1*> \brief \b DLA_SYRCOND estimates the Skeel condition number for a symmetric indefinite matrix.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DLA_SYRCOND + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_syrcond.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_syrcond.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_syrcond.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       DOUBLE PRECISION FUNCTION DLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF,
22*                                              IPIV, CMODE, C, INFO, WORK,
23*                                              IWORK )
24*
25*       .. Scalar Arguments ..
26*       CHARACTER          UPLO
27*       INTEGER            N, LDA, LDAF, INFO, CMODE
28*       ..
29*       .. Array Arguments
30*       INTEGER            IWORK( * ), IPIV( * )
31*       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), WORK( * ), C( * )
32*       ..
33*
34*
35*> \par Purpose:
36*  =============
37*>
38*> \verbatim
39*>
40*>    DLA_SYRCOND estimates the Skeel condition number of  op(A) * op2(C)
41*>    where op2 is determined by CMODE as follows
42*>    CMODE =  1    op2(C) = C
43*>    CMODE =  0    op2(C) = I
44*>    CMODE = -1    op2(C) = inv(C)
45*>    The Skeel condition number cond(A) = norminf( |inv(A)||A| )
46*>    is computed by computing scaling factors R such that
47*>    diag(R)*A*op2(C) is row equilibrated and computing the standard
48*>    infinity-norm condition number.
49*> \endverbatim
50*
51*  Arguments:
52*  ==========
53*
54*> \param[in] UPLO
55*> \verbatim
56*>          UPLO is CHARACTER*1
57*>       = 'U':  Upper triangle of A is stored;
58*>       = 'L':  Lower triangle of A is stored.
59*> \endverbatim
60*>
61*> \param[in] N
62*> \verbatim
63*>          N is INTEGER
64*>     The number of linear equations, i.e., the order of the
65*>     matrix A.  N >= 0.
66*> \endverbatim
67*>
68*> \param[in] A
69*> \verbatim
70*>          A is DOUBLE PRECISION array, dimension (LDA,N)
71*>     On entry, the N-by-N matrix A.
72*> \endverbatim
73*>
74*> \param[in] LDA
75*> \verbatim
76*>          LDA is INTEGER
77*>     The leading dimension of the array A.  LDA >= max(1,N).
78*> \endverbatim
79*>
80*> \param[in] AF
81*> \verbatim
82*>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
83*>     The block diagonal matrix D and the multipliers used to
84*>     obtain the factor U or L as computed by DSYTRF.
85*> \endverbatim
86*>
87*> \param[in] LDAF
88*> \verbatim
89*>          LDAF is INTEGER
90*>     The leading dimension of the array AF.  LDAF >= max(1,N).
91*> \endverbatim
92*>
93*> \param[in] IPIV
94*> \verbatim
95*>          IPIV is INTEGER array, dimension (N)
96*>     Details of the interchanges and the block structure of D
97*>     as determined by DSYTRF.
98*> \endverbatim
99*>
100*> \param[in] CMODE
101*> \verbatim
102*>          CMODE is INTEGER
103*>     Determines op2(C) in the formula op(A) * op2(C) as follows:
104*>     CMODE =  1    op2(C) = C
105*>     CMODE =  0    op2(C) = I
106*>     CMODE = -1    op2(C) = inv(C)
107*> \endverbatim
108*>
109*> \param[in] C
110*> \verbatim
111*>          C is DOUBLE PRECISION array, dimension (N)
112*>     The vector C in the formula op(A) * op2(C).
113*> \endverbatim
114*>
115*> \param[out] INFO
116*> \verbatim
117*>          INFO is INTEGER
118*>       = 0:  Successful exit.
119*>     i > 0:  The ith argument is invalid.
120*> \endverbatim
121*>
122*> \param[out] WORK
123*> \verbatim
124*>          WORK is DOUBLE PRECISION array, dimension (3*N).
125*>     Workspace.
126*> \endverbatim
127*>
128*> \param[out] IWORK
129*> \verbatim
130*>          IWORK is INTEGER array, dimension (N).
131*>     Workspace.
132*> \endverbatim
133*
134*  Authors:
135*  ========
136*
137*> \author Univ. of Tennessee
138*> \author Univ. of California Berkeley
139*> \author Univ. of Colorado Denver
140*> \author NAG Ltd.
141*
142*> \ingroup doubleSYcomputational
143*
144*  =====================================================================
145      DOUBLE PRECISION FUNCTION DLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF,
146     $                                       IPIV, CMODE, C, INFO, WORK,
147     $                                       IWORK )
148*
149*  -- LAPACK computational routine --
150*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
151*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
152*
153*     .. Scalar Arguments ..
154      CHARACTER          UPLO
155      INTEGER            N, LDA, LDAF, INFO, CMODE
156*     ..
157*     .. Array Arguments
158      INTEGER            IWORK( * ), IPIV( * )
159      DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), WORK( * ), C( * )
160*     ..
161*
162*  =====================================================================
163*
164*     .. Local Scalars ..
165      CHARACTER          NORMIN
166      INTEGER            KASE, I, J
167      DOUBLE PRECISION   AINVNM, SMLNUM, TMP
168      LOGICAL            UP
169*     ..
170*     .. Local Arrays ..
171      INTEGER            ISAVE( 3 )
172*     ..
173*     .. External Functions ..
