATE_COUNT];
831     int32_t state;
832 
833     uprv_memset(stateProps, -1, sizeof(stateProps));
834 
835     /* recurse from state 0 and set all stateProps */
836     getStateProp(mbcsTable->stateTable, stateProps, 0);
837 
838     for(state=0; state<mbcsTable->countStates; ++state) {
839         /*if(stateProps[state]==-1) {
840             printf("unused/unreachable <icu:state> %d\n", state);
841         }*/
842         if(stateProps[state]>=0x40) {
843             /* start from each direct state */
844             enumToU(
845                 mbcsTable, stateProps, state, 0, 0,
846                 callback, context,
847                 pErrorCode);
848         }
849     }
850 }
851 
852 U_CFUNC void
ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData * sharedData,const USetAdder * sa,UConverterUnicodeSet which,UConverterSetFilter filter,UErrorCode * pErrorCode)853 ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData *sharedData,
854                                          const USetAdder *sa,
855                                          UConverterUnicodeSet which,
856                                          UConverterSetFilter filter,
857                                          UErrorCode *pErrorCode) {
858     const UConverterMBCSTable *mbcsTable;
859     const uint16_t *table;
860 
861     uint32_t st3;
862     uint16_t st1, maxStage1, st2;
863 
864     UChar32 c;
865 
866     /* enumerate the from-Unicode trie table */
867     mbcsTable=&sharedData->mbcs;
868     table=mbcsTable->fromUnicodeTable;
869     if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
870         maxStage1=0x440;
871     } else {
872         maxStage1=0x40;
873     }
874 
875     c=0; /* keep track of the current code point while enumerating */
876 
877     if(mbcsTable->outputType==MBCS_OUTPUT_1) {
878         const uint16_t *stage2, *stage3, *results;
879         uint16_t minValue;
880 
881         results=(const uint16_t *)mbcsTable->fromUnicodeBytes;
882 
883         /*
884          * Set a threshold variable for selecting which mappings to use.
885          * See ucnv_MBCSSingleFromBMPWithOffsets() and
886          * MBCS_SINGLE_RESULT_FROM_U() for details.
887          */
888         if(which==UCNV_ROUNDTRIP_SET) {
889             /* use only roundtrips */
890             minValue=0xf00;
891         } else /* UCNV_ROUNDTRIP_AND_FALLBACK_SET */ {
892             /* use all roundtrip and fallback results */
893             minValue=0x800;
894         }
895 
896         for(st1=0; st1<maxStage1; ++st1) {
897             st2=table[st1];
898             if(st2>maxStage1) {
899                 stage2=table+st2;
900                 for(st2=0; st2<64; ++st2) {
901                     if((st3=stage2[st2])!=0) {
902                         /* read the stage 3 block */
903                         stage3=results+st3;
904 
905                         do {
906                             if(*stage3++>=minValue) {
907                                 sa->add(sa->set, c);
908                             }
909                         } while((++c&0xf)!=0);
910                     } else {
911                         c+=16; /* empty stage 3 block */
912                     }
913                 }
914             } else {
915                 c+=1024; /* empty stage 2 block */
916             }
917         }
918     } else {
919         const uint32_t *stage2;
920         const uint8_t *stage3, *bytes;
921         uint32_t st3Multiplier;
922         uint32_t value;
923         UBool useFallback;
924 
925         bytes=mbcsTable->fromUnicodeBytes;
926 
927         useFallback=(UBool)(which==UCNV_ROUNDTRIP_AND_FALLBACK_SET);
928 
929         switch(mbcsTable->outputType) {
930         case MBCS_OUTPUT_3:
931         case MBCS_OUTPUT_4_EUC:
932             st3Multiplier=3;
933             break;
934         case MBCS_OUTPUT_4:
935             st3Multiplier=4;
936             break;
937         default:
938             st3Multiplier=2;
939             break;
940         }
941 
942         for(st1=0; st1<maxStage1; ++st1) {
943             st2=table[st1];
944             if(st2>(maxStage1>>1)) {
945                 stage2=(const uint32_t *)table+st2;
946                 for(st2=0; st2<64; ++st2) {
947                     if((st3=stage2[st2])!=0) {
948                         /* read the stage 3 block */
949                         stage3=bytes+st3Multiplier*16*(uint32_t)(uint16_t)st3;
950 
951                         /* get the roundtrip flags for the stage 3 block */
952                         st3>>=16;
953 
954                         /*
955                          * Add code points for which the roundtrip flag is set,
956                          * or which map to non-zero bytes if we use fallbacks.
957                          * See ucnv_MBCSFromUnicodeWithOffsets() for details.
958                          */
959                         switch(filter) {
960                         case UCNV_SET_FILTER_NONE:
961                             do {
962                                 if(st3&1) {
963                                     sa->add(sa->set, c);
964                                     stage3+=st3Multiplier;
965                                 } else if(useFallback) {
966                                     uint8_t b=0;
967                                     switch(st3Multiplier) {
968                                     case 4:
969                                         b|=*stage3++;
970                                         U_FALLTHROUGH;
971                                     case 3:
972                                         b|=*stage3++;
973                                         U_FALLTHROUGH;
974                                     case 2:
975                                         b|=stage3[0]|stage3[1];
976                                         stage3+=2;
977                                         U_FALLTHROUGH;
978                                     default:
979                                         break;
980                                     }
981                                     if(b!=0) {
982                                         sa->add(sa->set, c);
983                                     }
984                                 }
985                                 st3>>=1;
986                             } while((++c&0xf)!=0);
987                             break;
988                         case UCNV_SET_FILTER_DBCS_ONLY:
989                              /* Ignore single-byte results (<0x100). */
990                             do {
991                                 if(((st3&1)!=0 || useFallback) && *((const uint16_t *)stage3)>=0x100) {
992                                     sa->add(sa->set, c);
993                                 }
994                                 st3>>=1;
995                                 stage3+=2;  /* +=st3Multiplier */
996                             } while((++c&0xf)!=0);
997                             break;
998                         case UCNV_SET_FILTER_2022_CN:
999                              /* Only add code points that map to CNS 11643 planes 1 & 2 for non-EXT ISO-2022-CN. */
1000                             do {
1001                                 if(((st3&1)!=0 || useFallback) && ((value=*stage3)==0x81 || value==0x82)) {
1002                                     sa->add(sa->set, c);
1003                                 }
1004                                 st3>>=1;
1005                                 stage3+=3;  /* +=st3Multiplier */
1006                             } while((++c&0xf)!=0);
1007                             break;
1008                         case UCNV_SET_FILTER_SJIS:
1009                              /* Only add code points that map to Shift-JIS codes corresponding to JIS X 0208. */
1010                             do {
1011                                 if(((st3&1)!=0 || useFallback) && (value=*((const uint16_t *)stage3))>=0x8140 && value<=0xeffc) {
1012                                     sa->add(sa->set, c);
1013                                 }
1014                                 st3>>=1;
1015                                 stage3+=2;  /* +=st3Multiplier */
1016                             } while((++c&0xf)!=0);
1017                             break;
1018                         case UCNV_SET_FILTER_GR94DBCS:
1019                             /* Only add code points that map to ISO 2022 GR 94 DBCS codes (each byte A1..FE). */
1020                             do {
1021                                 if( ((st3&1)!=0 || useFallback) &&
1022                                     (uint16_t)((value=*((const uint16_t *)stage3)) - 0xa1a1)<=(0xfefe - 0xa1a1) &&
1023                                     (uint8_t)(value-0xa1)<=(0xfe - 0xa1)
1024                                 ) {
1025                                     sa->add(sa->set, c);
1026                                 }
1027                                 st3>>=1;
1028                                 stage3+=2;  /* +=st3Multiplier */
1029                             } while((++c&0xf)!=0);
1030                             break;
1031                         case UCNV_SET_FILTER_HZ:
1032                             /* Only add code points that are suitable for HZ DBCS (lead byte A1..FD). */
1033                             do {
1034                                 if( ((st3&1)!=0 || useFallback) &&
1035                                     (uint16_t)((value=*((const uint16_t *)stage3))-0xa1a1)<=(0xfdfe - 0xa1a1) &&
1036                                     (uint8_t)(value-0xa1)<=(0xfe - 0xa1)
1037                                 ) {
1038                                     sa->add(sa->set, c);
1039                                 }
1040                                 st3>>=1;
1041                                 stage3+=2;  /* +=st3Multiplier */
1042                             } while((++c&0xf)!=0);
1043                             break;
1044                         default:
1045                             *pErrorCode=U_INTERNAL_PROGRAM_ERROR;
1046                             return;
1047                         }
1048                     } else {
1049                         c+=16; /* empty stage 3 block */
1050                     }
1051                 }
1052             } else {
1053                 c+=1024; /* empty stage 2 block */
1054             }
1055         }
1056     }
1057 
1058     ucnv_extGetUnicodeSet(sharedData, sa, which, filter, pErrorCode);
1059 }
1060 
1061 U_CFUNC void
ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData * sharedData,const USetAdder * sa,UConverterUnicodeSet which,UErrorCode * pErrorCode)1062 ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData *sharedData,
1063                                  const USetAdder *sa,
1064                                  UConverterUnicodeSet which,
1065                                  UErrorCode *pErrorCode) {
1066     ucnv_MBCSGetFilteredUnicodeSetForUnicode(
1067         sharedData, sa, which,
1068         sharedData->mbcs.outputType==MBCS_OUTPUT_DBCS_ONLY ?
1069             UCNV_SET_FILTER_DBCS_ONLY :
1070             UCNV_SET_FILTER_NONE,
1071         pErrorCode);
1072 }
1073 
1074 static void U_CALLCONV
ucnv_MBCSGetUnicodeSet(const UConverter * cnv,const USetAdder * sa,UConverterUnicodeSet which,UErrorCode * pErrorCode)1075 ucnv_MBCSGetUnicodeSet(const UConverter *cnv,
1076                    const USetAdder *sa,
1077                    UConverterUnicodeSet which,
1078                    UErrorCode *pErrorCode) {
1079     if(cnv->options&_MBCS_OPTION_GB18030) {
1080         sa->addRange(sa->set, 0, 0xd7ff);
1081         sa->addRange(sa->set, 0xe000, 0x10ffff);
1082     } else {
1083         ucnv_MBCSGetUnicodeSetForUnicode(cnv->sharedData, sa, which, pErrorCode);
1084     }
1085 }
1086 
1087 /* conversion extensions for input not in the main table -------------------- */
1088 
1089 /*
1090  * Hardcoded extension handling for GB 18030.
1091  * Definition of LINEAR macros and gb18030Ranges see near the beginning of the file.
1092  *
1093  * In the future, conversion extensions may handle m:n mappings and delta tables,
1094  * see http://source.icu-project.org/repos/icu/icuhtml/trunk/design/conversion/conversion_extensions.html
1095  *
1096  * If an input character cannot be mapped, then these functions set an error
1097  * code. The framework will then call the callback function.
1098  */
1099 
1100 /*
1101  * @return if(U_FAILURE) return the code point for cnv->fromUChar32
1102  *         else return 0 after output has been written to the target
1103  */
1104 static UChar32
_extFromU(UConverter * cnv,const UConverterSharedData * sharedData,UChar32 cp,const UChar ** source,const UChar * sourceLimit,uint8_t ** target,const uint8_t * targetLimit,int32_t ** offsets,int32_t sourceIndex,UBool flush,UErrorCode * pErrorCode)1105 _extFromU(UConverter *cnv, const UConverterSharedData *sharedData,
1106           UChar32 cp,
1107           const UChar **source, const UChar *sourceLimit,
1108           uint8_t **target, const uint8_t *targetLimit,
1109           int32_t **offsets, int32_t sourceIndex,
1110           UBool flush,
1111           UErrorCode *pErrorCode) {
1112     const int32_t *cx;
1113 
1114     cnv->useSubChar1=FALSE;
1115 
1116     if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
1117         ucnv_extInitialMatchFromU(
1118             cnv, cx,
1119             cp, source, sourceLimit,
1120             (char **)target, (char *)targetLimit,
1121             offsets, sourceIndex,
1122             flush,
1123             pErrorCode)
1124     ) {
1125         return 0; /* an extension mapping handled the input */
1126     }
1127 
1128     /* GB 18030 */
1129     if((cnv->options&_MBCS_OPTION_GB18030)!=0) {
1130         const uint32_t *range;
1131         int32_t i;
1132 
1133         range=gb18030Ranges[0];
1134         for(i=0; i<UPRV_LENGTHOF(gb18030Ranges); range+=4, ++i) {
1135             if(range[0]<=(uint32_t)cp && (uint32_t)cp<=range[1]) {
1136                 /* found the Unicode code point, output the four-byte sequence for it */
1137                 uint32_t linear;
1138                 char bytes[4];
1139 
1140                 /* get the linear value of the first GB 18030 code in this range */
1141                 linear=range[2]-LINEAR_18030_BASE;
1142 
1143                 /* add the offset from the beginning of the range */
1144                 linear+=((uint32_t)cp-range[0]);
1145 
1146                 /* turn this into a four-byte sequence */
1147                 bytes[3]=(char)(0x30+linear%10); linear/=10;
1148                 bytes[2]=(char)(0x81+linear%126); linear/=126;
1149                 bytes[1]=(char)(0x30+linear%10); linear/=10;
1150                 bytes[0]=(char)(0x81+linear);
1151 
1152                 /* output this sequence */
1153                 ucnv_fromUWriteBytes(cnv,
1154                                      bytes, 4, (char **)target, (char *)targetLimit,
1155                                      offsets, sourceIndex, pErrorCode);
1156                 return 0;
1157             }
1158         }
1159     }
1160 
1161     /* no mapping */
1162     *pErrorCode=U_INVALID_CHAR_FOUND;
1163     return cp;
1164 }
1165 
1166 /*
1167  * Input sequence: cnv->toUBytes[0..length[
1168  * @return if(U_FAILURE) return the length (toULength, byteIndex) for the input
1169  *         else return 0 after output has been written to the target
1170  */
1171 static int8_t
_extToU(UConverter * cnv,const UConverterSharedData * sharedData,int8_t length,const uint8_t ** source,const uint8_t * sourceLimit,UChar ** target,const UChar * targetLimit,int32_t ** offsets,int32_t sourceIndex,UBool flush,UErrorCode * pErrorCode)1172 _extToU(UConverter *cnv, const UConverterSharedData *sharedData,
1173         int8_t length,
1174         const uint8_t **source, const uint8_t *sourceLimit,
1175         UChar **target, const UChar *targetLimit,
1176         int32_t **offsets, int32_t sourceIndex,
1177         UBool flush,
1178         UErrorCode *pErrorCode) {
1179     const int32_t *cx;
1180 
1181     if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
1182         ucnv_extInitialMatchToU(
1183             cnv, cx,
1184             length, (const char **)source, (const char *)sourceLimit,
1185             target, targetLimit,
1186             offsets, sourceIndex,
1187             flush,
1188             pErrorCode)
1189     ) {
1190         return 0; /* an extension mapping handled the input */
1191     }
1192 
1193     /* GB 18030 */
1194     if(length==4 && (cnv->options&_MBCS_OPTION_GB18030)!=0) {
1195         const uint32_t *range;
1196         uint32_t linear;
1197         int32_t i;
1198 
1199         linear=LINEAR_18030(cnv->toUBytes[0], cnv->toUBytes[1], cnv->toUBytes[2], cnv->toUBytes[3]);
1200         range=gb18030Ranges[0];
1201         for(i=0; i<UPRV_LENGTHOF(gb18030Ranges); range+=4, ++i) {
1202             if(range[2]<=linear && linear<=range[3]) {
1203                 /* found the sequence, output the Unicode code point for it */
1204                 *pErrorCode=U_ZERO_ERROR;
1205 
1206                 /* add the linear difference between the input and start sequences to the start code point */
1207                 linear=range[0]+(linear-range[2]);
1208 
1209                 /* output this code point */
1210                 ucnv_toUWriteCodePoint(cnv, linear, target, targetLimit, offsets, sourceIndex, pErrorCode);
1211 
1212                 return 0;
1213             }
1214         }
1215     }
1216 
1217     /* no mapping */
1218     *pErrorCode=U_INVALID_CHAR_FOUND;
1219     return length;
1220 }
1221 
1222 /* EBCDIC swap LF<->NL ------------------------------------------------------ */
1223 
1224 /*
1225  * This code modifies a standard EBCDIC<->Unicode mapping table for
1226  * OS/390 (z/OS) Unix System Services (Open Edition).
1227  * The difference is in the mapping of Line Feed and New Line control codes:
1228  * Standard EBCDIC maps
1229  *
1230  *   <U000A> \x25 |0
1231  *   <U0085> \x15 |0
1232  *
1233  * but OS/390 USS EBCDIC swaps the control codes for LF and NL,
1234  * mapping
1235  *
1236  *   <U000A> \x15 |0
1237  *   <U0085> \x25 |0
1238  *
1239  * This code modifies a loaded standard EBCDIC<->Unicode mapping table
1240  * by copying it into allocated memory and swapping the LF and NL values.
1241  * It allows to support the same EBCDIC charset in both versions without
1242  * duplicating the entire installed table.
1243  */
1244 
1245 /* standard EBCDIC codes */
1246 #define EBCDIC_LF 0x25
1247 #define EBCDIC_NL 0x15
1248 
1249 /* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte tables */
1250 #define EBCDIC_RT_LF 0xf25
1251 #define EBCDIC_RT_NL 0xf15
1252 
1253 /* Unicode code points */
1254 #define U_LF 0x0a
1255 #define U_NL 0x85
1256 
1257 static UBool
_EBCDICSwapLFNL(UConverterSharedData * sharedData,UErrorCode * pErrorCode)1258 _EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) {
1259     UConverterMBCSTable *mbcsTable;
1260 
1261     const uint16_t *table, *results;
1262     const uint8_t *bytes;
1263 
1264     int32_t (*newStateTable)[256];
1265     uint16_t *newResults;
1266     uint8_t *p;
1267     char *name;
1268 
1269     uint32_t stage2Entry;
1270     uint32_t size, sizeofFromUBytes;
1271 
1272     mbcsTable=&sharedData->mbcs;
1273 
1274     table=mbcsTable->fromUnicodeTable;
1275     bytes=mbcsTable->fromUnicodeBytes;
1276     results=(const uint16_t *)bytes;
1277 
1278     /*
1279      * Check that this is an EBCDIC table with SBCS portion -
1280      * SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings.
1281      *
1282      * If not, ignore the option. Options are always ignored if they do not apply.
1283      */
1284     if(!(
1285          (mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) &&
1286          mbcsTable->stateTable[0][EBCDIC_LF]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF) &&
1287          mbcsTable->stateTable[0][EBCDIC_NL]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL)
1288     )) {
1289         return FALSE;
1290     }
1291 
1292     if(mbcsTable->outputType==MBCS_OUTPUT_1) {
1293         if(!(
1294              EBCDIC_RT_LF==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF) &&
1295              EBCDIC_RT_NL==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL)
1296         )) {
1297             return FALSE;
1298         }
1299     } else /* MBCS_OUTPUT_2_SISO */ {
1300         stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
1301         if(!(
1302              MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)!=0 &&
1303              EBCDIC_LF==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF)
1304         )) {
1305             return FALSE;
1306         }
1307 
1308         stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
1309         if(!(
1310              MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)!=0 &&
1311              EBCDIC_NL==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL)
1312         )) {
1313             return FALSE;
1314         }
1315     }
1316 
1317     if(mbcsTable->fromUBytesLength>0) {
1318         /*
1319          * We _know_ the number of bytes in the fromUnicodeBytes array
1320          * starting with header.version 4.1.
1321          */
1322         sizeofFromUBytes=mbcsTable->fromUBytesLength;
1323     } else {
1324         /*
1325          * Otherwise:
1326          * There used to be code to enumerate the fromUnicode
1327          * trie and find the highest entry, but it was removed in ICU 3.2
1328          * because it was not tested and caused a low code coverage number.
1329          * See Jitterbug 3674.
1330          * This affects only some .cnv file formats with a header.version
1331          * below 4.1, and only when swaplfnl is requested.
1332          *
1333          * ucnvmbcs.c revision 1.99 is the last one with the
1334          * ucnv_MBCSSizeofFromUBytes() function.
1335          */
1336         *pErrorCode=U_INVALID_FORMAT_ERROR;
1337         return FALSE;
1338     }
1339 
1340     /*
1341      * The table has an appropriate format.
