1 /*
2  *  mpi-priv.h  - Private header file for MPI
3  *  Arbitrary precision integer arithmetic library
4  *
5  *  NOTE WELL: the content of this header file is NOT part of the "public"
6  *  API for the MPI library, and may change at any time.
7  *  Application programs that use libmpi should NOT include this header file.
8  *
9  * This Source Code Form is subject to the terms of the Mozilla Public
10  * License, v. 2.0. If a copy of the MPL was not distributed with this
11  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
12 #ifndef _MPI_PRIV_H_
13 #define _MPI_PRIV_H_ 1
14 
15 #include "mpi.h"
16 #include <stdlib.h>
17 #include <string.h>
18 #include <ctype.h>
19 
20 #if MP_DEBUG
21 #include <stdio.h>
22 
23 #define DIAG(T, V)           \
24     {                        \
25         fprintf(stderr, T);  \
26         mp_print(V, stderr); \
27         fputc('\n', stderr); \
28     }
29 #else
30 #define DIAG(T, V)
31 #endif
32 
33 /* If we aren't using a wired-in logarithm table, we need to include
34    the math library to get the log() function
35  */
36 
37 /* {{{ s_logv_2[] - log table for 2 in various bases */
38 
39 #if MP_LOGTAB
40 /*
41   A table of the logs of 2 for various bases (the 0 and 1 entries of
42   this table are meaningless and should not be referenced).
43 
44   This table is used to compute output lengths for the mp_toradix()
45   function.  Since a number n in radix r takes up about log_r(n)
46   digits, we estimate the output size by taking the least integer
47   greater than log_r(n), where:
48 
49   log_r(n) = log_2(n) * log_r(2)
50 
51   This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
52   which are the output bases supported.
53  */
54 
55 extern const float s_logv_2[];
56 #define LOG_V_2(R) s_logv_2[(R)]
57 
58 #else
59 
60 /*
61    If MP_LOGTAB is not defined, use the math library to compute the
62    logarithms on the fly.  Otherwise, use the table.
63    Pick which works best for your system.
64  */
65 
66 #include <math.h>
67 #define LOG_V_2(R) (log(2.0) / log(R))
68 
69 #endif /* if MP_LOGTAB */
70 
71 /* }}} */
72 
73 /* {{{ Digit arithmetic macros */
74 
75 /*
76   When adding and multiplying digits, the results can be larger than
77   can be contained in an mp_digit.  Thus, an mp_word is used.  These
78   macros mask off the upper and lower digits of the mp_word (the
79   mp_word may be more than 2 mp_digits wide, but we only concern
80   ourselves with the low-order 2 mp_digits)
81  */
82 
83 #define CARRYOUT(W) (mp_digit)((W) >> DIGIT_BIT)
84 #define ACCUM(W) (mp_digit)(W)
85 
86 #define MP_MIN(a, b) (((a) < (b)) ? (a) : (b))
87 #define MP_MAX(a, b) (((a) > (b)) ? (a) : (b))
88 #define MP_HOWMANY(a, b) (((a) + (b)-1) / (b))
89 #define MP_ROUNDUP(a, b) (MP_HOWMANY(a, b) * (b))
90 
91 /* }}} */
92 
93 /* {{{ Comparison constants */
94 
95 #define MP_LT -1
96 #define MP_EQ 0
97 #define MP_GT 1
98 
99 /* }}} */
100 
101 /* {{{ private function declarations */
102 
103 void s_mp_setz(mp_digit *dp, mp_size count);                     /* zero digits           */
104 void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count); /* copy */
105 void *s_mp_alloc(size_t nb, size_t ni);                          /* general allocator     */
106 void s_mp_free(void *ptr);                                       /* general free function */
107 
108 mp_err s_mp_grow(mp_int *mp, mp_size min); /* increase allocated size */
109 mp_err s_mp_pad(mp_int *mp, mp_size min);  /* left pad with zeroes    */
110 
111 void s_mp_clamp(mp_int *mp); /* clip leading zeroes     */
112 
113 void s_mp_exch(mp_int *a, mp_int *b); /* swap a and b in place   */
114 
115 mp_err s_mp_lshd(mp_int *mp, mp_size p);    /* left-shift by p digits  */
116 void s_mp_rshd(mp_int *mp, mp_size p);      /* right-shift by p digits */
117 mp_err s_mp_mul_2d(mp_int *mp, mp_digit d); /* multiply by 2^d in place */
118 void s_mp_div_2d(mp_int *mp, mp_digit d);   /* divide by 2^d in place  */
119 void s_mp_mod_2d(mp_int *mp, mp_digit d);   /* modulo 2^d in place     */
120 void s_mp_div_2(mp_int *mp);                /* divide by 2 in place    */
121 mp_err s_mp_mul_2(mp_int *mp);              /* multiply by 2 in place  */
122 mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd);
123 /* normalize for division  */
124 mp_err s_mp_add_d(mp_int *mp, mp_digit d); /* unsigned digit addition */
125 mp_err s_mp_sub_d(mp_int *mp, mp_digit d); /* unsigned digit subtract */
126 mp_err s_mp_mul_d(mp_int *mp, mp_digit d); /* unsigned digit multiply */
127 mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r);
128 /* unsigned digit divide   */
129 mp_err s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);
130 /* Barrett reduction       */
131 mp_err s_mp_add(mp_int *a, const mp_int *b); /* magnitude addition      */
132 mp_err s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c);
133 mp_err s_mp_sub(mp_int *a, const mp_int *b); /* magnitude subtract      */