174      LOGICAL            LSAME
175      DOUBLE PRECISION   DLAMCH
176      EXTERNAL           LSAME, DLAMCH
177*     ..
178*     .. External Subroutines ..
179      EXTERNAL           DLACN2, XERBLA, DSYTRS
180*     ..
181*     .. Intrinsic Functions ..
182      INTRINSIC          ABS, MAX
183*     ..
184*     .. Executable Statements ..
185*
186      DLA_SYRCOND = 0.0D+0
187*
188      INFO = 0
189      IF( N.LT.0 ) THEN
190         INFO = -2
191      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
192         INFO = -4
193      ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
194         INFO = -6
195      END IF
196      IF( INFO.NE.0 ) THEN
197         CALL XERBLA( 'DLA_SYRCOND', -INFO )
198         RETURN
199      END IF
200      IF( N.EQ.0 ) THEN
201         DLA_SYRCOND = 1.0D+0
202         RETURN
203      END IF
204      UP = .FALSE.
205      IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
206*
207*     Compute the equilibration matrix R such that
208*     inv(R)*A*C has unit 1-norm.
209*
210      IF ( UP ) THEN
211         DO I = 1, N
212            TMP = 0.0D+0
213            IF ( CMODE .EQ. 1 ) THEN
214               DO J = 1, I
215                  TMP = TMP + ABS( A( J, I ) * C( J ) )
216               END DO
217               DO J = I+1, N
218                  TMP = TMP + ABS( A( I, J ) * C( J ) )
219               END DO
220            ELSE IF ( CMODE .EQ. 0 ) THEN
221               DO J = 1, I
222                  TMP = TMP + ABS( A( J, I ) )
223               END DO
224               DO J = I+1, N
225                  TMP = TMP + ABS( A( I, J ) )
226               END DO
227            ELSE
228               DO J = 1, I
229                  TMP = TMP + ABS( A( J, I ) / C( J ) )
230               END DO
231               DO J = I+1, N
232                  TMP = TMP + ABS( A( I, J ) / C( J ) )
233               END DO
234            END IF
235            WORK( 2*N+I ) = TMP
236         END DO
237      ELSE
238         DO I = 1, N
239            TMP = 0.0D+0
240            IF ( CMODE .EQ. 1 ) THEN
241               DO J = 1, I
242                  TMP = TMP + ABS( A( I, J ) * C( J ) )
243               END DO
244               DO J = I+1, N
245                  TMP = TMP + ABS( A( J, I ) * C( J ) )
246               END DO
247            ELSE IF ( CMODE .EQ. 0 ) THEN
248               DO J = 1, I
249                  TMP = TMP + ABS( A( I, J ) )
250               END DO
251               DO J = I+1, N
252                  TMP = TMP + ABS( A( J, I ) )
253               END DO
254            ELSE
255               DO J = 1, I
256                  TMP = TMP + ABS( A( I, J) / C( J ) )
257               END DO
258               DO J = I+1, N
259                  TMP = TMP + ABS( A( J, I) / C( J ) )
260               END DO
261            END IF
262            WORK( 2*N+I ) = TMP
263         END DO
264      ENDIF
265*
266*     Estimate the norm of inv(op(A)).
267*
268      SMLNUM = DLAMCH( 'Safe minimum' )
269      AINVNM = 0.0D+0
270      NORMIN = 'N'
271
272      KASE = 0
273   10 CONTINUE
274      CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
275      IF( KASE.NE.0 ) THEN
276         IF( KASE.EQ.2 ) THEN
277*
278*           Multiply by R.
279*
280            DO I = 1, N
281               WORK( I ) = WORK( I ) * WORK( 2*N+I )
282            END DO
283
284            IF ( UP ) THEN
285               CALL DSYTRS( 'U', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
286            ELSE
287               CALL DSYTRS( 'L', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
288            ENDIF
289*
290*           Multiply by inv(C).
291*
292            IF ( CMODE .EQ. 1 ) THEN
293               DO I = 1, N
294                  WORK( I ) = WORK( I ) / C( I )
295               END DO
296            ELSE IF ( CMODE .EQ. -1 ) THEN
297               DO I = 1, N
298                  WORK( I ) = WORK( I ) * C( I )
299               END DO
300            END IF
301         ELSE
302*
303*           Multiply by inv(C**T).
304*
305            IF ( CMODE .EQ. 1 ) THEN
306               DO I = 1, N
307                  WORK( I ) = WORK( I ) / C( I )
308               END DO
309            ELSE IF ( CMODE .EQ. -1 ) THEN
310               DO I = 1, N
311                  WORK( I ) = WORK( I ) * C( I )
312               END DO
313            END IF
314
315            IF ( UP ) THEN
316               CALL DSYTRS( 'U', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
317            ELSE
318               CALL DSYTRS( 'L', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
319            ENDIF
320*
321*           Multiply by R.
322*
323            DO I = 1, N
324               WORK( I ) = WORK( I ) * WORK( 2*N+I )
325            END DO
326         END IF
327*
328         GO TO 10
329      END IF
330*
331*     Compute the estimate of the reciprocal condition number.
332*
333      IF( AINVNM .NE. 0.0D+0 )
334     $   DLA_SYRCOND = ( 1.0D+0 / AINVNM )
335*
336      RETURN
337*
338*     End of DLA_SYRCOND
339*
340      END
341