1342      * Allocate and build
1343      * - a modified to-Unicode state table
1344      * - a modified from-Unicode output array
1345      * - a converter name string with the swap option appended
1346      */
1347     size=
1348         mbcsTable->countStates*1024+
1349         sizeofFromUBytes+
1350         UCNV_MAX_CONVERTER_NAME_LENGTH+20;
1351     p=(uint8_t *)uprv_malloc(size);
1352     if(p==NULL) {
1353         *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1354         return FALSE;
1355     }
1356 
1357     /* copy and modify the to-Unicode state table */
1358     newStateTable=(int32_t (*)[256])p;
1359     uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*1024);
1360 
1361     newStateTable[0][EBCDIC_LF]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL);
1362     newStateTable[0][EBCDIC_NL]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF);
1363 
1364     /* copy and modify the from-Unicode result table */
1365     newResults=(uint16_t *)newStateTable[mbcsTable->countStates];
1366     uprv_memcpy(newResults, bytes, sizeofFromUBytes);
1367 
1368     /* conveniently, the table access macros work on the left side of expressions */
1369     if(mbcsTable->outputType==MBCS_OUTPUT_1) {
1370         MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)=EBCDIC_RT_NL;
1371         MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)=EBCDIC_RT_LF;
1372     } else /* MBCS_OUTPUT_2_SISO */ {
1373         stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
1374         MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)=EBCDIC_NL;
1375 
1376         stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
1377         MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)=EBCDIC_LF;
1378     }
1379 
1380     /* set the canonical converter name */
1381     name=(char *)newResults+sizeofFromUBytes;
1382     uprv_strcpy(name, sharedData->staticData->name);
1383     uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING);
1384 
1385     /* set the pointers */
1386     icu::umtx_lock(NULL);
1387     if(mbcsTable->swapLFNLStateTable==NULL) {
1388         mbcsTable->swapLFNLStateTable=newStateTable;
1389         mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults;
1390         mbcsTable->swapLFNLName=name;
1391 
1392         newStateTable=NULL;
1393     }
1394     icu::umtx_unlock(NULL);
1395 
1396     /* release the allocated memory if another thread beat us to it */
1397     if(newStateTable!=NULL) {
1398         uprv_free(newStateTable);
1399     }
1400     return TRUE;
1401 }
1402 
1403 /* reconstitute omitted fromUnicode data ------------------------------------ */
1404 
1405 /* for details, compare with genmbcs.c MBCSAddFromUnicode() and transformEUC() */
1406 static UBool U_CALLCONV
writeStage3Roundtrip(const void * context,uint32_t value,UChar32 codePoints[32])1407 writeStage3Roundtrip(const void *context, uint32_t value, UChar32 codePoints[32]) {
1408     UConverterMBCSTable *mbcsTable=(UConverterMBCSTable *)context;
1409     const uint16_t *table;
1410     uint32_t *stage2;
1411     uint8_t *bytes, *p;
1412     UChar32 c;
1413     int32_t i, st3;
1414 
1415     table=mbcsTable->fromUnicodeTable;
1416     bytes=(uint8_t *)mbcsTable->fromUnicodeBytes;
1417 
1418     /* for EUC outputTypes, modify the value like genmbcs.c's transformEUC() */
1419     switch(mbcsTable->outputType) {
1420     case MBCS_OUTPUT_3_EUC:
1421         if(value<=0xffff) {
1422             /* short sequences are stored directly */
1423             /* code set 0 or 1 */
1424         } else if(value<=0x8effff) {
1425             /* code set 2 */
1426             value&=0x7fff;
1427         } else /* first byte is 0x8f */ {
1428             /* code set 3 */
1429             value&=0xff7f;
1430         }
1431         break;
1432     case MBCS_OUTPUT_4_EUC:
1433         if(value<=0xffffff) {
1434             /* short sequences are stored directly */
1435             /* code set 0 or 1 */
1436         } else if(value<=0x8effffff) {
1437             /* code set 2 */
1438             value&=0x7fffff;
1439         } else /* first byte is 0x8f */ {
1440             /* code set 3 */
1441             value&=0xff7fff;
1442         }
1443         break;
1444     default:
1445         break;
1446     }
1447 
1448     for(i=0; i<=0x1f; ++value, ++i) {
1449         c=codePoints[i];
1450         if(c<0) {
1451             continue;
1452         }
1453 
1454         /* locate the stage 2 & 3 data */
1455         stage2=((uint32_t *)table)+table[c>>10]+((c>>4)&0x3f);
1456         p=bytes;
1457         st3=(int32_t)(uint16_t)*stage2*16+(c&0xf);
1458 
1459         /* write the codepage bytes into stage 3 */
1460         switch(mbcsTable->outputType) {
1461         case MBCS_OUTPUT_3:
1462         case MBCS_OUTPUT_4_EUC:
1463             p+=st3*3;
1464             p[0]=(uint8_t)(value>>16);
1465             p[1]=(uint8_t)(value>>8);
1466             p[2]=(uint8_t)value;
1467             break;
1468         case MBCS_OUTPUT_4:
1469             ((uint32_t *)p)[st3]=value;
1470             break;
1471         default:
1472             /* 2 bytes per character */
1473             ((uint16_t *)p)[st3]=(uint16_t)value;
1474             break;
1475         }
1476 
1477         /* set the roundtrip flag */
1478         *stage2|=(1UL<<(16+(c&0xf)));
1479     }
1480     return TRUE;
1481  }
1482 
1483 static void
reconstituteData(UConverterMBCSTable * mbcsTable,uint32_t stage1Length,uint32_t stage2Length,uint32_t fullStage2Length,UErrorCode * pErrorCode)1484 reconstituteData(UConverterMBCSTable *mbcsTable,
1485                  uint32_t stage1Length, uint32_t stage2Length,
1486                  uint32_t fullStage2Length,  /* lengths are numbers of units, not bytes */
1487                  UErrorCode *pErrorCode) {
1488     uint16_t *stage1;
1489     uint32_t *stage2;
1490     uint32_t dataLength=stage1Length*2+fullStage2Length*4+mbcsTable->fromUBytesLength;
1491     mbcsTable->reconstitutedData=(uint8_t *)uprv_malloc(dataLength);
1492     if(mbcsTable->reconstitutedData==NULL) {
1493         *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1494         return;
1495     }
1496     uprv_memset(mbcsTable->reconstitutedData, 0, dataLength);
1497 
1498     /* copy existing data and reroute the pointers */
1499     stage1=(uint16_t *)mbcsTable->reconstitutedData;
1500     uprv_memcpy(stage1, mbcsTable->fromUnicodeTable, stage1Length*2);
1501 
1502     stage2=(uint32_t *)(stage1+stage1Length);
1503     uprv_memcpy(stage2+(fullStage2Length-stage2Length),
1504                 mbcsTable->fromUnicodeTable+stage1Length,
1505                 stage2Length*4);
1506 
1507     mbcsTable->fromUnicodeTable=stage1;
1508     mbcsTable->fromUnicodeBytes=(uint8_t *)(stage2+fullStage2Length);
1509 
1510     /* indexes into stage 2 count from the bottom of the fromUnicodeTable */
1511     stage2=(uint32_t *)stage1;
1512 
1513     /* reconstitute the initial part of stage 2 from the mbcsIndex */
1514     {
1515         int32_t stageUTF8Length=((int32_t)mbcsTable->maxFastUChar+1)>>6;
1516         int32_t stageUTF8Index=0;
1517         int32_t st1, st2, st3, i;
1518 
1519         for(st1=0; stageUTF8Index<stageUTF8Length; ++st1) {
1520             st2=stage1[st1];
1521             if(st2!=(int32_t)stage1Length/2) {
1522                 /* each stage 2 block has 64 entries corresponding to 16 entries in the mbcsIndex */
1523                 for(i=0; i<16; ++i) {
1524                     st3=mbcsTable->mbcsIndex[stageUTF8Index++];
1525                     if(st3!=0) {
1526                         /* an stage 2 entry's index is per stage 3 16-block, not per stage 3 entry */
1527                         st3>>=4;
1528                         /*
1529                          * 4 stage 2 entries point to 4 consecutive stage 3 16-blocks which are
1530                          * allocated together as a single 64-block for access from the mbcsIndex
1531                          */
1532                         stage2[st2++]=st3++;
1533                         stage2[st2++]=st3++;
1534                         stage2[st2++]=st3++;
1535                         stage2[st2++]=st3;
1536                     } else {
1537                         /* no stage 3 block, skip */
1538                         st2+=4;
1539                     }
1540                 }
1541             } else {
1542                 /* no stage 2 block, skip */
1543                 stageUTF8Index+=16;
1544             }
1545         }
1546     }
1547 
1548     /* reconstitute fromUnicodeBytes with roundtrips from toUnicode data */
1549     ucnv_MBCSEnumToUnicode(mbcsTable, writeStage3Roundtrip, mbcsTable, pErrorCode);
1550 }
1551 
1552 /* MBCS setup functions ----------------------------------------------------- */
1553 
1554 static void U_CALLCONV
ucnv_MBCSLoad(UConverterSharedData * sharedData,UConverterLoadArgs * pArgs,const uint8_t * raw,UErrorCode * pErrorCode)1555 ucnv_MBCSLoad(UConverterSharedData *sharedData,
1556           UConverterLoadArgs *pArgs,
1557           const uint8_t *raw,
1558           UErrorCode *pErrorCode) {
1559     UDataInfo info;
1560     UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
1561     _MBCSHeader *header=(_MBCSHeader *)raw;
1562     uint32_t offset;
1563     uint32_t headerLength;
1564     UBool noFromU=FALSE;
1565 
1566     if(header->version[0]==4) {
1567         headerLength=MBCS_HEADER_V4_LENGTH;
1568     } else if(header->version[0]==5 && header->version[1]>=3 &&
1569               (header->options&MBCS_OPT_UNKNOWN_INCOMPATIBLE_MASK)==0) {
1570         headerLength=header->options&MBCS_OPT_LENGTH_MASK;
1571         noFromU=(UBool)((header->options&MBCS_OPT_NO_FROM_U)!=0);
1572     } else {
1573         *pErrorCode=U_INVALID_TABLE_FORMAT;
1574         return;
1575     }
1576 
1577     mbcsTable->outputType=(uint8_t)header->flags;
1578     if(noFromU && mbcsTable->outputType==MBCS_OUTPUT_1) {
1579         *pErrorCode=U_INVALID_TABLE_FORMAT;
1580         return;
1581     }
1582 
1583     /* extension data, header version 4.2 and higher */
1584     offset=header->flags>>8;
1585     if(offset!=0) {
1586         mbcsTable->extIndexes=(const int32_t *)(raw+offset);
1587     }
1588 
1589     if(mbcsTable->outputType==MBCS_OUTPUT_EXT_ONLY) {
1590         UConverterLoadArgs args=UCNV_LOAD_ARGS_INITIALIZER;
1591         UConverterSharedData *baseSharedData;
1592         const int32_t *extIndexes;
1593         const char *baseName;
1594 
1595         /* extension-only file, load the base table and set values appropriately */
1596         if((extIndexes=mbcsTable->extIndexes)==NULL) {
1597             /* extension-only file without extension */
1598             *pErrorCode=U_INVALID_TABLE_FORMAT;
1599             return;
1600         }
1601 
1602         if(pArgs->nestedLoads!=1) {
1603             /* an extension table must not be loaded as a base table */
1604             *pErrorCode=U_INVALID_TABLE_FILE;
1605             return;
1606         }
1607 
1608         /* load the base table */
1609         baseName=(const char *)header+headerLength*4;
1610         if(0==uprv_strcmp(baseName, sharedData->staticData->name)) {
1611             /* forbid loading this same extension-only file */
1612             *pErrorCode=U_INVALID_TABLE_FORMAT;
1613             return;
1614         }
1615 
1616         /* TODO parse package name out of the prefix of the base name in the extension .cnv file? */
1617         args.size=sizeof(UConverterLoadArgs);
1618         args.nestedLoads=2;
1619         args.onlyTestIsLoadable=pArgs->onlyTestIsLoadable;
1620         args.reserved=pArgs->reserved;
1621         args.options=pArgs->options;
1622         args.pkg=pArgs->pkg;
1623         args.name=baseName;
1624         baseSharedData=ucnv_load(&args, pErrorCode);
1625         if(U_FAILURE(*pErrorCode)) {
1626             return;
1627         }
1628         if( baseSharedData->staticData->conversionType!=UCNV_MBCS ||
1629             baseSharedData->mbcs.baseSharedData!=NULL
1630         ) {
1631             ucnv_unload(baseSharedData);
1632             *pErrorCode=U_INVALID_TABLE_FORMAT;
1633             return;
1634         }
1635         if(pArgs->onlyTestIsLoadable) {
1636             /*
1637              * Exit as soon as we know that we can load the converter
1638              * and the format is valid and supported.
1639              * The worst that can happen in the following code is a memory
1640              * allocation error.
1641              */
1642             ucnv_unload(baseSharedData);
1643             return;
1644         }
1645 
1646         /* copy the base table data */
1647         uprv_memcpy(mbcsTable, &baseSharedData->mbcs, sizeof(UConverterMBCSTable));
1648 
1649         /* overwrite values with relevant ones for the extension converter */
1650         mbcsTable->baseSharedData=baseSharedData;
1651         mbcsTable->extIndexes=extIndexes;
1652 
1653         /*
1654          * It would be possible to share the swapLFNL data with a base converter,
1655          * but the generated name would have to be different, and the memory
1656          * would have to be free'd only once.
1657          * It is easier to just create the data for the extension converter
1658          * separately when it is requested.
1659          */
1660         mbcsTable->swapLFNLStateTable=NULL;
1661         mbcsTable->swapLFNLFromUnicodeBytes=NULL;
1662         mbcsTable->swapLFNLName=NULL;
1663 
1664         /*
1665          * The reconstitutedData must be deleted only when the base converter
1666          * is unloaded.
1667          */
1668         mbcsTable->reconstitutedData=NULL;
1669 
1670         /*
1671          * Set a special, runtime-only outputType if the extension converter
1672          * is a DBCS version of a base converter that also maps single bytes.
1673          */
1674         if( sharedData->staticData->conversionType==UCNV_DBCS ||
1675                 (sharedData->staticData->conversionType==UCNV_MBCS &&
1676                  sharedData->staticData->minBytesPerChar>=2)
1677         ) {
1678             if(baseSharedData->mbcs.outputType==MBCS_OUTPUT_2_SISO) {
1679                 /* the base converter is SI/SO-stateful */
1680                 int32_t entry;
1681 
1682                 /* get the dbcs state from the state table entry for SO=0x0e */
1683                 entry=mbcsTable->stateTable[0][0xe];
1684                 if( MBCS_ENTRY_IS_FINAL(entry) &&
1685                     MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_CHANGE_ONLY &&
1686                     MBCS_ENTRY_FINAL_STATE(entry)!=0
1687                 ) {
1688                     mbcsTable->dbcsOnlyState=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry);
1689 
1690                     mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
1691                 }
1692             } else if(
1693                 baseSharedData->staticData->conversionType==UCNV_MBCS &&
1694                 baseSharedData->staticData->minBytesPerChar==1 &&
1695                 baseSharedData->staticData->maxBytesPerChar==2 &&
1696                 mbcsTable->countStates<=127
1697             ) {
1698                 /* non-stateful base converter, need to modify the state table */
1699                 int32_t (*newStateTable)[256];
1700                 int32_t *state;
1701                 int32_t i, count;
1702 
1703                 /* allocate a new state table and copy the base state table contents */
1704                 count=mbcsTable->countStates;
1705                 newStateTable=(int32_t (*)[256])uprv_malloc((count+1)*1024);
1706                 if(newStateTable==NULL) {
1707                     ucnv_unload(baseSharedData);
1708                     *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1709                     return;
1710                 }
1711 
1712                 uprv_memcpy(newStateTable, mbcsTable->stateTable, count*1024);
1713 
1714                 /* change all final single-byte entries to go to a new all-illegal state */
1715                 state=newStateTable[0];
1716                 for(i=0; i<256; ++i) {
1717                     if(MBCS_ENTRY_IS_FINAL(state[i])) {
1718                         state[i]=MBCS_ENTRY_TRANSITION(count, 0);
1719                     }
1720                 }
1721 
1722                 /* build the new all-illegal state */
1723                 state=newStateTable[count];
1724                 for(i=0; i<256; ++i) {
1725                     state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0);
1726                 }
1727                 mbcsTable->stateTable=(const int32_t (*)[256])newStateTable;
1728                 mbcsTable->countStates=(uint8_t)(count+1);
1729                 mbcsTable->stateTableOwned=TRUE;
1730 
1731                 mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
1732             }
1733         }
1734 
1735         /*
1736          * unlike below for files with base tables, do not get the unicodeMask
1737          * from the sharedData; instead, use the base table's unicodeMask,
1738          * which we copied in the memcpy above;
1739          * this is necessary because the static data unicodeMask, especially
1740          * the UCNV_HAS_SUPPLEMENTARY flag, is part of the base table data
1741          */
1742     } else {
1743         /* conversion file with a base table; an additional extension table is optional */
1744         /* make sure that the output type is known */
1745         switch(mbcsTable->outputType) {
1746         case MBCS_OUTPUT_1:
1747         case MBCS_OUTPUT_2:
1748         case MBCS_OUTPUT_3:
1749         case MBCS_OUTPUT_4:
1750         case MBCS_OUTPUT_3_EUC:
1751         case MBCS_OUTPUT_4_EUC:
1752         case MBCS_OUTPUT_2_SISO:
1753             /* OK */
1754             break;
1755         default:
1756             *pErrorCode=U_INVALID_TABLE_FORMAT;
1757             return;
1758         }
1759         if(pArgs->onlyTestIsLoadable) {
1760             /*
1761              * Exit as soon as we know that we can load the converter
1762              * and the format is valid and supported.
1763              * The worst that can happen in the following code is a memory
1764              * allocation error.
1765              */
1766             return;
1767         }
1768 
1769         mbcsTable->countStates=(uint8_t)header->countStates;
1770         mbcsTable->countToUFallbacks=header->countToUFallbacks;
1771         mbcsTable->stateTable=(const int32_t (*)[256])(raw+headerLength*4);
1772         mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable+header->countStates);
1773         mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCodeUnits);
1774 
1775         mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTable);
1776         mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUBytes);
1777         mbcsTable->fromUBytesLength=header->fromUBytesLength;
1778 
1779         /*
1780          * converter versions 6.1 and up contain a unicodeMask that is
1781          * used here to select the most efficient function implementations
1782          */
1783         info.size=sizeof(UDataInfo);
1784         udata_getInfo((UDataMemory *)sharedData->dataMemory, &info);
1785         if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVersion[1]>=1)) {
1786             /* mask off possible future extensions to be safe */
1787             mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask&3);
1788         } else {
1789             /* for older versions, assume worst case: contains anything possible (prevent over-optimizations) */
1790             mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY|UCNV_HAS_SURROGATES;
1791         }
1792 
1793         /*
1794          * _MBCSHeader.version 4.3 adds utf8Friendly data structures.
1795          * Check for the header version, SBCS vs. MBCS, and for whether the
1796          * data structures are optimized for code points as high as what the
1797          * runtime code is designed for.
1798          * The implementation does not handle mapping tables with entries for
1799          * unpaired surrogates.
1800          */
1801         if( header->version[1]>=3 &&
1802             (mbcsTable->unicodeMask&UCNV_HAS_SURROGATES)==0 &&
1803             (mbcsTable->countStates==1 ?
1804                 (header->version[2]>=(SBCS_FAST_MAX>>8)) :
1805                 (header->version[2]>=(MBCS_FAST_MAX>>8))
1806             )
1807         ) {
1808             mbcsTable->utf8Friendly=TRUE;
1809 
1810             if(mbcsTable->countStates==1) {
1811                 /*
1812                  * SBCS: Stage 3 is allocated in 64-entry blocks for U+0000..SBCS_FAST_MAX or higher.
1813                  * Build a table with indexes to each block, to be used instead of
1814                  * the regular stage 1/2 table.
1815                  */
1816                 int32_t i;
1817                 for(i=0; i<(SBCS_FAST_LIMIT>>6); ++i) {
1818                     mbcsTable->sbcsIndex[i]=mbcsTable->fromUnicodeTable[mbcsTable->fromUnicodeTable[i>>4]+((i<<2)&0x3c)];
1819                 }
1820                 /* set SBCS_FAST_MAX to reflect the reach of sbcsIndex[] even if header->version[2]>(SBCS_FAST_MAX>>8) */
1821                 mbcsTable->maxFastUChar=SBCS_FAST_MAX;
1822             } else {
1823                 /*
1824                  * MBCS: Stage 3 is allocated in 64-entry blocks for U+0000..MBCS_FAST_MAX or higher.
1825                  * The .cnv file is prebuilt with an additional stage table with indexes
1826                  * to each block.
1827                  */
1828                 mbcsTable->mbcsIndex=(const uint16_t *)
1829                     (mbcsTable->fromUnicodeBytes+
1830                      (noFromU ? 0 : mbcsTable->fromUBytesLength));
1831                 mbcsTable->maxFastUChar=(((UChar)header->version[2])<<8)|0xff;
1832             }
1833         }
1834 
1835         /* calculate a bit set of 4 ASCII characters per bit that round-trip to ASCII bytes */
1836         {
1837             uint32_t asciiRoundtrips=0xffffffff;
1838             int32_t i;
1839 
1840             for(i=0; i<0x80; ++i) {
1841                 if(mbcsTable->stateTable[0][i]!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, i)) {
1842                     asciiRoundtrips&=~((uint32_t)1<<(i>>2));
1843                 }
1844             }
1845             mbcsTable->asciiRoundtrips=asciiRoundtrips;
1846         }
1847 
1848         if(noFromU) {
1849             uint32_t stage1Length=
1850                 mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY ?
1851                     0x440 : 0x40;
1852             uint32_t stage2Length=
1853                 (header->offsetFromUBytes-header->offsetFromUTable)/4-
1854                 stage1Length/2;
1855             reconstituteData(mbcsTable, stage1Length, stage2Length, header->fullStage2Length, pErrorCode);
1856         }
1857     }
1858 
1859     /* Set the impl pointer here so that it is set for both extension-only and base tables. */
1860     if(mbcsTable->utf8Friendly) {
1861         if(mbcsTable->countStates==1) {
1862             sharedData->impl=&_SBCSUTF8Impl;
1863         } else {
1864             if(mbcsTable->outputType==MBCS_OUTPUT_2) {
1865                 sharedData->impl=&_DBCSUTF8Impl;
1866             }
1867         }
1868     }
1869 
1870     if(mbcsTable->outputType==MBCS_OUTPUT_DBCS_ONLY || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) {
1871         /*
1872          * MBCS_OUTPUT_DBCS_ONLY: No SBCS mappings, therefore ASCII does not roundtrip.
1873          * MBCS_OUTPUT_2_SISO: Bypass the ASCII fastpath to handle prevLength correctly.