134 mp_err s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c);
135 mp_err s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset);
136 /* a += b * RADIX^offset   */
137 mp_err s_mp_mul(mp_int *a, const mp_int *b); /* magnitude multiply      */
138 #if MP_SQUARE
139 mp_err s_mp_sqr(mp_int *a); /* magnitude square        */
140 #else
141 #define s_mp_sqr(a) s_mp_mul(a, a)
142 #endif
143 mp_err s_mp_div(mp_int *rem, mp_int *div, mp_int *quot); /* magnitude div */
144 mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
145 mp_err s_mp_2expt(mp_int *a, mp_digit k);       /* a = 2^k                 */
146 int s_mp_cmp(const mp_int *a, const mp_int *b); /* magnitude comparison */
147 int s_mp_cmp_d(const mp_int *a, mp_digit d);    /* magnitude digit compare */
148 int s_mp_ispow2(const mp_int *v);               /* is v a power of 2?      */
149 int s_mp_ispow2d(mp_digit d);                   /* is d a power of 2?      */
150 
151 int s_mp_tovalue(char ch, int r);                /* convert ch to value    */
152 char s_mp_todigit(mp_digit val, int r, int low); /* convert val to digit */
153 int s_mp_outlen(int bits, int r);                /* output length in bytes */
154 mp_digit s_mp_invmod_radix(mp_digit P);          /* returns (P ** -1) mod RADIX */
155 mp_err s_mp_invmod_odd_m(const mp_int *a, const mp_int *m, mp_int *c);
156 mp_err s_mp_invmod_2d(const mp_int *a, mp_size k, mp_int *c);
157 mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c);
158 
159 #ifdef NSS_USE_COMBA
160 PR_STATIC_ASSERT(sizeof(mp_digit) == 8);
161 #define IS_POWER_OF_2(a) ((a) && !((a) & ((a)-1)))
162 
163 void s_mp_mul_comba_4(const mp_int *A, const mp_int *B, mp_int *C);
164 void s_mp_mul_comba_8(const mp_int *A, const mp_int *B, mp_int *C);
165 void s_mp_mul_comba_16(const mp_int *A, const mp_int *B, mp_int *C);
166 void s_mp_mul_comba_32(const mp_int *A, const mp_int *B, mp_int *C);
167 
168 void s_mp_sqr_comba_4(const mp_int *A, mp_int *B);
169 void s_mp_sqr_comba_8(const mp_int *A, mp_int *B);
170 void s_mp_sqr_comba_16(const mp_int *A, mp_int *B);
171 void s_mp_sqr_comba_32(const mp_int *A, mp_int *B);
172 
173 #endif /* end NSS_USE_COMBA */
174 
175 /* ------ mpv functions, operate on arrays of digits, not on mp_int's ------ */
176 #if defined(__OS2__) && defined(__IBMC__)
177 #define MPI_ASM_DECL __cdecl
178 #else
179 #define MPI_ASM_DECL
180 #endif
181 
182 #ifdef MPI_AMD64
183 
184 mp_digit MPI_ASM_DECL s_mpv_mul_set_vec64(mp_digit *, mp_digit *, mp_size, mp_digit);
185 mp_digit MPI_ASM_DECL s_mpv_mul_add_vec64(mp_digit *, const mp_digit *, mp_size, mp_digit);
186 
187 /* c = a * b */
188 #define s_mpv_mul_d(a, a_len, b, c) \
189     ((mp_digit *)c)[a_len] = s_mpv_mul_set_vec64(c, a, a_len, b)
190 
191 /* c += a * b */
192 #define s_mpv_mul_d_add(a, a_len, b, c) \
193     ((mp_digit *)c)[a_len] = s_mpv_mul_add_vec64(c, a, a_len, b)
194 
195 #else
196 
197 void MPI_ASM_DECL s_mpv_mul_d(const mp_digit *a, mp_size a_len,
198                               mp_digit b, mp_digit *c);
199 void MPI_ASM_DECL s_mpv_mul_d_add(const mp_digit *a, mp_size a_len,
200                                   mp_digit b, mp_digit *c);
201 
202 #endif
203 
204 void MPI_ASM_DECL s_mpv_mul_d_add_prop(const mp_digit *a,
205                                        mp_size a_len, mp_digit b,
206                                        mp_digit *c);
207 void MPI_ASM_DECL s_mpv_sqr_add_prop(const mp_digit *a,
208                                      mp_size a_len,
209                                      mp_digit *sqrs);
210 
211 mp_err MPI_ASM_DECL s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo,
212                                     mp_digit divisor, mp_digit *quot, mp_digit *rem);
213 
214 /* c += a * b * (MP_RADIX ** offset);  */
215 /* Callers of this macro should be aware that the return type might vary;
216  * it should be treated as a void function. */
217 #define s_mp_mul_d_add_offset(a, b, c, off) \
218     s_mpv_mul_d_add_prop(MP_DIGITS(a), MP_USED(a), b, MP_DIGITS(c) + off)
219 
220 typedef struct {
221     mp_int N;         /* modulus N */
222     mp_digit n0prime; /* n0' = - (n0 ** -1) mod MP_RADIX */
223 } mp_mont_modulus;
224 
225 mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
226                      mp_mont_modulus *mmm);
227 mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm);
228 
229 /*
230  * s_mpi_getProcessorLineSize() returns the size in bytes of the cache line
231  * if a cache exists, or zero if there is no cache. If more than one
232  * cache line exists, it should return the smallest line size (which is
233  * usually the L1 cache).
234  *
235  * mp_modexp uses this information to make sure that private key information
236  * isn't being leaked through the cache.
237  *
238  * see mpcpucache.c for the implementation.
239  */
240 unsigned long s_mpi_getProcessorLineSize();
241 
242 /* }}} */
243 #endif
244