1874          */
1875         mbcsTable->asciiRoundtrips=0;
1876     }
1877 }
1878 
1879 static void U_CALLCONV
ucnv_MBCSUnload(UConverterSharedData * sharedData)1880 ucnv_MBCSUnload(UConverterSharedData *sharedData) {
1881     UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
1882 
1883     if(mbcsTable->swapLFNLStateTable!=NULL) {
1884         uprv_free(mbcsTable->swapLFNLStateTable);
1885     }
1886     if(mbcsTable->stateTableOwned) {
1887         uprv_free((void *)mbcsTable->stateTable);
1888     }
1889     if(mbcsTable->baseSharedData!=NULL) {
1890         ucnv_unload(mbcsTable->baseSharedData);
1891     }
1892     if(mbcsTable->reconstitutedData!=NULL) {
1893         uprv_free(mbcsTable->reconstitutedData);
1894     }
1895 }
1896 
1897 static void U_CALLCONV
ucnv_MBCSOpen(UConverter * cnv,UConverterLoadArgs * pArgs,UErrorCode * pErrorCode)1898 ucnv_MBCSOpen(UConverter *cnv,
1899               UConverterLoadArgs *pArgs,
1900               UErrorCode *pErrorCode) {
1901     UConverterMBCSTable *mbcsTable;
1902     const int32_t *extIndexes;
1903     uint8_t outputType;
1904     int8_t maxBytesPerUChar;
1905 
1906     if(pArgs->onlyTestIsLoadable) {
1907         return;
1908     }
1909 
1910     mbcsTable=&cnv->sharedData->mbcs;
1911     outputType=mbcsTable->outputType;
1912 
1913     if(outputType==MBCS_OUTPUT_DBCS_ONLY) {
1914         /* the swaplfnl option does not apply, remove it */
1915         cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
1916     }
1917 
1918     if((pArgs->options&UCNV_OPTION_SWAP_LFNL)!=0) {
1919         /* do this because double-checked locking is broken */
1920         UBool isCached;
1921 
1922         icu::umtx_lock(NULL);
1923         isCached=mbcsTable->swapLFNLStateTable!=NULL;
1924         icu::umtx_unlock(NULL);
1925 
1926         if(!isCached) {
1927             if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) {
1928                 if(U_FAILURE(*pErrorCode)) {
1929                     return; /* something went wrong */
1930                 }
1931 
1932                 /* the option does not apply, remove it */
1933                 cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
1934             }
1935         }
1936     }
1937 
1938     if(uprv_strstr(pArgs->name, "18030")!=NULL) {
1939         if(uprv_strstr(pArgs->name, "gb18030")!=NULL || uprv_strstr(pArgs->name, "GB18030")!=NULL) {
1940             /* set a flag for GB 18030 mode, which changes the callback behavior */
1941             cnv->options|=_MBCS_OPTION_GB18030;
1942         }
1943     } else if((uprv_strstr(pArgs->name, "KEIS")!=NULL) || (uprv_strstr(pArgs->name, "keis")!=NULL)) {
1944         /* set a flag for KEIS converter, which changes the SI/SO character sequence */
1945         cnv->options|=_MBCS_OPTION_KEIS;
1946     } else if((uprv_strstr(pArgs->name, "JEF")!=NULL) || (uprv_strstr(pArgs->name, "jef")!=NULL)) {
1947         /* set a flag for JEF converter, which changes the SI/SO character sequence */
1948         cnv->options|=_MBCS_OPTION_JEF;
1949     } else if((uprv_strstr(pArgs->name, "JIPS")!=NULL) || (uprv_strstr(pArgs->name, "jips")!=NULL)) {
1950         /* set a flag for JIPS converter, which changes the SI/SO character sequence */
1951         cnv->options|=_MBCS_OPTION_JIPS;
1952     }
1953 
1954     /* fix maxBytesPerUChar depending on outputType and options etc. */
1955     if(outputType==MBCS_OUTPUT_2_SISO) {
1956         cnv->maxBytesPerUChar=3; /* SO+DBCS */
1957     }
1958 
1959     extIndexes=mbcsTable->extIndexes;
1960     if(extIndexes!=NULL) {
1961         maxBytesPerUChar=(int8_t)UCNV_GET_MAX_BYTES_PER_UCHAR(extIndexes);
1962         if(outputType==MBCS_OUTPUT_2_SISO) {
1963             ++maxBytesPerUChar; /* SO + multiple DBCS */
1964         }
1965 
1966         if(maxBytesPerUChar>cnv->maxBytesPerUChar) {
1967             cnv->maxBytesPerUChar=maxBytesPerUChar;
1968         }
1969     }
1970 
1971 #if 0
1972     /*
1973      * documentation of UConverter fields used for status
1974      * all of these fields are (re)set to 0 by ucnv_bld.c and ucnv_reset()
1975      */
1976 
1977     /* toUnicode */
1978     cnv->toUnicodeStatus=0;     /* offset */
1979     cnv->mode=0;                /* state */
1980     cnv->toULength=0;           /* byteIndex */
1981 
1982     /* fromUnicode */
1983     cnv->fromUChar32=0;
1984     cnv->fromUnicodeStatus=1;   /* prevLength */
1985 #endif
1986 }
1987 
1988 U_CDECL_BEGIN
1989 
1990 static const char* U_CALLCONV
ucnv_MBCSGetName(const UConverter * cnv)1991 ucnv_MBCSGetName(const UConverter *cnv) {
1992     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0 && cnv->sharedData->mbcs.swapLFNLName!=NULL) {
1993         return cnv->sharedData->mbcs.swapLFNLName;
1994     } else {
1995         return cnv->sharedData->staticData->name;
1996     }
1997 }
1998 U_CDECL_END
1999 
2000 
2001 /* MBCS-to-Unicode conversion functions ------------------------------------- */
2002 
2003 static UChar32 U_CALLCONV
ucnv_MBCSGetFallback(UConverterMBCSTable * mbcsTable,uint32_t offset)2004 ucnv_MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) {
2005     const _MBCSToUFallback *toUFallbacks;
2006     uint32_t i, start, limit;
2007 
2008     limit=mbcsTable->countToUFallbacks;
2009     if(limit>0) {
2010         /* do a binary search for the fallback mapping */
2011         toUFallbacks=mbcsTable->toUFallbacks;
2012         start=0;
2013         while(start<limit-1) {
2014             i=(start+limit)/2;
2015             if(offset<toUFallbacks[i].offset) {
2016                 limit=i;
2017             } else {
2018                 start=i;
2019             }
2020         }
2021 
2022         /* did we really find it? */
2023         if(offset==toUFallbacks[start].offset) {
2024             return toUFallbacks[start].codePoint;
2025         }
2026     }
2027 
2028     return 0xfffe;
2029 }
2030 
2031 /* This version of ucnv_MBCSToUnicodeWithOffsets() is optimized for single-byte, single-state codepages. */
2032 static void
ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs * pArgs,UErrorCode * pErrorCode)2033 ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
2034                                 UErrorCode *pErrorCode) {
2035     UConverter *cnv;
2036     const uint8_t *source, *sourceLimit;
2037     UChar *target;
2038     const UChar *targetLimit;
2039     int32_t *offsets;
2040 
2041     const int32_t (*stateTable)[256];
2042 
2043     int32_t sourceIndex;
2044 
2045     int32_t entry;
2046     UChar c;
2047     uint8_t action;
2048 
2049     /* set up the local pointers */
2050     cnv=pArgs->converter;
2051     source=(const uint8_t *)pArgs->source;
2052     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2053     target=pArgs->target;
2054     targetLimit=pArgs->targetLimit;
2055     offsets=pArgs->offsets;
2056 
2057     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2058         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2059     } else {
2060         stateTable=cnv->sharedData->mbcs.stateTable;
2061     }
2062 
2063     /* sourceIndex=-1 if the current character began in the previous buffer */
2064     sourceIndex=0;
2065 
2066     /* conversion loop */
2067     while(source<sourceLimit) {
2068         /*
2069          * This following test is to see if available input would overflow the output.
2070          * It does not catch output of more than one code unit that
2071          * overflows as a result of a surrogate pair or callback output
2072          * from the last source byte.
2073          * Therefore, those situations also test for overflows and will
2074          * then break the loop, too.
2075          */
2076         if(target>=targetLimit) {
2077             /* target is full */
2078             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2079             break;
2080         }
2081 
2082         entry=stateTable[0][*source++];
2083         /* MBCS_ENTRY_IS_FINAL(entry) */
2084 
2085         /* test the most common case first */
2086         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2087             /* output BMP code point */
2088             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2089             if(offsets!=NULL) {
2090                 *offsets++=sourceIndex;
2091             }
2092 
2093             /* normal end of action codes: prepare for a new character */
2094             ++sourceIndex;
2095             continue;
2096         }
2097 
2098         /*
2099          * An if-else-if chain provides more reliable performance for
2100          * the most common cases compared to a switch.
2101          */
2102         action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2103         if(action==MBCS_STATE_VALID_DIRECT_20 ||
2104            (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2105         ) {
2106             entry=MBCS_ENTRY_FINAL_VALUE(entry);
2107             /* output surrogate pair */
2108             *target++=(UChar)(0xd800|(UChar)(entry>>10));
2109             if(offsets!=NULL) {
2110                 *offsets++=sourceIndex;
2111             }
2112             c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
2113             if(target<targetLimit) {
2114                 *target++=c;
2115                 if(offsets!=NULL) {
2116                     *offsets++=sourceIndex;
2117                 }
2118             } else {
2119                 /* target overflow */
2120                 cnv->UCharErrorBuffer[0]=c;
2121                 cnv->UCharErrorBufferLength=1;
2122                 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2123                 break;
2124             }
2125 
2126             ++sourceIndex;
2127             continue;
2128         } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2129             if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2130                 /* output BMP code point */
2131                 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2132                 if(offsets!=NULL) {
2133                     *offsets++=sourceIndex;
2134                 }
2135 
2136                 ++sourceIndex;
2137                 continue;
2138             }
2139         } else if(action==MBCS_STATE_UNASSIGNED) {
2140             /* just fall through */
2141         } else if(action==MBCS_STATE_ILLEGAL) {
2142             /* callback(illegal) */
2143             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2144         } else {
2145             /* reserved, must never occur */
2146             ++sourceIndex;
2147             continue;
2148         }
2149 
2150         if(U_FAILURE(*pErrorCode)) {
2151             /* callback(illegal) */
2152             break;
2153         } else /* unassigned sequences indicated with byteIndex>0 */ {
2154             /* try an extension mapping */
2155             pArgs->source=(const char *)source;
2156             cnv->toUBytes[0]=*(source-1);
2157             cnv->toULength=_extToU(cnv, cnv->sharedData,
2158                                     1, &source, sourceLimit,
2159                                     &target, targetLimit,
2160                                     &offsets, sourceIndex,
2161                                     pArgs->flush,
2162                                     pErrorCode);
2163             sourceIndex+=1+(int32_t)(source-(const uint8_t *)pArgs->source);
2164 
2165             if(U_FAILURE(*pErrorCode)) {
2166                 /* not mappable or buffer overflow */
2167                 break;
2168             }
2169         }
2170     }
2171 
2172     /* write back the updated pointers */
2173     pArgs->source=(const char *)source;
2174     pArgs->target=target;
2175     pArgs->offsets=offsets;
2176 }
2177 
2178 /*
2179  * This version of ucnv_MBCSSingleToUnicodeWithOffsets() is optimized for single-byte, single-state codepages
2180  * that only map to and from the BMP.
2181  * In addition to single-byte optimizations, the offset calculations
2182  * become much easier.
2183  */
2184 static void
ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs * pArgs,UErrorCode * pErrorCode)2185 ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs,
2186                             UErrorCode *pErrorCode) {
2187     UConverter *cnv;
2188     const uint8_t *source, *sourceLimit, *lastSource;
2189     UChar *target;
2190     int32_t targetCapacity, length;
2191     int32_t *offsets;
2192 
2193     const int32_t (*stateTable)[256];
2194 
2195     int32_t sourceIndex;
2196 
2197     int32_t entry;
2198     uint8_t action;
2199 
2200     /* set up the local pointers */
2201     cnv=pArgs->converter;
2202     source=(const uint8_t *)pArgs->source;
2203     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2204     target=pArgs->target;
2205     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
2206     offsets=pArgs->offsets;
2207 
2208     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2209         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2210     } else {
2211         stateTable=cnv->sharedData->mbcs.stateTable;
2212     }
2213 
2214     /* sourceIndex=-1 if the current character began in the previous buffer */
2215     sourceIndex=0;
2216     lastSource=source;
2217 
2218     /*
2219      * since the conversion here is 1:1 UChar:uint8_t, we need only one counter
2220      * for the minimum of the sourceLength and targetCapacity
2221      */
2222     length=(int32_t)(sourceLimit-source);
2223     if(length<targetCapacity) {
2224         targetCapacity=length;
2225     }
2226 
2227 #if MBCS_UNROLL_SINGLE_TO_BMP
2228     /* unrolling makes it faster on Pentium III/Windows 2000 */
2229     /* unroll the loop with the most common case */
2230 unrolled:
2231     if(targetCapacity>=16) {
2232         int32_t count, loops, oredEntries;
2233 
2234         loops=count=targetCapacity>>4;
2235         do {
2236             oredEntries=entry=stateTable[0][*source++];
2237             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2238             oredEntries|=entry=stateTable[0][*source++];
2239             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2240             oredEntries|=entry=stateTable[0][*source++];
2241             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2242             oredEntries|=entry=stateTable[0][*source++];
2243             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2244             oredEntries|=entry=stateTable[0][*source++];
2245             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2246             oredEntries|=entry=stateTable[0][*source++];
2247             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2248             oredEntries|=entry=stateTable[0][*source++];
2249             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2250             oredEntries|=entry=stateTable[0][*source++];
2251             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2252             oredEntries|=entry=stateTable[0][*source++];
2253             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2254             oredEntries|=entry=stateTable[0][*source++];
2255             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2256             oredEntries|=entry=stateTable[0][*source++];
2257             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2258             oredEntries|=entry=stateTable[0][*source++];
2259             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2260             oredEntries|=entry=stateTable[0][*source++];
2261             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2262             oredEntries|=entry=stateTable[0][*source++];
2263             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2264             oredEntries|=entry=stateTable[0][*source++];
2265             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2266             oredEntries|=entry=stateTable[0][*source++];
2267             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2268 
2269             /* were all 16 entries really valid? */
2270             if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)) {
2271                 /* no, return to the first of these 16 */
2272                 source-=16;
2273                 target-=16;
2274                 break;
2275             }
2276         } while(--count>0);
2277         count=loops-count;
2278         targetCapacity-=16*count;
2279 
2280         if(offsets!=NULL) {
2281             lastSource+=16*count;
2282             while(count>0) {
2283                 *offsets++=sourceIndex++;
2284                 *offsets++=sourceIndex++;
2285                 *offsets++=sourceIndex++;
2286                 *offsets++=sourceIndex++;
2287                 *offsets++=sourceIndex++;
2288                 *offsets++=sourceIndex++;
2289                 *offsets++=sourceIndex++;
2290                 *offsets++=sourceIndex++;
2291                 *offsets++=sourceIndex++;
2292                 *offsets++=sourceIndex++;
2293                 *offsets++=sourceIndex++;
2294                 *offsets++=sourceIndex++;
2295                 *offsets++=sourceIndex++;
2296                 *offsets++=sourceIndex++;
2297                 *offsets++=sourceIndex++;
2298                 *offsets++=sourceIndex++;
2299                 --count;
2300             }
2301         }
2302     }
2303 #endif
2304 
2305     /* conversion loop */
2306     while(targetCapacity > 0 && source < sourceLimit) {
2307         entry=stateTable[0][*source++];
2308         /* MBCS_ENTRY_IS_FINAL(entry) */
2309 
2310         /* test the most common case first */
2311         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2312             /* output BMP code point */
2313             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2314             --targetCapacity;
2315             continue;
2316         }
2317 
2318         /*
2319          * An if-else-if chain provides more reliable performance for
2320          * the most common cases compared to a switch.
2321          */
2322         action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2323         if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2324             if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2325                 /* output BMP code point */
2326                 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2327                 --targetCapacity;
2328                 continue;
2329             }
2330         } else if(action==MBCS_STATE_UNASSIGNED) {
2331             /* just fall through */
2332         } else if(action==MBCS_STATE_ILLEGAL) {
2333             /* callback(illegal) */
2334             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2335         } else {
2336             /* reserved, must never occur */
2337             continue;
2338         }
2339 
2340         /* set offsets since the start or the last extension */
2341         if(offsets!=NULL) {
2342             int32_t count=(int32_t)(source-lastSource);
2343 
2344             /* predecrement: do not set the offset for the callback-causing character */
2345             while(--count>0) {
2346                 *offsets++=sourceIndex++;
2347             }
2348             /* offset and sourceIndex are now set for the current character */
2349         }
2350 
2351         if(U_FAILURE(*pErrorCode)) {
2352             /* callback(illegal) */
2353             break;
2354         } else /* unassigned sequences indicated with byteIndex>0 */ {
2355             /* try an extension mapping */
2356             lastSource=source;
2357             cnv->toUBytes[0]=*(source-1);
2358             cnv->toULength=_extToU(cnv, cnv->sharedData,
2359                                     1, &source, sourceLimit,
2360                                     &target, pArgs->targetLimit,
2361                                     &offsets, sourceIndex,
2362                                     pArgs->flush,
2363                                     pErrorCode);
2364             sourceIndex+=1+(int32_t)(source-lastSource);
2365 
2366             if(U_FAILURE(*pErrorCode)) {
2367                 /* not mappable or buffer overflow */
2368                 break;
2369             }
2370 
2371             /* recalculate the targetCapacity after an extension mapping */
2372             targetCapacity=(int32_t)(pArgs->targetLimit-target);
2373             length=(int32_t)(sourceLimit-source);
2374             if(length<targetCapacity) {
2375                 targetCapacity=length;
2376             }
2377         }
2378 
2379 #if MBCS_UNROLL_SINGLE_TO_BMP
2380         /* unrolling makes it faster on Pentium III/Windows 2000 */
2381         goto unrolled;
2382 #endif
2383     }
2384 
2385     if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=pArgs->targetLimit) {
2386         /* target is full */
2387         *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2388     }
2389 
2390     /* set offsets since the start or the last callback */
2391     if(offsets!=NULL) {
2392         size_t count=source-lastSource;
2393         while(count>0) {
2394             *offsets++=sourceIndex++;
2395             --count;
2396         }
2397     }
2398 
2399     /* write back the updated pointers */
2400     pArgs->source=(const char *)source;
2401     pArgs->target=target;
2402     pArgs->offsets=offsets;
2403 }
2404 
2405 static UBool
hasValidTrailBytes(const int32_t (* stateTable)[256],uint8_t state)2406 hasValidTrailBytes(const int32_t (*stateTable)[256], uint8_t state) {
2407     const int32_t *row=stateTable[state];
2408     int32_t b, entry;
2409     /* First test for final entries in this state for some commonly valid byte values. */
2410     entry=row[0xa1];
2411     if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2412         MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2413     ) {
2414         return TRUE;
2415     }
2416     entry=row[0x41];
2417     if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2418         MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2419     ) {
2420         return TRUE;
2421     }
2422     /* Then test for final entries in this state. */
2423     for(b=0; b<=0xff; ++b) {
2424         entry=row[b];
2425         if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2426             MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2427         ) {
2428             return TRUE;
2429         }
2430     }
2431     /* Then recurse for transition entries. */
2432     for(b=0; b<=0xff; ++b) {
2433         entry=row[b];
2434         if( MBCS_ENTRY_IS_TRANSITION(entry) &&
2435             hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry))
2436         ) {
2437             return TRUE;
2438         }
2439     }
2440     return FALSE;
2441 }
2442 
2443 /*
2444  * Is byte b a single/lead byte in this state?
2445  * Recurse for transition states, because here we don't want to say that
2446  * b is a lead byte if all byte sequences that start with b are illegal.
2447  */
2448 static UBool
isSingleOrLead(const int32_t (* stateTable)[256],uint8_t state,UBool isDBCSOnly,uint8_t b)2449 isSingleOrLead(const int32_t (*stateTable)[256], uint8_t state, UBool isDBCSOnly, uint8_t b) {
2450     const int32_t *row=stateTable[state];
2451     int32_t entry=row[b];
2452     if(MBCS_ENTRY_IS_TRANSITION(entry)) {   /* lead byte */
2453         return hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry));
2454     } else {
2455         uint8_t action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2456         if(action==MBCS_STATE_CHANGE_ONLY && isDBCSOnly) {
2457             return FALSE;   /* SI/SO are illegal for DBCS-only conversion */
2458         } else {
2459             return action!=MBCS_STATE_ILLEGAL;
2460         }
2461     }
2462 }
2463 
2464 U_CFUNC void
ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs * pArgs,UErrorCode * pErrorCode)2465 ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
2466                           UErrorCode *pErrorCode) {
2467     UConverter *cnv;
2468     const uint8_t *source, *sourceLimit;
2469     UChar *target;
2470     const UChar *targetLimit;
2471     int32_t *offsets;
2472 
2473     const int32_t (*stateTable)[256];
2474     const uint16_t *unicodeCodeUnits;
2475 
2476     uint32_t offset;
2477     uint8_t state;
2478     int8_t byteIndex;
2479     uint8_t *bytes;
2480 
2481     int32_t sourceIndex, nextSourceIndex;
2482 
2483     int32_t entry;
2484     UChar c;
2485     uint8_t action;
2486 
2487     /* use optimized function if possible */
2488     cnv=pArgs->converter;
2489 
2490     if(cnv->preToULength>0) {
2491         /*
2492          * pass sourceIndex=-1 because we continue from an earlier buffer
2493          * in the future, this may change with continuous offsets
2494          */
2495         ucnv_extContinueMatchToU(cnv, pArgs, -1, pErrorCode);
2496 
2497         if(U_FAILURE(*pErrorCode) || cnv->preToULength<0) {
2498             return;
2499         }
2500     }
2501 
2502     if(cnv->sharedData->mbcs.countStates==1) {
2503         if(!(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
2504             ucnv_MBCSSingleToBMPWithOffsets(pArgs, pErrorCode);
2505         } else {
2506             ucnv_MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode);
2507         }
2508         return;
2509     }
2510 
2511     /* set up the local pointers */
2512     source=(const uint8_t *)pArgs->source;
2513     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2514     target=pArgs->target;
2515     targetLimit=pArgs->targetLimit;
2516     offsets=pArgs->offsets;
2517 
2518     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2519         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2520     } else {
2521         stateTable=cnv->sharedData->mbcs.stateTable;
2522     }
2523     unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
2524 
2525     /* get the converter state from UConverter */
2526     offset=cnv->toUnicodeStatus;
2527     byteIndex=cnv->toULength;
2528     bytes=cnv->toUBytes;
2529 
2530     /*
2531      * if we are in the SBCS state for a DBCS-only converter,
2532      * then load the DBCS state from the MBCS data
2533      * (dbcsOnlyState==0 if it is not a DBCS-only converter)
2534      */
2535     if((state=(uint8_t)(cnv->mode))==0) {
2536         state=cnv->sharedData->mbcs.dbcsOnlyState;
2537     }
2538 
2539     /* sourceIndex=-1 if the current character began in the previous buffer */
2540     sourceIndex=byteIndex==0 ? 0 : -1;
2541     nextSourceIndex=0;
2542 
2543     /* conversion loop */
2544     while(source<sourceLimit) {
2545         /*
2546          * This following test is to see if available input would overflow the output.
2547          * It does not catch output of more than one code unit that
2548          * overflows as a result of a surrogate pair or callback output
2549          * from the last source byte.
2550          * Therefore, those situations also test for overflows and will
2551          * then break the loop, too.
2552          */
2553         if(target>=targetLimit) {
2554             /* target is full */
2555             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2556             break;
2557         }
2558 
2559         if(byteIndex==0) {
2560             /* optimized loop for 1/2-byte input and BMP output */
2561             if(offsets==NULL) {
2562                 do {
2563                     entry=stateTable[state][*source];
2564                     if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2565                         state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2566                         offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2567 
2568                         ++source;
2569                         if( source<sourceLimit &&
2570                             MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
2571                             MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
2572                             (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
2573                         ) {
2574                             ++source;
2575                             *target++=c;
2576                             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2577                             offset=0;
2578                         } else {
2579                             /* set the state and leave the optimized loop */
2580                             bytes[0]=*(source-1);
2581                             byteIndex=1;
2582                             break;
2583                         }
2584                     } else {
2585                         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2586                             /* output BMP code point */
2587                             ++source;
2588                             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2589                             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2590                         } else {
2591                             /* leave the optimized loop */
2592                             break;
2593                         }
2594                     }
2595                 } while(source<sourceLimit && target<targetLimit);
2596             } else /* offsets!=NULL */ {
2597                 do {
2598                     entry=stateTable[state][*source];
2599                     if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2600                         state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2601                         offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2602 
2603                         ++source;
2604                         if( source<sourceLimit &&
2605                             MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
2606                             MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
2607                             (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
2608                         ) {
2609                             ++source;
2610                             *target++=c;
2611                             if(offsets!=NULL) {
2612                                 *offsets++=sourceIndex;
2613                                 sourceIndex=(nextSourceIndex+=2);
2614                             }
2615                             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2616                             offset=0;
2617                         } else {
2618                             /* set the state and leave the optimized loop */
2619                             ++nextSourceIndex;
2620                             bytes[0]=*(source-1);
2621                             byteIndex=1;
2622                             break;
2623                         }
2624                     } else {
2625                         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2626                             /* output BMP code point */
2627                             ++source;
2628                             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2629                             if(offsets!=NULL) {
2630                                 *offsets++=sourceIndex;
2631                                 sourceIndex=++nextSourceIndex;
2632                             }
2633                             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2634                         } else {
2635                             /* leave the optimized loop */
2636                             break;
2637                         }
2638                     }
2639                 } while(source<sourceLimit && target<targetLimit);
2640             }
2641 
2642             /*
2643              * these tests and break statements could be put inside the loop
2644              * if C had "break outerLoop" like Java
2645              */
2646             if(source>=sourceLimit) {
2647                 break;
2648             }
2649             if(target>=targetLimit) {
2650                 /* target is full */
2651                 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2652                 break;
2653             }
2654 
2655             ++nextSourceIndex;
2656             bytes[byteIndex++]=*source++;
2657         } else /* byteIndex>0 */ {
2658             ++nextSourceIndex;
2659             entry=stateTable[state][bytes[byteIndex++]=*source++];
2660         }
2661 
2662         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2663             state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2664             offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2665             continue;
2666         }
2667 
2668         /* save the previous state for proper extension mapping with SI/SO-stateful converters */
2669         cnv->mode=state;
2670 
2671         /* set the next state early so that we can reuse the entry variable */
2672         state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2673 
2674         /*
2675          * An if-else-if chain provides more reliable performance for
2676          * the most common cases compared to a switch.
2677          */
2678         action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2679         if(action==MBCS_STATE_VALID_16) {
2680             offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2681             c=unicodeCodeUnits[offset];
2682             if(c<0xfffe) {
2683                 /* output BMP code point */
2684                 *target++=c;
2685                 if(offsets!=NULL) {
2686                     *offsets++=sourceIndex;
2687                 }
2688                 byteIndex=0;
2689             } else if(c==0xfffe) {
2690                 if(UCNV_TO_U_USE_FALLBACK(cnv) && (entry=(int32_t)ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
2691                     /* output fallback BMP code point */
2692                     *target++=(UChar)entry;
2693                     if(offsets!=NULL) {
2694                         *offsets++=sourceIndex;
2695                     }
2696                     byteIndex=0;
2697                 }
2698             } else {
2699                 /* callback(illegal) */
2700                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2701             }
2702         } else if(action==MBCS_STATE_VALID_DIRECT_16) {
2703             /* output BMP code point */
2704             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2705             if(offsets!=NULL) {
2706                 *offsets++=sourceIndex;
2707             }
2708             byteIndex=0;
2709         } else if(action==MBCS_STATE_VALID_16_PAIR) {
2710             offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2711             c=unicodeCodeUnits[offset++];
2712             if(c<0xd800) {
2713                 /* output BMP code point below 0xd800 */
2714                 *target++=c;
2715                 if(offsets!=NULL) {
2716                     *offsets++=sourceIndex;
2717                 }
2718                 byteIndex=0;
2719             } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
2720                 /* output roundtrip or fallback surrogate pair */
2721                 *target++=(UChar)(c&0xdbff);
2722                 if(offsets!=NULL) {
2723                     *offsets++=sourceIndex;
2724                 }
2725                 byteIndex=0;
2726                 if(target<targetLimit) {
2727                     *target++=unicodeCodeUnits[offset];
2728                     if(offsets!=NULL) {
2729                         *offsets++=sourceIndex;
2730                     }
2731                 } else {
2732                     /* target overflow */
2733                     cnv->UCharErrorBuffer[0]=unicodeCodeUnits[offset];
2734                     cnv->UCharErrorBufferLength=1;
2735                     *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2736 
2737                     offset=0;
2738                     break;
2739                 }
2740             } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
2741                 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
2742                 *target++=unicodeCodeUnits[offset];
2743                 if(offsets!=NULL) {
2744                     *offsets++=sourceIndex;
2745                 }
2746                 byteIndex=0;
2747             } else if(c==0xffff) {
2748                 /* callback(illegal) */
2749                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2750             }
2751         } else if(action==MBCS_STATE_VALID_DIRECT_20 ||
2752                   (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2753         ) {
2754             entry=MBCS_ENTRY_FINAL_VALUE(entry);
2755             /* output surrogate pair */
2756             *target++=(UChar)(0xd800|(UChar)(entry>>10));
2757             if(offsets!=NULL) {
2758                 *offsets++=sourceIndex;
2759             }
2760             byteIndex=0;
2761             c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
2762             if(target<targetLimit) {
2763                 *target++=c;
2764                 if(offsets!=NULL) {
2765                     *offsets++=sourceIndex;
2766                 }
2767             } else {
2768                 /* target overflow */
2769                 cnv->UCharErrorBuffer[0]=c;
2770                 cnv->UCharErrorBufferLength=1;
2771                 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2772 
2773                 offset=0;
2774                 break;
2775             }
2776         } else if(action==MBCS_STATE_CHANGE_ONLY) {
2777             /*
2778              * This serves as a state change without any output.
2779              * It is useful for reading simple stateful encodings,
2780              * for example using just Shift-In/Shift-Out codes.
2781              * The 21 unused bits may later be used for more sophisticated
2782              * state transitions.
2783              */
2784             if(cnv->sharedData->mbcs.dbcsOnlyState==0) {
2785                 byteIndex=0;
2786             } else {
2787                 /* SI/SO are illegal for DBCS-only conversion */
2788                 state=(uint8_t)(cnv->mode); /* restore the previous state */
2789 
2790                 /* callback(illegal) */
2791                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2792             }
2793         } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2794             if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2795                 /* output BMP code point */
2796                 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2797                 if(offsets!=NULL) {
2798                     *offsets++=sourceIndex;
2799                 }
2800                 byteIndex=0;
2801             }
2802         } else if(action==MBCS_STATE_UNASSIGNED) {
2803             /* just fall through */
2804         } else if(action==MBCS_STATE_ILLEGAL) {
2805             /* callback(illegal) */
2806             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2807         } else {
2808             /* reserved, must never occur */
2809             byteIndex=0;
2810         }
2811 
2812         /* end of action codes: prepare for a new character */
2813         offset=0;
2814 
2815         if(byteIndex==0) {
2816             sourceIndex=nextSourceIndex;
2817         } else if(U_FAILURE(*pErrorCode)) {
2818             /* callback(illegal) */
2819             if(byteIndex>1) {
2820                 /*
2821                  * Ticket 5691: consistent illegal sequences:
2822                  * - We include at least the first byte in the illegal sequence.
2823                  * - If any of the non-initial bytes could be the start of a character,
2824                  *   we stop the illegal sequence before the first one of those.
2825                  */
2826                 UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
2827                 int8_t i;
2828                 for(i=1;
2829                     i<byteIndex && !isSingleOrLead(stateTable, state, isDBCSOnly, bytes[i]);
2830                     ++i) {}
2831                 if(i<byteIndex) {
2832                     /* Back out some bytes. */
2833                     int8_t backOutDistance=byteIndex-i;
2834                     int32_t bytesFromThisBuffer=(int32_t)(source-(const uint8_t *)pArgs->source);
2835                     byteIndex=i;  /* length of reported illegal byte sequence */
2836                     if(backOutDistance<=bytesFromThisBuffer) {
2837                         source-=backOutDistance;
2838                     } else {
2839                         /* Back out bytes from the previous buffer: Need to replay them. */
2840                         cnv->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance);
2841                         /* preToULength is negative! */
2842                         uprv_memcpy(cnv->preToU, bytes+i, -cnv->preToULength);
2843                         source=(const uint8_t *)pArgs->source;
2844                     }
2845                 }
2846             }
2847             break;
2848         } else /* unassigned sequences indicated with byteIndex>0 */ {
2849             /* try an extension mapping */
2850             pArgs->source=(const char *)source;
2851             byteIndex=_extToU(cnv, cnv->sharedData,
2852                               byteIndex, &source, sourceLimit,
2853                               &target, targetLimit,
2854                               &offsets, sourceIndex,
2855                               pArgs->flush,
2856                               pErrorCode);
2857             sourceIndex=nextSourceIndex+=(int32_t)(source-(const uint8_t *)pArgs->source);
2858 
2859             if(U_FAILURE(*pErrorCode)) {
2860                 /* not mappable or buffer overflow */
2861                 break;
2862             }
2863         }
2864     }
2865 
2866     /* set the converter state back into UConverter */
2867     cnv->toUnicodeStatus=offset;
2868     cnv->mode=state;
2869     cnv->toULength=byteIndex;
2870 
2871     /* write back the updated pointers */
2872     pArgs->source=(const char *)source;
2873     pArgs->target=target;
2874     pArgs->offsets=offsets;
2875 }
2876 
2877 /*
2878  * This version of ucnv_MBCSGetNextUChar() is optimized for single-byte, single-state codepages.
2879  * We still need a conversion loop in case we find reserved action codes, which are to be ignored.
2880  */
2881 static UChar32
ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs * pArgs,UErrorCode * pErrorCode)2882 ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs,
2883                         UErrorCode *pErrorCode) {
2884     UConverter *cnv;
2885     const int32_t (*stateTable)[256];
2886     const uint8_t *source, *sourceLimit;
2887 
2888     int32_t entry;
2889     uint8_t action;
2890 
2891     /* set up the local pointers */
2892     cnv=pArgs->converter;
2893     source=(const uint8_t *)pArgs->source;
2894     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2895     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2896         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2897     } else {
2898         stateTable=cnv->sharedData->mbcs.stateTable;
2899     }
2900 
2901     /* conversion loop */
2902     while(source<sourceLimit) {
2903         entry=stateTable[0][*source++];
2904         /* MBCS_ENTRY_IS_FINAL(entry) */
2905 
2906         /* write back the updated pointer early so that we can return directly */
2907         pArgs->source=(const char *)source;
2908 
2909         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2910             /* output BMP code point */
2911             return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2912         }
2913 
2914         /*
2915          * An if-else-if chain provides more reliable performance for
2916          * the most common cases compared to a switch.
2917          */
2918         action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2919         if( action==MBCS_STATE_VALID_DIRECT_20 ||
2920             (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2921         ) {
2922             /* output supplementary code point */
2923             return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
2924         } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2925             if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2926                 /* output BMP code point */
2927                 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2928             }
2929         } else if(action==MBCS_STATE_UNASSIGNED) {
2930             /* just fall through */
2931         } else if(action==MBCS_STATE_ILLEGAL) {
2932             /* callback(illegal) */
2933             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2934         } else {
2935             /* reserved, must never occur */
2936             continue;
2937         }
2938 
2939         if(U_FAILURE(*pErrorCode)) {
2940             /* callback(illegal) */
2941             break;
2942         } else /* unassigned sequence */ {
2943             /* defer to the generic implementation */
2944             pArgs->source=(const char *)source-1;
2945             return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2946         }
2947     }
2948 
2949     /* no output because of empty input or only state changes */
2950     *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2951     return 0xffff;
2952 }
2953 
2954 /*
2955  * Version of _MBCSToUnicodeWithOffsets() optimized for single-character
2956  * conversion without offset handling.
2957  *
2958  * When a character does not have a mapping to Unicode, then we return to the
2959  * generic ucnv_getNextUChar() code for extension/GB 18030 and error/callback
2960  * handling.
2961  * We also defer to the generic code in other complicated cases and have them
2962  * ultimately handled by _MBCSToUnicodeWithOffsets() itself.
2963  *
2964  * All normal mappings and errors are handled here.
2965  */
2966 static UChar32 U_CALLCONV
ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs * pArgs,UErrorCode * pErrorCode)2967 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
2968                   UErrorCode *pErrorCode) {
2969     UConverter *cnv;
2970     const uint8_t *source, *sourceLimit, *lastSource;
2971 
2972     const int32_t (*stateTable)[256];
2973     const uint16_t *unicodeCodeUnits;
2974 
2975     uint32_t offset;
2976     uint8_t state;
2977 
2978     int32_t entry;
2979     UChar32 c;
2980     uint8_t action;
2981 
2982     /* use optimized function if possible */
2983     cnv=pArgs->converter;
2984 
2985     if(cnv->preToULength>0) {
2986         /* use the generic code in ucnv_getNextUChar() to continue with a partial match */
2987         return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2988     }
2989 
2990     if(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SURROGATES) {
2991         /*
2992          * Using the generic ucnv_getNextUChar() code lets us deal correctly
2993          * with the rare case of a codepage that maps single surrogates
2994          * without adding the complexity to this already complicated function here.
2995          */
2996         return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2997     } else if(cnv->sharedData->mbcs.countStates==1) {
2998         return ucnv_MBCSSingleGetNextUChar(pArgs, pErrorCode);
2999     }
3000 
3001     /* set up the local pointers */
3002     source=lastSource=(const uint8_t *)pArgs->source;
3003     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
3004 
3005     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3006         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
3007     } else {
3008         stateTable=cnv->sharedData->mbcs.stateTable;
3009     }
3010     unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
3011 
3012     /* get the converter state from UConverter */
3013     offset=cnv->toUnicodeStatus;
3014 
3015     /*
3016      * if we are in the SBCS state for a DBCS-only converter,
3017      * then load the DBCS state from the MBCS data
3018      * (dbcsOnlyState==0 if it is not a DBCS-only converter)
3019      */
3020     if((state=(uint8_t)(cnv->mode))==0) {
3021         state=cnv->sharedData->mbcs.dbcsOnlyState;
3022     }
3023 
3024     /* conversion loop */
3025     c=U_SENTINEL;
3026     while(source<sourceLimit) {
3027         entry=stateTable[state][*source++];
3028         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
3029             state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
3030             offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
3031 
3032             /* optimization for 1/2-byte input and BMP output */
3033             if( source<sourceLimit &&
3034                 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
3035                 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
3036                 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
3037             ) {
3038                 ++source;
3039                 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
3040                 /* output BMP code point */
3041                 break;
3042             }
3043         } else {
3044             /* save the previous state for proper extension mapping with SI/SO-stateful converters */
3045             cnv->mode=state;
3046 
3047             /* set the next state early so that we can reuse the entry variable */
3048             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
3049 
3050             /*
3051              * An if-else-if chain provides more reliable performance for
3052              * the most common cases compared to a switch.
3053              */
3054             action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
3055             if(action==MBCS_STATE_VALID_DIRECT_16) {
3056                 /* output BMP code point */
3057                 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3058                 break;
3059             } else if(action==MBCS_STATE_VALID_16) {
3060                 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3061                 c=unicodeCodeUnits[offset];
3062                 if(c<0xfffe) {
3063                     /* output BMP code point */
3064                     break;
3065                 } else if(c==0xfffe) {
3066                     if(UCNV_TO_U_USE_FALLBACK(cnv) && (c=ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
3067                         break;
3068                     }
3069                 } else {
3070                     /* callback(illegal) */
3071                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3072                 }
3073             } else if(action==MBCS_STATE_VALID_16_PAIR) {
3074                 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3075                 c=unicodeCodeUnits[offset++];
3076                 if(c<0xd800) {
3077                     /* output BMP code point below 0xd800 */
3078                     break;
3079                 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
3080                     /* output roundtrip or fallback supplementary code point */
3081                     c=((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00);
3082                     break;
3083                 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
3084                     /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
3085                     c=unicodeCodeUnits[offset];
3086                     break;
3087                 } else if(c==0xffff) {
3088                     /* callback(illegal) */
3089                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3090                 }
3091             } else if(action==MBCS_STATE_VALID_DIRECT_20 ||
3092                       (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
3093             ) {
3094                 /* output supplementary code point */
3095                 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
3096                 break;
3097             } else if(action==MBCS_STATE_CHANGE_ONLY) {
3098                 /*
3099                  * This serves as a state change without any output.
3100                  * It is useful for reading simple stateful encodings,
3101                  * for example using just Shift-In/Shift-Out codes.
3102                  * The 21 unused bits may later be used for more sophisticated
3103                  * state transitions.
3104                  */
3105                 if(cnv->sharedData->mbcs.dbcsOnlyState!=0) {
3106                     /* SI/SO are illegal for DBCS-only conversion */
3107                     state=(uint8_t)(cnv->mode); /* restore the previous state */
3108 
3109                     /* callback(illegal) */
3110                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3111                 }
3112             } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3113                 if(UCNV_TO_U_USE_FALLBACK(cnv)) {
3114                     /* output BMP code point */
3115                     c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3116                     break;
3117                 }
3118             } else if(action==MBCS_STATE_UNASSIGNED) {
3119                 /* just fall through */
3120             } else if(action==MBCS_STATE_ILLEGAL) {
3121                 /* callback(illegal) */
3122                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3123             } else {
3124                 /* reserved (must never occur), or only state change */
3125                 offset=0;
3126                 lastSource=source;
3127                 continue;
3128             }
3129 
3130             /* end of action codes: prepare for a new character */
3131             offset=0;
3132 
3133             if(U_FAILURE(*pErrorCode)) {
3134                 /* callback(illegal) */
3135                 break;
3136             } else /* unassigned sequence */ {
3137                 /* defer to the generic implementation */
3138                 cnv->toUnicodeStatus=0;
3139                 cnv->mode=state;
3140                 pArgs->source=(const char *)lastSource;
3141                 return UCNV_GET_NEXT_UCHAR_USE_TO_U;
3142             }
3143         }
3144     }
3145 
3146     if(c<0) {
3147         if(U_SUCCESS(*pErrorCode) && source==sourceLimit && lastSource<source) {
3148             /* incomplete character byte sequence */
3149             uint8_t *bytes=cnv->toUBytes;
3150             cnv->toULength=(int8_t)(source-lastSource);
3151             do {
3152                 *bytes++=*lastSource++;
3153             } while(lastSource<source);
3154             *pErrorCode=U_TRUNCATED_CHAR_FOUND;
3155         } else if(U_FAILURE(*pErrorCode)) {
3156             /* callback(illegal) */
3157             /*
3158              * Ticket 5691: consistent illegal sequences:
3159              * - We include at least the first byte in the illegal sequence.
3160              * - If any of the non-initial bytes could be the start of a character,
3161              *   we stop the illegal sequence before the first one of those.
3162              */
3163             UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
3164             uint8_t *bytes=cnv->toUBytes;
3165             *bytes++=*lastSource++;     /* first byte */
3166             if(lastSource==source) {
3167                 cnv->toULength=1;
3168             } else /* lastSource<source: multi-byte character */ {
3169                 int8_t i;
3170                 for(i=1;
3171                     lastSource<source && !isSingleOrLead(stateTable, state, isDBCSOnly, *lastSource);
3172                     ++i
3173                 ) {
3174                     *bytes++=*lastSource++;
3175                 }
3176                 cnv->toULength=i;
3177                 source=lastSource;
3178             }
3179         } else {
3180             /* no output because of empty input or only state changes */
3181             *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
3182         }
3183         c=0xffff;
3184     }
3185 
3186     /* set the converter state back into UConverter, ready for a new character */
3187     cnv->toUnicodeStatus=0;
3188     cnv->mode=state;
3189 
3190     /* write back the updated pointer */
3191     pArgs->source=(const char *)source;
3192     return c;
3193 }
3194 
3195 #if 0
3196 /*
3197  * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
3198  * Removal improves code coverage.
3199  */
3200 /**
3201  * This version of ucnv_MBCSSimpleGetNextUChar() is optimized for single-byte, single-state codepages.
3202  * It does not handle the EBCDIC swaplfnl option (set in UConverter).
3203  * It does not handle conversion extensions (_extToU()).
3204  */
3205 U_CFUNC UChar32
3206 ucnv_MBCSSingleSimpleGetNextUChar(UConverterSharedData *sharedData,
3207                               uint8_t b, UBool useFallback) {
3208     int32_t entry;
3209     uint8_t action;
3210 
3211     entry=sharedData->mbcs.stateTable[0][b];
3212     /* MBCS_ENTRY_IS_FINAL(entry) */
3213 
3214     if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
3215         /* output BMP code point */
3216         return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3217     }
3218 
3219     /*
3220      * An if-else-if chain provides more reliable performance for
3221      * the most common cases compared to a switch.
3222      */
3223     action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
3224     if(action==MBCS_STATE_VALID_DIRECT_20) {
3225         /* output supplementary code point */
3226         return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3227     } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3228         if(!TO_U_USE_FALLBACK(useFallback)) {
3229             return 0xfffe;
3230         }
3231         /* output BMP code point */
3232         return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3233     } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
3234         if(!TO_U_USE_FALLBACK(useFallback)) {
3235             return 0xfffe;
3236         }
3237         /* output supplementary code point */
3238         return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3239     } else if(action==MBCS_STATE_UNASSIGNED) {
3240         return 0xfffe;
3241     } else if(action==MBCS_STATE_ILLEGAL) {
3242         return 0xffff;
3243     } else {
3244         /* reserved, must never occur */
3245         return 0xffff;
3246     }
3247 }
3248 #endif
3249 
3250 /*
3251  * This is a simple version of _MBCSGetNextUChar() that is used
3252  * by other converter implementations.
3253  * It only returns an "assigned" result if it consumes the entire input.
3254  * It does not use state from the converter, nor error codes.
3255  * It does not handle the EBCDIC swaplfnl option (set in UConverter).
3256  * It handles conversion extensions but not GB 18030.
3257  *
3258  * Return value:
3259  * U+fffe   unassigned
3260  * U+ffff   illegal
3261  * otherwise the Unicode code point
3262  */
3263 U_CFUNC UChar32
ucnv_MBCSSimpleGetNextUChar(UConverterSharedData * sharedData,const char * source,int32_t length,UBool useFallback)3264 ucnv_MBCSSimpleGetNextUChar(UConverterSharedData *sharedData,
3265                         const char *source, int32_t length,
3266                         UBool useFallback) {
3267     const int32_t (*stateTable)[256];
3268     const uint16_t *unicodeCodeUnits;
3269 
3270     uint32_t offset;
3271     uint8_t state, action;
3272 
3273     UChar32 c;
3274     int32_t i, entry;
3275 
3276     if(length<=0) {
3277         /* no input at all: "illegal" */
3278         return 0xffff;
3279     }
3280 
3281 #if 0
3282 /*
3283  * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
3284  * TODO In future releases, verify that this function is never called for SBCS
3285  * conversions, i.e., that sharedData->mbcs.countStates==1 is still true.
3286  * Removal improves code coverage.
3287  */
3288     /* use optimized function if possible */
3289     if(sharedData->mbcs.countStates==1) {
3290         if(length==1) {
3291             return ucnv_MBCSSingleSimpleGetNextUChar(sharedData, (uint8_t)*source, useFallback);
3292         } else {
3293             return 0xffff; /* illegal: more than a single byte for an SBCS converter */
3294         }
3295     }
3296 #endif
3297 
3298     /* set up the local pointers */
3299     stateTable=sharedData->mbcs.stateTable;
3300     unicodeCodeUnits=sharedData->mbcs.unicodeCodeUnits;
3301 
3302     /* converter state */
3303     offset=0;
3304     state=sharedData->mbcs.dbcsOnlyState;
3305 
3306     /* conversion loop */
3307     for(i=0;;) {
3308         entry=stateTable[state][(uint8_t)source[i++]];
3309         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
3310             state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
3311             offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
3312 
3313             if(i==length) {
3314                 return 0xffff; /* truncated character */
3315             }
3316         } else {
3317             /*
3318              * An if-else-if chain provides more reliable performance for
3319              * the most common cases compared to a switch.
3320              */
3321             action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
3322             if(action==MBCS_STATE_VALID_16) {
3323                 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3324                 c=unicodeCodeUnits[offset];
3325                 if(c!=0xfffe) {
3326                     /* done */
3327                 } else if(UCNV_TO_U_USE_FALLBACK(cnv)) {
3328                     c=ucnv_MBCSGetFallback(&sharedData->mbcs, offset);
3329                 /* else done with 0xfffe */
3330                 }
3331                 break;
3332             } else if(action==MBCS_STATE_VALID_DIRECT_16) {
3333                 /* output BMP code point */
3334                 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3335                 break;
3336             } else if(action==MBCS_STATE_VALID_16_PAIR) {
3337                 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3338                 c=unicodeCodeUnits[offset++];
3339                 if(c<0xd800) {
3340                     /* output BMP code point below 0xd800 */
3341                 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
3342                     /* output roundtrip or fallback supplementary code point */
3343                     c=(UChar32)(((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00));
3344                 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
3345                     /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
3346                     c=unicodeCodeUnits[offset];
3347                 } else if(c==0xffff) {
3348                     return 0xffff;
3349                 } else {
3350                     c=0xfffe;
3351                 }
3352                 break;
3353             } else if(action==MBCS_STATE_VALID_DIRECT_20) {
3354                 /* output supplementary code point */
3355                 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3356                 break;
3357             } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3358                 if(!TO_U_USE_FALLBACK(useFallback)) {
3359                     c=0xfffe;
3360                     break;
3361                 }
3362                 /* output BMP code point */
3363                 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3364                 break;
3365             } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
3366                 if(!TO_U_USE_FALLBACK(useFallback)) {
3367                     c=0xfffe;
3368                     break;
3369                 }
3370                 /* output supplementary code point */
3371                 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3372                 break;
3373             } else if(action==MBCS_STATE_UNASSIGNED) {
3374                 c=0xfffe;
3375                 break;
3376             }
3377 
3378             /*
3379              * forbid MBCS_STATE_CHANGE_ONLY for this function,
3380              * and MBCS_STATE_ILLEGAL and reserved action codes
3381              */
3382             return 0xffff;
3383         }
3384     }
3385 
3386     if(i!=length) {
3387         /* illegal for this function: not all input consumed */
3388         return 0xffff;
3389     }
3390 
3391     if(c==0xfffe) {
3392         /* try an extension mapping */
3393         const int32_t *cx=sharedData->mbcs.extIndexes;
3394         if(cx!=NULL) {
3395             return ucnv_extSimpleMatchToU(cx, source, length, useFallback);
3396         }
3397     }
3398 
3399     return c;
3400 }
3401 
3402 /* MBCS-from-Unicode conversion functions ----------------------------------- */
3403 
3404 /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for double-byte codepages. */
3405 static void
ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs * pArgs,UErrorCode * pErrorCode)3406 ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
3407                                   UErrorCode *pErrorCode) {
3408     UConverter *cnv;
3409     const UChar *source, *sourceLimit;
3410     uint8_t *target;
3411     int32_t targetCapacity;
3412     int32_t *offsets;
3413 
3414     const uint16_t *table;
3415     const uint16_t *mbcsIndex;
3416     const uint8_t *bytes;
3417 
3418     UChar32 c;
3419 
3420     int32_t sourceIndex, nextSourceIndex;
3421 
3422     uint32_t stage2Entry;
3423     uint32_t asciiRoundtrips;
3424     uint32_t value;
3425     uint8_t unicodeMask;
3426 
3427     /* use optimized function if possible */
3428     cnv=pArgs->converter;
3429     unicodeMask=cnv->sharedData->mbcs.unicodeMask;
3430 
3431     /* set up the local pointers */
3432     source=pArgs->source;
3433     sourceLimit=pArgs->sourceLimit;
3434     target=(uint8_t *)pArgs->target;
3435     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3436     offsets=pArgs->offsets;
3437 
3438     table=cnv->sharedData->mbcs.fromUnicodeTable;
3439     mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
3440     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3441         bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3442     } else {
3443         bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
3444     }
3445     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
3446 
3447     /* get the converter state from UConverter */
3448     c=cnv->fromUChar32;
3449 
3450     /* sourceIndex=-1 if the current character began in the previous buffer */
3451     sourceIndex= c==0 ? 0 : -1;
3452     nextSourceIndex=0;
3453 
3454     /* conversion loop */
3455     if(c!=0 && targetCapacity>0) {
3456         goto getTrail;
3457     }
3458 
3459     while(source<sourceLimit) {
3460         /*
3461          * This following test is to see if available input would overflow the output.
3462          * It does not catch output of more than one byte that
3463          * overflows as a result of a multi-byte character or callback output
3464          * from the last source character.
3465          * Therefore, those situations also test for overflows and will
3466          * then break the loop, too.
3467          */
3468         if(targetCapacity>0) {
3469             /*
3470              * Get a correct Unicode code point:
3471              * a single UChar for a BMP code point or
3472              * a matched surrogate pair for a "supplementary code point".
3473              */
3474             c=*source++;
3475             ++nextSourceIndex;
3476             if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
3477                 *target++=(uint8_t)c;
3478                 if(offsets!=NULL) {
3479                     *offsets++=sourceIndex;
3480                     sourceIndex=nextSourceIndex;
3481                 }
3482                 --targetCapacity;
3483                 c=0;
3484                 continue;
3485             }
3486             /*
3487              * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
3488              * to avoid dealing with surrogates.
3489              * MBCS_FAST_MAX must be >=0xd7ff.
3490              */
3491             if(c<=0xd7ff) {
3492                 value=DBCS_RESULT_FROM_MOST_BMP(mbcsIndex, (const uint16_t *)bytes, c);
3493                 /* There are only roundtrips (!=0) and no-mapping (==0) entries. */
3494                 if(value==0) {
3495                     goto unassigned;
3496                 }
3497                 /* output the value */
3498             } else {
3499                 /*
3500                  * This also tests if the codepage maps single surrogates.
3501                  * If it does, then surrogates are not paired but mapped separately.
3502                  * Note that in this case unmatched surrogates are not detected.
3503                  */
3504                 if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
3505                     if(U16_IS_SURROGATE_LEAD(c)) {
3506 getTrail:
3507                         if(source<sourceLimit) {
3508                             /* test the following code unit */
3509                             UChar trail=*source;
3510                             if(U16_IS_TRAIL(trail)) {
3511                                 ++source;
3512                                 ++nextSourceIndex;
3513                                 c=U16_GET_SUPPLEMENTARY(c, trail);
3514                                 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
3515                                     /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
3516                                     /* callback(unassigned) */
3517                                     goto unassigned;
3518                                 }
3519                                 /* convert this supplementary code point */
3520                                 /* exit this condition tree */
3521                             } else {
3522                                 /* this is an unmatched lead code unit (1st surrogate) */
3523                                 /* callback(illegal) */
3524                                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3525                                 break;
3526                             }
3527                         } else {
3528                             /* no more input */
3529                             break;
3530                         }
3531                     } else {
3532                         /* this is an unmatched trail code unit (2nd surrogate) */
3533                         /* callback(illegal) */
3534                         *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3535                         break;
3536                     }
3537                 }
3538 
3539                 /* convert the Unicode code point in c into codepage bytes */
3540                 stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
3541 
3542                 /* get the bytes and the length for the output */
3543                 /* MBCS_OUTPUT_2 */
3544                 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
3545 
3546                 /* is this code point assigned, or do we use fallbacks? */
3547                 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
3548                      (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
3549                 ) {
3550                     /*
3551                      * We allow a 0 byte output if the "assigned" bit is set for this entry.
3552                      * There is no way with this data structure for fallback output
3553                      * to be a zero byte.
3554                      */
3555 
3556 unassigned:
3557                     /* try an extension mapping */
3558                     pArgs->source=source;
3559                     c=_extFromU(cnv, cnv->sharedData,
3560                                 c, &source, sourceLimit,
3561                                 &target, target+targetCapacity,
3562                                 &offsets, sourceIndex,
3563                                 pArgs->flush,
3564                                 pErrorCode);
3565                     nextSourceIndex+=(int32_t)(source-pArgs->source);
3566 
3567                     if(U_FAILURE(*pErrorCode)) {
3568                         /* not mappable or buffer overflow */
3569                         break;
3570                     } else {
3571                         /* a mapping was written to the target, continue */
3572 
3573                         /* recalculate the targetCapacity after an extension mapping */
3574                         targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
3575 
3576                         /* normal end of conversion: prepare for a new character */
3577                         sourceIndex=nextSourceIndex;
3578                         continue;
3579                     }
3580                 }
3581             }
3582 
3583             /* write the output character bytes from value and length */
3584             /* from the first if in the loop we know that targetCapacity>0 */
3585             if(value<=0xff) {
3586                 /* this is easy because we know that there is enough space */
3587                 *target++=(uint8_t)value;
3588                 if(offsets!=NULL) {
3589                     *offsets++=sourceIndex;
3590                 }
3591                 --targetCapacity;
3592             } else /* length==2 */ {
3593                 *target++=(uint8_t)(value>>8);
3594                 if(2<=targetCapacity) {
3595                     *target++=(uint8_t)value;
3596                     if(offsets!=NULL) {
3597                         *offsets++=sourceIndex;
3598                         *offsets++=sourceIndex;
3599                     }
3600                     targetCapacity-=2;
3601                 } else {
3602                     if(offsets!=NULL) {
3603                         *offsets++=sourceIndex;
3604                     }
3605                     cnv->charErrorBuffer[0]=(char)value;
3606                     cnv->charErrorBufferLength=1;
3607 
3608                     /* target overflow */
3609                     targetCapacity=0;
3610                     *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3611                     c=0;
3612                     break;
3613                 }
3614             }
3615 
3616             /* normal end of conversion: prepare for a new character */
3617             c=0;
3618             sourceIndex=nextSourceIndex;
3619             continue;
3620         } else {
3621             /* target is full */
3622             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3623             break;
3624         }
3625     }
3626 
3627     /* set the converter state back into UConverter */
3628     cnv->fromUChar32=c;
3629 
3630     /* write back the updated pointers */
3631     pArgs->source=source;
3632     pArgs->target=(char *)target;
3633     pArgs->offsets=offsets;
3634 }
3635 
3636 /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for single-byte codepages. */
3637 static void
ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs * pArgs,UErrorCode * pErrorCode)3638 ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
3639                                   UErrorCode *pErrorCode) {
3640     UConverter *cnv;
3641     const UChar *source, *sourceLimit;
3642     uint8_t *target;
3643     int32_t targetCapacity;
3644     int32_t *offsets;
3645 
3646     const uint16_t *table;
3647     const uint16_t *results;
3648 
3649     UChar32 c;
3650 
3651     int32_t sourceIndex, nextSourceIndex;
3652 
3653     uint16_t value, minValue;
3654     UBool hasSupplementary;
3655 
3656     /* set up the local pointers */
3657     cnv=pArgs->converter;
3658     source=pArgs->source;
3659     sourceLimit=pArgs->sourceLimit;
3660     target=(uint8_t *)pArgs->target;
3661     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3662     offsets=pArgs->offsets;
3663 
3664     table=cnv->sharedData->mbcs.fromUnicodeTable;
3665     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3666         results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3667     } else {
3668         results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
3669     }
3670 
3671     if(cnv->useFallback) {
3672         /* use all roundtrip and fallback results */
3673         minValue=0x800;
3674     } else {
3675         /* use only roundtrips and fallbacks from private-use characters */
3676         minValue=0xc00;
3677     }
3678     hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
3679 
3680     /* get the converter state from UConverter */
3681     c=cnv->fromUChar32;
3682 
3683     /* sourceIndex=-1 if the current character began in the previous buffer */
3684     sourceIndex= c==0 ? 0 : -1;
3685     nextSourceIndex=0;
3686 
3687     /* conversion loop */
3688     if(c!=0 && targetCapacity>0) {
3689         goto getTrail;
3690     }
3691 
3692     while(source<sourceLimit) {
3693         /*
3694          * This following test is to see if available input would overflow the output.
3695          * It does not catch output of more than one byte that
3696          * overflows as a result of a multi-byte character or callback output
3697          * from the last source character.
3698          * Therefore, those situations also test for overflows and will
3699          * then break the loop, too.
3700          */
3701         if(targetCapacity>0) {
3702             /*
3703              * Get a correct Unicode code point:
3704              * a single UChar for a BMP code point or
3705              * a matched surrogate pair for a "supplementary code point".
3706              */
3707             c=*source++;
3708             ++nextSourceIndex;
3709             if(U16_IS_SURROGATE(c)) {
3710                 if(U16_IS_SURROGATE_LEAD(c)) {
3711 getTrail:
3712                     if(source<sourceLimit) {
3713                         /* test the following code unit */
3714                         UChar trail=*source;
3715                         if(U16_IS_TRAIL(trail)) {
3716                             ++source;
3717                             ++nextSourceIndex;
3718                             c=U16_GET_SUPPLEMENTARY(c, trail);
3719                             if(!hasSupplementary) {
3720                                 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
3721                                 /* callback(unassigned) */
3722                                 goto unassigned;
3723                             }
3724                             /* convert this supplementary code point */
3725                             /* exit this condition tree */
3726                         } else {
3727                             /* this is an unmatched lead code unit (1st surrogate) */
3728                             /* callback(illegal) */
3729                             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3730                             break;
3731                         }
3732                     } else {
3733                         /* no more input */
3734                         break;
3735                     }
3736                 } else {
3737                     /* this is an unmatched trail code unit (2nd surrogate) */
3738                     /* callback(illegal) */
3739                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3740                     break;
3741                 }
3742             }
3743 
3744             /* convert the Unicode code point in c into codepage bytes */
3745             value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3746 
3747             /* is this code point assigned, or do we use fallbacks? */
3748             if(value>=minValue) {
3749                 /* assigned, write the output character bytes from value and length */
3750                 /* length==1 */
3751                 /* this is easy because we know that there is enough space */
3752                 *target++=(uint8_t)value;
3753                 if(offsets!=NULL) {
3754                     *offsets++=sourceIndex;
3755                 }
3756                 --targetCapacity;
3757 
3758                 /* normal end of conversion: prepare for a new character */
3759                 c=0;
3760                 sourceIndex=nextSourceIndex;
3761             } else { /* unassigned */
3762 unassigned:
3763                 /* try an extension mapping */
3764                 pArgs->source=source;
3765                 c=_extFromU(cnv, cnv->sharedData,
3766                             c, &source, sourceLimit,
3767                             &target, target+targetCapacity,
3768                             &offsets, sourceIndex,
3769                             pArgs->flush,
3770                             pErrorCode);
3771                 nextSourceIndex+=(int32_t)(source-pArgs->source);
3772 
3773                 if(U_FAILURE(*pErrorCode)) {
3774                     /* not mappable or buffer overflow */
3775                     break;
3776                 } else {
3777                     /* a mapping was written to the target, continue */
3778 
3779                     /* recalculate the targetCapacity after an extension mapping */
3780                     targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
3781 
3782                     /* normal end of conversion: prepare for a new character */
3783                     sourceIndex=nextSourceIndex;
3784                 }
3785             }
3786         } else {
3787             /* target is full */
3788             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3789             break;
3790         }
3791     }
3792 
3793     /* set the converter state back into UConverter */
3794     cnv->fromUChar32=c;
3795 
3796     /* write back the updated pointers */
3797     pArgs->source=source;
3798     pArgs->target=(char *)target;
3799     pArgs->offsets=offsets;
3800 }
3801 
3802 /*
3803  * This version of ucnv_MBCSFromUnicode() is optimized for single-byte codepages
3804  * that map only to and from the BMP.
3805  * In addition to single-byte/state optimizations, the offset calculations
3806  * become much easier.
3807  * It would be possible to use the sbcsIndex for UTF-8-friendly tables,
3808  * but measurements have shown that this diminishes performance
3809  * in more cases than it improves it.
3810  * See SVN revision 21013 (2007-feb-06) for the last version with #if switches
3811  * for various MBCS and SBCS optimizations.
3812  */
3813 static void
ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs * pArgs,UErrorCode * pErrorCode)3814 ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs,
3815                               UErrorCode *pErrorCode) {
3816     UConverter *cnv;
3817     const UChar *source, *sourceLimit, *lastSource;
3818     uint8_t *target;
3819     int32_t targetCapacity, length;
3820     int32_t *offsets;
3821 
3822     const uint16_t *table;
3823     const uint16_t *results;
3824 
3825     UChar32 c;
3826 
3827     int32_t sourceIndex;
3828 
3829     uint32_t asciiRoundtrips;
3830     uint16_t value, minValue;
3831 
3832     /* set up the local pointers */
3833     cnv=pArgs->converter;
3834     source=pArgs->source;
3835     sourceLimit=pArgs->sourceLimit;
3836     target=(uint8_t *)pArgs->target;
3837     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3838     offsets=pArgs->offsets;
3839 
3840     table=cnv->sharedData->mbcs.fromUnicodeTable;
3841     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3842         results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3843     } else {
3844         results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
3845     }
3846     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
3847 
3848     if(cnv->useFallback) {
3849         /* use all roundtrip and fallback results */
3850         minValue=0x800;
3851     } else {
3852         /* use only roundtrips and fallbacks from private-use characters */
3853         minValue=0xc00;
3854     }
3855 
3856     /* get the converter state from UConverter */
3857     c=cnv->fromUChar32;
3858 
3859     /* sourceIndex=-1 if the current character began in the previous buffer */
3860     sourceIndex= c==0 ? 0 : -1;
3861     lastSource=source;
3862 
3863     /*
3864      * since the conversion here is 1:1 UChar:uint8_t, we need only one counter
3865      * for the minimum of the sourceLength and targetCapacity
3866      */
3867     length=(int32_t)(sourceLimit-source);
3868     if(length<targetCapacity) {
3869         targetCapacity=length;
3870     }
3871 
3872     /* conversion loop */
3873     if(c!=0 && targetCapacity>0) {
3874         goto getTrail;
3875     }
3876 
3877 #if MBCS_UNROLL_SINGLE_FROM_BMP
3878     /* unrolling makes it slower on Pentium III/Windows 2000?! */
3879     /* unroll the loop with the most common case */
3880 unrolled:
3881     if(targetCapacity>=4) {
3882         int32_t count, loops;
3883         uint16_t andedValues;
3884 
3885         loops=count=targetCapacity>>2;
3886         do {
3887             c=*source++;
3888             andedValues=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3889             *target++=(uint8_t)value;
3890             c=*source++;
3891             andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3892             *target++=(uint8_t)value;
3893             c=*source++;
3894             andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3895             *target++=(uint8_t)value;
3896             c=*source++;
3897             andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3898             *target++=(uint8_t)value;
3899 
3900             /* were all 4 entries really valid? */
3901             if(andedValues<minValue) {
3902                 /* no, return to the first of these 4 */
3903                 source-=4;
3904                 target-=4;
3905                 break;
3906             }
3907         } while(--count>0);
3908         count=loops-count;
3909         targetCapacity-=4*count;
3910 
3911         if(offsets!=NULL) {
3912             lastSource+=4*count;
3913             while(count>0) {
3914                 *offsets++=sourceIndex++;
3915                 *offsets++=sourceIndex++;
3916                 *offsets++=sourceIndex++;
3917                 *offsets++=sourceIndex++;
3918                 --count;
3919             }
3920         }
3921 
3922         c=0;
3923     }
3924 #endif
3925 
3926     while(targetCapacity>0) {
3927         /*
3928          * Get a correct Unicode code point:
3929          * a single UChar for a BMP code point or
3930          * a matched surrogate pair for a "supplementary code point".
3931          */
3932         c=*source++;
3933         /*
3934          * Do not immediately check for single surrogates:
3935          * Assume that they are unassigned and check for them in that case.
3936          * This speeds up the conversion of assigned characters.
3937          */
3938         /* convert the Unicode code point in c into codepage bytes */
3939         if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
3940             *target++=(uint8_t)c;
3941             --targetCapacity;
3942             c=0;
3943             continue;
3944         }
3945         value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3946         /* is this code point assigned, or do we use fallbacks? */
3947         if(value>=minValue) {
3948             /* assigned, write the output character bytes from value and length */
3949             /* length==1 */
3950             /* this is easy because we know that there is enough space */
3951             *target++=(uint8_t)value;
3952             --targetCapacity;
3953 
3954             /* normal end of conversion: prepare for a new character */
3955             c=0;
3956             continue;
3957         } else if(!U16_IS_SURROGATE(c)) {
3958             /* normal, unassigned BMP character */
3959         } else if(U16_IS_SURROGATE_LEAD(c)) {
3960 getTrail:
3961             if(source<sourceLimit) {
3962                 /* test the following code unit */
3963                 UChar trail=*source;
3964                 if(U16_IS_TRAIL(trail)) {
3965                     ++source;
3966                     c=U16_GET_SUPPLEMENTARY(c, trail);
3967                     /* this codepage does not map supplementary code points */
3968                     /* callback(unassigned) */
3969                 } else {
3970                     /* this is an unmatched lead code unit (1st surrogate) */
3971                     /* callback(illegal) */
3972                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3973                     break;
3974                 }
3975             } else {
3976                 /* no more input */
3977                 if (pArgs->flush) {
3978                     *pErrorCode=U_TRUNCATED_CHAR_FOUND;
3979                 }
3980                 break;
3981             }
3982         } else {
3983             /* this is an unmatched trail code unit (2nd surrogate) */
3984             /* callback(illegal) */
3985             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3986             break;
3987         }
3988 
3989         /* c does not have a mapping */
3990 
3991         /* get the number of code units for c to correctly advance sourceIndex */
3992         length=U16_LENGTH(c);
3993 
3994         /* set offsets since the start or the last extension */
3995         if(offsets!=NULL) {
3996             int32_t count=(int32_t)(source-lastSource);
3997 
3998             /* do not set the offset for this character */
3999             count-=length;
4000 
4001             while(count>0) {
4002                 *offsets++=sourceIndex++;
4003                 --count;
4004             }
4005             /* offsets and sourceIndex are now set for the current character */
4006         }
4007 
4008         /* try an extension mapping */
4009         lastSource=source;
4010         c=_extFromU(cnv, cnv->sharedData,
4011                     c, &source, sourceLimit,
4012                     &target, (const uint8_t *)(pArgs->targetLimit),
4013                     &offsets, sourceIndex,
4014                     pArgs->flush,
4015                     pErrorCode);
4016         sourceIndex+=length+(int32_t)(source-lastSource);
4017         lastSource=source;
4018 
4019         if(U_FAILURE(*pErrorCode)) {
4020             /* not mappable or buffer overflow */
4021             break;
4022         } else {
4023             /* a mapping was written to the target, continue */
4024 
4025             /* recalculate the targetCapacity after an extension mapping */
4026             targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
4027             length=(int32_t)(sourceLimit-source);
4028             if(length<targetCapacity) {
4029                 targetCapacity=length;
4030             }
4031         }
4032 
4033 #if MBCS_UNROLL_SINGLE_FROM_BMP
4034         /* unrolling makes it slower on Pentium III/Windows 2000?! */
4035         goto unrolled;
4036 #endif
4037     }
4038 
4039     if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=(uint8_t *)pArgs->targetLimit) {
4040         /* target is full */
4041         *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4042     }
4043 
4044     /* set offsets since the start or the last callback */
4045     if(offsets!=NULL) {
4046         size_t count=source-lastSource;
4047         if (count > 0 && *pErrorCode == U_TRUNCATED_CHAR_FOUND) {
4048             /*
4049             Caller gave us a partial supplementary character,
4050             which this function couldn't convert in any case.
4051             The callback will handle the offset.
4052             */
4053             count--;
4054         }
4055         while(count>0) {
4056             *offsets++=sourceIndex++;
4057             --count;
4058         }
4059     }
4060 
4061     /* set the converter state back into UConverter */
4062     cnv->fromUChar32=c;
4063 
4064     /* write back the updated pointers */
4065     pArgs->source=source;
4066     pArgs->target=(char *)target;
4067     pArgs->offsets=offsets;
4068 }
4069 
4070 U_CFUNC void
ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs * pArgs,UErrorCode * pErrorCode)4071 ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
4072                             UErrorCode *pErrorCode) {
4073     UConverter *cnv;
4074     const UChar *source, *sourceLimit;
4075     uint8_t *target;
4076     int32_t targetCapacity;
4077     int32_t *offsets;
4078 
4079     const uint16_t *table;
4080     const uint16_t *mbcsIndex;
4081     const uint8_t *p, *bytes;
4082     uint8_t outputType;
4083 
4084     UChar32 c;
4085 
4086     int32_t prevSourceIndex, sourceIndex, nextSourceIndex;
4087 
4088     uint32_t stage2Entry;
4089     uint32_t asciiRoundtrips;
4090     uint32_t value;
4091     /* Shift-In and Shift-Out byte sequences differ by encoding scheme. */
4092     uint8_t siBytes[2] = {0, 0};
4093     uint8_t soBytes[2] = {0, 0};
4094     uint8_t siLength, soLength;
4095     int32_t length = 0, prevLength;
4096     uint8_t unicodeMask;
4097 
4098     cnv=pArgs->converter;
4099 
4100     if(cnv->preFromUFirstCP>=0) {
4101         /*
4102          * pass sourceIndex=-1 because we continue from an earlier buffer
4103          * in the future, this may change with continuous offsets
4104          */
4105         ucnv_extContinueMatchFromU(cnv, pArgs, -1, pErrorCode);
4106 
4107         if(U_FAILURE(*pErrorCode) || cnv->preFromULength<0) {
4108             return;
4109         }
4110     }
4111 
4112     /* use optimized function if possible */
4113     outputType=cnv->sharedData->mbcs.outputType;
4114     unicodeMask=cnv->sharedData->mbcs.unicodeMask;
4115     if(outputType==MBCS_OUTPUT_1 && !(unicodeMask&UCNV_HAS_SURROGATES)) {
4116         if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4117             ucnv_MBCSSingleFromBMPWithOffsets(pArgs, pErrorCode);
4118         } else {
4119             ucnv_MBCSSingleFromUnicodeWithOffsets(pArgs, pErrorCode);
4120         }
4121         return;
4122     } else if(outputType==MBCS_OUTPUT_2 && cnv->sharedData->mbcs.utf8Friendly) {
4123         ucnv_MBCSDoubleFromUnicodeWithOffsets(pArgs, pErrorCode);
4124         return;
4125     }
4126 
4127     /* set up the local pointers */
4128     source=pArgs->source;
4129     sourceLimit=pArgs->sourceLimit;
4130     target=(uint8_t *)pArgs->target;
4131     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
4132     offsets=pArgs->offsets;
4133 
4134     table=cnv->sharedData->mbcs.fromUnicodeTable;
4135     if(cnv->sharedData->mbcs.utf8Friendly) {
4136         mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
4137     } else {
4138         mbcsIndex=NULL;
4139     }
4140     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
4141         bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
4142     } else {
4143         bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
4144     }
4145     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
4146 
4147     /* get the converter state from UConverter */
4148     c=cnv->fromUChar32;
4149 
4150     if(outputType==MBCS_OUTPUT_2_SISO) {
4151         prevLength=cnv->fromUnicodeStatus;
4152         if(prevLength==0) {
4153             /* set the real value */
4154             prevLength=1;
4155         }
4156     } else {
4157         /* prevent fromUnicodeStatus from being set to something non-0 */
4158         prevLength=0;
4159     }
4160 
4161     /* sourceIndex=-1 if the current character began in the previous buffer */
4162     prevSourceIndex=-1;
4163     sourceIndex= c==0 ? 0 : -1;
4164     nextSourceIndex=0;
4165 
4166     /* Get the SI/SO character for the converter */
4167     siLength = static_cast<uint8_t>(getSISOBytes(SI, cnv->options, siBytes));
4168     soLength = static_cast<uint8_t>(getSISOBytes(SO, cnv->options, soBytes));
4169 
4170     /* conversion loop */
4171     /*
4172      * This is another piece of ugly code:
4173      * A goto into the loop if the converter state contains a first surrogate
4174      * from the previous function call.
4175      * It saves me to check in each loop iteration a check of if(c==0)
4176      * and duplicating the trail-surrogate-handling code in the else
4177      * branch of that check.
4178      * I could not find any other way to get around this other than
4179      * using a function call for the conversion and callback, which would
4180      * be even more inefficient.
4181      *
4182      * Markus Scherer 2000-jul-19
4183      */
4184     if(c!=0 && targetCapacity>0) {
4185         goto getTrail;
4186     }
4187 
4188     while(source<sourceLimit) {
4189         /*
4190          * This following test is to see if available input would overflow the output.
4191          * It does not catch output of more than one byte that
4192          * overflows as a result of a multi-byte character or callback output
4193          * from the last source character.
4194          * Therefore, those situations also test for overflows and will
4195          * then break the loop, too.
4196          */
4197         if(targetCapacity>0) {
4198             /*
4199              * Get a correct Unicode code point:
4200              * a single UChar for a BMP code point or
4201              * a matched surrogate pair for a "supplementary code point".
4202              */
4203             c=*source++;
4204             ++nextSourceIndex;
4205             if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
4206                 *target++=(uint8_t)c;
4207                 if(offsets!=NULL) {
4208                     *offsets++=sourceIndex;
4209                     prevSourceIndex=sourceIndex;
4210                     sourceIndex=nextSourceIndex;
4211                 }
4212                 --targetCapacity;
4213                 c=0;
4214                 continue;
4215             }
4216             /*
4217              * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
4218              * to avoid dealing with surrogates.
4219              * MBCS_FAST_MAX must be >=0xd7ff.
4220              */
4221             if(c<=0xd7ff && mbcsIndex!=NULL) {
4222                 value=mbcsIndex[c>>6];
4223 
4224                 /* get the bytes and the length for the output (copied from below and adapted for utf8Friendly data) */
4225                 /* There are only roundtrips (!=0) and no-mapping (==0) entries. */
4226                 switch(outputType) {
4227                 case MBCS_OUTPUT_2:
4228                     value=((const uint16_t *)bytes)[value +(c&0x3f)];
4229                     if(value<=0xff) {
4230                         if(value==0) {
4231                             goto unassigned;
4232                         } else {
4233                             length=1;
4234                         }
4235                     } else {
4236                         length=2;
4237                     }
4238                     break;
4239                 case MBCS_OUTPUT_2_SISO:
4240                     /* 1/2-byte stateful with Shift-In/Shift-Out */
4241                     /*
4242                      * Save the old state in the converter object
4243                      * right here, then change the local prevLength state variable if necessary.
4244                      * Then, if this character turns out to be unassigned or a fallback that
4245                      * is not taken, the callback code must not save the new state in the converter
4246                      * because the new state is for a character that is not output.
4247                      * However, the callback must still restore the state from the converter
4248                      * in case the callback function changed it for its output.
4249                      */
4250                     cnv->fromUnicodeStatus=prevLength; /* save the old state */
4251                     value=((const uint16_t *)bytes)[value +(c&0x3f)];
4252                     if(value<=0xff) {
4253                         if(value==0) {
4254                             goto unassigned;
4255                         } else if(prevLength<=1) {
4256                             length=1;
4257                         } else {
4258                             /* change from double-byte mode to single-byte */
4259                             if (siLength == 1) {
4260                                 value|=(uint32_t)siBytes[0]<<8;
4261                                 length = 2;
4262                             } else if (siLength == 2) {
4263                                 value|=(uint32_t)siBytes[1]<<8;
4264                                 value|=(uint32_t)siBytes[0]<<16;
4265                                 length = 3;
4266                             }
4267                             prevLength=1;
4268                         }
4269                     } else {
4270                         if(prevLength==2) {
4271                             length=2;
4272                         } else {
4273                             /* change from single-byte mode to double-byte */
4274                             if (soLength == 1) {
4275                                 value|=(uint32_t)soBytes[0]<<16;
4276                                 length = 3;
4277                             } else if (soLength == 2) {
4278                                 value|=(uint32_t)soBytes[1]<<16;
4279                                 value|=(uint32_t)soBytes[0]<<24;
4280                                 length = 4;
4281                             }
4282                             prevLength=2;
4283                         }
4284                     }
4285                     break;
4286                 case MBCS_OUTPUT_DBCS_ONLY:
4287                     /* table with single-byte results, but only DBCS mappings used */
4288                     value=((const uint16_t *)bytes)[value +(c&0x3f)];
4289                     if(value<=0xff) {
4290                         /* no mapping or SBCS result, not taken for DBCS-only */
4291                         goto unassigned;
4292                     } else {
4293                         length=2;
4294                     }
4295                     break;
4296                 case MBCS_OUTPUT_3:
4297                     p=bytes+(value+(c&0x3f))*3;
4298                     value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4299                     if(value<=0xff) {
4300                         if(value==0) {
4301                             goto unassigned;
4302                         } else {
4303                             length=1;
4304                         }
4305                     } else if(value<=0xffff) {
4306                         length=2;
4307                     } else {
4308                         length=3;
4309                     }
4310                     break;
4311                 case MBCS_OUTPUT_4:
4312                     value=((const uint32_t *)bytes)[value +(c&0x3f)];
4313                     if(value<=0xff) {
4314                         if(value==0) {
4315                             goto unassigned;
4316                         } else {
4317                             length=1;
4318                         }
4319                     } else if(value<=0xffff) {
4320                         length=2;
4321                     } else if(value<=0xffffff) {
4322                         length=3;
4323                     } else {
4324                         length=4;
4325                     }
4326                     break;
4327                 case MBCS_OUTPUT_3_EUC:
4328                     value=((const uint16_t *)bytes)[value +(c&0x3f)];
4329                     /* EUC 16-bit fixed-length representation */
4330                     if(value<=0xff) {
4331                         if(value==0) {
4332                             goto unassigned;
4333                         } else {
4334                             length=1;
4335                         }
4336                     } else if((value&0x8000)==0) {
4337                         value|=0x8e8000;
4338                         length=3;
4339                     } else if((value&0x80)==0) {
4340                         value|=0x8f0080;
4341                         length=3;
4342                     } else {
4343                         length=2;
4344                     }
4345                     break;
4346                 case MBCS_OUTPUT_4_EUC:
4347                     p=bytes+(value+(c&0x3f))*3;
4348                     value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4349                     /* EUC 16-bit fixed-length representation applied to the first two bytes */
4350                     if(value<=0xff) {
4351                         if(value==0) {
4352                             goto unassigned;
4353                         } else {
4354                             length=1;
4355                         }
4356                     } else if(value<=0xffff) {
4357                         length=2;
4358                     } else if((value&0x800000)==0) {
4359                         value|=0x8e800000;
4360                         length=4;
4361                     } else if((value&0x8000)==0) {
4362                         value|=0x8f008000;
4363                         length=4;
4364                     } else {
4365                         length=3;
4366                     }
4367                     break;
4368                 default:
4369                     /* must not occur */
4370                     /*
4371                      * To avoid compiler warnings that value & length may be
4372                      * used without having been initialized, we set them here.
4373                      * In reality, this is unreachable code.
4374                      * Not having a default branch also causes warnings with
4375                      * some compilers.
4376                      */
4377                     value=0;
4378                     length=0;
4379                     break;
4380                 }
4381                 /* output the value */
4382             } else {
4383                 /*
4384                  * This also tests if the codepage maps single surrogates.
4385                  * If it does, then surrogates are not paired but mapped separately.
4386                  * Note that in this case unmatched surrogates are not detected.
4387                  */
4388                 if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
4389                     if(U16_IS_SURROGATE_LEAD(c)) {
4390 getTrail:
4391                         if(source<sourceLimit) {
4392                             /* test the following code unit */
4393                             UChar trail=*source;
4394                             if(U16_IS_TRAIL(trail)) {
4395                                 ++source;
4396                                 ++nextSourceIndex;
4397                                 c=U16_GET_SUPPLEMENTARY(c, trail);
4398                                 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4399                                     /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4400                                     cnv->fromUnicodeStatus=prevLength; /* save the old state */
4401                                     /* callback(unassigned) */
4402                                     goto unassigned;
4403                                 }
4404                                 /* convert this supplementary code point */
4405                                 /* exit this condition tree */
4406                             } else {
4407                                 /* this is an unmatched lead code unit (1st surrogate) */
4408                                 /* callback(illegal) */
4409                                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
4410                                 break;
4411                             }
4412                         } else {
4413                             /* no more input */
4414                             break;
4415                         }
4416                     } else {
4417                         /* this is an unmatched trail code unit (2nd surrogate) */
4418                         /* callback(illegal) */
4419                         *pErrorCode=U_ILLEGAL_CHAR_FOUND;
4420                         break;
4421                     }
4422                 }
4423 
4424                 /* convert the Unicode code point in c into codepage bytes */
4425 
4426                 /*
4427                  * The basic lookup is a triple-stage compact array (trie) lookup.
4428                  * For details see the beginning of this file.
4429                  *
4430                  * Single-byte codepages are handled with a different data structure
4431                  * by _MBCSSingle... functions.
4432                  *
4433                  * The result consists of a 32-bit value from stage 2 and
4434                  * a pointer to as many bytes as are stored per character.
4435                  * The pointer points to the character's bytes in stage 3.
4436                  * Bits 15..0 of the stage 2 entry contain the stage 3 index
4437                  * for that pointer, while bits 31..16 are flags for which of
4438                  * the 16 characters in the block are roundtrip-assigned.
4439                  *
4440                  * For 2-byte and 4-byte codepages, the bytes are stored as uint16_t
4441                  * respectively as uint32_t, in the platform encoding.
4442                  * For 3-byte codepages, the bytes are always stored in big-endian order.
4443                  *
4444                  * For EUC encodings that use only either 0x8e or 0x8f as the first
4445                  * byte of their longest byte sequences, the first two bytes in
4446                  * this third stage indicate with their 7th bits whether these bytes
4447                  * are to be written directly or actually need to be preceeded by
4448                  * one of the two Single-Shift codes. With this, the third stage
4449                  * stores one byte fewer per character than the actual maximum length of
4450                  * EUC byte sequences.
4451                  *
4452                  * Other than that, leading zero bytes are removed and the other
4453                  * bytes output. A single zero byte may be output if the "assigned"
4454                  * bit in stage 2 was on.
4455                  * The data structure does not support zero byte output as a fallback,
4456                  * and also does not allow output of leading zeros.
4457                  */
4458                 stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
4459 
4460                 /* get the bytes and the length for the output */
4461                 switch(outputType) {
4462                 case MBCS_OUTPUT_2:
4463                     value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4464                     if(value<=0xff) {
4465                         length=1;
4466                     } else {
4467                         length=2;
4468                     }
4469                     break;
4470                 case MBCS_OUTPUT_2_SISO:
4471                     /* 1/2-byte stateful with Shift-In/Shift-Out */
4472                     /*
4473                      * Save the old state in the converter object
4474                      * right here, then change the local prevLength state variable if necessary.
4475                      * Then, if this character turns out to be unassigned or a fallback that
4476                      * is not taken, the callback code must not save the new state in the converter
4477                      * because the new state is for a character that is not output.
4478                      * However, the callback must still restore the state from the converter
4479                      * in case the callback function changed it for its output.
4480                      */
4481                     cnv->fromUnicodeStatus=prevLength; /* save the old state */
4482                     value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4483                     if(value<=0xff) {
4484                         if(value==0 && MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)==0) {
4485                             /* no mapping, leave value==0 */
4486                             length=0;
4487                         } else if(prevLength<=1) {
4488                             length=1;
4489                         } else {
4490                             /* change from double-byte mode to single-byte */
4491                             if (siLength == 1) {
4492                                 value|=(uint32_t)siBytes[0]<<8;
4493                                 length = 2;
4494                             } else if (siLength == 2) {
4495                                 value|=(uint32_t)siBytes[1]<<8;
4496                                 value|=(uint32_t)siBytes[0]<<16;
4497                                 length = 3;
4498                             }
4499                             prevLength=1;
4500                         }
4501                     } else {
4502                         if(prevLength==2) {
4503                             length=2;
4504                         } else {
4505                             /* change from single-byte mode to double-byte */
4506                             if (soLength == 1) {
4507                                 value|=(uint32_t)soBytes[0]<<16;
4508                                 length = 3;
4509                             } else if (soLength == 2) {
4510                                 value|=(uint32_t)soBytes[1]<<16;
4511                                 value|=(uint32_t)soBytes[0]<<24;
4512                                 length = 4;
4513                             }
4514                             prevLength=2;
4515                         }
4516                     }
4517                     break;
4518                 case MBCS_OUTPUT_DBCS_ONLY:
4519                     /* table with single-byte results, but only DBCS mappings used */
4520                     value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4521                     if(value<=0xff) {
4522                         /* no mapping or SBCS result, not taken for DBCS-only */
4523                         value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4524                         length=0;
4525                     } else {
4526                         length=2;
4527                     }
4528                     break;
4529                 case MBCS_OUTPUT_3:
4530                     p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
4531                     value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4532                     if(value<=0xff) {
4533                         length=1;
4534                     } else if(value<=0xffff) {
4535                         length=2;
4536                     } else {
4537                         length=3;
4538                     }
4539                     break;
4540                 case MBCS_OUTPUT_4:
4541                     value=MBCS_VALUE_4_FROM_STAGE_2(bytes, stage2Entry, c);
4542                     if(value<=0xff) {
4543                         length=1;
4544                     } else if(value<=0xffff) {
4545                         length=2;
4546                     } else if(value<=0xffffff) {
4547                         length=3;
4548                     } else {
4549                         length=4;
4550                     }
4551                     break;
4552                 case MBCS_OUTPUT_3_EUC:
4553                     value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4554                     /* EUC 16-bit fixed-length representation */
4555                     if(value<=0xff) {
4556                         length=1;
4557                     } else if((value&0x8000)==0) {
4558                         value|=0x8e8000;
4559                         length=3;
4560                     } else if((value&0x80)==0) {
4561                         value|=0x8f0080;
4562                         length=3;
4563                     } else {
4564                         length=2;
4565                     }
4566                     break;
4567                 case MBCS_OUTPUT_4_EUC:
4568                     p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
4569                     value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4570                     /* EUC 16-bit fixed-length representation applied to the first two bytes */
4571                     if(value<=0xff) {
4572                         length=1;
4573                     } else if(value<=0xffff) {
4574                         length=2;
4575                     } else if((value&0x800000)==0) {
4576                         value|=0x8e800000;
4577                         length=4;
4578                     } else if((value&0x8000)==0) {
4579                         value|=0x8f008000;
4580                         length=4;
4581                     } else {
4582                         length=3;
4583                     }
4584                     break;
4585                 default:
4586                     /* must not occur */
4587                     /*
4588                      * To avoid compiler warnings that value & length may be
4589                      * used without having been initialized, we set them here.
4590                      * In reality, this is unreachable code.
4591                      * Not having a default branch also causes warnings with
4592                      * some compilers.
4593                      */
4594                     value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4595                     length=0;
4596                     break;
4597                 }
4598 
4599                 /* is this code point assigned, or do we use fallbacks? */
4600                 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)!=0 ||
4601                      (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
4602                 ) {
4603                     /*
4604                      * We allow a 0 byte output if the "assigned" bit is set for this entry.
4605                      * There is no way with this data structure for fallback output
4606                      * to be a zero byte.
4607                      */
4608 
4609 unassigned:
4610                     /* try an extension mapping */
4611                     pArgs->source=source;
4612                     c=_extFromU(cnv, cnv->sharedData,
4613                                 c, &source, sourceLimit,
4614                                 &target, target+targetCapacity,
4615                                 &offsets, sourceIndex,
4616                                 pArgs->flush,
4617                                 pErrorCode);
4618                     nextSourceIndex+=(int32_t)(source-pArgs->source);
4619                     prevLength=cnv->fromUnicodeStatus; /* restore SISO state */
4620 
4621                     if(U_FAILURE(*pErrorCode)) {
4622                         /* not mappable or buffer overflow */
4623                         break;
4624                     } else {
4625                         /* a mapping was written to the target, continue */
4626 
4627                         /* recalculate the targetCapacity after an extension mapping */
4628                         targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
4629 
4630                         /* normal end of conversion: prepare for a new character */
4631                         if(offsets!=NULL) {
4632                             prevSourceIndex=sourceIndex;
4633                             sourceIndex=nextSourceIndex;
4634                         }
4635                         continue;
4636                     }
4637                 }
4638             }
4639 
4640             /* write the output character bytes from value and length */
4641             /* from the first if in the loop we know that targetCapacity>0 */
4642             if(length<=targetCapacity) {
4643                 if(offsets==NULL) {
4644                     switch(length) {
4645                         /* each branch falls through to the next one */
4646                     case 4:
4647                         *target++=(uint8_t)(value>>24);
4648                         U_FALLTHROUGH;
4649                     case 3:
4650                         *target++=(uint8_t)(value>>16);
4651                         U_FALLTHROUGH;
4652                     case 2:
4653                         *target++=(uint8_t)(value>>8);
4654                         U_FALLTHROUGH;
4655                     case 1:
4656                         *target++=(uint8_t)value;
4657                         U_FALLTHROUGH;
4658                     default:
4659                         /* will never occur */
4660                         break;
4661                     }
4662                 } else {
4663                     switch(length) {
4664                         /* each branch falls through to the next one */
4665                     case 4:
4666                         *target++=(uint8_t)(value>>24);
4667                         *offsets++=sourceIndex;
4668                         U_FALLTHROUGH;
4669                     case 3:
4670                         *target++=(uint8_t)(value>>16);
4671                         *offsets++=sourceIndex;
4672                         U_FALLTHROUGH;
4673                     case 2:
4674                         *target++=(uint8_t)(value>>8);
4675                         *offsets++=sourceIndex;
4676                         U_FALLTHROUGH;
4677                     case 1:
4678                         *target++=(uint8_t)value;
4679                         *offsets++=sourceIndex;
4680                         U_FALLTHROUGH;
4681                     default:
4682                         /* will never occur */
4683                         break;
4684                     }
4685                 }
4686                 targetCapacity-=length;
4687             } else {
4688                 uint8_t *charErrorBuffer;
4689 
4690                 /*
4691                  * We actually do this backwards here:
4692                  * In order to save an intermediate variable, we output
4693                  * first to the overflow buffer what does not fit into the
4694                  * regular target.
4695                  */
4696                 /* we know that 1<=targetCapacity<length<=4 */
4697                 length-=targetCapacity;
4698                 charErrorBuffer=(uint8_t *)cnv->charErrorBuffer;
4699                 switch(length) {
4700                     /* each branch falls through to the next one */
4701                 case 3:
4702                     *charErrorBuffer++=(uint8_t)(value>>16);
4703                     U_FALLTHROUGH;
4704                 case 2:
4705                     *charErrorBuffer++=(uint8_t)(value>>8);
4706                     U_FALLTHROUGH;
4707                 case 1:
4708                     *charErrorBuffer=(uint8_t)value;
4709                     U_FALLTHROUGH;
4710                 default:
4711                     /* will never occur */
4712                     break;
4713                 }
4714                 cnv->charErrorBufferLength=(int8_t)length;
4715 
4716                 /* now output what fits into the regular target */
4717                 value>>=8*length; /* length was reduced by targetCapacity */
4718                 switch(targetCapacity) {
4719                     /* each branch falls through to the next one */
4720                 case 3:
4721                     *target++=(uint8_t)(value>>16);
4722                     if(offsets!=NULL) {
4723                         *offsets++=sourceIndex;
4724                     }
4725                     U_FALLTHROUGH;
4726                 case 2:
4727                     *target++=(uint8_t)(value>>8);
4728                     if(offsets!=NULL) {
4729                         *offsets++=sourceIndex;
4730                     }
4731                     U_FALLTHROUGH;
4732                 case 1:
4733                     *target++=(uint8_t)value;
4734                     if(offsets!=NULL) {
4735                         *offsets++=sourceIndex;
4736                     }
4737                     U_FALLTHROUGH;
4738                 default:
4739                     /* will never occur */
4740                     break;
4741                 }
4742 
4743                 /* target overflow */
4744                 targetCapacity=0;
4745                 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4746                 c=0;
4747                 break;
4748             }
4749 
4750             /* normal end of conversion: prepare for a new character */
4751             c=0;
4752             if(offsets!=NULL) {
4753                 prevSourceIndex=sourceIndex;
4754                 sourceIndex=nextSourceIndex;
4755             }
4756             continue;
4757         } else {
4758             /* target is full */
4759             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4760             break;
4761         }
4762     }
4763 
4764     /*
4765      * the end of the input stream and detection of truncated input
4766      * are handled by the framework, but for EBCDIC_STATEFUL conversion
4767      * we need to emit an SI at the very end
4768      *
4769      * conditions:
4770      *   successful
4771      *   EBCDIC_STATEFUL in DBCS mode
4772      *   end of input and no truncated input
4773      */
4774     if( U_SUCCESS(*pErrorCode) &&
4775         outputType==MBCS_OUTPUT_2_SISO && prevLength==2 &&
4776         pArgs->flush && source>=sourceLimit && c==0
4777     ) {
4778         /* EBCDIC_STATEFUL ending with DBCS: emit an SI to return the output stream to SBCS */
4779         if(targetCapacity>0) {
4780             *target++=(uint8_t)siBytes[0];
4781             if (siLength == 2) {
4782                 if (targetCapacity<2) {
4783                     cnv->charErrorBuffer[0]=(uint8_t)siBytes[1];
4784                     cnv->charErrorBufferLength=1;
4785                     *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4786                 } else {
4787                     *target++=(uint8_t)siBytes[1];
4788                 }
4789             }
4790             if(offsets!=NULL) {
4791                 /* set the last source character's index (sourceIndex points at sourceLimit now) */
4792                 *offsets++=prevSourceIndex;
4793             }
4794         } else {
4795             /* target is full */
4796             cnv->charErrorBuffer[0]=(uint8_t)siBytes[0];
4797             if (siLength == 2) {
4798                 cnv->charErrorBuffer[1]=(uint8_t)siBytes[1];
4799             }
4800             cnv->charErrorBufferLength=siLength;
4801             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4802         }
4803         prevLength=1; /* we switched into SBCS */
4804     }
4805 
4806     /* set the converter state back into UConverter */
4807     cnv->fromUChar32=c;
4808     cnv->fromUnicodeStatus=prevLength;
4809 
4810     /* write back the updated pointers */
4811     pArgs->source=source;
4812     pArgs->target=(char *)target;
4813     pArgs->offsets=offsets;
4814 }
4815 
4816 /*
4817  * This is another simple conversion function for internal use by other
4818  * conversion implementations.
4819  * It does not use the converter state nor call callbacks.
4820  * It does not handle the EBCDIC swaplfnl option (set in UConverter).
4821  * It handles conversion extensions but not GB 18030.
4822  *
4823  * It converts one single Unicode code point into codepage bytes, encoded
4824  * as one 32-bit value. The function returns the number of bytes in *pValue:
4825  * 1..4 the number of bytes in *pValue
4826  * 0    unassigned (*pValue undefined)
4827  * -1   illegal (currently not used, *pValue undefined)
4828  *
4829  * *pValue will contain the resulting bytes with the last byte in bits 7..0,
4830  * the second to last byte in bits 15..8, etc.
4831  * Currently, the function assumes but does not check that 0<=c<=0x10ffff.
4832  */
4833 U_CFUNC int32_t
ucnv_MBCSFromUChar32(UConverterSharedData * sharedData,UChar32 c,uint32_t * pValue,UBool useFallback)4834 ucnv_MBCSFromUChar32(UConverterSharedData *sharedData,
4835                  UChar32 c, uint32_t *pValue,
4836                  UBool useFallback) {
4837     const int32_t *cx;
4838     const uint16_t *table;
4839 #if 0
4840 /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
4841     const uint8_t *p;
4842 #endif
4843     uint32_t stage2Entry;
4844     uint32_t value;
4845     int32_t length;
4846 
4847     /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4848     if(c<=0xffff || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4849         table=sharedData->mbcs.fromUnicodeTable;
4850 
4851         /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
4852         if(sharedData->mbcs.outputType==MBCS_OUTPUT_1) {
4853             value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
4854             /* is this code point assigned, or do we use fallbacks? */
4855             if(useFallback ? value>=0x800 : value>=0xc00) {
4856                 *pValue=value&0xff;
4857                 return 1;
4858             }
4859         } else /* outputType!=MBCS_OUTPUT_1 */ {
4860             stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
4861 
4862             /* get the bytes and the length for the output */
4863             switch(sharedData->mbcs.outputType) {
4864             case MBCS_OUTPUT_2:
4865                 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4866                 if(value<=0xff) {
4867                     length=1;
4868                 } else {
4869                     length=2;
4870                 }
4871                 break;
4872 #if 0
4873 /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
4874             case MBCS_OUTPUT_DBCS_ONLY:
4875                 /* table with single-byte results, but only DBCS mappings used */
4876                 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4877                 if(value<=0xff) {
4878                     /* no mapping or SBCS result, not taken for DBCS-only */
4879                     value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4880                     length=0;
4881                 } else {
4882                     length=2;
4883                 }
4884                 break;
4885             case MBCS_OUTPUT_3:
4886                 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4887                 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4888                 if(value<=0xff) {
4889                     length=1;
4890                 } else if(value<=0xffff) {
4891                     length=2;
4892                 } else {
4893                     length=3;
4894                 }
4895                 break;
4896             case MBCS_OUTPUT_4:
4897                 value=MBCS_VALUE_4_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4898                 if(value<=0xff) {
4899                     length=1;
4900                 } else if(value<=0xffff) {
4901                     length=2;
4902                 } else if(value<=0xffffff) {
4903                     length=3;
4904                 } else {
4905                     length=4;
4906                 }
4907                 break;
4908             case MBCS_OUTPUT_3_EUC:
4909                 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4910                 /* EUC 16-bit fixed-length representation */
4911                 if(value<=0xff) {
4912                     length=1;
4913                 } else if((value&0x8000)==0) {
4914                     value|=0x8e8000;
4915                     length=3;
4916                 } else if((value&0x80)==0) {
4917                     value|=0x8f0080;
4918                     length=3;
4919                 } else {
4920                     length=2;
4921                 }
4922                 break;
4923             case MBCS_OUTPUT_4_EUC:
4924                 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4925                 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4926                 /* EUC 16-bit fixed-length representation applied to the first two bytes */
4927                 if(value<=0xff) {
4928                     length=1;
4929                 } else if(value<=0xffff) {
4930                     length=2;
4931                 } else if((value&0x800000)==0) {
4932                     value|=0x8e800000;
4933                     length=4;
4934                 } else if((value&0x8000)==0) {
4935                     value|=0x8f008000;
4936                     length=4;
4937                 } else {
4938                     length=3;
4939                 }
4940                 break;
4941 #endif
4942             default:
4943                 /* must not occur */
4944                 return -1;
4945             }
4946 
4947             /* is this code point assigned, or do we use fallbacks? */
4948             if( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
4949                 (FROM_U_USE_FALLBACK(useFallback, c) && value!=0)
4950             ) {
4951                 /*
4952                  * We allow a 0 byte output if the "assigned" bit is set for this entry.
4953                  * There is no way with this data structure for fallback output
4954                  * to be a zero byte.
4955                  */
4956                 /* assigned */
4957                 *pValue=value;
4958                 return length;
4959             }
4960         }
4961     }
4962 
4963     cx=sharedData->mbcs.extIndexes;
4964     if(cx!=NULL) {
4965         length=ucnv_extSimpleMatchFromU(cx, c, pValue, useFallback);
4966         return length>=0 ? length : -length;  /* return abs(length); */
4967     }
4968 
4969     /* unassigned */
4970     return 0;
4971 }
4972 
4973 
4974 #if 0
4975 /*
4976  * This function has been moved to ucnv2022.c for inlining.
4977  * This implementation is here only for documentation purposes
4978  */
4979 
4980 /**
4981  * This version of ucnv_MBCSFromUChar32() is optimized for single-byte codepages.
4982  * It does not handle the EBCDIC swaplfnl option (set in UConverter).
4983  * It does not handle conversion extensions (_extFromU()).
4984  *
4985  * It returns the codepage byte for the code point, or -1 if it is unassigned.
4986  */
4987 U_CFUNC int32_t
4988 ucnv_MBCSSingleFromUChar32(UConverterSharedData *sharedData,
4989                        UChar32 c,
4990                        UBool useFallback) {
4991     const uint16_t *table;
4992     int32_t value;
4993 
4994     /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4995     if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4996         return -1;
4997     }
4998 
4999     /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
5000     table=sharedData->mbcs.fromUnicodeTable;
5001 
5002     /* get the byte for the output */
5003     value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
5004     /* is this code point assigned, or do we use fallbacks? */
5005     if(useFallback ? value>=0x800 : value>=0xc00) {
5006         return value&0xff;
5007     } else {
5008         return -1;
5009     }
5010 }
5011 #endif
5012 
5013 /* MBCS-from-UTF-8 conversion functions ------------------------------------- */
5014 
5015 /* offsets for n-byte UTF-8 sequences that were calculated with ((lead<<6)+trail)<<6+trail... */
5016 static const UChar32
5017 utf8_offsets[5]={ 0, 0, 0x3080, 0xE2080, 0x3C82080 };
5018 
5019 static void U_CALLCONV
ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs * pFromUArgs,UConverterToUnicodeArgs * pToUArgs,UErrorCode * pErrorCode)5020 ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
5021                   UConverterToUnicodeArgs *pToUArgs,
5022                   UErrorCode *pErrorCode) {
5023     UConverter *utf8, *cnv;
5024     const uint8_t *source, *sourceLimit;
5025     uint8_t *target;
5026     int32_t targetCapacity;
5027 
5028     const uint16_t *table, *sbcsIndex;
5029     const uint16_t *results;
5030 
5031     int8_t oldToULength, toULength, toULimit;
5032 
5033     UChar32 c;
5034     uint8_t b, t1, t2;
5035 
5036     uint32_t asciiRoundtrips;
5037     uint16_t value, minValue = 0;
5038     UBool hasSupplementary;
5039 
5040     /* set up the local pointers */
5041     utf8=pToUArgs->converter;
5042     cnv=pFromUArgs->converter;
5043     source=(uint8_t *)pToUArgs->source;
5044     sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
5045     target=(uint8_t *)pFromUArgs->target;
5046     targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
5047 
5048     table=cnv->sharedData->mbcs.fromUnicodeTable;
5049     sbcsIndex=cnv->sharedData->mbcs.sbcsIndex;
5050     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
5051         results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
5052     } else {
5053         results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
5054     }
5055     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
5056 
5057     if(cnv->useFallback) {
5058         /* use all roundtrip and fallback results */
5059         minValue=0x800;
5060     } else {
5061         /* use only roundtrips and fallbacks from private-use characters */
5062         minValue=0xc00;
5063     }
5064     hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
5065 
5066     /* get the converter state from the UTF-8 UConverter */
5067     if(utf8->toULength > 0) {
5068         toULength=oldToULength=utf8->toULength;
5069         toULimit=(int8_t)utf8->mode;
5070         c=(UChar32)utf8->toUnicodeStatus;
5071     } else {
5072         toULength=oldToULength=toULimit=0;
5073         c = 0;
5074     }
5075 
5076     // The conversion loop checks source<sourceLimit only once per 1/2/3-byte character.
5077     // If the buffer ends with a truncated 2- or 3-byte sequence,
5078     // then we reduce the sourceLimit to before that,
5079     // and collect the remaining bytes after the conversion loop.
5080     {
5081         // Do not go back into the bytes that will be read for finishing a partial
5082         // sequence from the previous buffer.
5083         int32_t length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
5084         if(length>0) {
5085             uint8_t b1=*(sourceLimit-1);
5086             if(U8_IS_SINGLE(b1)) {
5087                 // common ASCII character
5088             } else if(U8_IS_TRAIL(b1) && length>=2) {
5089                 uint8_t b2=*(sourceLimit-2);
5090                 if(0xe0<=b2 && b2<0xf0 && U8_IS_VALID_LEAD3_AND_T1(b2, b1)) {
5091                     // truncated 3-byte sequence
5092                     sourceLimit-=2;
5093                 }
5094             } else if(0xc2<=b1 && b1<0xf0) {
5095                 // truncated 2- or 3-byte sequence
5096                 --sourceLimit;
5097             }
5098         }
5099     }
5100 
5101     if(c!=0 && targetCapacity>0) {
5102         utf8->toUnicodeStatus=0;
5103         utf8->toULength=0;
5104         goto moreBytes;
5105         /*
5106          * Note: We could avoid the goto by duplicating some of the moreBytes
5107          * code, but only up to the point of collecting a complete UTF-8
5108          * sequence; then recurse for the toUBytes[toULength]
5109          * and then continue with normal conversion.
5110          *
5111          * If so, move this code to just after initializing the minimum
5112          * set of local variables for reading the UTF-8 input
5113          * (utf8, source, target, limits but not cnv, table, minValue, etc.).
5114          *
5115          * Potential advantages:
5116          * - avoid the goto
5117          * - oldToULength could become a local variable in just those code blocks
5118          *   that deal with buffer boundaries
5119          * - possibly faster if the goto prevents some compiler optimizations
5120          *   (this would need measuring to confirm)
5121          * Disadvantage:
5122          * - code duplication
5123          */
5124     }
5125 
5126     /* conversion loop */
5127     while(source<sourceLimit) {
5128         if(targetCapacity>0) {
5129             b=*source++;
5130             if(U8_IS_SINGLE(b)) {
5131                 /* convert ASCII */
5132                 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
5133                     *target++=(uint8_t)b;
5134                     --targetCapacity;
5135                     continue;
5136                 } else {
5137                     c=b;
5138                     value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, 0, c);
5139                 }
5140             } else {
5141                 if(b<0xe0) {
5142                     if( /* handle U+0080..U+07FF inline */
5143                         b>=0xc2 &&
5144                         (t1=(uint8_t)(*source-0x80)) <= 0x3f
5145                     ) {
5146                         c=b&0x1f;
5147                         ++source;
5148                         value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t1);
5149                         if(value>=minValue) {
5150                             *target++=(uint8_t)value;
5151                             --targetCapacity;
5152                             continue;
5153                         } else {
5154                             c=(c<<6)|t1;
5155                         }
5156                     } else {
5157                         c=-1;
5158                     }
5159                 } else if(b==0xe0) {
5160                     if( /* handle U+0800..U+0FFF inline */
5161                         (t1=(uint8_t)(source[0]-0x80)) <= 0x3f && t1 >= 0x20 &&
5162                         (t2=(uint8_t)(source[1]-0x80)) <= 0x3f
5163                     ) {
5164                         c=t1;
5165                         source+=2;
5166                         value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t2);
5167                         if(value>=minValue) {
5168                             *target++=(uint8_t)value;
5169                             --targetCapacity;
5170                             continue;
5171                         } else {
5172                             c=(c<<6)|t2;
5173                         }
5174                     } else {
5175                         c=-1;
5176                     }
5177                 } else {
5178                     c=-1;
5179                 }
5180 
5181                 if(c<0) {
5182                     /* handle "complicated" and error cases, and continuing partial characters */
5183                     oldToULength=0;
5184                     toULength=1;
5185                     toULimit=U8_COUNT_BYTES_NON_ASCII(b);
5186                     c=b;
5187 moreBytes:
5188                     while(toULength<toULimit) {
5189                         /*
5190                          * The sourceLimit may have been adjusted before the conversion loop
5191                          * to stop before a truncated sequence.
5192                          * Here we need to use the real limit in case we have two truncated
5193                          * sequences at the end.
5194                          * See ticket #7492.
5195                          */
5196                         if(source<(uint8_t *)pToUArgs->sourceLimit) {
5197                             b=*source;
5198                             if(icu::UTF8::isValidTrail(c, b, toULength, toULimit)) {
5199                                 ++source;
5200                                 ++toULength;
5201                                 c=(c<<6)+b;
5202                             } else {
5203                                 break; /* sequence too short, stop with toULength<toULimit */
5204                             }
5205                         } else {
5206                             /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
5207                             source-=(toULength-oldToULength);
5208                             while(oldToULength<toULength) {
5209                                 utf8->toUBytes[oldToULength++]=*source++;
5210                             }
5211                             utf8->toUnicodeStatus=c;
5212                             utf8->toULength=toULength;
5213                             utf8->mode=toULimit;
5214                             pToUArgs->source=(char *)source;
5215                             pFromUArgs->target=(char *)target;
5216                             return;
5217                         }
5218                     }
5219 
5220                     if(toULength==toULimit) {
5221                         c-=utf8_offsets[toULength];
5222                         if(toULength<=3) {  /* BMP */
5223                             value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
5224                         } else {
5225                             /* supplementary code point */
5226                             if(!hasSupplementary) {
5227                                 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
5228                                 value=0;
5229                             } else {
5230                                 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
5231                             }
5232                         }
5233                     } else {
5234                         /* error handling: illegal UTF-8 byte sequence */
5235                         source-=(toULength-oldToULength);
5236                         while(oldToULength<toULength) {
5237                             utf8->toUBytes[oldToULength++]=*source++;
5238                         }
5239                         utf8->toULength=toULength;
5240                         pToUArgs->source=(char *)source;
5241                         pFromUArgs->target=(char *)target;
5242                         *pErrorCode=U_ILLEGAL_CHAR_FOUND;
5243                         return;
5244                     }
5245                 }
5246             }
5247 
5248             if(value>=minValue) {
5249                 /* output the mapping for c */
5250                 *target++=(uint8_t)value;
5251                 --targetCapacity;
5252             } else {
5253                 /* value<minValue means c is unassigned (unmappable) */
5254                 /*
5255                  * Try an extension mapping.
5256                  * Pass in no source because we don't have UTF-16 input.
5257                  * If we have a partial match on c, we will return and revert
5258                  * to UTF-8->UTF-16->charset conversion.
5259                  */
5260                 static const UChar nul=0;
5261                 const UChar *noSource=&nul;
5262                 c=_extFromU(cnv, cnv->sharedData,
5263                             c, &noSource, noSource,
5264                             &target, target+targetCapacity,
5265                             NULL, -1,
5266                             pFromUArgs->flush,
5267                             pErrorCode);
5268 
5269                 if(U_FAILURE(*pErrorCode)) {
5270                     /* not mappable or buffer overflow */
5271                     cnv->fromUChar32=c;
5272                     break;
5273                 } else if(cnv->preFromUFirstCP>=0) {
5274                     /*
5275                      * Partial match, return and revert to pivoting.
5276                      * In normal from-UTF-16 conversion, we would just continue
5277                      * but then exit the loop because the extension match would
5278                      * have consumed the source.
5279                      */
5280                     *pErrorCode=U_USING_DEFAULT_WARNING;
5281                     break;
5282                 } else {
5283                     /* a mapping was written to the target, continue */
5284 
5285                     /* recalculate the targetCapacity after an extension mapping */
5286                     targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
5287                 }
5288             }
5289         } else {
5290             /* target is full */
5291             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5292             break;
5293         }
5294     }
5295 
5296     /*
5297      * The sourceLimit may have been adjusted before the conversion loop
5298      * to stop before a truncated sequence.
5299      * If so, then collect the truncated sequence now.
5300      */
5301     if(U_SUCCESS(*pErrorCode) &&
5302             cnv->preFromUFirstCP<0 &&
5303             source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
5304         c=utf8->toUBytes[0]=b=*source++;
5305         toULength=1;
5306         toULimit=U8_COUNT_BYTES(b);
5307         while(source<sourceLimit) {
5308             utf8->toUBytes[toULength++]=b=*source++;
5309             c=(c<<6)+b;
5310         }
5311         utf8->toUnicodeStatus=c;
5312         utf8->toULength=toULength;
5313         utf8->mode=toULimit;
5314     }
5315 
5316     /* write back the updated pointers */
5317     pToUArgs->source=(char *)source;
5318     pFromUArgs->target=(char *)target;
5319 }
5320 
5321 static void U_CALLCONV
ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs * pFromUArgs,UConverterToUnicodeArgs * pToUArgs,UErrorCode * pErrorCode)5322 ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
5323                   UConverterToUnicodeArgs *pToUArgs,
5324                   UErrorCode *pErrorCode) {
5325     UConverter *utf8, *cnv;
5326     const uint8_t *source, *sourceLimit;
5327     uint8_t *target;
5328     int32_t targetCapacity;
5329 
5330     const uint16_t *table, *mbcsIndex;
5331     const uint16_t *results;
5332 
5333     int8_t oldToULength, toULength, toULimit;
5334 
5335     UChar32 c;
5336     uint8_t b, t1, t2;
5337 
5338     uint32_t stage2Entry;
5339     uint32_t asciiRoundtrips;
5340     uint16_t value = 0;
5341     UBool hasSupplementary;
5342 
5343     /* set up the local pointers */
5344     utf8=pToUArgs->converter;
5345     cnv=pFromUArgs->converter;
5346     source=(uint8_t *)pToUArgs->source;
5347     sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
5348     target=(uint8_t *)pFromUArgs->target;
5349     targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
5350 
5351     table=cnv->sharedData->mbcs.fromUnicodeTable;
5352     mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
5353     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
5354         results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
5355     } else {
5356         results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
5357     }
5358     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
5359 
5360     hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
5361 
5362     /* get the converter state from the UTF-8 UConverter */
5363     if(utf8->toULength > 0) {
5364         toULength=oldToULength=utf8->toULength;
5365         toULimit=(int8_t)utf8->mode;
5366         c=(UChar32)utf8->toUnicodeStatus;
5367     } else {
5368         toULength=oldToULength=toULimit=0;
5369         c = 0;
5370     }
5371 
5372     // The conversion loop checks source<sourceLimit only once per 1/2/3-byte character.
5373     // If the buffer ends with a truncated 2- or 3-byte sequence,
5374     // then we reduce the sourceLimit to before that,
5375     // and collect the remaining bytes after the conversion loop.
5376     {
5377         // Do not go back into the bytes that will be read for finishing a partial
5378         // sequence from the previous buffer.
5379         int32_t length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
5380         if(length>0) {
5381             uint8_t b1=*(sourceLimit-1);
5382             if(U8_IS_SINGLE(b1)) {
5383                 // common ASCII character
5384             } else if(U8_IS_TRAIL(b1) && length>=2) {
5385                 uint8_t b2=*(sourceLimit-2);
5386                 if(0xe0<=b2 && b2<0xf0 && U8_IS_VALID_LEAD3_AND_T1(b2, b1)) {
5387                     // truncated 3-byte sequence
5388                     sourceLimit-=2;
5389                 }
5390             } else if(0xc2<=b1 && b1<0xf0) {
5391                 // truncated 2- or 3-byte sequence
5392                 --sourceLimit;
5393             }
5394         }
5395     }
5396 
5397     if(c!=0 && targetCapacity>0) {
5398         utf8->toUnicodeStatus=0;
5399         utf8->toULength=0;
5400         goto moreBytes;
5401         /* See note in ucnv_SBCSFromUTF8() about this goto. */
5402     }
5403 
5404     /* conversion loop */
5405     while(source<sourceLimit) {
5406         if(targetCapacity>0) {
5407             b=*source++;
5408             if(U8_IS_SINGLE(b)) {
5409                 /* convert ASCII */
5410                 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
5411                     *target++=b;
5412                     --targetCapacity;
5413                     continue;
5414                 } else {
5415                     value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, 0, b);
5416                     if(value==0) {
5417                         c=b;
5418                         goto unassigned;
5419                     }
5420                 }
5421             } else {
5422                 if(b>=0xe0) {
5423                     if( /* handle U+0800..U+D7FF inline */
5424                         b<=0xed &&  // do not assume maxFastUChar>0xd7ff
5425                         U8_IS_VALID_LEAD3_AND_T1(b, t1=source[0]) &&
5426                         (t2=(uint8_t)(source[1]-0x80)) <= 0x3f
5427                     ) {
5428                         c=((b&0xf)<<6)|(t1&0x3f);
5429                         source+=2;
5430                         value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t2);
5431                         if(value==0) {
5432                             c=(c<<6)|t2;
5433                             goto unassigned;
5434                         }
5435                     } else {
5436                         c=-1;
5437                     }
5438                 } else {
5439                     if( /* handle U+0080..U+07FF inline */
5440                         b>=0xc2 &&
5441                         (t1=(uint8_t)(*source-0x80)) <= 0x3f
5442                     ) {
5443                         c=b&0x1f;
5444                         ++source;
5445                         value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t1);
5446                         if(value==0) {
5447                             c=(c<<6)|t1;
5448                             goto unassigned;
5449                         }
5450                     } else {
5451                         c=-1;
5452                     }
5453                 }
5454 
5455                 if(c<0) {
5456                     /* handle "complicated" and error cases, and continuing partial characters */
5457                     oldToULength=0;
5458                     toULength=1;
5459                     toULimit=U8_COUNT_BYTES_NON_ASCII(b);
5460                     c=b;
5461 moreBytes:
5462                     while(toULength<toULimit) {
5463                         /*
5464                          * The sourceLimit may have been adjusted before the conversion loop
5465                          * to stop before a truncated sequence.
5466                          * Here we need to use the real limit in case we have two truncated
5467                          * sequences at the end.
5468                          * See ticket #7492.
5469                          */
5470                         if(source<(uint8_t *)pToUArgs->sourceLimit) {
5471                             b=*source;
5472                             if(icu::UTF8::isValidTrail(c, b, toULength, toULimit)) {
5473                                 ++source;
5474                                 ++toULength;
5475                                 c=(c<<6)+b;
5476                             } else {
5477                                 break; /* sequence too short, stop with toULength<toULimit */
5478                             }
5479                         } else {
5480                             /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
5481                             source-=(toULength-oldToULength);
5482                             while(oldToULength<toULength) {
5483                                 utf8->toUBytes[oldToULength++]=*source++;
5484                             }
5485                             utf8->toUnicodeStatus=c;
5486                             utf8->toULength=toULength;
5487                             utf8->mode=toULimit;
5488                             pToUArgs->source=(char *)source;
5489                             pFromUArgs->target=(char *)target;
5490                             return;
5491                         }
5492                     }
5493 
5494                     if(toULength==toULimit) {
5495                         c-=utf8_offsets[toULength];
5496                         if(toULength<=3) {  /* BMP */
5497                             stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
5498                         } else {
5499                             /* supplementary code point */
5500                             if(!hasSupplementary) {
5501                                 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
5502                                 stage2Entry=0;
5503                             } else {
5504                                 stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
5505                             }
5506                         }
5507                     } else {
5508                         /* error handling: illegal UTF-8 byte sequence */
5509                         source-=(toULength-oldToULength);
5510                         while(oldToULength<toULength) {
5511                             utf8->toUBytes[oldToULength++]=*source++;
5512                         }
5513                         utf8->toULength=toULength;
5514                         pToUArgs->source=(char *)source;
5515                         pFromUArgs->target=(char *)target;
5516                         *pErrorCode=U_ILLEGAL_CHAR_FOUND;
5517                         return;
5518                     }
5519 
5520                     /* get the bytes and the length for the output */
5521                     /* MBCS_OUTPUT_2 */
5522                     value=MBCS_VALUE_2_FROM_STAGE_2(results, stage2Entry, c);
5523 
5524                     /* is this code point assigned, or do we use fallbacks? */
5525                     if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
5526                          (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
5527                     ) {
5528                         goto unassigned;
5529                     }
5530                 }
5531             }
5532 
5533             /* write the output character bytes from value and length */
5534             /* from the first if in the loop we know that targetCapacity>0 */
5535             if(value<=0xff) {
5536                 /* this is easy because we know that there is enough space */
5537                 *target++=(uint8_t)value;
5538                 --targetCapacity;
5539             } else /* length==2 */ {
5540                 *target++=(uint8_t)(value>>8);
5541                 if(2<=targetCapacity) {
5542                     *target++=(uint8_t)value;
5543                     targetCapacity-=2;
5544                 } else {
5545                     cnv->charErrorBuffer[0]=(char)value;
5546                     cnv->charErrorBufferLength=1;
5547 
5548                     /* target overflow */
5549                     *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5550                     break;
5551                 }
5552             }
5553             continue;
5554 
5555 unassigned:
5556             {
5557                 /*
5558                  * Try an extension mapping.
5559                  * Pass in no source because we don't have UTF-16 input.
5560                  * If we have a partial match on c, we will return and revert
5561                  * to UTF-8->UTF-16->charset conversion.
5562                  */
5563                 static const UChar nul=0;
5564                 const UChar *noSource=&nul;
5565                 c=_extFromU(cnv, cnv->sharedData,
5566                             c, &noSource, noSource,
5567                             &target, target+targetCapacity,
5568                             NULL, -1,
5569                             pFromUArgs->flush,
5570                             pErrorCode);
5571 
5572                 if(U_FAILURE(*pErrorCode)) {
5573                     /* not mappable or buffer overflow */
5574                     cnv->fromUChar32=c;
5575                     break;
5576                 } else if(cnv->preFromUFirstCP>=0) {
5577                     /*
5578                      * Partial match, return and revert to pivoting.
5579                      * In normal from-UTF-16 conversion, we would just continue
5580                      * but then exit the loop because the extension match would
5581                      * have consumed the source.
5582                      */
5583                     *pErrorCode=U_USING_DEFAULT_WARNING;
5584                     break;
5585                 } else {
5586                     /* a mapping was written to the target, continue */
5587 
5588                     /* recalculate the targetCapacity after an extension mapping */
5589                     targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
5590                     continue;
5591                 }
5592             }
5593         } else {
5594             /* target is full */
5595             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5596             break;
5597         }
5598     }
5599 
5600     /*
5601      * The sourceLimit may have been adjusted before the conversion loop
5602      * to stop before a truncated sequence.
5603      * If so, then collect the truncated sequence now.
5604      */
5605     if(U_SUCCESS(*pErrorCode) &&
5606             cnv->preFromUFirstCP<0 &&
5607             source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
5608         c=utf8->toUBytes[0]=b=*source++;
5609         toULength=1;
5610         toULimit=U8_COUNT_BYTES(b);
5611         while(source<sourceLimit) {
5612             utf8->toUBytes[toULength++]=b=*source++;
5613             c=(c<<6)+b;
5614         }
5615         utf8->toUnicodeStatus=c;
5616         utf8->toULength=toULength;
5617         utf8->mode=toULimit;
5618     }
5619 
5620     /* write back the updated pointers */
5621     pToUArgs->source=(char *)source;
5622     pFromUArgs->target=(char *)target;
5623 }
5624 
5625 /* miscellaneous ------------------------------------------------------------ */
5626 
5627 static void U_CALLCONV
ucnv_MBCSGetStarters(const UConverter * cnv,UBool starters[256],UErrorCode *)5628 ucnv_MBCSGetStarters(const UConverter* cnv,
5629                  UBool starters[256],
5630                  UErrorCode *) {
5631     const int32_t *state0;
5632     int i;
5633 
5634     state0=cnv->sharedData->mbcs.stateTable[cnv->sharedData->mbcs.dbcsOnlyState];
5635     for(i=0; i<256; ++i) {
5636         /* all bytes that cause a state transition from state 0 are lead bytes */
5637         starters[i]= (UBool)MBCS_ENTRY_IS_TRANSITION(state0[i]);
5638     }
5639 }
5640 
5641 /*
5642  * This is an internal function that allows other converter implementations
5643  * to check whether a byte is a lead byte.
5644  */
5645 U_CFUNC UBool
ucnv_MBCSIsLeadByte(UConverterSharedData * sharedData,char byte)5646 ucnv_MBCSIsLeadByte(UConverterSharedData *sharedData, char byte) {
5647     return (UBool)MBCS_ENTRY_IS_TRANSITION(sharedData->mbcs.stateTable[0][(uint8_t)byte]);
5648 }
5649 
5650 static void U_CALLCONV
ucnv_MBCSWriteSub(UConverterFromUnicodeArgs * pArgs,int32_t offsetIndex,UErrorCode * pErrorCode)5651 ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
5652               int32_t offsetIndex,
5653               UErrorCode *pErrorCode) {
5654     UConverter *cnv=pArgs->converter;
5655     char *p, *subchar;
5656     char buffer[4];
5657     int32_t length;
5658 
5659     /* first, select between subChar and subChar1 */
5660     if( cnv->subChar1!=0 &&
5661         (cnv->sharedData->mbcs.extIndexes!=NULL ?
5662             cnv->useSubChar1 :
5663             (cnv->invalidUCharBuffer[0]<=0xff))
5664     ) {
5665         /* select subChar1 if it is set (not 0) and the unmappable Unicode code point is up to U+00ff (IBM MBCS behavior) */
5666         subchar=(char *)&cnv->subChar1;
5667         length=1;
5668     } else {
5669         /* select subChar in all other cases */
5670         subchar=(char *)cnv->subChars;
5671         length=cnv->subCharLen;
5672     }
5673 
5674     /* reset the selector for the next code point */
5675     cnv->useSubChar1=FALSE;
5676 
5677     if (cnv->sharedData->mbcs.outputType == MBCS_OUTPUT_2_SISO) {
5678         p=buffer;
5679 
5680         /* fromUnicodeStatus contains prevLength */
5681         switch(length) {
5682         case 1:
5683             if(cnv->fromUnicodeStatus==2) {
5684                 /* DBCS mode and SBCS sub char: change to SBCS */
5685                 cnv->fromUnicodeStatus=1;
5686                 *p++=UCNV_SI;
5687             }
5688             *p++=subchar[0];
5689             break;
5690         case 2:
5691             if(cnv->fromUnicodeStatus<=1) {
5692                 /* SBCS mode and DBCS sub char: change to DBCS */
5693                 cnv->fromUnicodeStatus=2;
5694                 *p++=UCNV_SO;
5695             }
5696             *p++=subchar[0];
5697             *p++=subchar[1];
5698             break;
5699         default:
5700             *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
5701             return;
5702         }
5703         subchar=buffer;
5704         length=(int32_t)(p-buffer);
5705     }
5706 
5707     ucnv_cbFromUWriteBytes(pArgs, subchar, length, offsetIndex, pErrorCode);
5708 }
5709 
5710 U_CFUNC UConverterType
ucnv_MBCSGetType(const UConverter * converter)5711 ucnv_MBCSGetType(const UConverter* converter) {
5712     /* SBCS, DBCS, and EBCDIC_STATEFUL are replaced by MBCS, but here we cheat a little */
5713     if(converter->sharedData->mbcs.countStates==1) {
5714         return (UConverterType)UCNV_SBCS;
5715     } else if((converter->sharedData->mbcs.outputType&0xff)==MBCS_OUTPUT_2_SISO) {
5716         return (UConverterType)UCNV_EBCDIC_STATEFUL;
5717     } else if(converter->sharedData->staticData->minBytesPerChar==2 && converter->sharedData->staticData->maxBytesPerChar==2) {
5718         return (UConverterType)UCNV_DBCS;
5719     }
5720     return (UConverterType)UCNV_MBCS;
5721 }
5722 
5723 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */
5724